607 research outputs found

    Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

    Get PDF
    Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial segments extracted from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlying arterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs

    Data Augmentation through Pseudolabels in Automatic Region Based Coronary Artery Segmentation for Disease Diagnosis

    Full text link
    Coronary Artery Diseases(CADs) though preventable are one of the leading causes of death and disability. Diagnosis of these diseases is often difficult and resource intensive. Segmentation of arteries in angiographic images has evolved as a tool for assistance, helping clinicians in making accurate diagnosis. However, due to the limited amount of data and the difficulty in curating a dataset, the task of segmentation has proven challenging. In this study, we introduce the idea of using pseudolabels as a data augmentation technique to improve the performance of the baseline Yolo model. This method increases the F1 score of the baseline by 9% in the validation dataset and by 3% in the test dataset.Comment: arXiv admin note: text overlap with arXiv:2310.0474

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

    Get PDF
    Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial sements extraced from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlyingarterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs

    Extraction of Blood Vessels Geometric Shape Features with Catheter Localization and Geodesic Distance Transform for Right Coronary Artery Detection.

    Get PDF
    X-ray angiography is considered the standard imaging sensory system for diagnosing coronary artery diseases. For automated, accurate diagnosis of such diseases, coronary vessels’ detection from the captured low quality and noisy angiography images is challenging. It is essential to detect the main branch of the coronary artery, to resolve such limitations along with the problems due to the sudden changes in the lumen diameter, and the abrupt changes in local artery direction. Accordingly, this paper solved these limitations by proposing a computer-aided detection system for the right coronary artery (RCA) extraction, where geometric shape features with catheter localization and geodesic distance transform in the angiography images through two parts. In part 1, the captured image was initially preprocessed for contrast enhancement using singular value decomposition-based contrast adjustment, followed by generating the vesselness map using Jerman filter, and for further segmentation the K-means was introduced. Afterward, in part 2, the geometric shape features of the RCA, as well as the skeleton gradient transform, and the start/end points were determined to extract the main blood vessel of the RCA. The analysis of the skeletonize image was performed using Geodesic distance transform to examine all branches starting from the predetermined start point and cover the branching till the predefined end points. A ranking matrix, and the inverse of skeletonization were finally carried out to get the actual main branch. The performance of the proposed system was then evaluated using different evaluation metrics on the angiography images...
    • …
    corecore