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Abstract—Recognition of connected handwritten digit strings is a challenging task

due mainly to two problems: poor character segmentation and unreliable isolated

character recognition. In this paper, we first present a rational B-spline

representation of digit templates based on Pixel-to-Boundary Distance (PBD)

maps. We then present a neural network approach to extract B-spline PBD

templates and an evolutionary algorithm to optimize these templates. In total,

1,000 templates (100 templates for each of 10 classes) were extracted from and

optimized on 10,426 training samples from the NIST Special Database 3. By using

these templates, a nearest neighbor classifier can successfully reject 90.7 percent

of nondigit patterns while achieving a 96.4 percent correct classification of isolated

test digits. When our classifier is applied to the recognition of 4,958 connected

handwritten digit strings (4,555 2-digit, 355 3-digit, and 48 4-digit strings) from the

NIST Special Database 3 with a dynamic programming approach, it has a correct

classification rate of 82.4 percent with a rejection rate of as low as 0.85 percent.

Our classifier compares favorably in terms of correct classification rate and

robustness with other classifiers that are tested.

Index Terms—Connected handwritten digit recognition, pixel-to-boundary

distance map, B-spline fitting, digit templates, template optimization, nearest

neighbor classifier, multilayer perceptron classifier, evolutionary algorithm.

�

1 INTRODUCTION

RECOGNITION of connected handwritten character strings is a

challenging task due mainly to two problems: poor character

segmentation and unreliable isolated character recognition. Char-

acter segmentation is often ambiguous, error prone, and subject to

noncharacter patterns produced by incorrect segmentation. Many

handwritten digit classifiers can produce a high rate of correct

classification on well-isolated digits. However, the classifiers may

produce rather poor results on connected handwritten digit strings

because they cannot reliably reject noncharacter patterns. The

techniques for recognizing connected digit strings can be categor-

ized into two classes: segmentation-based algorithms [1], [2], [3]

and segmentation-free algorithms [4]. Recently, techniques that

combine the above two approaches have been proposed for

achieving more reliable performance [5]. In a segmentation-based

approach, a segmentation step is carried out before recognition is

performed. In a segmentation-free approach, however, the

segmentation and recognition are tightly coupled. Segmentation-

free techniques have been attracting increasing attention because

1) character segmentation is error-prone and unreliable and 2)

lexical information can be used to improve recognition [6].

However, little lexical information is available in the recognition

of connected digit strings. A segmentation-based approach

appears to be a better choice for digit string recognition. Based

on the experience gained from previous research [3], [7], it is

reasonable to conclude that a reliable and robust classifier that can

distinguish true digits from nondigit patterns is of the utmost

importance to handwritten digit string recognition.

Many new techniques have been presented in recent years for

the recognition of isolated digits. They differ in the feature

extraction and classification methods employed. Two comprehen-

sive reviews were given by Govindan and Shivaprasad [8] and

Impedovo et al. [9]. Trier et al. also provided an exhaustive survey

of the feature extraction methods for offline recognition of isolated

digits/characters [10].
A number of studies have applied template-based techniques to

isolated digit recognition. The template-matching-based technique
is one of the earliest pattern recognition techniques for digit
recognition. The technique has come to the attention of many
researchers in recent years with the development of advanced
computational algorithms such as artificial neural networks and
evolutionary algorithms. Yan proposed an Optimized Nearest-
Neighbor Classifier (ONNC) for the recognition of hand-printed
digits [11]. Wakahara used iterated Local Affine Transformation
(LAT) operations to deform binary images to match templates [12].
Cheung et al. proposed a template representation based on splines
[13] which modeled a digit image using a spline, assuming that the
spline parameters had multivariate Gaussian distributions. Jain
and Zongker presented a deformable templates matching algo-
rithm based on object contours [14]. In their approach, the
recognition procedure minimized an objective function by itera-
tively updating the transformation parameters to alter the shapes
of the templates so that the best match between the templates and
unknown digits is determined. The recognition performance of
deformable template matching depends very much on the ability
of the “deformations” in covering the variations of objects in the
real world.

The objective of our research is to develop a robust classifier

that recognizes the true digits of a large number of variations and

reliably rejects nondigit patterns. These capabilities are highly

desirable for connected handwritten digit string recognition. In

this paper, we will present a B-spline template representation

scheme, a neural network approach for extracting templates, and

an evolutionary algorithm for template optimization. In our

approach, each template represented by a Pixel-to-Boundary

Distance (PBD) map is approximated by a rational B-spline surface

with a set of control knots. In the training, a cost function that takes

into account both the amplitude and gradient of the PBD map is

first minimized by a neural network to extract a set of templates.

The extracted templates are further optimized by an evolutionary

algorithm. At the matching stage, a similarity measure that takes

into account both the amplitude and gradient of the PBD map is

adopted.

The rest of this paper is organized as follows: The representa-

tion of B-spline templates is discussed in Section 2. Section 3

discusses templates extraction by using a neural network.

Templates optimization based on an evolutionary algorithm is

presented in Section 4. Experimental results are reported in

Section 5. Finally, conclusions are made in Section 6.

2 B-SPLINE REPRESENTATION OF TEMPLATES

Curve and surface representation and manipulation, utilizing
nonrational or rational B-splines, are widely used in geometric
design. In 1975, Versprille proposed a rational B-splines for the
geometric design of curves and surfaces [15]. The work outlined
the important properties of rational B-splines, such as continuity,
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local control property, etc. Recently, B-spline curves (snakes) have

been used to describe digit images [13], [16]. With B-spline fitting,

information concerning the shapes of the desired objects can be

incorporated into the control parameters of the curve or surface-

based templates. However, B-spline fitting of a digit image

involves some uncertainties and, therefore, is prone to error. This

is because the input data and corresponding parameters of a

template should reflect the information in the same aspect of the

image. In our approach, we use a B-spline surface to fit the Pixel-

to-Boundary Distance (PBD) map of a digit image. The number of

control points of the surface and their locations are predetermined;

hence, for each control point, the control area is certain. Therefore,

the problem can be partially solved.

2.1 Representation of Binary Digit Images

A binary digit image can be converted to a PBD map. The distance

of pixel ðx; yÞ to the nearest foreground/background boundary is

measured. We use ðx; yÞ instead of normally discrete ði; jÞ for its

consistency with the definition of the rational B-spline surface. The

foreground pixel Ofg has dðx; yÞ � 0, but, for the background pixel

Obg, we assume it has a negative value, that is, dðx; yÞ < 0.
Let gðx; yÞ denote the value of pixel ðx; yÞ in the PBD map. It is

defined as

gðx; yÞ ¼ e

2
e
�½ðdðx;yÞ�dm Þ�2

d2m ; ð1Þ

where dm is the maximum pixel-to-boundary distance in the image

and (e=2) is a constant to make a point on the boundary Ob have

gðxOb
; yOb

Þ ¼ 0:5.
Assume that the rational B-spline surfaces for templates are

fSðPjÞ; 0 	 j 	 Nhg, where Nh is the number of templates and Pj

is an N �N matrix of the control points (parameters) for template

j, as shown in Fig. 1. Pj is given by

Pj ¼

p0;0j p0;1j � � � p0;N�1
j

p1;0j p1;1j � � � p1;N�1
j

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
pN�1;0
j pN�1;1

j � � � pN�1;N�1
j

0
BBB@

1
CCCA

N�N:

ð2Þ

A rational B-spline surface is defined as

Sjðx; yÞ ¼ Bt
r1
ðxÞPjBr2 ðyÞ; ð3Þ

where BrðxÞ is a base function vector and Bt
rðyÞ is the transpose of

BrðyÞ. The parameters r1 and r2 are the orders of the B-spline

bases. Normally, we have r1 ¼ r2 ¼ r. BrðxÞ is defined as

BrðxÞ ¼

B0;rðxÞ
B1;rðxÞ
� � �

BN�1;rðxÞ

0
BB@

1
CCA

N�1

; ð4Þ

where Bi;1ðuÞ is given by

Bi;1ðuÞ ¼
1 ui 	 u < uiþ1

0 otherwise

�
ð5Þ

and

Bi;rðuÞ ¼
u� ui

uiþr�1 � ui
Bi;r�1ðuÞ þ

uiþr � u

uiþr � uiþ1
Biþ1;r�1ðuÞ; ð6Þ

where U ¼ fuij0 	 i 	 Nug is a knot vector of length Nu. It is

assumed that 0=0 ¼ 0. The value of ui determines the location of
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the control knots and must be predefined. To simplify the B-spline

surface, we define a knot vector as

U ¼ f0; � � � ; 0
zfflfflfflffl}|fflfflfflffl{r

;
1

ðN � 3Þ ;
2

ðN � 3Þ ; � � � ; 1; � � � ; 1
zfflfflfflffl}|fflfflfflffl{r

g;

so Nu ¼ N þ 2� ðr� 2Þ. In most applications, the number of input

patterns, Ni, is much greater than the number of control points in a

template, N �N .

3 TEMPLATE EXTRACTION BY TRAINING A NEURAL

NETWORK

B-spline templates are extracted by training a multilayer feedfor-

ward neural network, as shown in Fig. 2. The input to the neural

network is a Pixel-to-Boundary Distance (PBD) map G ¼
fgðx; yÞ; 0 	 x 	 1; 0 	 y 	 1g. Note that both x and y have been

normalized to the range of ½0; 1�. The hidden layer consists of

templates to be extracted. Each hidden node corresponds to a

template. Z ¼ ½z0; z1; � � � ; zNo
� is the output vector of the network,

corresponding to No output classes. The output of the jth hidden

node is given by

�j ¼ fðG;PjÞ ¼ �1�1;j þ �2�2;j; ð7Þ

where �1 and �2 are two weighting factors with �1 þ �2 ¼ 1.

Function �j measures the similarity between an input PBD map G

and the jth template Pj, and considers not only the magnitude but

also the gradient at a point. �1;j is defined as

�1;j ¼
2

1þ ecsvj
; ð8Þ

where cs is a smoothing factor, and vj is defined as

vj ¼
R 1
0

R 1
0 ½Sjðx; yÞ � gðx; yÞ�2 dx dyR 1

0

R 1
0 g2ðx; yÞ dx dy

¼
R 1
0

R 1
0 ½B

t
rðxÞPjBrðyÞ � gðx; yÞ�2 dx dyR 1

0

R 1
0 g2ðx; yÞ dx dy

:

ð9Þ

Denote
R 1
0

R 1
0 g2ðx; yÞ dx dy by g2s , then

vj ¼
1

g2s

Z 1

0

Z 1

0

½Bt
rðxÞPjBrðyÞ � gðx; yÞ�2 dx dy: ð10Þ

We defined �2;j as

�2;j ¼
Z 1

0

Z 1

0

cos2 "jðx; yÞ
� �

dx dy; ð11Þ

where "jðx; yÞ is the angle between the gradient of the jth template
Sj at ðx; yÞ and the gradient of the input PBD map G at the same
point. It is easy to verify that 0 	 �1;j 	 1 and 0 	 �2;j 	 1. If
�1;j ¼ 1, then Sjðx; yÞ � gðx; yÞ.

The connection weight from hidden node j to output node m is
denoted wmj. The output of the mth output node is given by

zm ¼
XNh

j¼1

wmjfðG;PjÞ; ð12Þ

where Nh is the number of templates. Here, weights fwmjg are
predefined, which will be discussed later.

Assume that the desired and actual activities of the output
node m are ztm and zm, respectively, for the input G ¼ fgðx; yÞg. For
each j, we have to find pk;lj (the control parameters for the B-spline
templates) so that the following energy function is minimized:

E ¼ 1

2

XNo

m¼1

ðzm � ztmÞ
2: ð13Þ

The generalized delta rule is adopted to train the multilayer
perceptron for extracting a set of templates.

In order to simplify the extraction algorithm, at iteration t of the
template extraction procedure, only the template(s) with max-
imum � are updated, instead of updating all templates. So, wmj is
defined as

wmj ¼
1 j ¼ arg

i
maxð�iÞ; i 2 Dm

0 otherwise;

(
ð14Þ

where Dm is a set in which each index corresponds to a hidden
node that represents a template belonging to the class repre-
sented by output node m. Further, the input PBD map belongs to
the class m.

4 TEMPLATE OPTIMIZATION BY EVOLUTIONARY

ALGORITHM

Evolutionary algorithms for optimization have been studied for
more than three decades. Many research results and applications
have demonstrated that evolutionary algorithms, which emulate
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the process of natural evolution, are powerful tools for global
optimization [17], [18].

Several applications of evolutionary template optimization
have been reported in [19], [20]. However, in most of these
algorithms, only the best template is extracted for each class from
one set of training samples. Obviously, in most object recognition
problems, a single template for a class of objects is not sufficient to
achieve reliable recognition. More templates are required in order
to achieve better performance. Sarkar et al. presented a fitness-
based clustering algorithm, which can be utilized for template
optimization [21]. In the algorithm, one opponent (parents or
offspring) contains a variable number of clustering centers. In its
selection procedure, the fitness values of the parents and offspring
are compared, and a number of opponents are selected arbitrarily
as reference opponents. The opponent that has a better perfor-
mance with respect to each reference opponent receives a win.
Based on the number of wins, opponents are selected as the parents
of the next generation. One disadvantage of this algorithm is that
the computational requirement has an exponential relationship
with the cluster number. If the number of clusters is very large, the
algorithm ceases to be feasible.

Unlike Sarkar et al.’s approach of using a set of cluster centers
as a component in evolution and selecting only one set as the
winner [21], we use templates directly as the components, and the
selected survivors are a group of templates. The evolutionary
process emulates the evolution of a social system, such as ants,
bees, and human society. In our algorithm, we define a small,
simple, and homogeneous social system. Each template is like an
individual in the system. The society can only accommodate a
limited number of individuals, but the individuals can generate an
increasing number of offspring in each generation. Therefore, only
the capable offspring are kept and the others are discarded, that is,
“survival of the fittest.” Moreover, the relationship between
individuals is not only competitive (only winners can survive),
but also cooperative (the properties of individuals are reflected by
their collective performance). After a number of generations in the
process of evolution, a group of templates is selected. These
templates, as a whole, can achieve a good recognition performance.
The procedure is given below:

1. A population of NP templates (called parents) is initially
generated. We use the templates extracted by the multi-
layer feedforward neural network presented in Section 3.

2. NO ¼ Nr
O þNm

O þNc
O offspring are generated from the

parents by evolutionary operations which include replica-
tion (Nr

O ¼ NP ), mutation (Nm
O ¼ nNP , where n is a

positive integer), and recombination (Nc
O).

3. A subset of NP offspring is selected as the parents of the
next generation based on a fitness measure given in (15).

4. If the number of generations is less than the preset number
or the recognition performance of the selected templates is
not satisfactory, go to Step 2.

In our algorithm, the templates in each digit class are optimized
independently. The parallel processing nature of our proposed
method allows fast templates optimization on parallel computers
or multiple computers.

The task of the selection procedure is to select a subset NPS of
NP templates from NO generated offsprings for the parents of the
next generation. Based on the similarity function �k ¼ fðGj;PkÞ
(Gj is the jth input PBD map) defined in (7), we define the fitness of
NPS as

fitnessðNPSÞ ¼
XNt

j¼1

max
Pk2NPS

fðGj;PkÞ; ð15Þ

where Nt is the number of training samples. The fitness (NPS) of
the selected subset must be greater than the fitness of any other
subset of NP templates from the offspring set OS. The number of
possible subsets of NP templates from NO offspring templates is
CNP

NO
, which is an extremely large number if we set NP ¼ 100 and

NO ¼ 1; 000. In order to make this algorithm practical, a fast
selection procedure directly based on the function �k ¼ fðGj;PkÞ is
adopted. The computing time of our fast selection procedure is
proportional to the number of templates, which is an improvement
over the existing methods in which the computational requirement
has an exponential relationship with the cluster number.

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Experimental Settings

In total, 10,426 digit samples from the NIST Special Database 3
were extracted as Training Set 1 (TS1). Each digit was normalized
into a 48� 48 binary image with 8-pixel-wide background borders
for constructing the Pixel-to-Boundary Distance (PBD) map. Hence,
the actual image size was 64� 64. For the purpose of comparison
with other classifiers, training set TS1 and 2,000 nondigit patterns
generated from the digit samples of TS1 (see the examples shown
in Fig. 3) formed Training Set 2 (TS2). The nondigit patterns used in
the experiment were generated by merging two parts of the
isolated digits, the left part of the right digit and the right part of
the left digit. The selection of the two digits, the width and the
relative y position of each part, and the overlapping degree were
set randomly. It appeared that, with one more output for nondigit
patterns, the rejection performance of MLP could be improved.
Another set of independent 10,426 digit patterns was extracted
from the NIST Special Database 3 as the test set.

Preliminary experimental results with different � (7) values
showed that the best performance was achieved when
�1 ¼ �2 ¼ 0:5. In all reported experiments in this paper,
�1 ¼ �2 ¼ 0:5. One thousand templates (100 for each digit class)
were first extracted from the training set by the neural network
approach discussed in Section 3. Each template contained 11� 11
control points. Since the amplitude of a pixel on four borders of a
PBD map is close to zero, the control points on four borders were
set to zero. Therefore, only the inner 9� 9 ¼ 81 control points
were involved in the training. With these 1,000 extracted
templates, a nearest neighbor classifier was adopted to classify
the input patterns based on the � function defined in (7).

The 1; 000 extracted templates were then used as the initial
parents of our evolutionary optimization algorithm to obtain 1; 000
optimized templates. Because each digit class has 100 templates,
NP ¼ 100 and Nr

O ¼ 100 in the optimization of templates for each
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class. We set Nm
O ¼ 2NP ¼ 200 and Nc

O ¼ 7NP ¼ 700. As a result,
NO ¼ 1; 000.

For comparison purposes, we applied two other techniques,
namely, a three-layer Multilayer Perceptron (MLP) classifier and
Optimized Nearest-Neighbor Classifier (ONNC) proposed by Yan
[11] to recognize the same digit samples with different feature
sets. Feature Set 1 (FS1) was defined as 64 intensities on the 8� 8
image, rescaled from the original binary image. The 9� 9
intensities extracted from the PBD maps were used as Feature
Set 2 (FS2). Sixty-four directional features extracted from the PBD
maps, together with the 81 intensities in FS2 (a total of 145
features), formed Feature Set 3 (FS3). Directional features were
extracted by using four directional Kirsch masks (horizontal,
vertical, right-diagonal, and left-diagonal). Each of the directional

feature vectors were compressed into a 4� 4 normalized feature

vector. The experimental settings with different techniques,

training sets, feature sets, and classification parameters are

summarized in Table 1.

5.2 Recognition Performance on Isolated Digits

Fig. 4 shows the Figure-of-Merit (FOM) measures of our classifiers

BSTNN (using the B-spline PBD templates from training a neural

network) and BSTEC (using the B-spline PBD templates from

evolutionary computation) and classifiers MLP5 (the best among

MLP1 - MLP6) and ONNC2 (the better one of ONNC1 and

ONNC2). The FOM is defined as
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FOM ¼ 10Eþ R; ð15Þ

where E is an error rate and R is a rejection rate. By using such a
definition, we weigh the error rate more than the rejection rate.
Experimental results show that there is little difference among the
FOMs of MLP1, MLP2, and MLP3 classifiers that use the same
training set TS1 but different feature sets (FS1, FS2, and FS3,
respectively). The same is true for MLP4, MLP5, and MLP6
classifiers that use the same training set TS2 but different feature
sets (FS1, FS2, and FS3, respectively). This suggests that 64 in-
tensity-based features contain sufficient information required for
the classification. Adding more features does not appear helpful.
This also suggests that directly using PBD maps as features
contributes little to the performance enhancement of the system.
From the results, we do observe that the FOM performance of an
MLP classifier trained by using both digit and nondigit patterns
(training set TS2) is better than that of an MLP classifier trained by
using digit patterns only (training test TS1), particularly in more
conservative cases of high rejection rates. This also suggests that
including negative examples (nondigit patterns in our case) is
important for training an MLP classifier. Our classifiers can do
slightly better than an MLP classifier at a low rejection rate,
although their performance is slightly lower than MLP classifiers
at a high rejection rate. Yan’s ONNC classifiers perform slightly
better than both MLP classifiers and our classifiers in the
recognition of isolated digits.

Table 2 shows the experimental results of different classifiers at
a high rejection rate or without rejection. As expected, the
performance with the templates optimized by the evolutionary
algorithm (BSTEC) is better than that without evolutionary
optimization (BSTNN: the templates extracted by training a neural
network). This can also be observed from the FOM measures
shown in Fig. 4. As we know, it is easy for neural network training
to get stuck to a local minimum, in particular, for a complex
algorithm to train B-spline templates (dealing with both intensity
and directional features) in our case. It is believed that evolu-
tionary algorithms have a better chance of achieving global
optimization. This may explain why BSTEC achieves better results
than BSTNN.

5.3 Rejection Capability on Nondigit Patterns

To further compare these classifiers, we use another set of 10,426
nondigit patterns to verify the reliability of the classifiers in
rejecting nondigit patterns. This capability is of utmost importance
for connected character recognition. The 2,000 nondigit patterns
used in TS2 are not included in this data set. Table 3 shows the
experimental results of our classifier together with an MLP
classifier, MLP5 (the best among MLP classifiers), and Yan’s
ONNC2 (the better one of ONNC1 and ONNC2). The thresholds

used here are the same as the settings used in Table 2 for the “with

rejection” experiments on isolated digits.
We can see that the rejection rate of using evolutionally

optimized B-splice PBD templates (BSTEC) is the highest on

nondigit patterns. In other words, BSTEC can achieve a more

reliable performance in rejecting nondigit patterns, which is a

very desirable property for connected handwritten digit recogni-

tion. Two factors contributed to the enhanced performance: 1) a

new B-spline representation of PBD templates based on PBD

maps and 2) template extraction and optimization by using a

neural network and an evolutionary algorithm. We can also see

from the experimental results that BSTEC can achieve a better

performance than BSTNN (using the templates from training a

neural network).
In a template-based approach, the distance from an unknown

pattern to a cluster center more precisely reflects the similarity

between the pattern and the cluster center. Template matching is

also more predictable than a neural network model. Normally, a

nondigit pattern will have a larger distance than a digit pattern.

The training of an MLP classifier decides the boundaries among

different classes in the feature space. To better train an

MLP classifier, we need to have all the representative patterns in

the training set. In our case, it is difficult, if not impossible, to

include all the nondigit patterns in the training set. Even if we

could collect all the nondigit patterns, the nondigit set would be

much larger than the digit set and, therefore, it would be an

overwhelming training to nondigit patterns. As a result, the

classifier might be very good in rejecting nondigit patterns but it

may also reject some true digit patterns. Unlike an MLP classifier,

we used a neural network to extract initial B-spline PBD templates

and an evolutionary algorithm to further optimize the templates.

In our B-spline templates, both intensity and gradient (directional)

features are used and that is why we use continuous PBD maps to

model digit images. This approach to improving the capability of

rejecting nondigit patterns is used for the following reasons:
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1. Because of the poor rejecting capability of an MLP classifier,
we adopt a template matching technique.

2. In order to deal with directional features, we use B-spline
templates.

3. Since a B-spline function is continuous, we use Pixel-to-
Boundary Distance (PBD) maps to transfer a binary digit or
nondigit image to a gray-level PBD map.

5.4 Segmentation-Free Recognition of Connected
Handwritten Digit Strings

To further verify the performance of these classifiers on connected

digit string recognition, we also apply them to the recognition of

4,958 connected digit strings (4,555 2-digit, 355 3-digit, and 48 4-

digit strings from the NIST Special Database 3) with a dynamic-

programming approach. The main idea of the dynamic-program-

ming approach adopted here is to apply the classifier on a

rectangle window of a variable width (nine different widths

proportional to the height of the digit string are applied) sliding

along a digit string image. Let Oi denote the recognition score of

the ith segment in a composition set (a possible set of digits in the

string), where there are a total of L segments. The confidence of

the composition set, CF , is defined as

CF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiYL
i¼1

Oi
L

vuut : ð17Þ

Because each recognition is given a score in our approach, the

postprocessing of recognized strings using nonstationary Marko-

vian models presented by Bouchaffra et al. [22] can be performed

for improved performance if certain context information is

available in digit strings.

Fig. 5 provides examples of correctly recognized digit strings.

The one on the left is the original connected digit string and the one

on the right is the separated and correctly recognized digits. Table 4

shows the recognition performance of our classifier BSTEC with

the other two classifiers when a segmentation-free approach based

on a dynamic programming algorithm is adopted. Our classifier

can achieve a correct classification rate of 82.4 percent with a

rejection rate of as low as 0.85 percent. Our classifier compares

favorably with two other classifiers (a classification rate of

76.9 percent with a rejection rate of 3.65 percent for Yan’s ONNC2

and a classification rate of 70.2 percent with a rejection rate of 7.73

percent for the MLP5 classifier).

6 CONCLUSION

In this paper, we first propose a rational B-spline representation of

handwritten digit templates based on Pixel-to-Boundary Distance

(PBD) maps. The new representation aims at building a classifier

that can reliably reject nondigit patterns while achieving a high

recognition rate on true digits. We then present a two-step

approach for extracting and optimizing templates using this new

template representation. In the first step, a multilayer feedforward

neural network is adopted to extract templates from training

samples. An evolutionary algorithm is then applied in the second

step to optimize the extracted templates. In applying the

evolutionary algorithm, we directly used a function for offspring

selection that measures the difference between a template and a

training sample. Experimental results on the NIST Special

Database 3 show that the evolutionally optimized templates can

achieve a better performance than those without evolutionary

optimization. When compared with an MLP classifier and Yan’s

Optimized Nearest Neighbor Classifier (ONNC), a nearest

neighbor classifier using the templates generated by our approach

can perform more reliably in rejecting nondigit patterns and

therefore achieves a better performance in the recognition of

connected handwritten digit strings.
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Fig. 5. Examples of correctly recognized digit strings: (a) original connected digit strings and (b) digits after separation.

TABLE 4
A Comparison of Different Classifiers on the Segmentation-Free

Recognition of Connected Handwritten Digit Strings
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A Note on Park and Chin’s Algorithm

Ronaldo Fumio Hashimoto and Junior Barrera

Abstract—A finite subset of ZZ2 is called a structuring element. A decomposition of

a structuring element A is a sequence of subsets of the elementary square (i.e.,

the 3 � 3 square centered at the origin) such that the Minkowski addition of them is

equal to A. Park and Chin [1] developed an algorithm for finding the optimal

decomposition of simply connected structuring elements (i.e., 8-connected

structuring elements that contain no holes), imposing the restriction that all

subsets in this decomposition are also simply connected. In this paper, we show

that there exist infinite families of simply connected structuring elements that have

decompositions but are not decomposable according to Park and Chin’s definition.

Index Terms—Simply connected set, structuring element, decomposition,

Minkowski addition.

�

1 INTRODUCTION

A finite subset of ZZ2 is called a structuring element (SE). In this paper,
we just consider nonempty SEs. The problem of decomposing a SE
as a sequence of Minkowski additions of smaller subsets has been
studied by several researchers [2], [3], [4], [5], [6], [1], [7], [8], [9] and
many different algorithms have arisen to generate decompositions.

Park and Chin [1] developed an algorithm for decomposing a
simply connected SEs (i.e., an 8-connected SE that contains no holes)
as a sequence of Minkowski additions of a minimal number of
simply connected subsets of the elementary square (i.e., the 3 � 3
square centered at the origin). Their algorithm is very complex and
can be divided in three steps: 1) verify if a simply connected SE A
satisfies some necessary conditions for decomposition, 2) find a
decomposition of A by solving a system of linear inequalities, and
3) search for an optimal decomposition using an extension of an
intricate optimization process, given in [4], that is subdivided in
many complex cases to join, by Minkowski addition, the subsets
found in Step 2. Moreover, in their work, Park and Chin [1] did not
mention the time complexity of their algorithm.

Now, we observe that there exists some simply connected SEs,
undecomposable by Park and Chin’s definition, but that can be
decomposed as a sequence of subsets of the elementary square
without the restriction that these subsets must be simply con-
nected. For example, in Fig. 1a, we present a simply connected SE A
that is not decomposable according to Park and Chin’s definition
[1, example 3, p. 10]. But, if we do not impose that the subsets in the
decomposition must be simply connected, then A is decomposable.
Fig. 1b presents a decomposition of A. Note that the first subset in
this decomposition is not simply connected.

In this paper, we show that infinite families of simply connected
SEs that have decompositions but are not decomposable according
to Park and Chin’s definition exist. This result is very important
and relevant because it implies that Park and Chin’s algorithm is
not a real algorithm for decomposing simply connected SEs; that is,
if one applies their algorithm for finding a decomposition of a given
simply connected SE A and its output is “A has no decomposition,”
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