1,007 research outputs found

    A Real-Time Robust Global Localization for Autonomous Mobile Robots in Large Environments

    Get PDF
    International audienceGlobal localization aims to estimate a robot's pose in a learned map without any prior knowledge of its initial pose. Achieving highly accurate global localization remains a challenge for autonomous mobile robots especially in large-scale unstructured outdoor environments. This paper introduces a real-time reliable global localization approach with the capability of addressing the kidnapped robot problem using only laser sensors. Our approach includes four steps: 1) local Simultaneous Localization and Mapping 2) map matching 3) position tracking and 4) localization quality evaluation. For sensor perception, we use occupancy grid method to represent robot environment. A novel pyramid grid-map based coarse-to-fine matching approach is proposed to improve the localization accuracy. Experimental results including an outdoor environment of 25,000 m2 are presented to validate the feasibility and reliability of the proposed approach

    Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS

    Get PDF
    This paper proposes a method that improves autonomous vehicles localization using a modification of probabilistic laser localization like Monte Carlo Localization (MCL) algorithm, enhancing the weights of the particles by adding Kalman filtered Global Navigation Satellite System (GNSS) information. GNSS data are used to improve localization accuracy in places with fewer map features and to prevent the kidnapped robot problems. Besides, laser information improves accuracy in places where the map has more features and GNSS higher covariance, allowing the approach to be used in specifically difficult scenarios for GNSS such as urban canyons. The algorithm is tested using KITTI odometry dataset proving that it improves localization compared with classic GNSS + Inertial Navigation System (INS) fusion and Adaptive Monte Carlo Localization (AMCL), it is also tested in the autonomous vehicle platform of the Intelligent Systems Lab (LSI), of the University Carlos III de of Madrid, providing qualitative results.Research supported by the Spanish Government through the CICYT projects (TRA2016-78886-C3-1-Rand RTI2018-096036-B-C21), Universidad Carlos III of Madrid through (PEAVAUTO-CM-UC3M) and the Comunidad de Madrid through SEGVAUTO-4.0-CM (P2018/EMT-4362)

    Monte Carlo localization for teach-and-repeat feature-based navigation

    Get PDF
    This work presents a combination of a teach-and-replay visual navigation and Monte Carlo localization methods. It improves a reliable teach-and-replay navigation method by replacing its dependency on precise dead-reckoning by introducing Monte Carlo localization to determine robot position along the learned path. In consequence, the navigation method becomes robust to dead-reckoning errors, can be started from at any point in the map and can deal with the `kidnapped robot' problem. Furthermore, the robot is localized with MCL only along the taught path, i.e. in one dimension, which does not require a high number of particles and significantly reduces the computational cost. Thus, the combination of MCL and teach-and-replay navigation mitigates the disadvantages of both methods. The method was tested using a P3-AT ground robot and a Parrot AR.Drone aerial robot over a long indoor corridor. Experiments show the validity of the approach and establish a solid base for continuing this work

    Vision based localization of mobile robots

    Get PDF
    Mobile robotics is an active and exciting sub-field of Computer Science. Its importance is easily witnessed in a variety of undertakings from DARPA\u27s Grand Challenge to NASA\u27s Mars exploration program. The field is relatively young, and still many challenges face roboticists across the board. One important area of research is localization, which concerns itself with granting a robot the ability to discover and continually update an internal representation of its position. Vision based sensor systems have been investigated [8,22,27], but to much lesser extent than other popular techniques [4,6,7,9,10]. A custom mobile platform has been constructed on top of which a monocular vision based localization system has been implemented. The rigorous gathering of empirical data across a large group of parameters germane to the problem has led to various findings about monocular vision based localization and the fitness of the custom robot platform. The localization component is based on a probabilistic technique called Monte-Carlo Localization (MCL) that tolerates a variety of different sensors and effectors, and has further proven to be adept at localization in diverse circumstances. Both a motion model and sensor model that drive the particle filter at the algorithm\u27s core have been carefully derived. The sensor model employs a simple correlation process that leverages color histograms and edge detection to filter robot pose estimations via the on board vision. This algorithm relies on image matching to tune position estimates based on a priori knowledge of its environment in the form of a feature library. It is believed that leveraging different computationally inexpensive features can lead to efficient and robust localization with MCL. The central goal of this thesis is to implement and arrive at such a conclusion through the gathering of empirical data. Section 1 presents a brief introduction to mobile robot localization and robot architectures, while section 2 covers MCL itself in more depth. Section 3 elaborates on the localization strategy, modeling and implementation that forms the basis of the trials that are presented toward the end of that section. Section 4 presents a revised implementation that attempts to address shortcomings identified during localization trials. Finally in section 5, conclusions are drawn about the effectiveness of the localization implementation and a path to improved localization with monocular vision is posited

    D-SLAM: A decoupled solution to simultaneous localization and mapping

    Full text link
    The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM with a range and bearing sensor in an environment populated with point features can be decoupled into solving a nonlinear static estimation problem for mapping and a low-dimensional dynamic estimation problem for localization. This is achieved by transforming the measurement vector into two parts: one containing information relating features in the map and another with information relating the map and robot. It is shown that the new formulation results in an exactly sparse information matrix for mapping when it is solved using an Extended Information Filter (EIF).Thus a significant saving in the computational effort can be achieved for large-scale problems by exploiting the special properties of sparse matrices. An important feature of D-SLAM is that the correlation among features in the map are still kept and it is demonstrated that the uncertainty of the feature estimates monotonically decreases. The algorithm is illustrated and evaluated through computer simulations and experiments. © 2007 SAGE Publications

    A robot localization proposal for the RobotAtFactory 4.0: A novel robotics competition within the Industry 4.0 concept

    Get PDF
    Robotic competitions are an excellent way to promote innovative solutions for the current industries’ challenges and entrepreneurial spirit, acquire technical and transversal skills through active teaching, and promote this area to the public. In other words, since robotics is a multidisciplinary field, its competitions address several knowledge topics, especially in the STEM (Science, Technology, Engineering, and Mathematics) category, that are shared among the students and researchers, driving further technology and science. A new competition encompassed in the Portuguese Robotics Open was created according to the Industry 4.0 concept in the production chain. In this competition, RobotAtFactory 4.0, a shop floor, is used to mimic a fully automated industrial logistics warehouse and the challenges it brings. Autonomous Mobile Robots (AMRs) must be used to operate without supervision and perform the tasks that the warehouse requests. There are different types of boxes which dictate their partial and definitive destinations. In this reasoning, AMRs should identify each and transport them to their destinations. This paper describes an approach to the indoor localization system for the competition based on the Extended Kalman Filter (EKF) and ArUco markers. Different innovation methods for the obtained observations were tested and compared in the EKF. A real robot was designed and assembled to act as a test bed for the localization system’s validation. Thus, the approach was validated in the real scenario using a factory floor with the official specifications provided by the competition organization.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/ 05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/ 2021). The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI20/11780028. The authors also acknowledge the R&D Unit SYSTEC-Base (UIDB/00147/2020), Programmatic (UIDP/00147/2020) and Project Warehouse of the Future (WoF), with reference POCI-01-0247-FEDER-072638, co-funded by FEDER, through COMPETE 2020info:eu-repo/semantics/publishedVersio

    D-SLAM: Decoupled localization and mapping for autonomous robots

    Full text link
    The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM can be decoupled into solving a non-linear static estimation problem for mapping and a low-dimensional dynamic estimation problem for localization. The mapping problem can be solved using an Extended Information Filter where the information matrix is shown to be exactly sparse. A significant saving in the computational effort can be achieved for large scale problems by exploiting the special properties of sparse matrices. An important feature of D-SLAM is that the correlation among landmarks are still kept and it is demonstrated that the uncertainty of the map landmarks monotonically decrease. The algorithm is illustrated through computer simulations and experiments
    • 

    corecore