460 research outputs found

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases

    Constructions of Pure Asymmetric Quantum Alternant Codes Based on Subclasses of Alternant Codes

    Full text link
    In this paper, we construct asymmetric quantum error-correcting codes(AQCs) based on subclasses of Alternant codes. Firstly, We propose a new subclass of Alternant codes which can attain the classical Gilbert-Varshamov bound to construct AQCs. It is shown that when dx=2d_x=2, ZZ-parts of the AQCs can attain the classical Gilbert-Varshamov bound. Then we construct AQCs based on a famous subclass of Alternant codes called Goppa codes. As an illustrative example, we get three [[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]][[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]] AQCs from the well known [55,16,19][55,16,19] binary Goppa code. At last, we get asymptotically good binary expansions of asymmetric quantum GRS codes, which are quantum generalizations of Retter's classical results. All the AQCs constructed in this paper are pure

    New Identities Relating Wild Goppa Codes

    Get PDF
    For a given support LFqmnL \in \mathbb{F}_{q^m}^n and a polynomial gFqm[x]g\in \mathbb{F}_{q^m}[x] with no roots in Fqm\mathbb{F}_{q^m}, we prove equality between the qq-ary Goppa codes Γq(L,N(g))=Γq(L,N(g)/g)\Gamma_q(L,N(g)) = \Gamma_q(L,N(g)/g) where N(g)N(g) denotes the norm of gg, that is gqm1++q+1.g^{q^{m-1}+\cdots +q+1}. In particular, for m=2m=2, that is, for a quadratic extension, we get Γq(L,gq)=Γq(L,gq+1)\Gamma_q(L,g^q) = \Gamma_q(L,g^{q+1}). If gg has roots in Fqm\mathbb{F}_{q^m}, then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of gg in Fqm\mathbb{F}_{q^m}. These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.Comment: 14 page

    Coding Solutions for the Secure Biometric Storage Problem

    Full text link
    The paper studies the problem of securely storing biometric passwords, such as fingerprints and irises. With the help of coding theory Juels and Wattenberg derived in 1999 a scheme where similar input strings will be accepted as the same biometric. In the same time nothing could be learned from the stored data. They called their scheme a "fuzzy commitment scheme". In this paper we will revisit the solution of Juels and Wattenberg and we will provide answers to two important questions: What type of error-correcting codes should be used and what happens if biometric templates are not uniformly distributed, i.e. the biometric data come with redundancy. Answering the first question will lead us to the search for low-rate large-minimum distance error-correcting codes which come with efficient decoding algorithms up to the designed distance. In order to answer the second question we relate the rate required with a quantity connected to the "entropy" of the string, trying to estimate a sort of "capacity", if we want to see a flavor of the converse of Shannon's noisy coding theorem. Finally we deal with side-problems arising in a practical implementation and we propose a possible solution to the main one that seems to have so far prevented real life applications of the fuzzy scheme, as far as we know.Comment: the final version appeared in Proceedings Information Theory Workshop (ITW) 2010, IEEE copyrigh

    On spectra of BCH codes

    Get PDF
    Derives an estimate for the error term in the binomial approximation of spectra of BCH codes. This estimate asymptotically improves on the bounds by Sidelnikov (1971), Kasami et al. (1985), and Sole (1990)

    Quantum Fourier sampling, Code Equivalence, and the quantum security of the McEliece and Sidelnikov cryptosystems

    Full text link
    The Code Equivalence problem is that of determining whether two given linear codes are equivalent to each other up to a permutation of the coordinates. This problem has a direct reduction to a nonabelian hidden subgroup problem (HSP), suggesting a possible quantum algorithm analogous to Shor's algorithms for factoring or discrete log. However, we recently showed that in many cases of interest---including Goppa codes---solving this case of the HSP requires rich, entangled measurements. Thus, solving these cases of Code Equivalence via Fourier sampling appears to be out of reach of current families of quantum algorithms. Code equivalence is directly related to the security of McEliece-type cryptosystems in the case where the private code is known to the adversary. However, for many codes the support splitting algorithm of Sendrier provides a classical attack in this case. We revisit the claims of our previous article in the light of these classical attacks, and discuss the particular case of the Sidelnikov cryptosystem, which is based on Reed-Muller codes
    corecore