160 research outputs found

    Design and Implementation of Google Cloud Framework for Monitoring Water Distribution Networks

    Get PDF
    With urbanization and growing human population, water demand is constantly on the rise. Due to limited water resources, providing access to fresh potable water to the rising needs is challenging. Water distribution systems are the main arteries that supply fresh water to all the house-holds, offices and industries. Various factors such as excessive water pressure, aging or environmental disturbances, e.g., from road traffic, can all contribute to damage of water distribution pipelines and can result in leaks in water distribution networks (WDN). This could in turn result in financial loss and could pose additional challenges in providing potable water to the entire community, sometimes even leading to contaminant intrusion. Traditional leak detection methods such as visual inspections can detect leaks; however, this method is reactive in nature and can result in potentially losing large amounts of water before intervention strategies can be employed. On the other hand, hardware-based inspection techniques can accurately detect leaks, but are labor intensive, time consuming, expensive and effective only for short distances. Some existing software techniques are less expensive; however, their effectiveness depends on the accuracy of data collected and operating conditions. Modern existing leak detection techniques based on Internet of Things (IoT)—consisting of data collection sensor sub system, internet connectivity and a decision making sub system—alleviate many issues associated with hardware and software methods, however they are considered to scale poorly and face security issues, fault tolerance issues, inter-operability issues, insufficient storage and processing abilities to store and process large quantities of real time data captured by the sensor sub systems. As a potential solution to these issues, this thesis deals with the application of a cloud-based leak detection system within the overarching concept of IoT. A detailed design and implementation of Google Cloud Platform (GCP) which can provide scalable, secure data processing system to analyze both real-time and batch data collected from IoT devices monitoring a WDN is presented. To circumvent the issue of access to a live WDN, the proposed system uses emulators, python Hyper Text Transport Protocol (HTTP) client running on a computer and a python HTTP client running on an IoT device (Raspberry Pi 3) to simulate live streams of acoustic pressure data from hydrophone sensors. Since the data itself was collected from a live WDN, the decision-making subsystem mimics results expected from live WDN data. The data ingestion layer on GCP incorporates two types of authentication: OAuth2.0 authentication and Application Program Interface (API) key authentication along with other GCP components using service account features to ensure end-to-end secure data processing. Decision support sub-system includes simple, yet powerful algorithm, namely the one class support vector machine (OCSVM) with non-linear radial basis function (RBF) kernel. It is shown in this thesis that GCP provides a scalable and fault tolerant infrastructure at every stage of data life cycle such as data ingestion, storage, processing and results visualization. The implementation in this thesis demonstrates the applicability of the leak detection IoT framework and the concept of a cloud based IoT solution for leak detection in WDN, which is the first demonstration of its kind to the author’s knowledge

    First results from the HAYSTAC axion search

    Full text link
    The axion is a well-motivated cold dark matter (CDM) candidate first postulated to explain the absence of CPCP violation in the strong interactions. CDM axions may be detected via their resonant conversion into photons in a "haloscope" detector: a tunable high-QQ microwave cavity maintained at cryogenic temperature, immersed a strong magnetic field, and coupled to a low-noise receiver. This dissertation reports on the design, commissioning, and first operation of the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a new detector designed to search for CDM axions with masses above 2020 μeV\mu\mathrm{eV}. I also describe the analysis procedure developed to derive limits on axion CDM from the first HAYSTAC data run, which excluded axion models with two-photon coupling gaγγ≳2×10−14g_{a\gamma\gamma} \gtrsim 2\times10^{-14} GeV−1\mathrm{GeV}^{-1}, a factor of 2.3 above the benchmark KSVZ model, over the mass range 23.55<ma<24.023.55 < m_a < 24.0 μeV\mu\mathrm{eV}. This result represents two important achievements. First, it demonstrates cosmologically relevant sensitivity an order of magnitude higher in mass than any existing direct limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, HAYSTAC has demonstrated total noise approaching the standard quantum limit for the first time in a haloscope axion search.Comment: Ph.D. thesis. 346 pages, 58 figures. A few typos corrected relative to the version submitted to ProQues

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    • …
    corecore