300 research outputs found

    An End-to-End Approach for Recognition of Modern and Historical Handwritten Numeral Strings

    Full text link
    An end-to-end solution for handwritten numeral string recognition is proposed, in which the numeral string is considered as composed of objects automatically detected and recognized by a YoLo-based model. The main contribution of this paper is to avoid heuristic-based methods for string preprocessing and segmentation, the need for task-oriented classifiers, and also the use of specific constraints related to the string length. A robust experimental protocol based on several numeral string datasets, including one composed of historical documents, has shown that the proposed method is a feasible end-to-end solution for numeral string recognition. Besides, it reduces the complexity of the string recognition task considerably since it drops out classical steps, in special preprocessing, segmentation, and a set of classifiers devoted to strings with a specific length

    An Integrated architecture for recognition of totally unconstrained handwritten numerals

    Get PDF
    Reprint. Reprinted from the International journal of pattern recognition and artificial intelligence. Vol. 7, no. 4 (1993) "January 1993."Includes bibliographical references (p. 127-128).Supported by the Productivity From Information Technology (PROFIT) Research Initiative at MIT.Amar Gupta ... [et al.

    RAPID ANALYTICAL VERIFICATION OF HANDWRITTEN ALPHANUMERIC ADDRESS FIELDS

    Get PDF
    Microsoft, Motorola, Siemens, Hitachi, IAPR, NICI, IUF This paper presents a combination of fuzzy system and dynamic analytical model to deal with imprecise data derived from feature extraction in handwritten address images which are compared against postulated addresses for address verification. A dynamic buildingĀ­number locator is able to locate and recognise the buildingĀ­number, without knowing exactly where the buildingĀ­number starts in the candidate address line. The overall system achieved a correct sorting rate of 72.9%, 27.1% rejection rate and 0.0% error rate on a blind test set of 450 cursive handwritten addresses.

    Multi-experts for touching digit string recognition

    Get PDF
    84.6 % of touching digit strings have only two digits touching, 12.3 % have three digits touching, and 3.1% have more than three digits touching. We present a multiexperts approach to recognize touching digit pairs (TDP) and touching digit triples (TDT). We combine holistic and traditional segmentation methods. 25,686 TDP training samples and 2778 TDP testing samples collected from USPS mail are used in our experiment. Holistic method outperforms the traditional segmentation based methods. The multi-experts combination has the best performance, a correct rate of 91.1 % on TDP. 1

    A Knowledge based segmentation algorithm for enhanced recognition of handwritten courtesy amounts

    Get PDF
    "March 1994."Includes bibliographical references (p. [23]-[24]).Supported by the Productivity From Information Technology (PROFIT) Research Initiative at MIT.Karim Hussein ... [et al.

    Feedback Based Architecture for Reading Check Courtesy Amounts

    Get PDF
    In recent years, a number of large-scale applications continue to rely heavily on the use of paper as the dominant medium, either on intra-organization basis or on inter-organization basis, including paper intensive applications in the check processing application. In many countries, the value of each check is read by human eyes before the check is physically transported, in stages, from the point it was presented to the location of the branch of the bank which issued the blank check to the concerned account holder. Such process of manual reading of each check involves significant time and cost. In this research, a new approach is introduced to read the numerical amount field on the check; also known as the courtesy amount field. In the case of check processing, the segmentation of unconstrained strings into individual digits is a challenging task because one needs to accommodate special cases involving: connected or overlapping digits, broken digits, and digits physically connected to a piece of stroke that belongs to a neighboring digit. The system described in this paper involves three stages: segmentation, normalization, and the recognition of each character using a neural network classifier, with results better than many other methods in the literaratu

    Handwritten Bank Check Recognition of Courtesy Amounts

    Get PDF
    In spite of rapid evolution of electronic techniques, a number of large-scale applications continue to rely on the use of paper as the dominant medium. This is especially true for processing of bank checks. This paper examines the issue of reading the numerical amount field. In the case of checks, the segmentation of unconstrained strings into individual digits is a challenging task because of connected and overlapping digits, broken digits, and digits that are physically connected to pieces of strokes from neighboring digits. The proposed architecture involves four stages: segmentation of the string into individual digits, normalization, recognition of each character using a neural network classifier, and syntactic verification. Overall, this paper highlights the importance of employing a hybrid architecture that incorporates multiple approaches to provide high recognition rates

    Symbolic and Deep Learning Based Data Representation Methods for Activity Recognition and Image Understanding at Pixel Level

    Get PDF
    Efficient representation of large amount of data particularly images and video helps in the analysis, processing and overall understanding of the data. In this work, we present two frameworks that encapsulate the information present in such data. At first, we present an automated symbolic framework to recognize particular activities in real time from videos. The framework uses regular expressions for symbolically representing (possibly infinite) sets of motion characteristics obtained from a video. It is a uniform framework that handles trajectory-based and periodic articulated activities and provides polynomial time graph algorithms for fast recognition. The regular expressions representing motion characteristics can either be provided manually or learnt automatically from positive and negative examples of strings (that describe dynamic behavior) using offline automata learning frameworks. Confidence measures are associated with recognitions using Levenshtein distance between a string representing a motion signature and the regular expression describing an activity. We have used our framework to recognize trajectory-based activities like vehicle turns (U-turns, left and right turns, and K-turns), vehicle start and stop, person running and walking, and periodic articulated activities like digging, waving, boxing, and clapping in videos from the VIRAT public dataset, the KTH dataset, and a set of videos obtained from YouTube. Next, we present a core sampling framework that is able to use activation maps from several layers of a Convolutional Neural Network (CNN) as features to another neural network using transfer learning to provide an understanding of an input image. The intermediate map responses of a Convolutional Neural Network (CNN) contain information about an image that can be used to extract contextual knowledge about it. Our framework creates a representation that combines features from the test data and the contextual knowledge gained from the responses of a pretrained network, processes it and feeds it to a separate Deep Belief Network. We use this representation to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained VGG-16 model to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR) imagery and the CAMVID dataset. Using this framework, we also reconstruct images by removing noise from noisy character images. The reconstructed images are encoded using Quadtrees. Quadtrees can be an efficient representation in learning from sparse features. When we are dealing with handwritten character images, they are quite susceptible to noise. Hence, preprocessing stages to make the raw data cleaner can improve the efficacy of their use. We improve upon the efficiency of probabilistic quadtrees by using a pixel level classifier to extract the character pixels and remove noise from the images. The pixel level denoiser uses a pretrained CNN trained on a large image dataset and uses transfer learning to aid the reconstruction of characters. In this work, we primarily deal with classification of noisy characters and create the noisy versions of handwritten Bangla Numeral and Basic Character datasets and use them and the Noisy MNIST dataset to demonstrate the usefulness of our approach

    Extraction and optimization of B-spline PBD templates for recognition of connected handwritten digit strings

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    • ā€¦
    corecore