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On Spectra of BCH Codes 

Ilia Krasikov and Simon Litsyn 

Abstruct- We derive an estimate for the error term in the binomial 
approximation of spectra of BCH codes. This estimate asymptotically 
improves on the earlier hounds by Sidelnikov, Kasami-Fujiwara-Lin, 
and Sult. 

Index Terms-BCH codes, spectra of codes, Krawtchouk polynomials. 

1. INTRODUCTION 

I t  is well known that the distance distribution of binary primitive 
BCH codes can be approximated by the binomial distribution. If C 
is the BCH code of length i t  = 2"' - 1 and with minimum distance 
2t  + 1 5 2'"''+1)'21 + 1. the components of the distance distribution 
vector I )  = ( [ I O . .  . . . b , ? )  can be written as 

b -A (") ( l + E , )  
' - ( ' I  + 1)' 

where \E,\  decreases with 1 ) .  Several upper bounds on \E, \  have 
been obtained. Sidelnikov [IS] gave a bound of order T I - "  for i in 
the relevant range. Further improvements on this estimate have been 
derived by Kasami, Fujiwara, and Lin [3] and Sol6 [16]. 

The bound of [3] for 1 1  large enough, t = o( fi) and i linearly 
depending on n ,  i = U J I ,  gives 

1 
- log, 

and the bound of 161 implies the following inequality: 

where H i m )  = -mlog2 ( U )  - (1 - crjlog, (1 - a). 
In this correspondence we present new estimates of the relative 

error term improving the known results. Our approach is based 
on investigating upper bounds for absolute values of Krawtchouk 
polynomials. Actually, this is just a refinement of an idea due to P. 
Sol6 [ 161. The bounds obtained are quite tight. Particularly, for t fixed 
our estimate is of order at most O (  i t - '  ). This approach can be easily 
generalized to arbitrary codes with known dual distance width, see 
e.g., [3]. As it was mentioned by an anonymous referee, the approach 
works as well for wide classes of Goppa codes, Melas codes, etc., 
where bounds of Carlitz-Uchiyama type for the dual distance width 
are known (see, e.g. [ 5 ]  ,161, [ I l l ,  [12]). Another upper estimates 
for values of Krawtchouk polynomials can be found in [4] where 
the expression for the envelope of absolute values of Krawtchouk 
polynomials was obtained. 
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11. THE MAIN RESULT 
We will need some well known results about Krawtchouk polyno- 

The binary Krawtchouk polynomial PL' ( . r )  (of degree X .  in .r) is 
mials (see, e.g., [7], [SI, [ IO] .  [171). 

defined by the following generating function: 

x 

~ P ; ~ ( . r ) ?  = (1 - : ) ) ( 1  + : ) ' l - . l .  (4) 
1. =o 

Usually i t  is fixed and, when i t  does not lead to confusion, is omitted. 
We need some particular values of PA ( i ) ,  namely, 

From Cauchy's integral formula we get for nonnegative integer .I' 
(see, e.g., [16]): 

Thus for I I  and .I' even we have 

Hence, the following inequality holds (note, that in the sequel i is 
an integer, not J-1). 

Lemma 1: For i t  and i even, l P ~ ( i ) l  5 IPt ,p( i ) l .  
Let us find the values P , 8 / 2 ( i )  for even 1 1  and i ' s .  The following 

symmetry relation holds for integer k and i (see, e.g. [SI): 

and 

So, from ( 5 )  and Lemma 1 we get for even i f  and i 

Employing (6) we obtain the following lemma. 
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Lemma 2: For k integer, and n and i even Theorem 1: In the extended BCH code of length n = 2m and 
minimum distance 2t + 2 5 2["'+']/' + 2  

B, = 0, for i odd 

(" Now we are in a position to analyze the weight distribution of 
BCH codes. Consider the extended BCH code C of length n = 
2", cardinality 2n-mt-1 , and minimum distance d = 2t + 2 5 
2[("'+1)/21 + 2. Let the distance distribution of the code be B = 

(9) 
(Bo . . . . . 4 , ) , 40=B,=1 ,B21+1  = O f o r 1 = 0  ,.... n / 2 - 1 ,  
and B,  = B,,-, = 0 for i = 1 , 2 , .  . . .2 t+1.  For usual (nonextended) 
BCH code of length n - 1 and minimum distance 2t + 1 we denote we obtan the following result for usual BCH 
its spectrum by b = ( b o , .  . . . b, - l ) .  Since the extended BCH code 
is doubly transitive we have the following result relating the values Theorem 2: In the BCH code of length = - = 2m - and 
of odd and even components of the spectra of BCH codes (see, e.g., 
[ lo ,  ch. 8.5, Theorems 14 and 161). 

B, = -+(l + E z ) ,  for 1 even 
n 

where 

nt L 7 2 )  ($) 
(:)(io ' IEzl I 

Using Lemma 

minimum distance 2t + 
2[(m+1)/2] + 

Lemma 3: 

(7) 

and B: = B:l-L for i = O . . . . .  u,  BA = Bk = 1, B;,+, = 0 for 
i = 0,.  . . . n / 2  - 1, and for 2t + 1 5 2[(mf')/21 + 1 merefore,  for t = o(n  + 1, 

(,,1;2) 

(3 
I?: = Bi,-z = 0, f o r i  = l:...d' = [ n / 2  - ( t  - 1 ) d .  (8) 

In - = 2 ( t  - 1)' + o( l ) ,  
The last relation is due to Weil-Carlitz-Uchiyama (see [ lo ,  ch. 9.91 
and [9], [13], [14] for further refinements). Denote by D' the segment 
[d' ,  . . . . n - d' ] .  Note that for the considered range of t and for t = o ( 6 )  

n 

n: = IC'I = 2n' .  
1=0 

Inverting (7) we have 
This leads to straightforward corollaries from Theorems 1 and 2. 
Corollary I :  If t = o( f i ) ,  and i grows linearly with n, i / n  = 

(r + o (  l ) ,  then 

1 1 
- log2 I E m  I - - - H ( o )  + o(1). 2 

Comparing the result of the corollary with (2 )  and (3) we conclude 
that our estimate is better for all (r E ( 0 , l ) .  

Assuming t = o ( n a ) ,  we give somehow sharper estimates, 
particularly good for small i ' s .  We use that for i = o ( 6 )  from 
Stirling approximation we have 

We consider only even i ' s ,  since, otherwise, B,  = 0. Hence 

i.e., for i even we have (1 + 4 1 ) ) .  

Corollary2: If t = o ( n a ) ,  i = o(f i ) ,  then 

If t and i are constants then we have IEzI = O(nt-'l2) (it was 
proven also in [3]). Since the maximum error occurs in (EZt+21r  we 

Now since 1 1  and i are even we may use Lemma 2, thus getting always have (E,I = O ( n - ' ) .  
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Finally, for BCH codes we get 
Theorem 3: Let t = o ( n a )  and 1 = [ ( i  + 1) /2 ] ,  then in the BCH 

On Primitive BCH Codes with 
Unequal Error Protection Capabilities 

Robert H. Morelos-Zaragoza, Member ,  IEEE, 
code of length rt  = 2”‘ - 1 and with minimum distance 2t + 1 

and Shu Lin, Fellow, IEEE 

where the error term is upperbounded as follows: Abstract-We present a class of binary primitive BCH codes that have 
unequal-error-protection (UEP) capabilities. We use a recent result on the 
span of their minimum weight vectors to show that binary primitive BCH 
codes, containing second-order punctured Reed-Muller (RM) codes of the 
same minimum distance, are binary-cyclic UEP codes. The values of the 
error correction levels for this class of binary LUEP codes are estimated. 

I (  rt  - 21) 7 1  r l ‘ - i (  + O (  ) ). 

Note: 
Zndex Terms-Unequal error protection codes, binary primitive BCH After the correspondence had been submitted we were informed 

that a similar, slightly weaker (by a factor fi), bound can be derived 
from arguments presented in [2]. Their approach is quite different 
from that of ours. 
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I.  INTRODUCTION 

Unequal error protection codes protect some of the encoded 
message symbols against more errors than the error correction level 
given by their minimum Hamming distance. Linear unequal error 
protection (LUEP) codes were first introduced by Masnick and Wolf 
[I] .  They discussed linear codes, specified by their parity check 
matrices, providing a level of error correction beyond that given 
by the minimum distance of the code, for some codeword positions. 
Gore and Kilgus [2] introduced an example ( 1.5.9) binary-cyclic UEP 
code with minimum distance 4 that can correct one information bit 
against the occurrence of two errors. That is, the most significant bit 
can always be decoded in the presence of up to two random errors 
in a received vector. Since then, other cyclic UEP codes have been 
introduced [ 3 ] ,  [4]. Binary BCH codes form a popular family of cyclic 
codes that have found numerous practical applications, due to their 
ability to correct multiple random errors, as well as their efficient 
coding and decoding procedures. Therefore, i t  is of interest to find 
conditions under which binary BCH codes are binary LUEP codes. 

To analyze the multilevel error correcting capabilities of binary 
linear codes, the concept of set of minimum weight vectors is 
fundamental. 

Dejniriori I S ] :  Let C‘ be an ( t i .  k . d )  linear code. The set of 
minimum-weight codewords, denoted .M, is defined as 

where w t ( c )  denotes the Hamming weight of vector E ,  and t = 

With the above definition, Boyarinov and Katsman [SI found 
conditions for linear codes to be LUEP codes: 

Lemma I :  To provide the protection level 6 for at least k’ in- 
formation digits of an ( I / .  k .  d )  linear code C‘, i t  is necessary and 

L(d - 1) /2J .  
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