
MIT Sloan School of Management

Working Paper 4461-04
January 2004

HANDWRITTEN BANK CHECK
RECOGNITION OF COURTESY AMOUNTS

Rafael Palacios, Amar Gupta, Patrick S.P. Wang

© 2004 by Rafael Palacios, Amar Gupta, Patrick S.P. Wang. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without explicit

permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=489783

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4382666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HANDWRITTEN BANK CHECK RECOGNITION OF COURTESY
AMOUNTS

 RAFAEL PALACIOS
Universidad Pontificia Comillas

Alberto Aguilera 23, E-28015 Madrid, Spain
Email: Rafael.Palacios@iit.upco.es

AMAR GUPTA

Massachusetts Institute of Technology
1 Broadway, Cambridge, MA, 02139 U.S.A

Email: agupta@mit.edu

PATRICK. S.P. WANG
Northeastern University

 360 Huntington Av, Boston, MA, 02115 U.S.A
Email: pwang@ccs.neu.edu

In spite of rapid evolution of electronic techniques, a number of large–scale applications continue
to rely on the use of paper as the dominant medium. This is especially true for processing of bank
checks. This paper examines the issue of reading the numerical amount field. In the case of
checks, the segmentation of unconstrained strings into individual digits is a challenging task
because of connected and overlapping digits, broken digits, and digits that are physically
connected to pieces of strokes from neighboring digits. The proposed architecture involves four
stages: segmentation of the string into individual digits, normalization, recognition of each
character using a neural network classifier, and syntactic verification. Overall, this paper
highlights the importance of employing a hybrid architecture that incorporates multiple
approaches to provide high recognition rates.

Keywords: Handwritten checks; Reading of unconstrained handwritten material; neural network
based reading; automation of banking systems.

1. Introduction

According to the U.S. Federal Reserve Bank, checks account for 60% of the non-cash
transactions, and nearly 50 billion checks worth $47.7 trillion were processed in 2001
in the United States alone.1 Since most of the checks need to be partially processed by
hand, there is significant interest in the banking industry for new approaches that can
be used to read paper checks automatically.

Character recognition systems are of two types: On-line systems, where the
sequence in which the characters are written is known; and Off-line systems, where
only the final image is available. In most information technology applications, on-line
processing requires a greater effort because of time constraints; however, in optical
character recognition the most difficult area is off-line reading.2, 3

The account number and the bank code are printed on the checks in magnetic ink
and are the only two fields that can be processed automatically with near-perfect
accuracy by magnetic ink character recognition (MICR) systems. Since the character

set used for account numbers is a special type font (E-13B or CMC-7 OCR), these
fields can be easily read using MICR machines or optical (OCR) systems. The other
fields may be handwritten, typed, or printed; they contain the name of the recipient, the
date, the amount to be paid (textual format), the courtesy amount (numerical format)
and the signature of the person who wrote the check.

The official value of the check is the amount written in words; this field of the
check is called "legal amount". The amount written in numbers is supposed to be for
courtesy purposes only and is therefore called "courtesy amount". Nevertheless, most
non-cash payment methods use only the amounts written in numbers. The information
contained in a check is frequently handwritten, specially considering that most of the
checks that were written by computer systems have been gradually replaced by newer
methods of electronic payment. Handwritten text and numbers are difficult to read by
automatic systems (and sometimes even for humans); so check processing normally
involves manual reading of the checks and keying in their respective values into the
computer. Accordingly, the field of automatic check processing has witnessed
sustained interest for a long time. This has led to complete systems with reading
accuracy in the range 20–60% and reading error in the range 1–3% beginning to be
installed in recent years.4 The performance in handwriting recognition is greatly
improved by constraining the writing, which addresses the problem of segmentation
and makes the people write more carefully. Nevertheless, banks are not willing to
change the format of the checks to impose writing constraints such as guidelines or
boxes to specify the location where each particular piece of information should be
recorded. Instead they are interested in reducing the workload of the employees
manually reading the paper check. Since employees also make mistakes reading or
typing the amount of the checks, a single manual read rarely drives the whole process.
A system that is able to read checks automatically would be very helpful, especially if
it is fast and accurate. Even if misclassification occurs, the mistake could potentially
be detected during the recognition process; however it is more desirable that the system
rejects a check in case of doubt (as described in section 3) so that it can be directed to
manual processing from the beginning.

The system described in this paper performs all the tasks necessary to translate the
image of the check into a format that can be readily processed by the central computer
of the bank. It highlights the need to use a multi-pronged strategy to enhance accuracy
rates. The system locates and reads the courtesy amount,5 which is the main field that
banks use to process the check. Other researchers have previously described or
implemented systems to read courtesy amount, legal amount and date fields on
checks.6, 7, 8, 3, 9, 10, 11, 12 This illustrates the broad, almost universal, interest in the area of
automatic reading of bank checks.

From a historical perspective, document understanding systems (DUS) were
designed to read forms that included identification codes and position marks on them.
Frequently, the writer was required to use black pen only; this greatly facilitates the
recognition process. However, this is not the case with checks issued in the US where
individuals are permitted to use pens with inks of any color. Also, many forms are
preprinted with individual boxes for each character; this restriction helps to drastically
reduce the incidence of connections among adjacent characters. If such boxes could be
preprinted on checks, a number of preprocessing tasks (binarization, noise reduction
and line removal) can be performed more easily. The same is true for the

segmentation. However, the banks have been reluctant to adopt such restrictive
measures on paper checks. Because of the absence of restrictions on the color of the
ink and formatting limitations, U.S. checks present the full challenge of attempting to
“read” totally unconstrained handwritten material.
 In this paper, we describe our approach to “reading” checks using a hybrid
architecture that incorporates multiple traditional and emerging approaches. After one
has detected the courtesy amount field within the image of the check and read that field
in binary mode, the new image is dissected into individual characters. This task,
described in section 2, is the most challenging part of the process and actually involves
the application of multiple splitting algorithms inside a feedback loop that is driven by
the results obtained by the recognition module. The recognition module (Section 3)
uses a combination of neural networks to classify digits with very high levels of
confidence. The process must be computationally efficient since it is applied several
times per character in case of connected or overlapped digits. The final post-
processing module is described in Section 4; it verifies the syntax of the amount to
minimize the instances involving incorrect readings.

Normalization
Divide String

into Digits

Classifier

Size Normalization

Neural NetworksImage of
Courtesy Amount Slant Correction

Thickness Normalization

Segmentation and Recognition

Post-Processing

Recognition Module

Figure 1: Key steps in reading the courtesy amount

2. Segmentation of Courtesy Amount

Several methods and strategies for segmentation are discussed in.13 Since the courtesy
amount field may be written in different formats, sizes, and styles, (as shown in Figure
2), the segmentation process is complicated. It involves the separation of touching
characters, and the merging of character fragments with other pieces. Figure 2a shows
numeral '2' connected to a numeral '9', and a numeral '0' connected to a delimiter line.
Figure 2b shows numeral '5' made up of two independent strokes that are not touching
each other. After the analysis of 1500 real check from Brazilian banks, it was found
that 20% of them contained connected digits.

Instead of trying to segment the word into isolated letters, some researchers have
attempted to recognize complete words. The latter approach can only be applied in
situations that involve a predetermined set of valid strings of characters. More often,
the images are divided into digits using structure-based techniques and then recognized
as individual characters; this approach is called segment-then-recognize. A different
approach is the segment-by-recognition that works by applying the recognition
algorithm within a sliding window that is moved along the text line. If the window
covers portions of two consecutive characters, then the recognition module gives an

error. However, when the sliding window takes the correct position and the size to
hold a complete character, then recognition occurs. The problem with handwritten text
is that character isolation using rectangular windows is very unlikely, because
characters are usually slated and connected to each other.

The software used by postal services to recognize zip codes exploits the fact that a
zip code consists of exactly five digits; or ten characters (including the dash) in the
case of extended US zip codes.14, 15 Since dollar amounts are strings of variable length,
the algorithms used to recognize zip codes cannot be applied directly to bank checks.
Nevertheless, there are some restrictions on the number of characters between commas
and periods. The latter type of domain knowledge has been utilized to reduce the
number of read errors within the Post-Processing module (discussed later in this paper)
and not as part of the segmentation strategy, which was developed to read any
unconstrained number.

With respect to U.S. checks, a finite state automaton was proposed in 16 to segment
and analyze the variety of styles found in the decimal part of these checks. In other
countries the decimal part of the amount is rarely found in a style other than scientific
format. A major characteristic of check amounts is the extensive use of delimiters as
suffixes or prefixes of the amounts (some examples are shown in Figure 2). In
countries where the currency symbol is written after the number, delimiters are used in
front of the number. Further, in countries where there is no decimal part in monetary
values, delimiters are common at the end of the number.

Figure 2: Examples of delimiters in Brazilian checks

2.1. Feedback Strategy for Segmentation

The algorithm implemented by our team commences the segmentation process by
extracting the connected components from the image of the amount. These connected
components may comprise digits, fragments of digits, groups of digits, delimiters,
punctuation, or noise. Very small segments are classified as noise and very wide
segments are classified as delimiter lines. All other segments are sent sequentially to
the recognition module for normalization and classification by the neural network. If
the recognition module rejects a segment, then incorrect segmentation is assumed and
the alternative splitting algorithms or the fragment merging algorithms are applied.
This approach is similar to the strategy proposed by Congedo and Dimauro that also

alternates between segmentation and recognition;14, 17 however their systems lack the
capability to correct fragmented digits.

Fragments of digits can be detected at early stages of segmentation by performing
overlap analysis of the minimum bounding boxes of the connected components. In the
current implementation, merging of fragments is completed before entering the
segmentation loop, even at the risk of merging two independent digits. The
segmentation loop was developed mainly to separate connected digits; in the unlikely
event of merging two independent digits subsequent separation is not a problem.
Nevertheless, in the feedback-based strategy, it is possible to perform both fragment
merging and multiple-digit separation concurrently based on the results obtained from
the recognition module; this is because segments are processed sequentially.

Any segment that needs to be recognized is pre-classified as a digit, a set of
multiple connected digits (denoted multiples), a punctuation mark or a delimiter. This
pre-classification is achieved based on size, aspect ratio, relative position, and number
of strokes. Only digits and multiples are handled at this stage; digits are sent directly to
the recognition module, while multiples are divided into pairs of segments before being
passed on to the recognition module.
 When a digit is rejected at the recognition module, one of the following situations
applies:

• The segment is comprised of two digits in such a way that it was pre-classified
as single digit. This is the most likely case and includes examples of double
zeros and of numeral '1' being connected to another digit. Additional
segmentation in this case will separate the segment into two digits, solving the
problem.

• The segment is comprised of a single numeral that is not recognized by the
neural network. This case has a small incidence (see accuracy results of the
neural networks in the following section) and leads to the rejection of the
check.

• The segment is comprised of a symbol or letter, not a numeral. For example,
symbol '#' is used in some Brazilian checks. In this case, the check is also
rejected.

Since the scenario of multiple segments is the most likely event associated with
digit rejection, additional segmentation algorithms are applied. If the segment is a
single character, then additional segmentation produces pairs of fragments that are also
rejected. Hence, the result will be check rejection anyway, and no mistake has
occurred because of excessive fragmentation.

In order to avoid infinite loops, additional segmentation effort is applied only once
for segments pre-classified as digits. But if a big segment is pre-classified as a multiple
connected set, the splitting algorithms are applied and resulting segments are pre-
classified again in a recursive process; until the resulting elements are small enough to
be considered digits. Since several splitting algorithms can be applied, many
combinations are analyzed for each multiple segment. Moreover, if a digit is identified
but with inadequate level of confidence is not attained, the digit is also rejected (to
avoid reading mistakes). As a consequence, additional segmentation tasks are initiated
often, and the number of calls to the recognition module increases significantly. The
proper selection of splitting algorithms can increase the performance of the system by

eliminating unnecessary calls to the recognition module, as explained further in the
next subsection.

2.2. Splitting Algorithms

Several contour splitting algorithms were considered for the purpose of dividing
multiple segments into pairs of digits.13 The research team found drop fall algorithms
accurate if several implementations are used concurrently.

Drop fall algorithms simulate the path produced by a drop of acid falling from
above the character and sliding downwards along the contour. When the drop gets
stuck, it "melts" the character's line and then continues to fall.

The dividing path found by a Drop Fall method depends on three aspects: a
starting point, movement rules, and orientation. The starting point should be located
near the middle line between the two digits, so it can find its way between both
characters. If the starting point is selected far from the middle line, then the drop will
fall around the exterior contour. Starting from above is different than starting from
bellow (with negative gravity) since joints will produce the opposite movement, cut in
one direction and fall around in the other. The current implementation employs Hybrid
Drop Fall (HDF) and Extended Drop Fall algorithm (EDF); these are very similar and
differ only in the rules that define the movement while cutting the segment (EDF tends
to make longer cuts than HDF and is better at dividing a cluster of double zeros).
Hybrid Drop Fall (HDF) and Extended Drop Fall (EDF) methods are described in
greater detail in 18. An example of the dividing paths that can be obtained is shown in
Figure 3.

Figure 3: Different Results from Fall Algorithm based on Starting Point and Direction.

Splitting algorithms lead to a set of 8 possible paths to divide a connected
component into individual digits Since no single algorithm is able to solve all possible
situations, so all of these alternative paths must be considered. Determining which
splitting algorithm is producing the correct separation is a problem itself, which can be
solved using a neural network approach as proposed in 15. Another approach is to rank
the paths heuristically considering the number of cuts, the length of the cuts, the type of
junction, etc. An alternative strategy is to undertake an exhaustive search and to select

the path on the basis of the confidence levels provided by the recognition module. This
approach is less efficient but attains the best possible results. The current
implementation of the system utilizes the exhaustive approach and additional research
is been carried out to find a proper approach to eliminate similar paths and to select
only the most promising paths, thereby improving the execution time. The ability of
the neural network to automatically recognize multiple segments, delimiters or double
zeros, instead of expecting a rejection in those cases, can improve the selection of the
correct path and can also enhance the strategy in the feedback loop.19, 20

3. Recognition of Individual Characters

The recognition module incorporates neural networks techniques that require
preprocessing of high-resolution images in order to obtain a fixed number of features.
Typical inputs to the neural network are the values of each pixels in a low-resolution
version of the image to be classified. The objective of preprocessing is to obtain small
images of the digits that are as uniform as possible, on multiple dimensions. Instead of
simply resizing to convert each character into a standard matrix, the slant is also
corrected and the thickness of the strokes is also normalized. The normalization
process is summarized in Figure 4. Slant correction is a very efficient procedure that is
performed at the original resolution. Then a resizing operation is executed; it can
shrink or enlarge the image depending on the writing size to produce a 51x36 matrix.
At this standard size, the thickness of the pen strokes is normalized, and then a final
resizing operation is performed to convert the character image into a 17x12 matrix (204
pixels).

Slant Correction Resize Thinning Thickening Final Resize

Figure 4: Scheme of normalization process

All these algorithms, although individually efficent from a computational
viewpoint, have been optimized in performance and can be executed in a short time.
The normalization of 60092 digits extracted from NIST special database of handwritten
forms took 40919 seconds on a Sun Fire 880 machine;21 this comes to less than 0.7s
per digit (actually a range from 0.5s to 0.8s depending on the specific digit).

3.1. Slant Correction

This type of preprocessing is applied to obtain the same kind of image for the same set
of numbers irrespective of the personal writing tilt. Without this correction, the
accuracy of most classifiers is degraded significantly by the presence of slant, which is
very common in handwritten text. The algorithm used by the research team is based on

the idea that if a numeral is rotated through a series of slanted positions, it usually
attains its minimum width when it is least slanted.19
 No real rotation is performed because the algorithm is slow and sometimes
produces bad quality contours. Instead, all pixels in a row are moved to the left or the
right, depending on the sign of the correction angle. This is an approximation to a
rotation in which the lowest row is never moved, while displacement of upper rows is
larger than in lower rows.

The algorithm to obtain the least slanted position finds the rotation angle by using
a binary search strategy to minimize the width. Binary search is performed dividing
the rotation angle by two in each iteration until a precision of 1 degree is reached.

Slant correction

Figure 5: Slant correction applied to positive and negative tilted digits

3.2. Size Normalization

The resizing of characters is needed in order to make the recognition operations
process independent of the writing size and the resolution of the scanner. Also,
algorithms for other normalization operations perform faster on small images, and the
topology of the neural networks is simplified, too. Some of our earlier approaches used
a matrix size of 256 pixels (16x16).19, 22 Later the final size was changed to 117 pixels
(13x9), while preserving the original aspect ratio. The size currently being used is 204
pixels (17x12); this provides slightly better quality and also preserves the original
aspect ratio. The accuracy has greatly improved with the adoption of this approach.
 The resizing algorithm is applied twice during the normalization process. The
first resizing operations is performed after the slant correction operation and before the
thickness normalization operation; it results in a 51x36 matrix. This resolution is
adequate to retain the quality of the character and is more efficient for the purpose of
thickness normalization than the usual original size. The second resizing operation
constitutes the final step in the normalization process and converts the image (already
normalized in slant and thickness) to a smaller image with just 204 pixels that will be
used as the input to the neural network recognizer. It is important to convert the
original image to a standard size before thickness normalization; otherwise the final
resize operation into a 17x12 matrix may result in missing strokes or strokes with
excessive thickness.

3.3. Thickness Normalization

Performance tests conducted by members of the project team revealed the fact that the
accuracy of the ultimate recognition process depended significantly on the level of
uniformity in the thickness of characters used in the training process and the test
process itself. Instead of attempting to attain uniformity of thickness in a single stage,
we found that it was computationally more efficient to just “thin” them and “rethicken”
them. We begin this process by transforming the raw black and white image into a line
drawing of unit thickness by deleting redundant pixels without impacting the overall
appearance of the character. This process of skeletonization was implemented very
carefully in order to maintain preserve the basic structure and connectivity of the
original pattern. Previous researchers have addressed this problem either using a
sequential approach or a parallel approach.23 In the former method, the value of a pixel
at the n iteration depends on pixels from the n iteration, and usually also on pixels from
earlier iterations. In the other method, each pixel is obtained as a function of values
from the previous iteration only (so the computation can be performed in parallel for
every pixel of the image). The algorithm used by us is a parallel method based on the
algorithm described in,24 and offers one of the best results in terms of performance and
accuracy, as compared to nine other thinning algorithms.25 Subsequent to the
publication of that comparative evaluation, the algorithm was improved even further by
eliminating a number of time consuming steps.26 Further improvements on this
algorithm have been proposed by Carrasco and Forcada in 27.

Definitions:

• The neighbors of point p are the 8 pixels that surround p, and they are
numbered from 0 to 7 in the clockwise direction beginning by the point
which is on the top of p.

• One pixel is considered to be a contour point if at least one of its
neighbors is white.

• A contour loop is defined as a set of contour points, which are connected
into a loop.

The algorithm is applied sequentially eliminating points of one contour loop at a

time. In each iteration, not all contour points are deleted but only those that satisfy the
following conditions:
For the first and odd iterations, the contour point p is eliminated if:

Condition 1) B(p) > 1, and B(p) < 7
Condition 2) A(p)=1, or C(p)=1
Condition 3) E(p)=0
For the second and even iterations, the contour point p is eliminated if:
Condition 1) B(p) > 1, and B(p) < 7
Condition 2) A(p)=1, or D(p)=1
Condition 3) F(p)=0, where:
B(p) is the number of white neighbors of p,
A(p) is the number of white-to-black transitions of the neighbors of p in the
clockwise direction.
C(p) is equal to one only if any of the following conditions is true:

 p(0)=p(1)=p(2)=p(5)=0 and p(4)=p(6)=1
 p(2)=p(3)=p(4)=p(7)=0 and p(6)=p(0)=1;
D(p) is equal to one only if any of the following conditions is true:
 p(1)=p(4)=p(5)=p(6)=0 and p(0)=p(2)=1;
 p(0)=p(3)=p(6)=p(7)=0 and p(2)=p(4)=1;
E(p)=(p(2)+p(4))*p(0)*p(6);
F(p)=(p(0)+p(6))*p(2)*p(4);

 The best performance is obtained by rastering all black pixel in the image and
checking if they belong to the contour, instead of walking along the contour. The
number of operations performed is smaller and the algorithm is converted into a
parallel method.
 After obtaining the skeleton (one pixel thickness) of the digit, it is necessary to
dilate the image uniformly to obtain a standard thickness. Therefore the final thickness
of the digit is independent of the type of pen used, and at the same time the character
appears clear of noise at the edges.
 The re-thickening algorithm is a dilation operation using unitary matrix 3x3. The
result of this approach exhibits a uniform thickness of about 3 pixels. One example of
thickness normalization, applied to numeral '3' and numeral '8', is shown in Figure 6.

Thinning Rethickening

Figure 6: Thickness normalization of non-uniform numeral '3' and thick numeral '8'

3.4. Neural Network Based Recognition

While template matching, structural analysis and neural networks have been very
popular classification techniques for character recognition, neural networks are now
increasingly used in handwriting recognition applications.6, 28 In our experience with a
number of diverse applications, no single neural network model appears to be
inherently better than others to a significant extent; instead, higher accuracy rates can
be achieved by tailoring network models to the particular problem environment. A
network trained to recognize just digits offers better accuracy for check amount
recognition than a generalized neural network trained to recognize both letters and
numbers.
 The topology preferred by the authors is the multilayer perceptron (MLP)
topology; this yielded very accurate results and the execution time was shorter as
compared to other structures that were evaluated. Other researchers have successfully

employed radial basis function networks (RBFN) and time delay neural networks
(TDNN) for character recognition in French checks.11
 In our endeavor, the recognition module is implemented as an array of four neural
networks working in parallel. The results produced by these networks are analyzed by
an arbiter function that evaluates the results of all the networks and then produces an
overall result. The recognition procedure is shown in Figure 7.

NN #1 NN #2

Arbiter Function

Recognized digit, or rejection

Segment Normalization

Solution
Selector

Solution
Selector

NN #2

Solution
Selector

NN #2

Solution
Selector

Digit from segmentaion
module

Figure 7: General scheme of Recognition Module

 The fact that concurrent execution of different classifiers can increase the accuracy
of the system is widely accepted.2, 29, 30 The outputs of several classifiers can be used
together to increase the recognition rate, to reduce the probability on misclassifications,
and even to improve both parameters simultaneously. The actual behavior is mandated
by the arbiter function, which can be tuned to optimize the relative importance to the
different independent results in any way deemed appropriate by the domain experts.
 The structure of our preferred neural network is a multi-layer perceptron (MLP)
with 204 inputs (1 or 0 values corresponding to 204 pixels of the 17x12 normalized
matrix), 50 hidden neurons, and 10 outputs (corresponding to the certainty that the
image is digit '0', '1',. '9’ respectively).

 The ten outputs of the neural network are analyzed by a function called
SolutionSelector that returns the most likely result and the corresponding confidence
level, or “not_recongnized”, which is the predefined threshold for the value in case of
doubt. When the confidence level is not attained, the confidence level is low or when
contradiction between two possible digits is detected, the output of SolutionSelector
will be “not_recognized”; this implies that the neural network is not able to read the
digit with the desired level of confidence. If any character in the amount of a check is
not recognized, the check is rejected. Rejection means that the system is not able to
read the handwriting with enough level of confidence; as such, the check must be read
by a person. Since all checks are currently read by bank employees, rejection only
sends the check back to the normal procedure in which the check is read by a person.
Incorrect recognition can cause more damage; this will happen in only a small
percentage of cases with our approach. We prefer the option of having very few
incorrect readings, especially if the mistake cannot be detected on subsequent tests. As
explained below, a concerted effort has been made to minimize the number of incorrect
readings.

3.5. Evaluation and Testing

To evaluate the performance of the recognition system, 50000 digits from the NIST
Database 19 (Handprinted Forms and Characters Database) were used.21 Training was
performed using 25000 images in the training set (2500 samples corresponding to each
digit), and 10000 images in the validation set. The neural networks were trained by
adjusting internal weights (parameters) after evaluating the error between the outputs
of the network and the expected unitary vectors. The error of the training set always
decreases during this process. Further, an independent set of images (validation set),
which were not used by the optimization algorithm, was also evaluated in order to
avoid over-training of the neural network. The training process was terminated when
the error on the validation set began to increase.
 Four neural networks of the same structure were trained using the same algorithm
and the sample data samples. Since the initial weights of the network were initialized
randomly, the resulting networks were slightly different from each other. This is a
valuable characteristic that can be exploited in cooperative evaluation to combine the
results of the networks into a better classifier, as highlighted in the following sub-
section.
 In addition to these MLPs, two other topologies were used: Elman
backpropagation (ELM), which is a variant of the MLP; and generalized regression
neural network (GRNN), which is a kind of radial basis network.31 Table 1 shows the
results of testing the neural networks with 15000 digits from the NIST database. In
general, all the networks performed well, though the GRNN produced the least number
of reflections but at the cost of a higher level of incorrect recognitions. However, one
must consider that the NIST database is not perfect and contains instances of
incorrectly segmented digits;20 therefore, 100% accuracy is not feasible. (The overall
results for the training set are: 96.5% correctly recognized, 0.5% incorrectly
recognized).

Table 1: Performance of different neural networks developed

Number of Cases Percentage Neural
Netwok Correct Rejection Wrong Correct Rejection Wrong

MLP1 13815 868 317 92.1% 5.8% 2.1%

MLP2 13789 882 329 91.9% 5.9% 2.2%

MLP3 13752 901 347 91.7% 6.0% 2.3%

MLP4 13739 936 325 91.6% 6.2% 2.2%

ELM 13811 886 303 92.1% 5.9% 2.0%

GRNN 13725 557 718 91.5% 3.7% 4.8%

 The biggest difference between GRNN and the other topologies is that the training
process is faster in the former case: only about 5 seconds for GRNN instead of 10 to 15
minutes for MLPs or ELM. On the other hand, the evaluation process is slower: 1.2s
per sample, instead of 0.1 ms for MLP; these times were measured using Matlab neural
network toolbox in a Sun Fire 880 workstation environments. For check recognition
applications, it is more desirable to have fast evaluation than fast training; this is
especially true in the case of our feedback-based architecture because the latter makes a
lot of neural network calls.

3.6. Combining classifiers

In previous work, it was shown that by combining MLPs, one could improve the
accuracy of check recognition.19, 22 In this paper, we show the level of improvement
attained by combining multiple MLPs and also by combining one MLP with GRNN
and ELM.
 As shown in Figure 7, the Arbiter is the module responsible for combining the
results of several networks, and it may adopt different approaches. Since our different
classifiers offer very similar accuracy levels, it is not necessary to establish different
weights to each individual classifier. The strategy implemented for the arbiter function
is a simple voting approach in which a definite level of agreement among the results of
the independent classifiers is required. Three strategies have been used:

• Arbiter 2/3: The agreement among any 2 networks out of 3 is required.
Otherwise the digit is rejected. As can be deduced from this rule, if the
digit is rejected by more than one individual network, it is also rejected by
the Arbiter.

• Arbiter 3/3: Total agreement of the 3 networks used is required
• Arbiter 3/4: In a set of four networks, the agreement of at least 3 of them is

required.
 The results of applying various Arbiter approaches to different sets of neural
networks are shown on Table 2. By combining different network topologies, it is
possible to improve the probability of correct recognition and simultaneously decrease
the probability for wrong reading, using the Arbiter 2/3 approach. Further, in a total

agreement scenario (Arbiter 3/3), the incidence of wrong reading is greatly diminished
but the recognition rate also decreases.

Table 2: Results of the classifier combining the information of several neural networks

 Arbiter correct rejection wrong

Arbiter 2/3 92.7% 5.6% 1.7%

Arbiter 3/4 91.4% 7.3% 1.2% 3 or 4 MLPs

Arbiter 3/3 87.3% 11.8% 0.8%

Arbiter 2/3 93.1% 5.7% 1.3%
MLP+GRNN+ELM

Arbiter 3/3 84.0% 15.6% 0.4%

4. Post-processing Module

A post-processing module was designed for evaluating the result from the Arbiter. This
module is based on a set of syntactic rules that are used to check if the amount read is
meaningful as a monetary amount; this can help to reduce the impact of incorrect
readings even further.
 Contextual knowledge can often be exploited to enhance the recognition accuracy
in most OCR applications. Applications relating to the postal service are usually
constrained to a fixed number of state/province values and to a fixed number of digits
in postal codes (ZIP codes). Similarly, the courtesy amount could be verified with the
legal amount that is written in textual format. Some systems that read monetary
amounts exploit contextual information via syntax verification. This involves the
notion of pattern parser that determines the validity of a string in terms of monetary
amounts.32 The A2iA Interchange system includes the verifier module within the
recognition module to read French checks.10 In another French system,9 the syntactic
analysis takes place after the recognition system. In the system being described in this
paper, the syntactic verifier is applied after recognition and is intended to minimize the
number of wrong readings and to show the values in a standard format. The post-
processing module is based on a set of rules that incorporate the meanings of the
decimal separator and the grouping symbol. There is no distinction between a period
and a comma; both are treated as separators, and the analysis is based on the number of
digits in each group. This strategy was adopted because the period sign and the comma
sign are difficult to distinguish in handwritten form, and because they have opposite
connotations in different countries. As an example, the norms for the new Euro
currency allow for the use of the decimal symbol and the digit grouping symbols
according to the national rules and practices of each country.
 The rules for accepting writing formats can be expressed using basic regular
expressions that describe, in a very general way, the valid sequences of digits and
commas within the amount string:

Set 1: If the decimal part exists, which is the most common case, it must contain 2
digits. If special punctuation is used to make groups in the integer part of the amount;
then these groups must be comprised of exactly three digits. The regular expressions
for amounts with decimal part are:
 ^[0-9]*,[0-9][0-9]$
 ^[0-9],[0-9][0-9][0-9],[0-9][0-9]$
 ^[0-9][0-9],[0-9][0-9][0-9],[0-9][0-9]$
 ^[0-9][0-9][0-9],[0-9][0-9][0-9],[0-9][0-9]$
Set 2: Without the decimal part, the separator is optional. So the regular expressions
for amounts without decimal part are:
 ^[0-9]*[,]*$
 ^[0-9],[0-9][0-9][0-9][,]*$
 ^[0-9][0-9],[0-9][0-9][0-9][,]*$
 ^[0-9][0-9][0-9],[0-9][0-9][0-9][,]*$
 The application of these rules can be depicted as a Deterministic Finite Automata
DFA (see Figure 8). It reads the string from right to left and the states change
depending on the kind of symbol found in the string: D for digit, and P for punctuation.
The system takes states qi until it reaches a final state (denoted by double circles) or it
reaches an error state. Additional description of this DFA diagram and all possible
cases are included in 18 and 22.

q6

D

P

Error

q4 q7

Error

D D

P P

q8
D

P

q9
D

No grouping

Error Error

P

Grouping

Integer Grouping

No grouping

q5 q10

Error

D D

P P

q11
D

P

q12
D

Error Error

P

Error

Start from
the end

q1 q2

Error

D D D

P
P P

q3
D

P

Case 4

Case 1 Case 2 Case 3

q0

Figure 8: Deterministic Finite Automata to check validity of amounts

5. Conclusion

This paper described a set of algorithms and techniques that can be applied to read
checks from many countries, as well as paper documents from other operational
environments. By using a multi-staged hybrid architecture, one is able to obtain better
recognition rates as compared to those attainable with a single approach only.
 The strategy of using multiple techniques in parallel is exemplified by the
segmentation strategy in which the courtesy amount field is dissected into individual
digits using several splitting algorithms. The segmentation module receives feedback
from the recognition module and selects a different splitting algorithm if any digit is
not properly recognized. Several splitting algorithms based on the drop-fall

methodology have been presented in this paper. None of the algorithms provides the
best separation of connected or overlapped digits in every possible situation, but the
system tries the most likely one first and if it fails, then it uses the others in a
predefined manner.
 In the section on recognition of individual characters, the need for normalization of
digit size, thickness of strokes, and slant was highlighted. The neural network
architecture employs a set of four neural networks of different types that are run in
parallel to minimize the likelihood of erroneous readings. This architecture offers
superior accuracy and performance, as compared to structures comprised of single nets
only. The importance of an independent classifier that is able to detect incorrectly
segmented digits, as well as to reject unknown characters (such as delimiters), has also
been emphasized. The final step in the recognition of digits is syntactic post–
processing, which helps validate the text string obtained by checking if the result is in
conformity with the rules of valid monetary amounts.
 By evaluating the efficacy of our hybrid architecture with both U.S. and Brazilian
checks, we continue to work towards the delineation of hybrid techniques that can be
used to handle checks and other paper documents from many countries.

Acknowledgments

We are indebted to representatives of a number of banks located in North America,
South America, Europe and Asia for assisting with research related to their specific
domains. Parts of the research described in this paper are covered by a patent.33 We
thank the co-inventors and others who have been involved in this project. The
reviewers’ comments and suggestions that help make better presentation of the paper
are also greatly appreciated.

References

 1. United States Federal Reserve Board, “Fed Announces Results of Study of the Payments

System. First Authoritative Study in 20 Years”. Press Release, November 14th, 2001.
 2. N. Arica and F.T. Yarman-Vural, "An overview of Character Recognition Focused on Off-

Line Handwritting", IEEE Transactions on Systems, Man, and Cybernetics – PartC:
Applications and Reviews, 31(2):216-233, 2001.

 3. K. Han and I. Sethi, “An off-Line cursive handwritten word recognition system and its
application to legal amount interpretation”, Automatic Bankcheck Processing, Wold
Scientific Press, 1997, pp. 295-308.

 4. S. Kelland and S. Wesolkowski, "A comparison of Research and Production Architectures
for Check Reading Systems", Fifth International Conference on Document Analysis and
Recognition, pp 99-102, Bangalore, India.. 1999.

 5. A. Agarwal, K. Hussein, A. Gupta, and P.S.P. Wang. "Detection of Courtesy Amount
Block on Bank Checks" Journal of Electronic Imaging, Vol. 5(2), April 1996, pp. 214-224.

 6. H.Bunke and P.S.P.Wang. Handbook of character recognition and document image
analysis. Ed. Wolrd Scientific. ISBN 981-02-2270-X, 1997.

 7. R. Fan, L. Lam, and C.Y. Suen, “Processing of date information on cheques”, Progress in
Handwriting Recognition, Editors A.C. Downton and C. Impedovo, World Scientific,
1997, pp.473-479.

 8. N.Gorski, V.Anisimov, E.Augustin, O.Baret, D.Price, and J.C.Simon, "A2iA Check
Reader: A Family of Bank Recognition Systems", Fifth International Conference on
Document Analysis and Recognition, pp 523-526, Bangalore, India. (1999)

 9. L. Heutte, P. Barbosa-Pereira, O. Bougeois, J.V. Moreau, B. Plessis, P. Courtellemont, and
Y. Lecourtier, “Multi-Bank Check Recognition System: Consideration on the Numeral
Amount Recognition Module”, International Journal of Pattern Recognition and Artificial
Intelligence, Vol 11(4), pp595-618, 1997.

 10. S. Knerr, V. Anisimov, O. Beret, N. Gorski, D. Price and J.C. Simon, “The A2iA
Intercheque System: Courtesy Amount and Legal Amount Recognition for French
Checks”, International Journal of Pattern Recognition and Artificial Intelligence, Vol
11(4), pp505-547, 1997.

 11. E. Lethelier, M. Leroux, M. Gilloux, "An Automatic Reading System for Handwritten
Numeral Amounts on French checks." 3rd International Conference on Document Analysis
and Recognition, vol 1:92-97, 1995.

 12. C.Y. Suen, Q. Xu, and L.Lam, "Automatic Recognition of Handwritten data on cheques –
Fact or Fiction?", Pattern Recognition Letters. 20:1287-1295, 1999

 13. R.G. Casey and E. Lecolinet, "A Survey of Methods and Strategies in Character
Segmentation", in IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(7):690-706, 1996.

 14. G. Congedo, G. Dimauro, S. Impedovo, G. Pirlo "Segmentation of Numeric Strings."
Proceedings of the Third International Conference on Document Analysis and Recognition,
Vol. II 1038-1041. 1995.

 15. F. Kimura and M. Shridhar, "Segmentation-Recognition Algorithm for Zip Code Field
Recognition", Machine Vision and Applications 5 (3) 199-210. 1992.

 16. K. Hussein, A. Agarwal, A. Gupta, and P.S.P. Wang. "A Knowledge-Based Segmentation
Algorithm for Enhanced Recognition of Handwritten Courtesy Amounts", Pattern
Recognition, Vol 32(2), pp. 305-316, Feb 1999.

 17. G. Dimauro, S. Impedovo, G.Pirlo, and A.Salzo. "Automatic Bankcheck Processing: A
New Engineered System”, International Journal of Pattern Recognition and Artificial
Intelligence, Vol 11(4), pp467-503, 1997.

 18. R. Palacios, and A. Gupta, "A System for Processing Handwritten Bank Checks
Automatically", submitted to Image and Vision Computing, 2002.

 19. R. Palacios, A. Gupta, and P.S.P. Wang, "Feedback-Based Architecture for Reading
Courtesy Amounts on Checks", Journal of Electronic Imaging, Vol 12, Issue 1, January
2003, pp 194-202.

 20. R. Palacios, and A. Gupta, "Training Neural Networks for Reading Handwritten Amounts
on Checks", submitted to the IEEE International Workshop on Neural Networks for Signal
Processing, 2003.

 21. M.D. Garris, J.L. Blue, G.T. Candela, P.J. Grother, S.A. Janet, C.L. Wilson. "NIST Form-
Based Handprint Recognition System (Release 2.0)", US Dept. of Commerce, Technology
Administration. National Institute of Standards and Technology. NISTIR 5959. 1997.

 22. R. Palacios, A. Sinha, A. Gupta, "Automatic Processing of Brazilian Bank Checks",
submitted to Machine Vision and Applications, 2002.

 23. L. Lam, S.W. Lee, and C.Y. Suen, "Thinning Methodologies – A Comprehensive Survey",
in IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):869-885, 1992.

 24. P.S.P.Wang, and Y.Y.Zhang, "A fast and flexible thinning algorithm", IEEE Transactions
on Computers, 38(5), 1989

 25. L. Lam and C.Y. Suen, "An Evaluation of Parallel Thinning Algorithms for Character
Recognition", in IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(9):914-919, 1995.

 26. M. V. Nagendraprasad, P. S. P. Wang, and A. Gupta "Algorithms for Thinning and
Rethickening Digital Patterns" Digital Signal Processing, 3, 97-102 , 1993.

 27. R.C. Carrasco, and M.L. Forcada, "A note on the Nagendraprasad-Wang-Gupta thinning
algorithm", Pattern Recognition Letters, Vol 16, pp. 539-541, 1995.

 28. I. Guyon and P.S.P. Wang. Advances in Pattern Recognition Systems using Neural
Network Technologies. Ed World Scientific. ISBN 981-02-144-8. 1993

 29. A.S. Atukorale, P.N. Suganthan, "Combining Classifiers Based on Confidence Values",
Proceedings of the 5th International Conference on Document Analysis and Recognition,
pp.37-40, 1999.

 30. C.Y. Suen, J. Kim, K. Kim, Q. Xu, and L. Lam, "Handwriting Recognition – The Last
Frontiers", Proceedings of the International Conference on Pattern Recognition, vol. 4:1-
10, 2000.

 31. Wasserman, P.D., "Advanced Methods in Neural Computing", Van Nostrand Reinhold,
New York, 1993.

 32. M. Prundaru and I. Prundaru, “Syntactic Handwritten Numeral Recognition by Multi-
Dimensional Gramars”, Proceedings of SPIE: The International Society for Optical
Engineering, Vol 3365, pp. 302-309, 1998.

33. A. Gupta, M.V. Nagendraprasad, P.S.P. Wang, "System and method for character
recognition with normalization", U.S. Patent No. 5633954, 1997.

Photo and Bibliography

Rafael Palacios received his degree in Industrial Engineering in
1990 and his PhD in electrical engineering in 1998, from University
Pontificia Comillas (UPCO), Madrid, Spain. He has developed
research for many companies in projects related to failure detection,
image processing and other fields. He was visiting scientist of Sloan
school of management in Massachusetts Institute of Technology
(MIT) during 2001 and 2002. He is currently an assistant professor

in the department of computer science at UPCO. His interests include failure detection
and diagnosis, digital image processing, web programming and computer security.

Amar Gupta is Co-Director of the Productivity from Information
Technology (PROFIT) Initiative at MIT. He has been at MIT since
1979 and his current areas of interest are: Knowledge Acquisition;
Knowledge Discovery and Data Mining; Knowledge Management;
and Knowledge Dissemination. He is presently Associate Editor of
ACM Transactions of Information Technology (TOIT), and also of
Information Resources Management Journal (IRMJ). He is one of the
Co-Inventors of a new approach for reading handwritten numbers,
and is currently trying to encourage the use of electronic techniques

for nationwide paper-less check processing. He serves as an advisor to a number of
corporations and international organizations.

Patrick S. Wang is IAPR Fellow, tenured full professor of computer
science at Northeastern University, research consultant at MIT Sloan
School, and adjunct faculty of computer science at Harvard
University Extension School. He received his Ph.D. in C.S. from
Oregon State University, M.S. in I.C.S. from Georgia Tech,
M.S.E.E.from Taiwan University and B.S.E.E. from Chiao-Tung
University. He was faculty at Oregon and Boston University, and
senior researcher at Southern Bell, GTE Labs and Wang Labs. Dr.

Wang was elected Otto-Von-Guericke Distinguished Guest Professor of Magdeburg
University near Berlin, Germany, and serves as Honorary Advisor Professor for
Xiamen University, and Guangxi Normal University, Guilin, China, since 2001.

