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Robotic competitions are an excellent way to promote innovative solutions for

the current industries’ challenges and entrepreneurial spirit, acquire technical

and transversal skills through active teaching, and promote this area to the

public. In other words, since robotics is a multidisciplinary field, its competitions

address several knowledge topics, especially in the STEM (Science, Technology,

Engineering, and Mathematics) category, that are shared among the students

and researchers, driving further technology and science. A new competition

encompassed in the Portuguese Robotics Open was created according to the

Industry 4.0 concept in the production chain. In this competition,

RobotAtFactory 4.0, a shop floor, is used to mimic a fully automated

industrial logistics warehouse and the challenges it brings. Autonomous

Mobile Robots (AMRs) must be used to operate without supervision and

perform the tasks that the warehouse requests. There are different types of

boxes which dictate their partial and definitive destinations. In this reasoning,

AMRs should identify each and transport them to their destinations. This paper

describes an approach to the indoor localization system for the competition

based on the Extended Kalman Filter (EKF) and ArUco markers. Different

innovation methods for the obtained observations were tested and

compared in the EKF. A real robot was designed and assembled to act as a

test bed for the localization system’s validation. Thus, the approach was

validated in the real scenario using a factory floor with the official

specifications provided by the competition organization.
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1 Introduction

The RobotAtFactory competition was introduced in the

Portuguese Robotics Open in 2010 and has been held yearly

in this national event that brings several national and

international robotics competitors. This competition

challenges participants to develop autonomous mobile robots

(AMRs) that must transport boxes in a warehouse environment,

reproducing an industrial problem scenario on a small scale. The

first version of this competition had the field shown in the left

picture of Figure 1. This classic competition consisted of

transporting five boxes representing materials through the

factory until they reached the outgoing warehouse. Moreover,

the contest was composed of three 10 min rounds, where the

degree of difficulty increased progressively. This increase in

difficulty was translated to different types of boxes that had

intermediate objectives that needed to be accomplished before

being delivered to the exit of the warehouse. These partial

objectives were being delivered and processed by one or two

machines in series in the second and third rounds, respectively.

In order to differentiate each box type, a colour LED was placed

on the front side of the box. The box that needed to be processed

once used the green LED, two processes, a red LED, and a blue

LED for no processes requirements. The robot should be able to

sense the colour LED and manage the algorithm according to it.

Finally, the robot should also have a mechanical structure like a

forklift to pick up the boxes.

Meanwhile, a simplified version was introduced in 2019, the

RobotAtFactory Lite competition (whose field is shown in the

right picture of Figure 1). Several modifications were made to

simplify the complexity and difficulty of the classic RAF

competition. First, the identification of the box type (Green,

Red or Blue) is made by reading the RFID tag placed inside the

box by the robot. Also, the box was simplified and lighter, with a

metallic plate on the front side so that the robot could pick the

part with a magnet, avoiding the complexity of the forklift.

Moreover, in the Lite version, only four boxes are needed to

be transported at a given round, one less than in the classic

version. These modifications were made to make the competition

less demanding and expensive, and consequently, the robot’s

complexity. This competition was a success since several teams

were participating. In fact, one can The mechanical difficulty of

the original RobotAtFactory pushed this new Lite version

competition.

The high impact that RobotAtFactory Lite had by the team’s

feedback made the competition’s creators update the original

RobotAtFactory. The boxes are now the same. The field is also the

same size as the RobotAtFactory Lite, and the warehouses and

machines supports are the same, facilitating the organization.

The new competition called RobotAtFactory 4.0 (RAF), is

presented in Figure 2. An important difference from

RobotAtFactory Lite is the floor lines that were replaced by

ArUco markers.

The organization provides the ID and the absolute pose

(position and orientation relative to the global reference

frame) for each ArUco marker that the teams can use to

localize the robot. The ArUco markers placed on the top of

the boxes will be further used by the organization to track the

objects in real time and, thus, develop an automatic referee.

Another difference from the RobotAtFactory Lite is that the

RFID is nonexistent, obliging the robot to request the referee’s

server, using UDP protocol, for each part type to optimize the

scheduling of the tasks. Inaugurated in the 2022 Portuguese

Robotics Open edition, this competition version differentiates

from the previous by updating it to the Industry 4.0 (I4.0)

paradigm.

In other words, compared to RobotAtFactory, RAF focuses

more on robot localization, path and trajectory planning, and

Internet of Things (IoT) problems instead of mechanical ones.

These challenges are the ones that the I4.0 scenario faces, where

AMRs operate without supervision alongside personnel. In this

way, RAF tries to mimic these challenges in a competition

scenario where it represents the automated warehouse that

links other sections of an automated production chain.

Moreover, the organization provides a simulation scene

representing the official competition environment in the

FIGURE 1
RobotAtFactory original field (left). RobotAtFactory Lite field (right).
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Simtwo simulator1, a realistic 3D rigid-body dynamics simulator.

Besides the environment scene having all the competition

aspects, it also has an architecture example of an AMR with

an RGB camera and other sensors for localization. This way, a

description of the simulator with the image acquisition and

ZMQ2 communication will be presented. Also, by sending

images by ZMQ, the simulator allows for development in a

hardware-in-the-loop simulation approach, increasing the

simulation’s effectiveness. This way, it is possible to

implement an architecture similar to the real scenario. For

example, a Raspberry Pi can be inserted into the loop

simulation, adding the hardware’s computational limitations

to process the images and control the robot in the simulator.

Therefore, this paper will describe the new RAF competition

by addressing the challenges that must be faced by researchers,

engineers, and students with a focus on robot localization. This

focus happens because there are no publications on this matter

for this competition, which is one of the crucial challenges in the

I4.0 scope. Thus, a localization system that combines an

Extended Kalman Filter (EKF) and the Mahalanobis filter

with observations of ArUco tags is proposed and validated

through comparisons with a developed ground truth system.

Moreover, different methods of innovation for the acquired

observations in the EKF were tested and compared. Therefore,

the proposed system is presented as a reliable solution for mobile

robots’ localization in the RAF competition scenario and as a

basis for other scenarios involving the use of fiducial markers.

The kidnapped robot problem will be addressed for system

validation since it is a common problem in autonomous

robotics and presents a higher resolution complexity than

position tracking and global localization problems.

The remainder of the paper is structured as follows. Section 2

presents the related work where the fiducial markers for

localization and other similar robotic competitions are

addressed. Moreover, the RAF rules are also described in this

section. Then, Section 3 shows the real robot architecture with

subsections that present the ROS-SimTwo framework and the

method used to obtain the robot’s pose using ArUco tags. Along

Section 4, the proposed robot’s localization system is presented,

emphasizing the EKF and the filters used. In turn, Section 5

discusses the results comparing the different approaches for

localization, validating it using the kidnapped robot problem

case study. Finally, Section 6 concludes the paper and presents

future works.

2 Related work

AMRs can move freely in their workspace without human

interference. These types of autonomous robots require a precise

localization system to be able to traverse the floor plan to perform

their tasks. Apart from commonly implemented methods for

localization, such as Simultaneous Localization and Mapping

(SLAM) and Global Positioning System (GPS), fiducial markers

can be used singly or to support other localization systems.

2.1 Fiducial markers for localization

Fiducial markers have specific patterns and work as

landmarks for pose estimation, requiring an imaging system

to identify them. They are designed with a well-characterized

size and shape, and their distinctive visual features are essential to

improve the accuracy and robustness of a robot's localization

system (Kalaitzakis et al., 2021a). Furthermore, their patterns

often embed specific encoding to avoid misdetections.

According to the study provided by Kalaitzakis et al. (2021a),

fiducial markers are either circular or square-shaped and

monochromatic, with most squared markers being based on

ARToolKit, an open-source tracking system originally

described for video-based augmented reality conferencing

systems Kato and Billinghurst (1999). ARTag Fiala (2005),

AprilTag Olson (2011), ArUco Garrido-Jurado et al. (2014),

and STag Benligiray et al. (2019) correspond to widely used

packages of fiducial markers. Examples of circular markers

include CCC (concentric contrasting circles) Gatrell et al.

(1992), CCTag Calvet et al. (2016), and TRIP López-de Ipiña

et al. (2002).

STag differentiates from other squared markers, which

feature a circular pattern in the centre. ArUco builds on both

ARTag and ARToolKit frameworks and provides user-

configurable libraries. Fiducial markers have been reported

FIGURE 2
RAF competition field.

1 https://github.com/P33a/SimTwo.

2 https://zeromq.org/.
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multiple times for pose estimation in robotics applications, that

is, to determine the precise position and orientation of the vehicle

in the environment.

An indoor localization system is proposed by combining the

observations of ARTags scattered around the environment and

the adaptative Monte Carlo particle filter that uses a LIDAR

sensor and the robot’s odometry in de Oliveira Júnior et al.

(2021). The research displays an effective strategy for AMR

localization, especially when considering the global

localization problem. ArUco markers were used in Hayat

et al. (2019) for the development of Tarantula, a legged-

wheeled robot designed to inspect drainage systems. They

served a double purpose: identify the kinematic parameters of

the robot and test its trajectory tracking.

Xu et al. (2021) propose a strategy for underwater visual

navigation based on multiple ArUco markers. Transformation

matrices are used to derive the camera’s position attached to

the robot concerning different markers, whose positions are

fed to a noise model due to the noise associated with

underwater imaging. The noise model provides estimation

with a single marker, which is combined in an optimal

algorithm with the predicted pose from multiple markers.

ArUco markers are used in Muñoz-Salinas et al. (2018) for

localization and mapping. The proposed methodology

generates an initial pose graph from the observed markers,

which is then refined by distributing the errors, and the poses

are finally optimized.

In this paper, a sensor fusion approach with ArUcos fiducial

markers and the odometry of a mobile robot is used to develop a

localization system for the RAF competition scenario being

evaluated and compared with a ground truth system.

2.2 Robotic competitions

Robot competitions are an excellent way to foment research

and attract students to technological areas by introducing new

technologies, teamwork Kandlhofer and Steinbauer (2016) and

even developing solutions to real challenges in the industry.

Competitions also search for different solutions to a proposed

technological challenge Nugent et al. (2016).

There are a vast number of robotic competitions around

the world, such as the RoboCupSoccer competition, founded

in 1997 in Nogaya, Japan. It consists of a competition where

teams of robots compete in a soccer match proposed by

Mackworth (1993). The RoboCupSoccer are held in five

leagues: Middle Size League, Small Size League, humanoid,

four-legged, and simulation Soetens et al. (2014); Weitzenfeld

et al. (2014). Over the years, these competitions have

contributed to scientific advancements in areas such as the

robust design of mechatronic systems, localization, sensor-

fusion, tracking, world modelling, and distributed multi-agent

coordination Soetens et al. (2014).

According to Burkhard et al. (2002), the ultimate goal of the

RoboCup initiative is, by the mid-21st century, a team of fully

autonomous humanoid robots soccer players shall win a soccer

game, complying with the official rule of FIFA, against the winner

of the most recent World Cup. The DARPA Robotics Challenge

is another competition funded by the US Defense Advanced

Research Projects Agency where semi-autonomous ground

robots should do complex tasks in dangerous, degraded and

human-engineered environments.

Another important competition in autonomous robots is the

Swarmathon, where the challenge is to program robot swarms to

search for, pick up and drop off resources in collection areas Lu

et al. (2018). Swarmathon tries to simulate the terrestrial

environment of Mars so that participants can contribute to

collecting resources on the surface of the red planet. As a

result, the competition has encouraged several students to

venture into the robotics field Ackerman et al. (2018).

A competition that describes the essential components for

the Factories of Future (FoF) is RoboCup@Work, which was

established in 2012 Kraetzschmar et al. (2015). This competition

uses mobile robots equipped with manipulators in scenarios

representing complex and challenging industrial environments

to detect, manipulate and transport objects, evaluating the

autonomous and adaptive capacity of the robots Carstensen

et al. (2015). Some of the challenges to be faced by the teams

to get good results in this competition are related to perception,

path planning and motion planning, mobile manipulation,

planning and scheduling, learning and adaptability, and

probabilistic modelling Kraetzschmar et al. (2015). Mobile

robotic competitions are also a great way for motivating

students and professionals for the FoF fields, as mentioned by

Marouani (2022) and Brancalião et al. (2022).

There is considerable concern about the I4.0 concept

teaching. Papers such as Tosello et al. (2019); Verner et al.

(2020) focus on using robotics to teach and train students for

the I4.0 era. This concern is also latent in several publications that

mention the incorporation of I4.0 in the multiple levels of

education, such as the works of Akgunduz and Mesutoglu

(2021), Mystakidis et al. (2021) and Mystakidis and

Christopoulos (2022). These agree that, in addition to

providing students with increased capabilities, the use of

project-based learning considering the STEAM (Science,

Technology, Engineering, Arts, and Mathematics) fields and

I4.0 also help teachers obtain greater knowledge about the

area which is presented as fundamental. Even during the

COVID-19 pandemic, some authors understood that the

I4.0 concepts are so crucial that they created online materials

to teach these subjects, as mentioned by Benis et al. (2021), Jain

and Jain (2021) and Jena et al. (2022).

STEAM education is a popular pedagogical approach for

enhancing the students’ creativity and problem-solving skills,

increasing their interest in these areas Perignat and Katz-

Buonincontro (2019). Since robotics addresses
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multidisciplinary areas, it plays an essential role in the STEAM

concept. Thus, robotics competitions are an excellent tool that

teachers might use to address the different topics, as stated by

Weinberg et al. (2001), that divides the robotics concepts into

four main areas, namely Computer Science, Mechanical

Engineering, Industrial Engineering, and Electrical and

Computer Engineering. So, Robotics is an exciting area to

address the science, technology, engineering, and mathematics

(STEM) teaching.

2.3 Rules RobotAtFactory 4.0

Since the advent of the fourth industrial revolution concept,

new challenges have emerged. In this way, researchers and

engineers must propose solutions to address these challenges,

implement the I4.0 concept in real life, or improve the already

implemented solutions. One of the ways to foster solutions for

these challenges is through robotic competitions that mimic the

industry environment with its problems. In addition, these

competitions encourage students to study several areas of

knowledge that belong to robotics, including STEM.

As previously mentioned in Section 1, the RAF competition

tries to mimic a fully automated industry-warehouse

environment with boxes organized by AMRs. Thus, the robots

must self-localize and navigate whilst avoiding collisions. In

addition, they should identify the types of boxes and collect

and transport them to their respective spots in the shorted time

possible. The official competition floor is displayed in Figure 3.

The boxes that the AMRs must organize are displaced in the

four blank rectangles represented in Figure 3 where it is indicated

“incoming warehouse.” There are three types of boxes, the first

one, called the raw box, must be transported to machine type A,

soon after machine type B, and then finally to the outgoing

warehouse. The second type, the intermediate box, must be

moved to machine type B and later the exit. Lastly, the third

one, called the final box, must be displaced directly to the

outgoing warehouse. As already mentioned in Section 1, the

RAF competition was updated from the classic competition

RobotAtFactory Costa et al. (2016) to address the

I4.0 concept. Thus, the competition floor and the walls of the

input and output warehouses are filled with fiducial markers that

the competitors can use for localization Kalaitzakis et al. (2021b);

Roos-Hoefgeest et al. (2021). Figure 3 displays the markers’ IDs

and their respective positions alongside the world’s coordinate

frame.

The artificial markers displaced in the competition

environment displayed in Figure 3 use the ArUco 5 ×

5 marker pattern of codification. There is a restriction to the

size of the AMR, which must fit into a cube of 30 cm × 30 cm ×

30 cm. There is neither a restriction on the number of robots a

team can use simultaneously nor which type of localization

system the robots can have. The robots must be completely

autonomous and cannot establish any communication with an

external system despite the one provided by the organization.

This system is a task assignment server that the robot can

communicate with to request info about which boxes are in

the incoming warehouse and if the slots in the machines are

FIGURE 3
RAF official competition floor illustration Braun et al. (2022).
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occupied. The competition is divided into three rounds with

increasing difficulty, including raw and intermediate boxes. To

profoundly understand the competition characteristics and rules,

the reader is referred to Costa et al. (2022).

3 Robot architecture

The AMR used in the contest is a differential-drive robot with

several components to operate without supervision on the factory

floor. Its components can be seen in Figure 4.

As it is possible to see, the AMR has a Raspberry Pi 4B to

perform the high-level control of the robot, which constitutes

several processes for the robot to become autonomous,

starting from cognition to path and trajectory planning,

configuration, odometry integration, localization, and

mapping. In addition, the robot has an RGB camera and a

LIDAR scanner that is used for localization purposes.

However, the latter is going to be used just in future works.

Finally, it has one Arduino Uno to perform the low-level

control of the robot, which constitutes the generation of the

control cycle, the execution of the speed controllers of the DC

motors, odometry, the reading of a contact switch sensor, and

the actuation of an electromagnet.

All these operations are processes that the AMR must

accomplish to become autonomous, and they are displayed in

Figure 5 in a flowchart format.As the flowchart demonstrates,

an AMR comprises several processes: cognition, navigation,

locomotion, and localization. Each process includes several

subprocesses. In this way, first comes the cognition process

that is omitted and considered as an input in this flowchart.

This process is abstract and represents the robot’s AI that can

also generate tasks it must accomplish to achieve its goals.

After a task is generated, the entire system starts to operate.

Therefore, the path generation block generates a path for the

robot to follow to accomplish the given task. This block

generates the path taking into account a pre-generated

map. The data within constitutes the environment, such as

obstacles, their positions and dimensions, and the dimension

of the map. After the path’s generation, the trajectory

planning is computed, which constitutes how the robot

will follow the generated path. In other words, it will

calculate the new robot’s speed states with the current

robot’s states (pose and speed). It is important to note that

it was not developed a collision avoidance system in this

architecture since there are no dynamic obstacles, the fixed

ones can be mapped, and only one AMR was used in the

competition. Afterwards, the locomotion process starts. In

this process, the speeds’ states are translated to the robot’s

driving architecture, which is differential. Thus, vref and wref

are transformed by the robot’s kinematic drive model to ω1ref

and ω2ref, which are the motors’ speeds in the configuration

block. Figure 6 displays a differential-drive mobile robot

sketch with its speeds’ states.

The global reference frame is represented by [x, y] and [xR,

yR] is the robot’s body frame. The left wheel’s linear speed is

described by v2 = ω2 r considering that r is the wheel’s radius and

that v1 is the equivalent of the former but for the right wheel. The

robot’s linear speed is represented by v,ω is the robot’s steering or

angular speed, and θ is the robot’s orientation concerning the

FIGURE 4
AMR and its components Braun et al. (2022).
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global frame. Thus, Eq. 1 displays the kinematic model derived

from this drive architecture (for θ = 0), where d represents the

distance between the midpoint of the wheels.

v � vx � v1 + v2
2

ω � r

d
ω1 − ω2( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

Finally, the reader is referred to Malu and Majumdar (2014)

for a complete review of this driving architecture. Subsequently,

the wheels’ must be controlled individually so that the robot can

achieve and maintain its speed states given by the trajectory

following block. In this sense, the motors and the controller

blocks communicate to perform the speed control of both

motors. The controller block receives the estimated motors’

speeds read by the encoders, which in turn, computes the

necessary voltage signals for the motors to achieve the

reference speeds produced by the trajectory following block.

Then, the odometry block performs the dead reckoning by

estimating the robot’s following pose states using its previous

pose and speed states. The next block, position estimation,

approximates the robot’s pose using the odometry and

exteroceptive data. In other words, this block contains a

position filter that performs this estimation. This block,

however, will be thoroughly explained in Section 4. Thus,

after the pose is estimated in the current control cycle, the

FIGURE 5
Differential-drive AMR’s architecture flowchart. xe, ye, and θe are respectively the estimated position and orientation of the robot; vref and ωref are
the linear and angular reference speeds; ω1ref and ω2ref are the reference speeds for the right and left wheels; u1 and u2 are voltages applied to the
motors; ω1e and ω2e are the angular estimated speeds; ve and ωe are the linear and angular estimated speeds.

FIGURE 6
Differential-drive mobile robot kinematic model.
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map is updated with newer environment data estimated with the

aid of the new robot’s pose estimate and other exteroceptive

sensors’ data.

As mentioned at the beginning of this section, the Raspberry

Pi 4B performs the high-level control of the robot, whereas the

Arduino Uno performs the low-level control of it. Thus,

considering the perspective from Figure 5, the cognition,

navigation, and localization processes occur in the Raspberry

Pi 4B while the locomotion process happens in the Arduino Uno.

Finally, Figure 7 displays the data flow between the two

development boards.

As one can see, the Raspberry Pi 4B sends the robot’s speed

states and the electromagnet actuation whereas the Arduino Uno

sends back the contact switch readings and the wheels’ estimated

speeds read by the encoder.

3.1 Robot architecture integrated within
the ROS middleware

The organizers of the RobotAtFactory Lite and RAF

competitions provide the participants with virtual scenarios of

these competitions through the SimTwo robotics simulator,

giving the participants a practical and realistic way to validate

their software solutions and methodologies during their

development.

Other software tools such as the middleware Robot

Operating System (ROS) act as facilitators in the

development of robotics solutions, standardizing message

exchange systems and offering a vast set of libraries and

packages with algorithms that address solutions to common

problems in robotics and make it easy the integration of

peripherals, actuators and sensors to these approaches.

These factors and the popularization of ROS allowed its

compatibility with several robotic simulators such as

Gazebo, CoppeliaSim, AirSim, Webots, MORSE, and

others, allowing applications developed in ROS in these

simulators to be integrated without significant adaptations

to real robots.

Therefore, an integration frameworkwas developed between the

SimTwo simulator and the ROS middleware to develop solutions

compatible with the simulator and mobile robots integrated with

ROS. The communication between the ROS and the SimTwo

simulator demands the UDP and ZMQ communication

protocols. The UDP communication protocol sends and receives

data packets from most peripherals of the robot modelled in

software, i.e., encoders, electromagnet, LiDAR, and others.

As shown in Figure 8, part of the information sent by the

UDP protocol is encoded in a string with labels for each value and

then subsequently decoded on the ROS side. On each SimTwo

control cycle, the distance detection values provided by the

LiDAR sensor, ground truth, contact switch, and encoders are

sent. Subsequently, the ROS framework performs robot speed

state calculations and sends them viaUDP datagram. In addition,

the on/off commands for the electromagnet are also sent

via ROS.

The data transmission from the camera present in the

simulator and the ROS is performed through the ZMQ

communication protocol, which sends the bitmaps images

FIGURE 7
Data flow between the two development boards of the AMR.

FIGURE 8
SimTwo-ROS framework Braun et al. (2022).
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encoded in 32 bits RGBA, which are decoded in the middleware

and applied to the location of the mobile robot through the

identification of the ArUco fiducial markers. More details about

the connection between the ROS and the SimTwo simulation

environment and the preliminary tests performed with the

localization system using the simulator are available at Braun

et al. (2022).

In the real AMR, the UDP and ZMQ communication

protocols are not necessary for the integration and exchange

of messages between the peripherals and the other components

that compose the operational architecture of the robot. This is

because it is possible to communicate with the components

presented previously in Figure 4 by using serial

communication (LiDAR and Arduino) and camera serial

interface (RGB Camera). However, the whole system

implemented for the control of the robot, as shown in

Figure 5, follows the same structure used in the ROS

framework developed for SimTwo, with only minor

adaptations in the communication with the peripherals

through packages inherent to the middleware.

3.2 Fiducial markers

As presented earlier in Section 2, fiducial markers are widely

present in localization approaches for mobile robots, especially

for indoor environments. In the context of the RAF competition,

the ArUco fiducial markers mirrored across the factory floor and

on the walls of the machines are the primary references for

localization in the scenario.

For the implementation of the localization system presented

in this paper, for convenience, the RGB camera module attached

to the AMR was adopted as the robot’s reference centre. In the

image processing stage for the position estimation of the detected

fiducial markers in relation to the camera, the ArUco module

from OpenCV Bradski (2000) library was used. Figure 9

represents the process of estimating the AMR’s global position

according to the fiducial marker’s observation.

The used ArUco markers have known sizes. Thus, the

OpenCV library can determine the distance and orientation

between the camera and the tag according to the camera’s

intrinsic parameters and the position occupied by the fiducial

marker’s centroid in its 2D projection on the image,

represented by a point (u, v), estimated in pixels. Each

fiducial marker has a unique identification ID, which the

OpenCV library can also decode. In addition, a database in

the AMR has stored the absolute pose of each ArUco tag on

the competition scene floor, i.e. its position and orientation

relative to the scene’s (world) centre. Whenever a marker is

detected and has its ID decoded, the algorithm derives the

translational and rotational vectors of the marker relative to

the camera. Afterwards, the camera’s pose relative to the

world is computed, as exemplified by Eq. 2.

Tw
c � Tw

m · Tc
m( )−1 (2)

Where Tc
m represents the homogeneous transformation of

the fiducial marker frame relative to the camera frame. Tw
m

represents the absolute position of the fiducial marker relative

to the world. Finally, Tw
c represents the camera pose relative to

the world.

It is important to note that some markers in an image may

not be detected if their characteristics are not identified because

the marker can be too distant or even with a very wide angle

relative to the camera’s optical centre. Markers identified under

these conditions of distance and orientation with a large offset

can easily introduce noisy measurements to the localization

system. Therefore, the approach presented in the next section

with EKF considers these circumstances to reduce the AMR’s

localization noise.

4 Robot localization

As previously mentioned in Section 1, the RAF

competition focus on autonomous mobile robots, their

challenges, and the current problems in the industry.

Therefore, the contest allows the competitors to use any

solution for localization as long as it fits the rules described

in Section 2.3. In this case, our minimalist approach for

localization, yet effective, take advantage of what the

contest provides on the competition floor, fiducial markers.

FIGURE 9
AMR’s pose estimation according to the observation of a
fiducial marker.
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4.1 Position filter

The proposed localization uses an EKF as a basis for the

system, and its workflow is described below.

• Prediction phase

1. State estimation

2. Filter’s covariance estimation

• Update phase

1. Innovation

2. Innovation covariance estimation

3. Kalman Gain

4. State estimates update

5. Filter’s covariance estimate update

As displayed above, the EKF comprises two phases,

prediction and update. In the former stage, the filter makes

estimates of the states that are after corrected in the update

stage. These two stages do not necessarily happen synchronously.

However, if one phase starts, the procedures within are

sequential. Moreover, the filter, which runs in discrete time,

only moves forward in time whenever a prediction stage happens.

In other words, it moves from state k − 1 to state k. Each

procedure in both stages is described throughout this

subsection. A data flow diagram (DFD) was made, shown in

Figure 10, to explain how the EKF works dynamically in this

localization system.

As already mentioned, the DFD depicts the classical

structure of an EKF, divided into two stages, prediction

and update. As one can see in the figure, the prediction

stage is where the process or state transition model, x̂k|k−1,
and the predicted covariance estimate, Pk|k−1, are computed.

In this case, the process model is the robot’s odometry, derived

from its kinematic model (already presented in Section 3), and

the predicted covariance estimate is the filter’s covariance. In

other words, the filter’s state estimates are computed based on

previous states, as displayed in Eq. 3. The filter’s states after

the update stage is represented by x̂k|k. Moreover, it is

important to emphasize that the robot’s pose states are the

filter’s states, updated at a rate of 10 Hz, independently if the

update stage happens. Finally, zk represents the filter’s states

after the update stage. Both are going to be described in more

detail in this subsection.

x̂k|k−1 � f x̂k−1|k−1, uk( ) (3)

As shown in Eq. 3, the new state estimates are computed

from the state transition model f (x, u) that depends on previous

estimates and the control vector (uk). In this case, the latter is

zero. Eqs 4, 5 represents, respectively, the state transition and

predicted covariance estimate models:

xk � xk−1 + vk−1 cos θk−1( )Δt
yk � yk−1 + vk−1 sin θk−1( )Δt
θk � θk−1 + ωk−1 Δt

⎧⎪⎨⎪⎩ (4)

Where [xk, yk, θk] represents the current robot’s pose state,

their [k − 1] counterparts represent the previous state, and Δt
represents the sampling period. One can note that this process

model is not linear, thence the use of the Extended Kalman Filter

and not the Kalman Filter. It is important to note the difference

between x̂k � [x̂k, ŷk, θ̂k] and xk = [xk, yk, θk]. The former

represents the filter’s state estimates, i.e., the mean value of

the probability distribution of the EKF, which also

corresponds to the robot’s pose states. On the other hand, the

latter represents the robot’s current states based on the odometry

model.

Pk|k−1 � FkPk−1|k−1FT
k + Qk (5)

From Eq. 5, Fk describes the Jacobian of the process model in

x̂k−1|k−1, usually represented in a state space format. Moreover,

Pk−1|k−1 represents the previous estimate of the filter’s covariance.

Finally, Qk is the process noise, i.e., the covariance of the noise of

the state transition model, modelled by a Gaussian. The former

represents the reliability of the state transition estimates, i.e., a

low Qk dictates that the estimates are reliable.

The second stage, the update phase, is where the EKF

considers exteroceptive sensor data, called observations zk,

FIGURE 10
AMR’s EKF-based proposed localization system.
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into the estimates as innovations. The observations also have a

reliability metric modelled by a Gaussian noise Rk, called

observation noise, which can be a function that can vary with

each observation and iteration of the filter. In this specific case,

the exteroceptive sensor that the system uses is the RGB camera,

already displayed in Section 3. Finally, the innovations are

weighted by the Kalman gain and used to correct the filter

states’ estimates. This gain is a variable that depends on the

predicted covariance estimate, state transition and observation

models, and the process and observation noises. Finally, after

correcting the filter states to x̂k|k, the covariance estimate is

updated to Pk|k.
Thereby, as it is possible to see in Figure 10, the prediction

phase executes at a rate of 10 Hzwhereas the update phase occurs

at 4 Hz. In addition, the robot’s control cycle works in 10Hz,

i.e., at the same rate as the robot’s pose update frequency. Finally,

as explained at the beginning of this subsection, it is essential to

note that the filter advances in “discrete time”, k, after making a

new prediction. In other words, an infinite number of updates

can happen in one state, estimate k. In this specific case, for every

five state transitions, two updates are performed.

4.2 Update stage filters

The Kalman Filter and its non-linear variant, EKF, was

developed to generate estimates, using a series of

measurements amongst statistical noise and other types of

error, that are inclined to be better than estimates that are

generated from a single measurement. Even if it can deal with

measurement errors, there are other ways to improve its

performance. In more detail, two filters were applied in the

update stage to verify if the observations were acceptable to

insert in the filter as innovations.

To better understand how the filter works, it is elemental the

understanding of the dynamics of the EKF. As already shown in

Section 4.1, the filter’s covariance keeps diverging as long as only the

prediction stage occurs. However, whenever an observation occurs,

the covariance starts to converge to a particular value. This dynamic

is expected since the process model is a relative estimation method

for the robot’s states, whereas the observations are considered

absolute state estimation methods. The problem is when wrong

observations are inserted into the filter’s process, especially in this

case where the observation and process noises were chosen to be

constant for all observations and state transitions, respectively. This

situation can detrimentally affect the filter performance in two

hypotheses. First is when the filter’s covariance estimate matrix is

diverged. That is, its eigenvalues are either numbers out of the scope

of the system’s normal behaviour, or the system’s filter did not yet

converge to a constant value. After wrong observations are

considered in the filter, the filter’s covariance eigenvalues will

reduce to a particular value, heavily influenced by the

observation covariance matrix. In this case, a wrong observation

would be detrimental to the filter’s dynamic and, consequently, the

localization system. That is to say, not only will the filter’s states tend

to converge to a wrong value, but it will also maximize the filter’s

belief that the states are correct. Secondly, there is the hypothesis that

the filter has already converged to a correct value. In this instance,

the different behaviour would be that the covariance matrix would

stay converged. However, the innovations would generate noise in

the new states, possibly driving them away from the “correct” value.

Thus, since the system is designed for an environment with the

intent to have several good observations at each update state, it is safe

to assume that it is better to ignore a good observation than to accept

a wrong one. Thus, one distance filter and a statistical distance filter

were implemented, and they are described below.

4.2.1 Euclidean distance filter
As already described in Sections 3.1, 4.1, the observations that

are used come only from the ArUco tags. These observations can

innovate all the states from the AMR, which is its pose. However,

there is a non-linear relationship between the relative orientation

(yaw angle) of the position of the camera’s optical centre and the

centre of the ArUco tags. That is, depending on the positioning of

the camera to the tags, the pose estimation of the robot can improve

or worsen. It was perceived that at a fixed distance between the

camera and the tag, if the robot started at 0° looking straight into the

tag and was rotated, the pose estimation would worsen non-linearly

and non-monotonically the more the AMR tended to 90° (the

detection would cease before reaching the right angle). In addition, it

was also noted that the more the robot was distanced relative to the

centre of the tag, with the camera staring straight into it, the more

the pose estimations would worsen non-linearly and non-

monotonically. Moreover, it is essential to note that this generally

happened to all states, namely x, y, θ, however, withmore intensity to

θ. Specifically, at greater distances, θ jerked a lot between

observations that ideally should be similar. Therefore, a threshold

was found experimentally to limit observations above it. In other

words, it was verified that observations below the threshold of

0.71 m were acceptable to be inserted in the filter as innovations.

In relation to the camera’s orientation to a given tag, it was deemed

unnecessary to apply a filter since limiting the observations to closer

tags already limits the maximum angle of detection of the tags. In

addition, it is important to note that the pitch angle of the camera

relative to the robot’s plane, shown in Figure 3, already limits its

maximum field of view and, by consequence, the detectable radius.

4.2.2 Mahalanobis distance filter
The Mahalanobis distance measurement is a metric that

computes the distance of a point P to the mean of a

probability distribution Q in RN. It considers the data set’s

correlations, in contrast to the Euclidean distance, which

would assume a spherical data spread. In a more detailed way,

the Mahalanobis distance measures the distance of a point P

relative to the mean of the distribution along each principal

component of the covariance matrix of Q. Thus, one can note
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that the Euclidean approach is bad for outlier detection because

the data distribution is not spherical, i.e., two observations can

have the same Euclidean distance from the mean of the

distribution where one can belong to it, following criteria of

standard deviations for example, and the other not. In this

reasoning, the Mahalanobis distance metric has many

applications, one of which is identifying outliers of

multivariate observations. Thus, considering a probability

distribution Q with covariance S on RN, the Mahalanobis

distance from point y � (y1, y2, . . . , yN)T to mean μ �
(μ1, μ2, . . . , μN)T is:

dMi yi, Q( ) �
�����������������
yi − μ( )TS−1 yi − μ( )

√
. (6)

In the case of localization, μ corresponds to x̂k|k−1, the mean

of the EKF’s states before the update stages. The point y
represents a new observation from exteroceptive sensor data

after passing through the observation model that adapts the

sensor’s output to the observation space where the filter can

perform the innovations. Finally, the covariance S represents the
EKF’s predicted covariance estimate Pk|k−1.

Intuitively, one can see that if the principal components of S
were to be reduced to have a variance of one, the Mahalanobis

distance would become the Euclidean distance. Thus, testing

found that a Mahalanobis distance of 0.08 was sufficient to ignore

observations deemed as outliers and keep only the similar ones

whilst the AMR was operating. Also, it is important to note that

this distance is unitless.

Both filters are displayed in the Pseudocode Algorithm 1.

Algorithm 1. Filter update callback function

As one can see, this pseudocode generally explains how the

filter’s update stage was managed. The pose estimations derived

from the detections were already explained in Section 3.1. Finally,

this algorithm assumes that every accepted observation was

considered individually in the filter and without an order.

Although this can be an approach, others were implemented

and compared in this work, which is explained below.

4.3 Update approach

Following the EKF’s behaviour, as already explained in Section

4.1, one can note several ways the updates can be considered in the

filter. In other words, the order and how they are considered impacts

the filter’s performance differently, especially by the reasons

described in Section 4.2. Although the explanation considers

wrong observations, even amongst “good” observations, there are

better observations than the others (considering a set of criteria).

Considering that several tags can be detected at a given frame of the

camera, the question is how to process that information into

observations and consider them as innovations in the filter. In

this research work, two approaches were implemented and tested.

The first one inserts all the accepted observations and performs the

updates individually without sorting. The second one sorts all the

detected observations following a crescent Euclidean distance

criteria. The effect on how the observations are treated in the

update stage of the filter is even more potentialized by the

Mahalanobis filter. This happens because, as can be seen in Eq.

6, the distance is weighted by the filter’s covariance matrix. On the

one hand, if the filter is diverged, the Mahalanobis distances will be

low values. This is expected since high covariance values mean high

eigenvalues and a wide probability distribution of pose beliefs. On

the other hand, if the filter is already converged (low values ofPk|k−1),
the Mahalanobis distances will tend to be high even with similar

pose estimations. Thus, if wrong observations are inserted in the

filter, especially if the filter is diverged, the filter will converge,

believing that these are the correct states. Therefore, for a period, the

Mahalanobis filter will keep rejecting the good observations because

these will not belong to the probability distribution according to the

set threshold. Only the prediction stage will continue to execute

when this happens, and the filter’s covariance will keep increasing its

values according to Eq. 5. This translates that the probability

distribution covariance will increase in size until it passes the set

threshold. After this, the filter will start to accept new observations

again. This situation is one of the worst situations that can happen to

an autonomous robot since it means that the AMR got lost. Thus,

these two approaches were tested to avoid this scenario.

5 Results

This section is divided into three subsections. The first

addresses and validates the ground truth system used in this

work, testing it for accuracy and precision. On the other hand, the

second and third subsections test the localization system

accuracy, precision, and robustness in scenarios where the

robot was kidnapped. In this reasoning, the localization

system is tested in all three localization problems, namely

position tracking, global positioning, and kidnapped robot

problem, since the latter requires the first two to be solved.

Still, about the second and third subsections, the robot was

positioned directly above ArUco 22, with both centres aligned

with an orientation of π2 radians. This tag has a global position of

[x, y, θ] = [0, − 0.355, π]. A camera-based ground truth system

was developed to validate the localization system, where it needs

two tags aligned with the robot’s centre to estimate the robot’s

position. In this reasoning, the ground truth’s estimations can be
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compared with the robot’s localization system’s estimations. In

this way, the setup for the two latter subsections can be seen in

Figure 13. Moreover, Figure 11 shows the robot’s camera

perspective with the ArUCo tags detected in the test scenarios.

The robot kidnapping was performed digitally, i.e., after the

robot was put above tag 22, the mean value of the EKF’s states

was jerked to pose [x, y] = [0.2, − 0.05] in all test cases. The

orientation was not changed.

5.1 Ground truth

According to the RobotAtFactory 4.0 competition floor,

there are 33 ArUco markers with their respective global

position and orientation that can be used to perform a

ground truth system to validate the proposed localization

system of the robot. Thus, to take advantage of these markers,

the ground truth system was based on an RGB camera fixed on

top of the competition floor. This system localizes all the markers,

assuming that the global reference frame is ArUco 13 and that the

ArUcos with ID 16 and 4 are the x and y axes, respectively (refer

to Figure 3 for better visualization). Therefore, it is possible to

estimate the position and orientation of all the other markers

after calibrating the camera’s intrinsic parameters and knowing

the coordinates of these three markers. For better precision in the

orientation estimation, it was chosen to compute the pose using

two markers. Consequently, two markers were placed beside the

robot’s wheels aligned with the robot’s centre so that the middle

point between the two ArUCos becomes the robot’s centre. In

other words, computing the position of these two markers is

possible to obtain the robot’s centre (average) and its orientation

(atan2 function). The details of this ground truth system are not

the focus of this paper, but its accuracy and precision were

observed, and they are presented as follows.

As the camera from the ground truth system is positioned on

top of the competition floor, there are numerous possibilities to

validate the ground truth system. Moreover, since it is a camera-

based system, it has several types of distortion. Therefore, two

scenarios were chosen to present in this article, considering they

were areas near the scene where the AMR’s localization system

was tested. In this reasoning, the system’s behaviour shown in

these two tests better represents its accuracy and precision when

used as a reference for the localization system. Thus, one can see

in Figure 12 the position and orientation error from the middle

point between the pairs of the ArUcos 13 and 22, and 21 and 26.

Both scenarios’ root mean square errors (RMSE) were computed

for accuracy and are presented in Table 1. In both scenarios, the

ground truth system presented millimetric error in x and y and

fractional error in orientation.

The standard deviations of each state were also computed to

visualize the system’s precision, and they are presented in

Table 2. In both scenarios, it is possible to observe that the

system is precise, showing slight deviations in all states.

Finally, a picture of the ground truth system’s vision

perspective and its application can be visualized respectively

in the left and right pictures of Figure 13.

5.2 Kidnapped robot problem with
mahalanobis filter

Two scenarios were tested with Mahalanobis and Euclidean

distance filters enabled. They differ regarding the innovation

approach, i.e., how the observations were inserted in the filter.

5.2.1 Unsorted observations
The first scenario inserts the observations as innovations

without proper sorting. In other words, they come in the order

the OpenCV library detects the tags.

It was chosen to plot only the main diagonal of the filter’s

covariance matrix since it was assumed that the filter’s states were

not correlated. In this reasoning, one can see in bottom graph of

Figure 14 that the filter’s main diagonal covariance increases

linearly until it surpasses the ellipse created by the Mahalanobis

Filter. The increase is linear since the robot was not moving. Soon

after this threshold is met, the covariance decreases drastically

because the EKF starts to accept observations as innovations. The

intensity in the decrement of the covariance matrix is directly

correlated with its magnitude when the threshold is met, i.e., the

more the covariance increases, the greater the decrement.

Consequently, when the covariance decreases, it means that the

filter converged to amean value, and this can be seen in the left and

right graphs of Figure 14, where the left plot shows the position

error decreasing instantly, and the right displays a drastic change in

orientation. It is important to note that the Mahalanobis filter

makes the EKF’s pose estimate hold the last value before the

FIGURE 11
Robot’s camera perspective during the test scenarios.
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kidnapping until it surpasses the chosen threshold, i.e., the

Mahalanobis filter highlights the kidnapping behaviour.

5.2.2 Distance-sorted observations
In this scenario, the test was also performed with the same

setup as the previous one, with distance-sorted observations. In

more detail, the observations were sorted in a crescent manner by

the planar distance between the centre of each ArUco tag and the

camera’s optical centre.

The covariance graph was not shown for space purposes

since it has similar behaviour to the unsort approach,

increasingly linearly until it reaches the Mahalanobis filter

threshold. The position and orientation error can be seen in

the left and right graphs of Figure 15, respectively. Both

graphs show a stable convergence to a mean value and

have similar behaviour as the previously unsort approach

with Mahalanobis.

In addition, same as the ground truth system, standard

deviations and RMSE were computed for each scenario and

each approach for comparison. The difference is that the

statistics were divided into transient and permanent stages of

the convergence of the filter since it better represents the filter’s

behaviour during the comparison. Thus, the standard deviations

for the presented tests, for the transient and permanent regimes,

can be seen in Tables 3, 4, respectively, whereas Table 5 describes

the RMSE computations.

5.3 Kidnapped robot problem without
mahalanobis

The same two scenarios were tested with the Mahalanobis

Filter disabled, and the euclidean distance filter enabled. Both are

described below.

5.3.1 Unsorted observations
The first scenario was tested with the unsorted approach.

In this reasoning, the position error, the orientation error, and

FIGURE 12
Ground truth system validation using tags 13 and 22 (first row), and 21 and 26 (second row).

TABLE 1 Root-mean-square error from the ground truth’s pose tests.

Tags RMSE x [m] RMSE y [m] RMSE θ [°]

13 and 22 0.0005 0.0014 0.1470

21 and 26 0.0064 0.0024 0.3169

TABLE 2 Standard deviations from ground truth’s pose tests.

Tags Std. x [m] Std. y [m] Std. θ [°]

13 and 22 0.0002 0.0007 0.0743

21 and 26 0.0004 0.0023 0.0679
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the main diagonal of the filter’s covariance can be seen in the

upper left, upper right, and bottom graphs of Figure 16,

respectively.

As shown in Figure 16, the filter’s behaviour is entirely

different. This is expected since the Mahalanobis filter was not

enabled and did not influence the kidnapping. Therefore, the

FIGURE 13
Ground truth system’s perspective (left). Ground truth graphical application (right).

FIGURE 14
Results from the kidnapped robot test with the unsorted approach andMahalanobis filter. TheUpper left graph represents the position error, the
upper right displays the orientation error, and the bottom graph shows the main diagonal of the EKF’s covariance estimate.
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filter did not diverge after the kidnapping since new observations

entered the filter as if the robot was in the new position. The

orientation and position errors during the kidnapping in this

approach converged without having the period where the EKF

holds the last value until it needs to surpass the Mahalanobis

threshold.

5.3.2 Distance-sorted observations
The distance-sorted approach was also tested without

the Mahalanobis Filter. The covariance matrix from the

filter was also omitted since it has similar results to the

previous scenario. The position and orientation errors can

be seen in the left and right pictures of Figure 17,

respectively.

As shown in the figures above, the approach had similar

results as the previous scenario, showing a steady convergence to

a mean value of the filter’s states. Furthermore, same as the

scenario with the Mahalanobis Filter enabled, standard

deviations and RMSE were computed for each state of the

filter and each approach for comparison, and they are

presented below.

Table 3 displays the standard deviations in the transient

state of the EKF. One can see that the innovation approaches

did not show a significant difference between them. This can be

explained since these tests did not stress the system enough. In

other words, these tests presented only good observations. In

future work, tags with noisy detection must be inserted to

highlight the differences between these approaches.

Moreover, comparing the results with and without the

Mahalanobis filter, one can conclude that this result is

expected since this filter’s main advantage and objective is to

reject bad observations. However, in the kidnapped robot

problem, the EKF is tricked into thinking it is in a different

place. In other words, the mean value of the filter’s state is

changed, but the robot is not. Thus, the Mahalanobis filter

rejects the good observations and the filter, consequently,

diverges, and their statistics computations (standard

deviation and RMSE) increase. However, it is essential to

note that this result depends on the distance of the

kidnapping and the Mahalanobis threshold.

Table 4 shows the standard deviations from the permanent

state of the filter from the approaches tested in each case scenario.

Thus, these deviations are computed after the filter reaches the

permanent regime with criteria of 2% of the original value. As

one can see, after the filter’s convergence, the standard deviations

significantly decrease for all approaches, and no significant

difference is notable between them.

Table 5 presents the RMSE computed during the

permanent regime of the filter’s convergence since the

transient analysis from the perspective of RMSE does not

add value to the work. This happens because the results

FIGURE 15
Results from the kidnapped robot test with the distance-sort approach and Mahalanobis filter. The left graph shows the position error, whereas
the right shows the orientation error.

TABLE 3 Standard deviations from the localization system’s
kidnapped robot tests—transient.

Innovation approach Std. x [m] Std. y [m] Std. θ [°]

Unsorted 0.054 0.078 0.15

Dist. sort 0.036 0.056 0.26

Unsorted + Mahalanobis 0.081 0.130 0.17

Dist. sort + Mahalanobis 0.092 0.150 0.24

TABLE 4 Standard deviations from the localization system’s
kidnapped robot tests—permanent.

Innovation approach Std. x [m] Std. y [m] Std. θ [°]

Unsorted 0.0017 0.0032 0.061

Dist. sort 0.00064 0.00045 0.062

Unsorted + Mahalanobis 0.00086 0.00060 0.099

Dist. sort + Mahalanobis 0.0011 0.0022 0.067
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would be influenced by the Mahalanobis filter and the

position of the kidnapping. Therefore, RMSE could be

lower or higher depending on how distant the

kidnapping is from the original position, producing an

unfair comparison to the approaches without the

Mahalanobis filter.

TABLE 5 RMSE from the localization system’s kidnapped robot tests—permanent.

Innovation approach RMSE x [m] RMSE y [m] RMSE θ [°]

Unsorted 0.006 0.008 0.301

Dist. sort 0.003 0.009 1.803

Unsorted + Mahalanobis 0.006 0.004 0.465

Dist. sort + Mahalanobis 0.007 0.004 1.319

FIGURE 16
Results from the kidnapped robot test with the unsort approach and without Mahalanobis filter. The upper left graph displays the position error,
the upper right, the orientation error, and the bottom graph shows the main diagonal of the EKF’s covariance estimate.

FIGURE 17
Results from the kidnapped robot test with the distance-sort approach and without Mahalanobis filter. The left graph shows the position error,
and the right graph the orientation error.

Frontiers in Robotics and AI frontiersin.org17

Braun et al. 10.3389/frobt.2022.1023590

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1023590


Observing Table 5, it is possible to see that the

localization system is adequate despite the approach

used, presenting an error of less than 1 cm in x and y

states and less than 1° in θ for the unsorted approaches

and less than 2° in the distance-sorted approaches. The only

significant difference between the approaches is that the

distance-sorted approach presents a worse performance in

the orientation error compared to the unsorted approach.

Since the robot is small, the radius of operation of the robot

is small. Thus, an error of less than 2° is good enough for

this application.

6 Conclusion and future work

This paper proposed a localization system based on

ArUco markers and EKF that allow the AMR to navigate

within the RAF competition. Moreover, a ground truth

system was developed and used to validate the

localization system, allowing a measurement of the

robot’s pose with high precision and accuracy. Two

innovation approaches were implemented and tested.

The first method inserts all the accepted observations

and performs updates individually without a specific

order, and the second sorts all the detected observations

following a crescent Euclidean distance criteria. The results

showed that in these tests, both approaches showed

negligible differences. The tests were performed

following the kidnapped robot problem scenario because

this problem considers both the position tracking and the

global positioning problem. Despite the innovation

approach, the robot’s localization system presented high

precision and accuracy, validating that this system is

adequate to operate in this competition. In addition, the

Mahalanobis filter was used and tested in the EKF to reject

bad observations. It was concluded that it emphasizes the

impact of the kidnapping problem on the robot, and since

there were only adequate observations, its effectiveness was

not assessed.

In future work, further testing must be performed to stress

the position filter enough, highlighting the differences

between both innovation approaches and the Mahalanobis

filter effect on rejecting outliers. A possible case study for

testing is the robot navigating through the competition floor

whilst it measures ArUcos with noisy data (bad observations)

and, in this way, forcing the position filter with the different

approaches and filters to present different results. Moreover, it

is intended to try to model the non-linear relationships

between the relative position and orientation of the camera

and the ArUco tags into covariance matrices to better

represent the observation noise in the EKF. Finally, to

increase the robustness and redundancy of the system, add

other types of exteroceptive sensors to the system, such as

LiDAR with beacons or natural landmarks, and afterwards,

compare the developed methodology with other state-of-the-

art approaches.
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