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ABSTRACT

Computational Methods For The Diagnosis of Rheumatoid Arthritis
With Diffuse Optical Tomography

Ludguier D. Montejo

Diffuse optical tomography (DOT) is an imaging technique where near infrared (NIR) photons

are used to probe biological tissue. DOT allows for the recovery of three-dimensional maps of

tissue optical properties, such as tissue absorption and scattering coefficients. The application

of DOT as a tool to aid in the diagnosis of rheumatoid arthritis (RA) is explored in this work.

Algorithms for improving the image reconstruction process and for enhancing the clinical value

of DOT images are presented in detail. The clinical data considered in this work consists of 99

fingers from subjects with RA and 120 fingers from healthy subjects. DOT scans of the proximal

interphalangeal (PIP) joint of each finger is performed with modulation frequencies of 0, 300, and

600 MHz.

A computer-aided diagnosis (CAD) framework for extracting heuristic features from DOT im-

ages and a method for using these same features to classify each joint as affected or not affected by

RA is presented. The framework is applied to the clinical data and results are discussed in detail.

Then, an algorithm for recovering the optical properties of biological media using the simplified

spherical harmonics (SPN ) light propagation model is presented. The computational performance

of the algorithm is analyzed and reported. Finally, the SPN reconstruction algorithm is applied to

clinical data of subjects with RA and the resulting images are analyzed with the CAD framework.

As the first part of the CAD framework, heuristic image features are extracted from the absorp-

tion and the scattering coefficient images using multiple compression and dimensionality reduction

techniques. Overall, 594 features are extracted from the images of each joint. Then, machine learn-

ing techniques are used to evaluate the ability to discriminate between images of joints with RA



and images of healthy joints. An evolution-strategy optimization algorithm is developed to evalu-

ate the classification strength of each feature and to find the multidimensional feature combination

that results in optimal classification accuracy. Classification is performed with k-nearest neighbors

(KNN), linear (LDA) and quadratic discriminate analysis (QDA), self-organizing maps (SOM), or

support vector machines (SVM). Classification accuracy is evaluated based on diagnostic sensitiv-

ity and specificity values.

Strong evidence is presented that suggest there are clear difference between the tissue opti-

cal parameters of joints with RA and joints without RA. It is first shown that data obtained at

600 MHz leads to better classification results than data obtained at 300 and 0 MHz. Analysis

of each extracted feature shows that DOT images of subjects with RA are statistically different

(p < 0.05) from images of subjects without RA for over 90% of the features. Evidence shows that

subjects with RA that do not have detectable signs of erosion, effusion, or synovitis (i.e. asymp-

tomatic subjects) in MRI and US images have optical profiles similar to subjects that do have signs

of erosion, effusion, or synovitis; furthermore, both of these cohorts differ from healthy controls

subjects. This shows that it may be possible to accurately identify asymptomatic subjects with

DOT scans. In contrast, these subjects remain difficult to identify from MRI and US images. The

implications of these results are profound, as they suggest it may be possible to identify RA with

DOT at an earlier stage compared to standard imaging techniques.

Results from the feature-selection algorithm show that the SVM algorithm (with a third order

polynomial kernel) achieves 100.0% sensitivity and 97.8% specificity. Lower bounds for these

results (at 95.0% confidence level) are 96.4% and 93.8%, respectively. Image features most pre-

dictive of RA are from the spatial variation of optical properties and the absolute range in feature

values. The optimal classifiers are low dimensional combinations (< 7 features). Robust cross-

validation is performed to ensure the generalization of these classification results.

The SPN -based reconstruction algorithm uses a reduced-Hessian sequential quadratic program-

ming (rSQP) PDE-constrained optimization approach to maximize computation efficiency. The

complex-valued forward model, or frequency domain SPN equations (N = 1, 3), is discretized



using the finite-volume method and solved on unstructured computational grids using the restarted

GMRES algorithm. The image reconstruction algorithm is presented in detail and its performance

benchmarked against the ERT algorithm. The algorithm is subsequently used to recover the ab-

sorption and scattering coefficient images of joints scanned in the RA clinical study.

While the SPN model is inherently less accurate than the ERT model, it is nevertheless shown

that the images obtained with the SP3-based reconstruction algorithm are sufficiently accurate and

allow for the diagnosis of RA at clinically relevant sensitivity [87.9% (78.1%, 100.0%)] and speci-

ficity [92.9% (84.6%, 100.0%)] values (the 95.0% confidence interval is specified in brackets). In

contrast to results obtained with the SP3 model, the images generated with the SP1 algorithm yield

significantly lower sensitivity [66.7% (46.6%, 100.0%)] and specificity [81.0% (64.8%, 100.0%)]

values. While some numerical accuracy is sacrificed by selecting the SP3 model over the ERT

model, the superior computational performance of the SP3 algorithm allows for computation of

the absorption and the scattering coefficient images in under 15 minutes and requires less than

200 MB of RAM per finger (compared to the over 180 minutes and over 6 GB of RAM needed by

the ERT-based algorithm).

Overall, results indicate that the SP3-based reconstruction algorithm provides computational

advantages over the ERT-based algorithm without sacrificing significant classification accuracy. In

contrast, the SP1 model provides computational advantages compared to the ERT at the expense

of classification accuracy. This indicates that the frequency-domain SP3 model is an ideal light

propagation model for use in DOT scanning of finger joints with RA.

Altogether, the results presented in this dissertation underscore the high potential for DOT to

become a clinically useful diagnostic tool. The algorithms and framework developed as part of this

dissertation can be directly used on future data to help further validate the hypotheses presented in

this work and to further establish DOT imaging as a valuable diagnostic tool.
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Medicine Berlin, Germany).

I am grateful to all teachers and professors that have contributed to my education over the past

25 years. My decision to pursue graduate studies was primarily motivated by the experience of

xx



spending the summer of 2005 as an undergraduate research assistant at the Mathematical and The-

oretical Biology Institute (MTBI) at the Los Alamos National Laboratory (LANL). I am eternally

grateful to Professor Carlos Castillo Chavez (Arizona State University) for the opportunity to at-

tend MTBI, for introducing me to the world of academic research, and for his continual guidance.

I am also tankful to all my colleagues and mentors that helped make summer research at MTBI in-

valuable and unforgettable. Professor David Keyes (Dean at King Abdullah University of Science

and Technology) was crucial in my decision to pursue graduate studies at Columbia University

and an invaluable mentor through my first years of research while he was a Professor of Applied

Mathematics at Columbia University.

Lastly, I am eternally grateful to my fiancé, Lily, for the uncountable ways in which she has

been crucial to my life and my success in graduate school.

xxi



Dedication

To my family, with love.

xxii



Chapter 1
Introduction

Decades of research into the development of Diffuse Optical Tomography (DOT) imaging have

been with one aim: to establish DOT as tool for aiding in the monitoring and the detection of

physiological processes and pathologies. The goal of this dissertation is the development and im-

plementation of algorithm-based solutions for improving the clinical viability and research utility

of DOT, with a particular focus on its application to the diagnosis Rheumatoid Arthritis (RA).

DOT is a novel medical imaging modality where near-infrared (NIR) photons are used to probe

tissue. NIR photons are injected into the tissue of interest, typically by focusing a non-invasive

NIR laser onto the surface, where the photons interact with the underlying physiology. These

interactions result in absorption or scattering events, where photons are either annihilated or redi-

rected from their incoming direction, respectively. Scattered photons may eventually escape the

tissue of interest. Information gathered from these exiting photons can be used to reconstruct the

spatial distribution of physiologically relevant parameters such as tissue absorption and scatter-

ing coefficients, concentration of oxygenated and deoxygenated hemoglobin, and concentration of

fluorescent and bioluminescent probes.

Over the last two decades, the field of DOT has made significant developments in imaging

hardware [9,10,11,12,13,14,15] and image reconstruction software [1,16,17,18,19,20,21,22,23,

24, 25, 26, 27]. DOT has progressed from purely theoretical studies and bench-top experiments, to

clinical trials that explore its utility in a wide variety of therapeutic areas. Traditionally, DOT has
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been primarily applied to imaging of the breast [11, 15, 28, 29] and brain [30, 31, 32, 33, 34]. More

recently, studies have also focused on imaging of finger joints [9, 10, 12, 35].

A promising application of this new technology is to the diagnosis of RA through imagining of

finger joints [10,12,13,14,36,37]. The motivation for imaging finger joints with light is apparent.

Unlike the breast or brain, fingers are relatively small and the transmitted light intensities are

comparatively high, allowing for simple signal detection. Additionally, studies in the mid nineteen-

nineties showed that the scattering properties of the synovial fluid inside joints changed as a result

of the onset of RA, indicating that there is potential for natural optical contrast between healthy

joints and joints with RA.

There are three general areas that characterize the state of DOT: imaging hardware, reconstruc-

tion algorithms, and image analysis tools (Fig. 1.1). The focus of this dissertation is on image

reconstruction algorithms and image analysis tools for improved disease detection. This will be

achieved by developing a general framework for incorporating DOT imaging into the diagnosis of

RA and by making improvements to the image reconstruction process. This work will make DOT

imaging more immediately useful to physicians, researchers, and practitioners.

While innovative imaging systems have been developed that measure light transmission signals

with high accuracy, two significant problems persist in our ability to routinely use DOT as a tool

for diagnosing RA: (1) there is no established framework for accurately diagnosing the presence
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Figure 1.1: (a) DOT imagining hardware. (b) Results from DOT reconstructions. (c) Computer
aided diagnosis.
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of diseased tissue from DOT images, and (2) reconstruction of tissue properties and embedded

inhomogeneities remain computationally demanding.

First, because DOT is such a young imaging modality and clinical results are still limited, there

is, as of yet, no set standard for evaluating a DOT image for the presence of RA. As a result,

reported sensitivities and specificities have not yet reached clinically acceptable levels. This lack

of clinical evidence prevents DOT from gaining more mainstream acceptance among the medical

community.

Secondly, while data acquisition is often fast (typically less than 15 minutes) and subjects

discomfort low, the computational time required to obtain the optical properties of finger joints

remains considerably long (> 3 hrs. per finger)1 and requires significant computational resources

(> 6 GB RAM per finger)2, severely limiting the practical use of this modality. The main reason

for the long computation times is the need to use the equation of radiative transfer (ERT) when

modeling light propagation in finger joints. Traditionally, the ERT has been the preferred model to

use when computing the optical properties of finger joints as it is known to be the most accurate

deterministic model of light propagation in small volumes. ERT-based reconstruction algorithms,

however, are highly complex and require substantial computational recourses.

This dissertation centers on the idea that a computer-aided diagnosis (CAD) toolbox and com-

putationally efficient reconstruction algorithms can help transform DOT imaging into an important

tool in the diagnosis of RA. An important underlying hypothesis is that RA affects the optical prop-

erties of the synovium and surrounding tissue to a degree that can be captured by DOT imaging.

Equally importantly, I postulate that approximations to the ERT model, which can be substantially

less expensive to solve, can be used in an image reconstruction algorithm to resolve the optical

properties of finger joints with enough accuracy so as to allow for the accurate diagnosis of RA.

Thus, the overall goals of this dissertation are to show that RA does indeed create sufficient

contrast in DOT images to accurately detect the presence of the disease and to develop algorithms

1Computation time can be much longer than 3 hours, easily reaching over 12 hours per finger when numerically
accurate light propagation models are used.

2As in the case of computation time, physical memory requirement can easily increase and is dependent on many
aspects related to the computational domain and the light propagation model.
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that will lead to the clinical acceptance of DOT for the diagnosis of RA. To achieve this, the fol-

lowing specific aims are proposed.

Aim 1: Develop a CAD toolbox for DOT that leads to significantly increased sensitivities

and specificities in the diagnosis of RA. The toolbox works in two steps. First, heuristic fea-

tures are extracted from DOT images. These features are used to classify images of finger joints

as “affected” or “not affected” by RA. Classification is performed using traditional methods; such

as linear discriminate analysis and ANOVA, as well as more recently developed machine learning

approaches, such as support vector machines (SVM) and self organizing maps (SOM). The com-

bination of features and classification algorithms that lead to the highest sensitivity and specificity

in the diagnosis of RA is determined.

Aim 2: Develop algorithms that increase the computational efficiency and speed of the

image reconstruction process used in DOT imaging of finger joints. This is achieved by de-

veloping a reconstruction algorithm based on the simplified spherical harmonics (SPN ) model

for amplitude-modulated light propagation. The algorithm is based on a PDE-constrained, re-

duced Hessian, quadratic programming approach that leads to improved reconstruction speeds and

memory requirements compared to standard DOT reconstruction techniques. We report results

comparing the computational efficiency of the SPN algorithm and the benchmark transport-based

algorithm. In addition, an algorithm for solving the equation of radiative transfer (ERT) on block-

structured grids (BSG) is developed to decrease the computational demand associated with using

the transport model in DOT.

Aim 3: Validate the FV-SPN reconstruction algorithm with clinical data. Existing clinical

data of imaged finger joints is used to asses the performance of the SPN reconstruction algorithm

in a typical clinical setting. The best classification algorithm from Aim 1 is used to diagnose

each SPN -based joint reconstruction as affected or not affected with RA using the CAD toolbox
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developed in Aim 1. Classification results obtained with the SPN -based images are compared to

diagnostic results form Aim 1.

The central thesis of this dissertation is that RA can be diagnosed with DOT and that CAD tools

are necessary to enhance the clinical value of DOT images. Subsequent prospective clinical studies

are needed to further validate these claims, however, this works provides the foundation necessary

to show that DOT has the potential to become an important tool in identifying subjects with RA.

Furthermore, the evidence presented in this works suggests that it may be possible for DOT to

identify subjects with early stages of RA who might otherwise not qualify for a full evaluation

under the guidelines of the 2010 criteria for classification of RA [38].

DOT imaging, if proven to be useful in diagnosing RA, could become an easy to use tool for

physicians and other specialists. Evidence of the presence of RA in PIP joints from DOT images

could be sufficient to warrant referral of a subject to a rheumatologist for evaluation and diagnosis.

This would help fulfill a current need in the medical community, as identified by ACR/EULAR,

which seeks a more robust method for identifying high-risk populations [38]. Furthermore, beyond

allowing for the diagnosis of RA in well-established cases, it is possible that DOT can aid in

the diagnosis of RA in subjects with early symptoms, as it is conceivable that changes in the

optical properties of the peripheral joints start prior to manifestation of the symptoms necessary

for diagnosis of RA with the current diagnostic criteria. This may be possible as the criteria, known

as the ACR criteria, on its own, are not sensitive to the early onset of RA as subjects typically do

not meet at least 4 of the 7 criteria necessary for a positive diagnosis [39].

If the methods proposed in this dissertation can be proven to work well with RA, then it is

foreseeable that these methods can be expanded to include the diagnosis of several other types of

inflammatory arthritis that are also known to alter the optical properties of the synovial fluid, in-

cluding lupus arthritis and gout. Additionally, this technique may be expanded to detect atheroscle-

rosis, which has been shown to be an inflammatory autoimmune disorder [40]. Detection of non-

inflammatory arthritis, including osteoarthritis and arthritis of thyroid disease, might also be possi-
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ble. Furthermore, the methods and techniques presented in this dissertation could also be deployed

in the diagnosis of other diseases with DOT, including breast cancer and peripheral arterial disease

(PAD).

The remainder of this dissertation is organized to provide a succinct introduction to DOT

(Chapter 2) and rheumatoid arthritis (Chapter 3). Then, Chapters 5, 6, and 7 focus on work dedi-

cated to the development of CAD techniques for the diagnosis of RA from DOT images. Details

of the reconstruction algorithm based on the SPN light propagation model are presented in Chap-

ters 8 and 9. Results from application of the SPN algorithm to clinical data are presented in Chap-

ter 10. Finally, this dissertation concludes with Chapter 11, where a brief summery is followed by

a discussion of future work and the impact of the work presented herein.
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Table 1.1: Definition of common acronyms.

Acronym Definition
ACR American College of Rheumatology
BSG Bock-structured grid
CE Clinical evaluation
CRP C-reactive protein
DA Discriminate analysis
DAS Disease activity score
DE Diffusion equation
DMARD Disease modifying anti-rheumatic drugs
DOT Diffuse optical tomography
ERT Equation of radiative transfer
ESR Erythrocyte sedimentation rate
EULAR European League Against Rheumatism
FD-DOT Frequency-domain diffuse optical tomography
FDM Finite-differences method
FEM Finite-element method
FFT Fast Fourier transform
FN False negative
FP False positive
FVM Finite-volume method
GMM Gaussian mixture model
KNN k nearest neighbors
LDA Linear discriminate analysis
MC Monte Carlo
MRI Magnetic resonance imaging
NIR Near infra-red
PIP Proximal interphalangeal joints
QDA Quadratic discriminate analysis
RA Rheumatoid arthritis
RF Rheumatoid factor
rSQP Reduced Hessian sequential quadratic programming
Se Sensitivity
SOM Self-organizing map
Sp Specificity
SPN Simplified spherical harmonics
SPN (CD) SPN model with complex-valued diffusion operators
SPN (RD) SPN model with real-valued diffusion operators
SS-DOT Steady-state diffuse optical tomography
SVM Support vector machine
TD-DOT Time-domain diffuse optical tomography
TN True negative
TNF Tumor necrosis factor
TP True positive
US Ultrasound imaging
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Chapter 2
Diffuse Optical Tomography

DOT is a tomographic imaging modality, conceptually not unlike x-ray computed tomography

(CT), where electromagnetic radiation is directed at an object of interest at multiple locations.

The incident photons interact with the media of interest and are either annihilated (absorbed) or

scattered. However, unlike x-ray imaging, which uses high energy electromagnetic radiation with

wavelengths in the range of 0.01 to 0.1 nm, DOT relies on non-ionizing radiation with wavelengths

between about 650 and 900 nm.1 This window of electromagnetic radiation covers the red side of

the visible spectrum and the near infrared (NIR). Conveniently, photons at these wavelengths are

non-ionizing. As a result, DOT does not pose the dangers typically associated with radiation

dosages due to frequent or prolonged x-ray CT imaging.2

2.1 Absorption and scattering of light in tissue

In DOT, near infrared NIR photons are injected into the imaged object. Photons can be absorbed or

scattered by the internal structure of the media. Absorbed photons are annihilated and their energy

is converted into thermal energy. Photons that are not absorbed can escape the medium, typically
1X-rays and γ-rays are energetic enough that their interactions with atoms can result in the ejection of electrons

(i.e. “ionizing”) [41]. In contrast, NIR photons are not energetic enough to cause electrons to escape their atoms and
therefore their interactions are non-ionizing.

2Thermal damage to tissue can occur if tissue is exposed to an NIR source with sufficient power. However, typical
DOT imaging systems all operate at power levels significantly lower than the threshold needed to cause thermal
damage and, therefore, exposure to NIR light poses no danger.
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after undergoing multiple scattering events.

We return to the comparison between DOT and x-ray imaging to better understand the source

of contrast in DOT. X-rays interact directly with atoms, and as a result, the contrast observed in

x-ray imaging is generally derived from calcium (Z = 20) in bones and other calcifications, iodine

(Z = 53) in vessels, and oxygen (Z = 8) in the lungs [41]. In DOT, contrast is obtained from the

interaction of NIR photons with cellular and intra-cellular structures.

Absorption and scattering properties of a tissue constitute the optical properties of the tissue.3

In turn, knowledge of tissue optical properties can be directly exploited for diagnostic and ther-

apeutic purposes. NIR photons are ideal for probing the internal physiology of biological tissue

because they experience significant scattering and minimal absorption compared to higher (200 to

600 nm) or lower energy photons (>1,000 nm). This phenomena occurs because the absorption

spectra of blood, or oxygenated (HbO2) and deoxygenated hemoglobin (Hb), is minimal within

this range (Fig. 2.1).4 Imaging within this optical window is, therefore, optimal. In this range,

NIR photons can be used to probe significant depths (up to <20.0 cm in certain situations) with-

out experiencing complete annihilation [43]. Photons at lower wavelengths (<600nm) experience

significantly more attenuation by blood and, therefore, cannot be used to probe significant tissue

depths.

Imaging in the NIR window has the added advantage that the absorption coefficient of wa-

ter, an important and abundant component of the human body, is significantly lower than blood.

Imaging with wavelengths beyond 1,000 nm is extremely difficult because the absorption power

of blood rises dramatically at these wavelengths. An additional advantage of imaging within the

NIR window is that tissue auto fluorescence is minimal in this range, allowing for improved ability

to discern photons of interest [43]. Overall, imaging in the NIR optical window is ideal because

excellent signal-to-noise ratios can be obtained in this range.

3For completeness, is important to acknowledge that anisotropy and refractive index are also key components of
tissue optical properties. However, these properties are often assumed as constants for a particular tissue type.

4The actual absorption spectra of tissue chromophores may vary from person to person and between tissue types,
among others. Jacques recently published an excellent review of expected optical properties in biological tissue as a
function of wavelength in [42].
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Figure 2.1: Absorption coefficient of oxygenated and deoxygenated hemoglobin (blood), water,
and fat in the visible and NIR spectrum. Data for hemoglobin and fat was obtained from [3],
citing [4, 5] for hemoglobin data and [6] for fat data. Data for water was obtained from [7],
citing [8] as the original source.

The role of internal cellular structures as a source of scattering experienced by light traveling

through tissue ex vivo was recognized as early as the 1970s, with the reporting of initial studies

on scattering characteristics of laser light and the potential to explore inherent cellular scattering

properties for diagnostic purposes [44, 45]. Since then, significant effort has been dedicated to

understanding which cellular structures are primarily responsible for scattering light. Mismatch

in the refractive index between cellular walls and extracellular content is a significant source of

scattering [46]. Cell nuclei, mitochondria, and lysosomes have been identified as the primary

sources of scattering inside cells [46, 47, 48].

The relative percent of scattering each cellular structure is responsible for varies from cell to

cell, as the relative concentration of mitochondria and lysosomes can vary. For illustration pur-

poses, a schematic of a typical animal cell is presented in Fig. 2.2. It is no coincidence that (gener-

ally) the structures responsible for scattering NIR light are similar in size to the wavelength of the

incident photons, ranging from about 200 nm to 1,000 nm [46, 49]. The topic of light scattering,

in general, is a rich and expansive field and beyond the scope of this dissertation. However, an

excellent presentation by Bohren and Huffman on the theory of absorption and scattering by small
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Figure 2.2: Illustration of a typical mammalian cell. Internal cell structures are labeled: 1) nucle-
olus, 2) nucleus, 3) ribosome, 4) vesicle, 5) rough endoplasmic reticulum, 6) Golgi apparatus, 7)
cytoskeleton, 8) smooth endoplasmic reticulum, 9) mitochondrion, 10) vacuole, 11) cytosol, 12)
lysosome, 13) centriole, 14) cell membrane.

particles can be found in [50].

The source of contrast is important, as significant information can be obtained about the state

of tissue from its optical properties, as it is well known that cellular composition of tissue changes

in the presence of pathologies. For example, anaplasia can be characterized by the presence of

enlarged nucleoli and clumped chromatin [51], and can therefore be an important indicator of the

presence of malignant neoplasms.

The motivation and indeed, the need, for development of DOT as a viable imaging modality

arises from the understanding that DOT is sensitive to physiological processes not accessible by

other imaging modalities. Mainly, NIR photons can be used to probe tissue and to determine three-

dimensional maps of absorption and scattering coefficients. These maps can then be analyzed to

determine the state of the underlying physiology. This information can be used to diagnose disease,

monitor physiological processes, or characterize tissue.

2.2 Models of light propagation in tissue

Escaping photons can be detected with contact-based or contact-free techniques, using arrays of

photodiodes, photomultiplier tubes (PMT), or an intensified charged-coupled device (ICCD). This

general process is demonstrated by Fig. 2.3, where possible locations of surface illumination on a
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(a) (b)

Figure 2.3: (a) Example of laser light illuminating a human finger with NIR photons. (b) A typical
distribution of exiting photons at the surface of the finger (i.e. a “red glow”).

human finger and the subsequent wave of photons that escape after undergoing internal scattering

are shown.

Contact-based imaging systems typically employ optical fiber cables to deliver photons from

a laser source to the imaged object. A separate set of optical fibers collect exiting photons at the

surface of the object and deliver them to the detection unit. As the name implies, these optical

fibers come into contact with the surface of the imaged object. Contact-free systems typically do

not require the use of optical fibers. Instead, the laser beam is typically directly incident on the

surface of the object. On the detection side, an ICCD camera and accompanying optical system

(i.e. lenses, mirrors, and filters) capture photons exiting the imaged object.

The measured quantity is called the partial current or photon flux, J+(r), which is a measure

of exiting energy with units of photons s−1 cm−2 or W cm−2. The experimentally measured partial

current is used in conjunction with a DOT reconstruction algorithm to determine the underlying

tissue properties.

The DOT reconstruction process is an inverse problem, where the spatial distribution of optical

properties in the medium of interest, denoted as µ (r) or simply µ, are sought from the experimen-

tally measured partial current or J+
M(r). There are two components to all DOT algorithms: the

forward (F) and inverse (F−1) models.
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Table 2.1: Definition of variables.

Variable Description Units
J+(r) Partial current W cm−2

J+
P (r) Predicted partial current W cm−2

J+
M(r) Measured partial current W cm−2

S (r,Ω) Boundary source W cm−2sr−1

N Order of SPN model
r Spatial position
g Anisotropy factor
µ(r) General inverse variable
µt(r) Total attenuation coefficient cm−1

µa(r) Absorption coefficient cm−1

µs(r) Scattering coefficient cm−1

µ′s(r) Reduced scattering coefficient cm−1

µan(r) nth order absorption coefficient cm−1

ψ (r,Ω) Radiance W cm−2 sr−1

ϕn(r) nth order composite moment of the SPN model W cm−2

φn(r) nth order Legendre moments of the radiance W cm−2

n̂ Normal vector at outer surface of O
Ω Angular direction
v Speed of light in tissue cm s−1

ω Modulation frequency s−1

Q (r,Ω) Interior source W cm−3sr−1

Jn Coefficients of the partial current
R(θ) Reflectivity
p (Ω,Ω′) Scattering phase function sr−1

nm Refractive index of medium (i.e. tissue)
ns Refractive index of outer medium (i.e. air)
i Complex unit
V Imaging domain
∂V Boundary of imaging domain
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F [µ (r) ,S] = J+ (r)

F−1
[
J+ (r) ,S

]
= µ (r)

(2.1)

The forward model (F) is the mathematical construct used to model light propagation in a me-

dia that is a function of parameters that influence the propagation of light in the media, including

the absorption and scattering, and the source of NIR light (S). The forward model is used to com-

pute predicted partial current values, or J+
P (r), as a function of the given set of optical properties

and light sources. The inverse model (F−1) is the mathematical construct that exploits experimen-

tal measurements J+
M(r) to reconstruct the optical properties of tissue, fluorescent probe locations

and concentrations, and the locations of bioluminescent probes.

In general, forward models are not directly invertible (at least not in a feasible manner) and

an analytical expression for F−1 does not exist. The inversion process is therefore posed as on

optimization problem where the forward model is repeatedly evaluated in order to obtain the optical

property distribution that minimizes the error between the experimentally measured and simulated

partial current, J+
M(r) and J+

P (r), respectively.

The optical property variable µ typically includes the absorption (µa) and scattering (µs) coef-

ficients, but may also include any other parameters in the forward model. In general, the process

is iterative, where an initial set of optical properties µ0 are updated by the inverse model until an

acceptable set of optical properties µk is reached, for k ≥ 0. Because the forward model plays

such an important role in the reconstruction process, its accuracy and computational complexity

are important factors to understand.

There has long been an interest in modeling how light propagates in biological tissues. The

emergence of novel diagnostic and therapeutic methods that rely on lasers in the eighties and

nineties led to a need for accurately modeling light-tissue interaction. Various models were de-

veloped that made use of ever increasing computational power and new numerical methods. Fun-

damentally two different approaches were pursued: (a) Monte Carlo (MC) modeling [52, 53, 54]
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and (b) numerical solutions to the equation of radiative transfer (ERT) and its approximations

[17, 19, 20, 55, 56, 57, 58, 59, 60, 61, 62, 63].

The most general method for modeling light propagation is through stochastic simulations of

photon-tissue interaction with MC, which employs statistical techniques to propagate a large num-

ber of photons through tissue. MC simulations can yield very accurate results and the technique is

easy to implement. However, accurate MC solutions require simulating the propagation of a large

number of individual photons, typically > 1 Billion. This leads to undesirably long computation

times (often days). Recent advances have seen the MC method implemented on massively parallel

GPUs, resulting in improvements to the computation time by several orders of magnitude [54,64].

As a trade off, implementation of MC on GPUs leads to increases in implementation complexity.

Overall, the MC method still has only limited utility in DOT.

The choice of forward model has a profound effect on the accuracy of the reconstructed optical

maps. In general, more accurate forward models can yield more accurate reconstructions. The

ideal choice of forward model is heavily dependent on multiple criteria, including the expected

range and distribution of optical properties in the medium. However, the decision in choosing a

forward model must strike a balance between the need to model light propagation accurately and

the need to perform the required computation in a reasonable amount of time (i.e. minutes or hours

instead of days). While highly accurate results can be achieved, MC methods are computationally

very intensive. In general, finite-differences, finite-element, and finite-volume methods in which

the ERT or one of its approximations is discretized and the resulting system of equations is solved

numerically are less computationally expensive. However, the complexity of these codes can still

lead to various computational challenges.

The remainder of this chapter is dedicated to reviewing the use of the ERT model in DOT. The

formulation of the ERT model in the time, frequency and steady-state domains are reviewed in

Section 2.3. Then, a review of the diffusion equation and the simplified spherical harmonics (SPN )

approximations to the ERT are presented in Sections 2.4 and 2.5, respectively. Two specific SPN

formulations of interest are identified in this section. A brief overview of computational grids is
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presented in Section 2.6. Chapter 2 concludes with Section 2.7, a discussion and summary of the

results presented in this chapter.

2.3 Equation of radiative transfer

The ERT is widely regarded as the most accurate deterministic model for light propagation [19,

20, 58, 59, 60, 61, 62, 63]. The ERT is an energy balance equation where energy propagation is

conserved through spatial and angular discretization of the computational domain. Compared to

MC, the ERT is extremely difficult to implement because it is an integral-differential equation.

The most popular method for solving the ERT is the upwind-step discretization of the differential

operator and discrete ordinates (SN ) discretization of the in-scatter (integral) operator. Finite-

differences, finite-element, and finite-volume methods in which the ERT is discretized and the

resulting system of equations is solved numerically are, generally, computationally demanding,

yet less expensive than the MC method.5

2.3.1 Time-dependent ERT equation

The most general ERT model (Eq. 2.2) is the system of time-dependent equations that model the

radiance ψ (r,Ω, t) with units of W cm−2 sr−1 at each mesh point in the computational domain

located at position r, along discrete angle Ω, at a particular moment in time t, and with a spatially

varying internal source Q(r, t).

(
1

v

∂

∂t
+ Ω · ∇+ µt(r)

)
ψ (r,Ω, t) = µs(r)

∫

4π

p (Ω ·Ω′)ψ (r,Ω′, t) dΩ′ +
Q(r, t)

4π
(2.2)

The corresponding partially-reflecting boundary equations (Eq. 2.3) are a function of the reflectiv-

ity R (Ω′ · n̂) and boundary source S (r,Ω, t).

5Here, and throughout this text, “expense” refers to the commutative computational resources required to execute
a given task. This include the computation time and the memory (RAM) requirements.
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ψ (r,Ω, t) = S (r,Ω, t) +R (Ω′ · n̂)ψ (r,Ω′, t) , r ∈ ∂V, Ω · n̂ < 0 (2.3)

The reflectivity corresponds to the fraction of outgoing radiance along Ω′ that specularly reflects

into the angular direction Ω. The reflectivity R (Ω′ · n̂) = R (cos θ) is a function of the mismatch

in refractive index at the boundary on the imaged object and is defined by Eq. 2.4.

R (cos θ) =





1

2

(
nm cos θ′ − ns cos θ

nm cos θ′ + ns cos θ

)2

+
1

2

(
nm cos θ − ns cos θ′

nm cos θ + ns cos θ′

)2

, if θ < θc

1, if θ ≥ θc

(2.4)

The reflectivity function is derived from Snell’s Law and is a function of the incident angle

inside the medium (θ), the refraction angle outside the medium (θ′), the critical angle for total

internal reflection θc, and the refractive index of the medium (nm) and outside the medium (ns).

The speed of light in the medium, v = c/nm is also dependent on the refractive index of the

medium. The total attenuation coefficient, µt, is defined as

µt(r) = µa(r) + µs(r). (2.5)

The anisotropic scattering factor, g, acts on µs, resulting in the reduced scattering coefficient

µ′s = (1−g)µs. The phase function, p (Ω ·Ω′), models the highly forward-peaked scattering nature

of light propagation in biological media and is typically a function of g.6 The Henyey-Greenstein

phase function is typically used for biological media,

6A detailed discussion of the anisotropic scattering parameter, g, by Bohren and Huffman can be found in [50].
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p (cos θ) =
1− g2

4π (1 + g2 − 2 cos θ)3/2
, (2.6)

with g ∈ [0.8, 1.0] for most biological media. The quantity measured by detectors is the partial

current, an approximation to the average energy exiting over a given surface area, and is computed

from the radiance as follows:

J+ (r, t) =

∫

Ω·n̂>0

[1−R (Ω · n̂)] (Ω · n̂)ψ (r,Ω, t) dΩ. (2.7)

Another quantity of interest is the fluence φ (r, t) with units of W cm−2. This quantity will be

important when comparing the solutions of the ERT equations to those admitted by the SPN mode.

The fluence is defined as

φ (r, t) =

∫

4π

ψ (r,Ω, t) dΩ. (2.8)

2.3.2 Frequency-dependent ERT equation

The frequency-dependent ERT model is derived from the time-dependent ERT model (2.2-2.3)

through application of the Fourier Transform, and is given by

(
Ω · ∇+ µt(r) +

iω

v

)
ψ (r,Ω, ω) = µs(r)

∫

4π

p (Ω ·Ω′)ψ (r,Ω′, ω) dΩ′ +
Q(r, ω)

4π
, (2.9)

ψ (r,Ω, ω) = S (r,Ω, ω) +R (Ω′ · n̂)ψ (r,Ω′, ω) , r ∈ ∂V, Ω · n̂ < 0.

(2.10)
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The imaginary term, µt +
iω

v
, is useful in modeling the accumulation of phase within the medium

(i.e. offsets in phase between the input signal and the measured signal). The amplitude of the exter-

nal source, S (r,Ω, ω), is modulated at a known rate, typically 100 to 600 MHz. The modulation

frequency (ω) has units of radians. The introduction of an imaginary term in the ERT equations

results in a complex attenuation coefficient, µt +
iω

v
. The partial current, J+ (r, ω), and fluence,

φ (r, ω), are defined by (2.7) and (2.8).

2.3.3 Time-independent ERT equation

The time-independent ERT equations (so called “steady-state”) are obtained from the time-dependent

or frequency-dependent formulations, by setting the rate of change of the radiance over time to

zero,
∂

∂t
ψ (r,Ω, t) = 0, or by setting the source modulation frequency to zero, ω = 0, resulting in

Ω · ∇ψ (r,Ω) + µt (r)ψ (r,Ω) = µs(r)

∫

4π

p (Ω ·Ω′)ψ (r,Ω′) dΩ′ +
Q(r)

4π
, (2.11)

ψ (r,Ω) = S (r,Ω) +R (Ω′ · n̂)ψ (r,Ω′) , r ∈ ∂V, Ω′ · n̂ < 0.

(2.12)

The partial current, J+ (r), and fluence, φ (r), are defined similar to (2.7) and (2.8).

2.3.4 Numerical challenges associated with the ERT

Widespread use of the ERT in DOT has been limited because numerical solutions to the ERT

suffer from two main computational challenges: (1) numerical algorithms for solving the ERT

are very difficult to implement and (2) the number of resulting equations from spatial and angular

discretization can be prohibitively large, requiring massive system memory and computational

power.

There are three main reasons for the high computational cost: 1) the ERT is only first order

accurate, and as such, ensuring numerical stability requires the spatial discretization of the compu-
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tation domain to be small, therefore requiring the use of highly dense meshes; 2) accurate modeling

of highly forward peaked light (as is often the case in tissue) requires high angular discretization

to accurately capture the scattering pattern of light in tissue; 3) the presence of scattering makes

intensities at different directions strongly coupled, leading to slow convergence. Altogether, the

total number of equations that result from the spatial and angular discretization of the ERT is very

large, making the computation time required to solve the system of equations impractical, and can

often take hours [19, 65, 66].

The differential operator in the ERT is a first order directional derivative. The upwind step-

method differencing scheme (SD) is the standard method for solving this type of differential equa-

tion [19,67,68,69,70,71]. This type of spatial discretization requires the computational domain to

be discretized into very small discrete spatial (mesh) elements because the step-method is only first

order accurate. Thus, large discretization of the computational domain could easily lead to large

numerical errors that can make the numerical solution unreliable. For example, it has been shown

that spatial discretization in the order of ∆x < 0.001 cm is required for media with tissue-like

optical properties (µa = 1.0 cm−1 and µ′s = 10.0 cm−1) [1]. Typical tissue volumes are in the

order of 2-4 cm per side, requiring over 8 Billion discrete mesh points (in a typical Cartesian grid).

Numerical quadrature (i.e. extended trapezoidal rule) replaces the integral term. The standard

unit sphere is discretized into a set of distinct sections that are best represented by a set of di-

rectional cosines and corresponding weights. This discretization is called discrete ordinate (SN ),

where the corresponding number of discrete ordinates is Ω = N(N + 2).7 Light propagation

in tissue experiences extremely forward peaked scattering, and therefore, highly dense angular

discretization is required to accurately model the scattering pattern of light. Modeling partially re-

flective boundaries (nm ≈ 1.30− 1.50 for tissue) also requires high angular discretization because

the reflectivity R(θ′) is a strongly varying function when nm > 1.0. In the example given above,

consider strong anisotropic scattering (g > 0.8) and partially reflective boundaries (nm = 1.37).

Accurate modeling of this system requires S16 discretization, which corresponds to 288 discrete

7Note that the variable N in this formulation differs from the equally-named (perhaps poorly so) variable N that
appears in the SPN formulation.
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angular directions.

Thus, in the example, for each of the 8 Billion mesh points there are 288 associated angular di-

rections. Computationally, this implies that a total of 2.3 Trillion data points must be stored. Solv-

ing the forward problem with this system requires solving a system of 2.3 Trillion unknowns, which

is computationally demanding. The inverse problem requires solving for 8 Billion unknowns, also

computationally challenging. This poses severe computational and memory allocation difficulties.

Solving for this many unknowns (in the forward problem) is computationally challenging and can

take days. This makes the ERT impractical in most applications. However, in practice, the ERT is

solved with fewer mesh points and fewer discrete ordinates, which can result in unwanted numer-

ical error that may, in fact, undo any advantage that is gained by using the ERT model instead of

one of its approximations.

In addition to computational complexity, the combination of the upwind step-method and

discrete ordinates poses algorithm implementation challenges because the “upwind” direction

changes according to the “ordinate” being considered. This makes implementation of an ERT-

based algorithm difficult.

As a result of these computational considerations, approximations to the ERT have become

increasingly important and common. Significant effort has been dedicated to developing approxi-

mations to the ERT that yield similar accuracy but at significantly lower computational costs. The

diffusion equation (DE) approximation to the ERT is by far the most widely used light propagation

model in DOT. The simplified spherical harmonics approximation (SPN ) to the ERT has seen an

increase in interest over that past 7 years as it has been shown to be an improvement over the DE

with only a moderate increase in computational cost [17, 19].

2.4 Diffusion approximation to the ERT

The approximation to the ERT most commonly used is the DE, which is the P1 approximation to

the ERT [17]. The DE can be solved with minimal computation power, but there are significant
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constraints on the type of biological tissue within which it is a valid approximation to the ERT.

The DE is computationally attractive because, unlike the ERT model, its solution is not angular

dependent, thus reducing the linear equations that result from discretization of the angular variable

in (2.2). In addition, the diffusion operator is a Laplacian operator and can be naturally discretized

by second-order accurate numerical schemes. The increase in numerical accuracy provided by the

second-order spatial discretization allows for the use of a less dense computation mesh because the

numerical error is O(∆x2).8 The frequency-dependent DE is presented as an example [19].

−∇ · 1

3 [µa + (1− g)µs]
∇φ (r, ω) +

(
µa +

iω

v

)
φ (r, ω) = Q (r, ω) (2.13)

(
1

2
−R1

)
φ (r, ω) +

1 + 3R2

3 [µa + (1− g)µs]
(n̂ · ∇φ (r, ω)) =

∫

Ω·n̂<0

S (Ω) 2|Ω · n̂| dΩ (2.14)

The meaning of the coefficients R1 and R2 will be made clear in Section 2.5. While not explicitly

shown, the absorption, scattering, and anisotropy coefficients are spatially varying.

The DE assumes that light propagates through tissue in a diffuse manner. This assumption

is valid only under conditions where light is highly scattered and infrequently absorbed (µa <<

µs). Furthermore, the media of interest must be geometrically large enough to allow for light

(potentially collimated and highly directional) to become sufficiently scattered (i.e. diffuse). Thus,

the DE has been shown to be a poor approximation to the ERT in tissue of small volume, with

high absorption, void-like regions, or internal light sources near the boundary [65]. This limits the

applications for which the DE approximation can be used, making it particularly poor if used to

model light propagation in tissue with high absorption (liver, arteries, heart, kidneys, feet), void

like regions (brain, lungs), or in small volumetric geometries (mice, finger joints).

The diffusion equation is most applicable in DOT imaging of human female breast tissue.

Breast tissue is known to be highly scattering with low absorption properties and very homoge-

neous. Furthermore, the geometry is typically sufficiently large enough to allow for collimated
8This implies that the distance between mesh points can be significantly increase without loss of accuracy. A

detailed analysis of numerical error associated with spatial distances between mesh points can be found in [72].
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light to become diffuse. However, the diffusion equation is expected to give unreliable results if

used for optical tomographic imaging of fingers because the geometries are small, they contain

highly absorbing regions (i.e. vasculature), there are internal void like regions (i.e. joint cav-

ity), and the tissue is extremely inhomogeneous (bone, tendons, ligaments, muscle, vasculature,

synovium).

2.5 SPN approximation to the ERT

The simplified spherical harmonics (SPN ) approximation to the ERT has been shown to be supe-

rior to the DE at modeling light propagation in tissue of small volume, with higher absorption, and

with lower scattering [1]. The SPN approximation to the ERT in the steady-state domain (time-

independent) was introduced to tissue optics in 2006 by Klose and Larsen [1]. Chu et al. intro-

duced initial work on the expansions of the SPN equations to the frequency-domain in 2009 [73],

while Dominguez et al. expanded the theory to the time-domain in 2010 [74]. In the same work,

Dominguez et al. also proposed an alternative formulation of the frequency-dependent SPN model.

Klose and Larsen showed that the SPN (N > 1) approximation to the ERT is superior to

the diffusion equation (DE or SP1) at modeling light propagation in tissue of small volume, with

higher absorption, and with lower scattering. The main advantage of the SPN equations over

other deterministic light propagation models is that they are a better approximation to the ERT

than the DE and are far less computationally demanding than the ERT. Computational demand

is reduced because the number of coupled equations resulting from the SPN approximation is

substantially fewer than those resulting from the ERT. Furthermore, the SPN equations are second-

order accurate, and therefore, the computation mesh does not need to be as dense as the mesh

required to accurately solve the ERT. The SPN approximation to the ERT has been used in the

steady-state domain using finite differences discretization [1], in the frequency-domain using finite

element discretization [73], and in the time-domain using the finite element method [74].
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2.5.1 Time-independent SPN equations

The formal derivation of the time-independent SPN model (also know as the steady-state SPN

model or SS-SPN ) by Klose and Larsen is presented with full detail in [1] and are derived from

the time-independent ERT model (2.11-2.12). Below, the SP3 equations are reproduced in detail

from [1]. The SP1, SP5, and SP7 equations are omitted for brevity. The SP3 equations model the

composite moments ϕn and are defined as

−∇ · 1
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∇ϕ1 + µaϕ1 = Q+
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−∇ · 1
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(2.15)

The corresponding equations for modeling partially reflecting boundaries are the following,
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(2.16)

In (2.16, S (Ω) denotes the boundary source, Ω represents the angular discretization of bound-

ary points, and Q (Ω) is a volumetric source. The coefficients Ai, Bi, Ci, and Di are functions

of various angular moments of the boundary reflectivity [1]. The variables of interest ϕi are the

composite moments of the fluence, and the Legendre moments (or fluence) φi can be written as

functions of the composite moments listed below,
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The corresponding partial current equation is
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(2.17)

The boundary coefficients A1, B1, C1, D1, A2, B2, C2, and D2 and partial current coefficients

J0, J1, J2, and J3 are defined in Table 2.2 for the SP3 model. The coefficients for higher order

models can be found in [1]. The nth order absorption coefficients are a function of µa, µs, g, and

the order of the SPN model (2.18).

µan = µt − gnµs (2.18)

The boundary and partial current coefficients are all functions of various angular moments

of the boundary reflectivity Rn, which are computed as a function of the reflectivity R(Ω) and

the discrete angle Ω (typically obtained using the discrete ordinates method) using the following

equation,

Rn =

∫ 1

0

R(Ω)ΩndΩ (2.19)
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Table 2.2: Boundary and current coefficients for the SP3 model as defined by Klose and Larsen
in [1].
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2.5.2 Time-dependent SPN equations

The SPN system in the time-domain were developed by Dominguez and Bérubé-Lauzière in [74].

The derivation of the time-dependent parabolic (TD-pSPN ) equations takes into account ray-

divergence effects. The derivation of TD-pSPN also follows the derivation method presented by

Klose and Larsen in [1] for the steady-state SPN equations. An important difference results from

the inclusion of the time-dependent term in the transport equations (2.2). The nth order absorption

coefficients differ from the steady-state version only in the inclusion of a “divergence coefficient”

µd(r) that occurs as a results of the chosen ERT model, which differs from (2.2) in the inclusion

of spatially varying refractive index η(r) and a term that models ray divergence. The nth order

absorption coefficients are defined as

µan = µa + µs(r) [1− g(r)n] + µd(1− δn,0), (2.20)

where δn,0 is the Kronecker delta. By assuming a spatially invariant refractive index and neglecting
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the effects of ray divergence, we reduce the nth order absorption coefficients to (2.18) as presented

by Klose and Larsen in [1]. The TD-SPN for N = 3 are reproduced below for comparison with

the steady-state model in Section 2.5.1.
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(2.21)

If we neglect the divergence coefficient µd in the nth order absorption coefficients for the

TD-SPN (2.20), then the boundary equations of the TD-SPN model are almost identical to the

boundary equations of the SS-SPN model in (2.16). The only difference is that the composite

moments ϕn (r, t) and boundary source S (r, t) are functions of space and time.

2.5.3 Frequency-dependent SPN equations

Dominguez and Bérubé-Lauzière [74] convert the TD-SPN model to a version of the frequency-

domain SPN (FD-SPN ) model by application of the Fourier Transform. The resulting system

of equations is similar to the TD-SPN , the only difference being the replacement of the time-

dependent term
∂

∂t
with an imaginary term that depends on the source modulation frequency ω.

FD-SPN Model 1: Real-valued diffusion coefficient
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(2.22)

As in the case of the TD-SPN model, if we neglect the divergence coefficient in (2.20), then the

term µan in (2.22) is identical to the definition used in the SS-SPN model. The resulting boundary

conditions and partial current equations are therefore also identical. The FD-SPN equations solve
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for complex valued composite moments ϕn (r, ω) using complex valued sources, Q (r, ω) and

S (r, ω).

The FD-SPN equations are characterized by the inclusion of the imaginary frequency compo-

nent
iω

v
, where ω represents the frequency with which the amplitude of the source is modulated (in

radians), v is the speed on light inside the medium (accounting for the refractive index nm of the

medium and the speed of light in a vacuum c), and i is the imaginary unit denoting the imaginary

part of a complex number. In the FD-SPN formulation, the fluence (ϕi) and the source terms (Q

and S) become complex-valued (i.e. ϕi = (ϕi)R + i(ϕi)I).

An alternative FD-SPN model is presented by Chu et al. in [73], where the FD-SPN equations

are derived through a simple modification of the time-independent (or SS-SPN ) model derived

by Klose and Larsen in [1] and summarized in Section 2.5.1. In [73], the authors justify their

version of FD-SPN model by arguing that the “. . . complex nature of the attenuation coefficient

arises from the fact that radiance will also vary due to the modulation frequency, with the effect of

making the absorption coefficient complex.” In [73], the FD-SPN equations are derived through

a simple modification of the time-independent (or SS-SPN ) model derived by Klose and Larsen

in [1] and summarized in Section 2.5.1. The only change occurs in (2.18), by redefining the nth

order absorption coefficients to include the imaginary term associated with the source modulation

frequency that appears in the FD-ERT model (2.9). The complex-valued nth order absorption

coefficients, denoted by µ̃an, are given by

µ̃an = µan +
iω

v
. (2.23)

The authors justify the addition of the imaginary term is by considering that the radiance varies

due to modulation frequency.

This same formulation can be derived by considering the one-dimensional FD-ERT model, ex-

panding that model into its PN approximation, and then following the steps presented by Klose and
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Larsen in [1]. This derivation, while tedious, is straight forward by following the steps presented in

Section 3.1 of [1]. The only change that must be made is to the FD-ERT model is in the definition

of the total attenuation coefficient, which changes from µt(x) = µa +µs to µt(x) = µa +µs +
iω

c
.

Then, carrying that new complex term throughout the rest of the derivation results in a complex-

valued nth order absorption coefficient, µ̃an = µa + (1− gn)µs +
iω

c
.

Crucially, deriving the FD-SPN model from the FD-ERT model results in the appearance of

an imaginary term remains in the denominator of the “diffusion” operators and cannot be removed

(with any justification).

The FD-SPN equations can be obtained by inserting (2.23) into the SS-SPN model in (2.15-

2.17). The resulting system of equations is given below.

FD-SPN Model 2: Complex-valued diffusion coefficient
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(2.24)

This addition of the imaginary term to the definition of the nth order absorption coefficients

results in complex “diffusion-like” coefficients. It is noteworthy to point out that this small change

is significant for two reasons. First, the magnitude of the complex term is such that µa ≈
ω

v
for

clinically relevant frequencies (i.e. 300− 600 MHz). Thus, the modulation frequency term affects

the diffusion-like operators to the same extent as the absorption coefficient. Second, the FD-SP1

equation no longer equals the frequency-domain diffusion equation (FD-DE) approximation to the

ERT, as the FD-DE does not have a complex valued diffusion coefficient. Instead, the imaginary

term in the FD-DE appears only outside the diffusion coefficient and serves only as an attenuation

term (2.13).

The differences between the approach by Dominguez in deriving (2.22) and Chu in deriving

(2.24) affect the computation of numerical solutions to these models. The system of equations

in (2.22) has complex valued terms only along the main diagonal, whereas the resulting system

29



of equations from (2.24) has complex-valued coefficients at every entry of the forward model.

Numerical solutions to the FD-SPN models are discussed in more detail in Section 8.3.

2.6 Structured and unstructured computational grids

A major consideration in implementing DOT algorithms that model light-propagation with deter-

ministic models (i.e. non-MC methods) is the type of computational grid used in these numerical

calculations. Light transport models are typically solved on either a structured or an unstructured

grid. Structured and unstructured grids differ from one another by the method in which Euclidean

space is discretized. Structured grids discretize Euclidean space into a set of hexahedron elements

(quadrilaterals in two-dimensions), while typical unstructured grids discretize Euclidean space into

a collection of tetrahedral elements (triangles in two-dimensions). The connectivity between nodes

in a structured grid is implicitly known; nodes always connect to form a cuboid of constant size

and orientation. This a priori information is central to the finite-differences method, where any

given grid point is assumed to have neighboring grid points that also connect to form cuboids.

Conversely, the connectivity of unstructured grid elements must be explicitly provided because

unstructured grid nodes connect to form elements that vary in size, shape, and orientation [75].

Thus, algorithms that solve the ERT on unstructured grids are more complex than algorithms on

structured grids because node connectivity information must be explicitly provided and processed.

Additionally, generating unstructured grids can in its-self be an arduous task, often requiring third

party applications, while generating structured grids is a relatively simple task.

Unstructured grid methods, however, are well suited for working with complex geometries be-

cause the mesh can accurately resolve the physical boundary, while single structured grids cannot.

Nonetheless, structured grid methods are attractive because algorithm complexity is minimized

as a result of the well-ordered nature of Cartesian grids. Numerical algorithms on both unstruc-

tured and structured grids have been developed for solving the ERT. For example, unstructured

finite-element methods have been used by Arridge et al. [57], Salah et al. [63], and Rasmussen et

30



al. [76]. Kim and Hielscher [20], Ren et al. [62], and Gu et al. [77] have employed unstructured

finite-volume methods. Finite-differences ERT codes on structured grids have been mainly pur-

sued by Klose et al. for rectangular [19, 61, 67, 78] and irregular [79] geometries. The latter uses a

blocking-off method for approximating the physical boundary on a single structured grid.

A detailed discussion of the finite volume method (FVM) is presented in Section 8.1, while a

structured- and semi-structured grids are discussed in Appendix C.

2.7 Discussion

The computational costs associated with solving the inverse problem in DOT are a considerable

hindrance to more widespread use of this imaging technology. An aim of the work presented in

this dissertation is to improve the computational efficiency and speed of DOT algorithms through

implementation of novel numerical techniques. This is achieved through two approaches.

First, a DOT algorithm based on the simplified spherical harmonics (SPN ) approximation to

the ERT is developed using the finite-volume (FV) discretization method. In particular, the work

focuses on using the SPN equations in the frequency-domain (FV-FD-SPN ) as the forward model.

Then, a powerful approach known as PDE-constrained optimization is used as the inverse model,

leading to a significant reduction in the reconstruction time. Two algorithms based on the FV

discretization of the two competing FD-SPN models, (2.22) and (2.24), are developed. The per-

formance of each algorithm is evaluated and compared to benchmark solutions obtained with the

frequency-dependent ERT equations. This forward model is presented in Chapter 8. The PDE-

constrained reconstruction algorithm for the SPN model is presented in Chapter 9.

Then, the PDE-constrained FV-FD-SPN algorithm is applied to clinical data.9 The resulting

DOT images are used to evaluate the ability to diagnose RA using SPN based images. The appli-

cation of the PDE-constrained reconstruction algorithm to clinical data is presented in Chapter 10.

used to reconstruct clinical data obtained from a clinical study that imaged the proximal inter-

9The clinical data is presented in detail in Section 5.2. It consists of DOT scans of proximal interphalangeal (PIP)
joints of 33 subjects (total of 99 joints) with RA and 20 healthy control subjects (total of 120 joints).
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phalangeal (PIP) joints of 33 subjects with RA and 20 healthy control subjects. The resulting DOT

images are used to diagnose the presence of RA in each of the 219 imaged joints.

Second, the ERT is solved on block-structured grids (BSG), which are a type of semi-structured

grids that allow for refinement of the computation mesh near object boundaries without sacrificing

the regular structure that is inherent to Cartesian grids. Solving the ERT on structured grids is

attractive because algorithm complexity is minimized as a result of the well-ordered nature of

Cartesian grids. The BSG algorithm is developed as a method for solving the ERT model at

reduced computational burden. This work, while interesting, is not central to the main thesis of

this dissertation. It can be found in Appendix C.

Together, these approaches improve the viability of DOT as a clinically relevant imaging tech-

nology by reducing the associated computation time, leading to decreased waiting times between

data acquisition and image reconstruction.
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Chapter 3
Rheumatoid Arthritis

To understand the potential benefits of using DOT as a tool for the diagnosis of RA, it is impor-

tant to first understand the current state of the epidemiology of RA, including the pathogenesis,

symptoms, and current treatment guidelines. The focus of this chapter is on providing a review of

RA, including the pathogenesis of the disease, current diagnostic criteria, and treatment protocols.

Because of the importance of medical imaging to this thesis, a review of the role medical imaging

and image analysis play in the diagnostic process is presented.

3.1 Epidemiology

RA is a chronic, progressive, systemic, inflammatory autoimmune disorder that causes chronic

inflammation of the synovial membrane of small and large joints [39, 80, 81, 82, 83]. While RA

can be mild, it can also be severe, with studies showing that up to 10% of individuals suffering

from RA can experience total disability [84]. Several inflammatory cascades, all leading towards

persistent synovial inflammation and damage to the associated articular cartilage and underlying

bone [85], characterize RA. The disease primarily attacks peripheral joints and their surrounding

tendons and ligaments [86].

The etiology of RA is unknown, however, it is the most common inflammatory arthritis [82].

RA is associated with significant pain and disability, affecting about 1% of the population world-
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wide, and approximately 1.3-2.1 million people in the US [87,88,89,90,91]. In the US alone, RA

leads to 9 million physician visits per year [82]. Women are about three to four times as likely as

men to develop RA [92, 93]. RA can occur at any age, although it is more likely to occur among

those aged 40-70 years and its incidence rate increases with age.

Subjects with RA can suffer from severe pain, joint stiffness, swelling of multiple joints, and

lack of joint mobility. Diagnosis of RA at onset is a challenging proposition because the associ-

ated clinical features are broad and onset is generally subtle [91]. Symptoms primarily affect the

diarthrodial joints, with common examples being the wrists, proximal interphalangeal (PIP), and

the metatarsophalangeal joints [82, 83, 91]. Uncontrolled, the symptoms can lead to self-limiting

arthritis or rapidly progressing multi-system inflammation with significant morbidity and mortal-

ity (including cardiac, neurological, and hematological complications) [91]. These symptoms can

eventually lead to severe disabilities and loss in quality of life [39].

These handicaps can result in large financial costs due to health care expenses and loss of

productivity at work. Despite recent advances in therapeutic intervention including biological

therapies, there is currently no cure for RA. Early treatment of RA, however, has been shown to

significantly improve clinical outcome and management of the disease. It is, therefore, important

to diagnose a subject with RA as early as possible.

RA is generally thought to occur due to an overactive immune system. The cytokines tumor

necrosis factor (TNF) and interleukin (IL)-1 are believed to play a pivotal role in the pathologic

processes of RA. TNF (formerly known as TNF-α) is a monocyte-derived cytotoxin that is syn-

thesized by macrophages in response to proinflammatory stimuli, acting as a central mediator of

inflammation and immune regulation. Similar to TNF, IL-1 is a proinflammatory cytokine secreted

by macrophages, which acts as a crucial mediator of the immune and inflammatory responses [94].

Overproduction and over-expression of TNF is one of several key inflammatory cascades in RA,

and is known to drive synovial inflammation and joint destruction [85].

Synovitis is a key characteristic of RA and is directly linked to multiple alterations to the un-

derlying joint physiology. The differences between a healthy synovium and an inflamed synovium
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Figure 3.1: (a) Example of symmetric synovitis affecting the hands, highlighting the location of
a PIP joint. (b) X-ray images with radiographic evidence of RA, highlighting the location of a
PIP joint. (c) Illustration of a typical healthy joint. (d) Illustration of a typical joint exhibiting
symptoms of RA. (c,d) Schematic of a typical synovial joint. These joints are surrounded by
a “joint capsule” that provides protection, the inside of which is called the synovial membrane
or synovium. The synovial capsule is filled with synovial fluid, a normally clear and colorless
viscous non-Newtonian fluid whose primary purpose is to provide lubrication to the articulating
surface of the joint. The onset of symptoms from RA causes the synovium to become inflamed,
causing warmth, redness, swelling, and pain. Progression of the disease can lead to invasion of
the inflamed synovium and result in damage to the articulating surfaces and surrounding bone.
The synovial fluid undergoes substantial changes, resulting in yellow to red color and cloudy to
opaque clarity. Image courtesy of the National Institute of Arthritis and Musculoskeletal and Skin
Diseases (NIAMS) (http://images.niams.nih.gov/detail.cfm?id=74 - last accessed June 13, 2012).

are strikingly clear from histological analysis. The inflamed synovium is characterized by pro-

nounced angiogenesis, an influx of inflammatory leucocytes, cellular hyperplasia, and changes in

the expression of cell-surface adhesion molecules, proteinases, proteinase inhibitors, and many

cytokines [91]. Within a short period from disease onset, the synovium can become hyperplastic,

resulting in a thickening of the synovium membrane lining, reaching ten or more cells in depth.
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The synovium sublining also undergoes alterations, resulting in prominent infiltration of mononu-

clear cells (T-cells, B-cells, macrophages, and plasma cells). Multiple other histological changes

occur that also alter the properties of the synovium, including elevated T-cell counts in the syn-

ovium lining, increased concentration of cytokines (i.e. TNF and IL-1), and elevated expression of

adhesion molecules [91].

Furthermore, angiogenesis is over active in RA, particularly during the early onset of the dis-

ease, as the newly formed vessels provide oxygen and nutrients to the hyperthrophic synovium.

The synovium and synovial fluid of subjects with RA can contain a growing list of angiogenic

factors that includes cytokines, growth factors, colony-stimulating factors, and soluble adhesion

molecules [91].

In its early stage, RA is characterized by inflammatory synovitis that leads to edema in the

synovial membrane (synovium) and joint capsule. The permeability of the synovium is changed,

leading to an increase of fluid and large cells in the synovial cavity. Subsequently, thick layers of

granulation tissue cover and invade the articular cartilage. The joint cartilage and adjacent bone are

destroyed. Eventually the joint space closes and muscle and bone undergo atrophy and misalign,

leading to subluxation and visible deformity. Fibrous tissue calcifies and leads to immobility of

the joint. Different authors have provided classifications of the disease progression into different

stages. For example, Steinbroker differentiates between 4 stages [95,96], while more recently Har-

ris, recognizing the importance of the early pathophysiological changes, divides the progression of

RA into 5 stages [88].

3.2 Diagnosis

There is no established pathognomonic feature that can be used to diagnose RA beyond doubt (ei-

ther biological, clinical, or radiological) [97]. Rather, physicians diagnose RA using a combination

of available evidence, including biological, clinical, and radiological information. The lack of a

pathognomonic feature for the presence of RA could be a reason for the observed lag between the
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onset of symptoms and the clinical diagnosis and subsequent treatment of RA [98].

In practice, the diagnosis of RA is based on the subject’s history, physical exam, radiographs,

and laboratory studies. The American College of Rheumatology (ACR) has recommended criteria

for the classification of RA (the so-called “ACR 1987 revised criteria”). A subject is said to have

RA if he or she has satisfied at least four of the seven criteria (Table 3.1). Criteria 1 through 4 must

be present for at least 6 weeks.

At the time of publication of the ACR 1987 revised criteria, the sensitivity and specificity of

the criteria for classification of RA was 91.2% and 89.3%, respectively [2]. More recently, it was

been reported from a systemic literature review that the pooled sensitivity and specificity of the

1987 ACR criteria for diagnosis of established RA were 90% and 80%, respectively. In early RA,

the sensitivity and specificity of the criteria were 77% and 77%, respectively. Thus, the criteria

can be a poor diagnosis tool for early RA [39]. An updated set of criteria for the diagnosis of RA

was reported in 2010 [38]. The 2010 criteria for classification of RA were proposed to enhance the

1987 criteria and to increase the sensitivity of classification of early RA.

Critically, a subject must have obvious “clinical” synovitis present in at least 1 joint before

they can be fully assessed and evaluated based on the criteria. It is expected that subjects that met

Table 3.1: Definitions of the ACR 1987 revised criteria for classification of RA [2].

1 Morning 
stiffness

Morning stiffness in and around the joints, lasting at least 1 hour before maximal 
improvement.

2 Arthritis of 3 or 
more joint areas

At least 3 joint areas simultaneously have had soft tissue swelling or fluid (not bony 
overgrowth alone) observed by a physician. The 14 possible areas are right or left PIP, 
MCP, wrist, elbow, knee, ankle, and MTP joints.

3 Arthritis of hand 
joints At least 1 area swollen (as defined above) in a wrist, MCP, or PIP joint.

4 Symmetric 
arthritis

Simultaneous involvement of the same joint areas (as defined in 2) on both sides of the 
body (bilateral involvement of PIPs, MCPs, or MTPs is acceptable without absolute 
symmetry).

5 Rheumatoid 
nodules

Subcutaneous nodules, over bony prominences, or extensor surfaces, or in juxtaarticular 
regions, observed by a physician.

6
Serum 

rheumatoid 
factor (RF)

Demonstration of abnormal amounts of serum rheumatoid factor by any method for 
which the result has been positive in < 5% of normal control subjects.

7 Radiographic 
changes

Radiographic changes typical of RA on posteroanterior hand and wrist radiographs, which 
must include erosions or unequivocal bony decalcification localized in or most marked 
adjacent to the involved joints (osteoarthritis changes alone do not qualify).
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the 1987 criteria will, very likely, also meet the new criteria for classification of RA. The 2010

criteria are more flexible to the dynamic activity of the disease, allowing for changes in disease

classification over time [38].

Early diagnosis of RA is particularly difficult when subjects experience non-erosive symptoms

(cannot be detected by radiography, sonography, or MRI scans) and in the absence of the rheuma-

toid factor (RF) and anti-citrullinated protein (CCP) antibodies [99]. There is no single test that

can be used to diagnose, with absolute certainty, the presence of RA. Hence, a combination of

physician evaluation, medical imaging, and blood tests are used.

3.3 Treatment

There is no known cure for RA [100]. Recent years have seen substantial advances in the un-

derstanding of the pathogenesis and pathophysiology and with it the pharmacotherapy of RA has

changed considerably [88, 101, 102, 103, 104, 105, 106]. Recent advances in therapeutic interven-

tions, including biological therapies [107], have increased the ability of physicians to effectively

manage subjects with RA when the disease is diagnosed in its early stages.

Many pro-inflammatory cytokines, chemokines and growth factors are expressed in diseased

joints, and the recognition of the key role of TNF-α led to the development of highly effective new

therapies. TNF-α inhibitors have demonstrated efficacy in clinical trials. It is now clear that the

TNF-α blockade, in addition to reducing joint inflammation and leukocyte infiltration, also results

in decreased formation of new blood vessels in the synovium. It was shown that anti-TNF-α agents

may inhibit joint damage. In the past, so-called disease modifying antirheumatic drugs (DMARD),

such as methotrexate, hydroxychloroquine, or sulfasalazine, were initiated only after radiographic

evidence of joint damage.

Nowadays, DMARDs are subscribed at much earlier stages in the disease, as it may be possible

to prevent or at least delay joint destruction. Because of the poor prognosis of RA and the effective-

ness of early treatment, it has become important to diagnose RA as early as possible [39, 82, 83].
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Ultimately, the therapeutic goal is to attain sustained remissions.

Clinical studies showed that methotrexate slowed the rate of joint destruction as measured by

radiography, and improved quality of life, while separate studies showed superior ability to slow

joint erosions with combination therapies that consist of concurrent use of several DMARD agents

[108]. More recently, clinical evidence suggests that combination therapies involving DMARDS

and biologics results in even better clinical outcomes [109].

Recent pharmacological advances saw the introduction of the first set of biological agents that

target TNF-α and are approved for use by subjects with RA. These agents include etanercept (En-

brel), infliximab (Remicade), and adalimumab (Humira). More recent advances have included the

addition of new biologics, including the interleukin (IL)-1 receptor antagonist anakinra (Kineret),

the T-cell costimulation inhibitor abatacept (Orencia), a monoclonal antibody directed against the

B- cell-specific antigen CD20 named rituximab (Rituxan and MabThera), and the anti-TNF-α

golimumab (Simponi). In particular, etanercept, a recombinant form of the p75 TNF receptor

(TNF-RII), is dimerised via fusion with a portion of the human IgG1 Fc tail, and binds to both

TNF-α and TNF-β. Unlike etanercept, infliximab is a humanized mouse monoclonal antibody

only against TNF-α [91].

In general, these agents target key components of the host immunodefense system (i.e., TNF-

α, IL-1, B-cells, and T-cells). A side of effect of treatment with these biologics is a weakened

immune system, which may lead to increased risk of infections that include serious and non-serious

bacterial and viral infections [94].

Given the current state of the treatment and the diagnosis, two major aspects concerning im-

provement have been identified by several researchers in the field. Weinblatt [106] asks for in-

creased efforts concerning early detection so that DMARD therapies can be started earlier. Har-

ris [88] and Jaffe [110] suggest that early detection of the disease and a reliable way to monitor

improvement of deterioration would significantly help management of the disease, and Van de

Putte [111] notes: “to take optimal advantage of these improved treatment modalities, it now be-

comes mandatory to further develop relevant measures for monitoring the disease process.”
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3.4 The role of laboratory studies

Certain laboratory studies can be helpful in diagnosing inflammatory arthritis, however, they are

not specific to RA. The presence of biological markers, such as RF and anti-CCP antibodies, has

been used in diagnosis of RA. Tests for RF using a cytofluorimetric assay method results in 80%

sensitivity and 87% specificity , respectively [112].

The presence of elevated titers of RF, antibodies to IgG, has been associated with a more

severe disease course. RF is increased in 60-85% of subjects with RA. Elevated RF levels can also

be observed in cases of sarcoidosis, systemic lupus erythematosusm, endocarditis, chronic liver

disease, and tuberculosis, among many other conditions [111]. The erythrocyte sedimentation

rate (ESR),1 a measure of the rate at which red blood cells settle, has been found to be elevated

in 85-90% of subjects with RA. The ESR is generally a useful measure for following the course

of inflammatory activity in an individual subject. Concentration levels of the C-reactive protein

(CRP), an acute-phase reactant, may also be used to monitor the level of inflammation. Synovial

fluid analysis reveals increased volume and turbidity, but decreased viscosity. The white blood cell

count in the synovial fluid commonly exceeds 10,000/mL (synovial-fluid leukocytosis), however,

since there is only little fluid in PIP joints, synovial fluid is rarely drawn for analysis.

The role of medical imaging

Of all imaging modalities, X-ray imaging (radiography) has the best-established role in the assess-

ment of the severity of RA [113]. Radiography can document bone damage (erosion) that results

from RA and visualize the narrowing of cartilage spaces. However, it has long been recognized

that radiography is insensitive to the early manifestations of RA, namely effusion and hypertro-

phy of the synovial membrane. As a result, x-ray imaging has a limited role in the diagnosis and

monitoring of RA, particularly in the early stages of the disease.

The role of ultrasound imaging (US) and magnetic resonance imaging (MRI) in the detection

and diagnosis of RA has been a topic of debate [114]. In recent years, US has emerged as a poten-

1ESR is defined as the rate at which red blood cells sediment over a period of one hour
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tially useful imaging technique for diagnosing RA, as it appears to be sensitive to joint effusions

and synovial hypertrophy [114, 115, 116, 117, 118].

US has been shown to be a reliable imaging technique for detection of joint erosions, with a

particular advantage over radiography and computed tomography in application to early RA [119].

The use of power Doppler US images to aid in diagnosis of RA has led to sensitivity and specificity

of 71.1% and 81.8%, respectively. The clinical utility of this technique has yet to be established,

as examinations can be tedious and images difficult to interpret. Moreover, US is limited in that

it is subject to operator error, which can have important implications as an “acoustic window” is

necessary to properly asses the joint structure [119].

MRI is most useful in assessing soft tissue problems, avascular necrosis, degree of cartilage

erosion, osteonecrosis and carpal tunnel syndrome [120, 121, 122, 123, 124]. Cumbersome use

(long data-acquisition times during which the subject needs to be immobilized), large costs, and

the need for contrast agents (e.g. gadolinium to detect increase blood volume caused by neovascu-

larization in the hypertrophic synovial membrane) have prevented MRI from becoming a widely

used imaging modality for detection of RA.

Thus, the role of MRI in the diagnosis of RA is more difficult to assess. It has been shown that

subjects with early RA (less than two years since onset) cannot be identified from non-contrast

MRI scans of finger and wrist joints [125]. The ability to accurately diagnose RA from contrast

enhanced MRI (T1 fat saturation with gadolinium injection) scans of the hand showed that sensitiv-

ity and specificity of 70% and 64% could be achieved [99]. In a separate study, contrast-enhanced

MRI was used to achieve sensitivity and specificity of 100% and 78%, respectively [126].

The widespread use of contrast-enhanced MRI for detection of RA is limited not only for cost

and logistical reasons, but also because the use of contrast agents (such as gadolinium) can be

difficult to justify due to the high prevalence of nephropathy in subjects with RA. In particular,

between 5% and 50% of subjects with RA can experience critical renal failure [127, 128] and

injection of gadolinium-based contrast (GBC) agents for subjects with compromised renal systems

can be toxic [129]. In another study, RA was diagnosed from MRI scans aimed at detecting
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synovitis, bone marrow oedema, and bone erosion. The study reported sensitivity and specificity

of 82.5% and 84.5%, respectively [130].

Overall, it has been shown that x-ray, US, and MRI scans are not reliable tools in the diagnosis

of RA, and are particularly poor in the diagnosis of early stage RA [83, 125].

3.5 Optical imaging for diagnosis and monitoring

The use of optical techniques for imaging peripheral joints for the purpose of characterizing the

presence of RA occurred as a result of studies in the 1990s, when researchers first reported on

differences in optical properties between finger joints with and without rheumatic disorders [131].

It was found that in the early stages of RA, changes in the optical properties could be expected

in the synovium and the synovial fluid. As already mentioned in Section 3.1, the inflammatory

process starts in the synovium, leading to changes in tissue architecture and cell structure. Cell

proliferation can be observed. The appearance of the synovial fluid changes from a clear, yellowish

substance to a turbid, gray-yellowish substance.

The number of leukocytes, or white blood cells, increases from 100/mL to 200/mL in healthy

joints to 1,000/mL to 100,000/mL during stages 1 and 2, respectively. This is particularly important

for optical techniques, as leukocytes have a diameter of approximately 7-21 µm and therefore have

a considerable effect on the scattering coefficient. Furthermore, the protein content in the synovial

fluid approximately triples from 10-20 g/L to 30-60 g/L [132, 133, 134]. In regards to optical

imaging of finger joints, the differences in optical signals between healthy joints and joints of

subjects affected by RA were strongest at wavelengths between 600 and 700 nm [135, 136].

These indications lead to the development of several optical imaging systems and some pilot

studies [131,137]. In these studies, light from one or more wavelengths were focused onto the back

of the finger and transillumination intensity profiles were recorded by a CCD camera. Scheel [138]

and Schwaighofer [139] worked on classifying images of finger joints with RA from transillumi-

nation images. Scheel [138] and Schwaighofer [139] started to use advanced classification tools
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to analyze transillumination images. Using Gaussian process classification, Gaussian progress

regression, support vector machines, and a generalized linear model they found sensitivities and

specificities in the range of 75-85%.

While promising, these studies were limited to monitoring progression of the disease. It ap-

peared that looking for changes could be reliably done, while determining the state of a joint by

a single measurement, without a reference (the same joint several weeks before) remained diffi-

cult. Schwaighofer states that “the laser images showed high inter-individual variations in optical

joint characteristics, resulting from individual differences in joint anatomy.” The transillumination

technique seemed ill prepared to deal with these differences.

Some of the limitations of pure transillumination imaging of finger joints were overcome with

subsequent DOT imaging studies. Our research team has focused in the past on application of

DOT imaging for detecting and characterizing inflammation in RA. Analysis of reconstructed DOT

images of absorption and scattering coefficients in the proximal interphalangeal (PIP) joints II-IV

has allowed classification of PIP joints with and without RA with sensitivity and specificity of 78%

and 76%, respectively [140,141]. A thorough summary of the research undertaken by our research

team will be presented in Section 4.2.

Over the last decade several groups have pursued the use of optical tomographic methods to

image arthritis and other joint diseases. Jiang et al. have performed extensive studies to show the

potential of optical tomography to detect osteoarthritis (OA). In 2001 they introduced a continuous-

wave (CW) system for reconstructing absorption and scattering coefficients of joints [142]. Using

experimental data from a human finger and several chicken bones, this group subsequently showed

that three-dimensional volumetric reconstructions can provide details of the joint structure and

composition that would be impossible from two-dimensional imaging methods [143].

For this study they employed a reconstruction algorithm using the diffusion equation to model

for light propagation in tissue. The forward model was solved using the finite-element method

(FEM) algorithm. Refining the imaging hardware and software further, they presented initial clini-

cal results involving data from two subjects with OA and three healthy volunteers in 2007 [12,35].
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They found that the DOT images demonstrated differences in optical properties at the joint region

between the OA and healthy joints. Since then, this group has further improved their system by

introducing system that combines X-ray and optical-imaging [144], developed an instrument for

photo-acoustic imaging of joints [145], and moved beyond the diffusion model to include higher-

order reconstruction schemes that account for light-transport effects not previously covered [146].

The X-ray system was used to image the distal inter-phalangeal (DIP) joints of 22 subjects with

OA and 18 healthy controls, while the photo-acoustic system was use to image DIP joints of 2 sub-

jects with OA and 4 healthy subjects. In 2007, Wang et al. showed the potential of photo-acoustic

tomography (PAT) for the imaging of human peripheral joints by studying the method’s resolution

in cadaver human fingers and small animals [147, 148]. More recently, several researchers have

suggested molecular imaging approaches that involve bioluminescence and fluorescence mark-

ers [149, 150, 151] as methods to further enhance the ability to diagnose various forms of arthritis.

However, these studies did not perform tomographic imaging.

3.6 Discussion

Based on our current understanding of RA and our understanding of the physics behind the inter-

action of light (photons) and biological tissue, it is our hypothesis that the physiological changes

that occur directly as a result of RA are the source of optical contrast that is observed in absorption

and scattering coefficient images. This theory motivates our effort to explore the ability to diag-

nose RA from DOT images. Additional motivation for establishing DOT as a clinically useful tool

for diagnosing RA has to do with subject health and comfort: DOT does not expose subjects to

ionizing radiation, contrast agents do not need to be used, and imaging is done contact free. As a

result, subjects can undergo routine DOT examinations without the risk of adverse side effects and

discomfort.

Given the current state of treatment and diagnosis, researchers in the field have called for im-

proved early detection of RA so that disease-modifying anti-rheumatic drug (DMARD) therapies
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can be initiated earlier as this could significantly help with the management of the disease [82].

We believe DOT can play a significant role in meeting this need. The work presented in this

dissertation is is a first step in achieving this goal.
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Chapter 4
Computer-Aided Diagnosis

Over the last 25 years computer-aided diagnosis (CAD) has been a subject of intense research for

many areas in medical imaging and image analysis [152, 153]. A review of CAD techniques for

medical imaging is presented in this chapter. The influence that CAD methods have had on enhanc-

ing the clinical values of x-ray CT, US, and MRI images serves as motivation for the application

of computational techniques to the analysis of DOT images.

As applied to medical imaging, CAD generally refers to the use of algorithms and software to

enhance a physician’s ability to detect the presence of disease from medical images. In general,

CAD algorithms provide quantitative or qualitative feedback that enhances the ability to accu-

rately diagnose disease. For example, CAD algorithms can simply enhance regions of interest

in images for closer inspection by radiologists or other medical personnel, provide quantitative

disease scores, or suggest a diagnosis.

Often used to enhance the natural contrast between healthy and diseased tissue, CAD tools have

been shown to enhance the diagnostic value of various imaging modalities. Its use in detection and

characterization of lesions has been expanded to almost all imaging modalities, including x-ray

CT, US, and MRI [154, 155, 156, 157]. CAD was initially applied to radiographs for diagnosis of

cardiovascular diseases, lung cancer, and breast cancer [152].
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4.1 Traditional Medical Imaging Modalities

The medical applications that have seen the most activity in CAD research are x-ray imaging

of the breast, chest, colon, brain, liver, and the skeletal and vascular systems [154]. For example,

extensive studies have been performed to evaluate the effectiveness of image processing techniques

in increasing the ability of radiologists to detect various pathologies from x-ray images. One

application is in the detection of lung nodules from chest radiographs. With the use of CAD,

radiologists have been able to detect lung nodules with a 4.6% increase in accuracy (area under the

ROC curve increased from 0.894 to 0.940). Alone, the CAD algorithm achieved 80% sensitivity

with one false positive per image [154].

CAD has also been applied to the diagnosis of lung nodules from lateral chest radiographs.

Diagnosis sensitivities and specificities of 60.7% and 86.9%, respectively, have been achieved

[152]. Artificial neural networks (ANN) have been employed in the detection of lung nodules

with low-dose computed tomography, yielding sensitivities and specificities of 98.3% and 80.3%,

respectively [158]. Application of CAD to the detection of interstitial diseases, detection of interval

changes, detection of asymmetric abnormalities, differentiation of lung nodules, and differential

diagnosis of interstitial lung disease have also been reported [159].

CAD tools have been particularly successful in enhancing the reading of mammograms. The

early detection of breast cancer from mammograms is reported to have been improved by up to

20% when CAD tools are used to aid the diagnosis process [154, 160]. In another study, linear

discriminate analysis (LDA) and Bayesian Neural Networks (BNN) were used to investigate the

repeatability of CAD based diagnosis of malignant breast lesions with sonography. The best sen-

sitivities and specificities, based on repeatability, were 90% and 66% with BNN, and 74% and

84%with LDA [161], respectively.

Use of CAD algorithms has also enhanced the utility of ultrasound imaging. In CAD enhanced

diagnosis of focal liver lesions with contrast-enhanced ultrasonography, classification accuracies

between 50.0% and 93.8% were reported [155]. In that study, ANN was used for classification.

CAD tools have also been used to aid in the evaluation of MRI data. Breast MRI (BMRI) has
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been the main focus of application for CAD in magnetic resonance. For example, backpropagation

neural networks (BPNN) have been used for detection of breast lesions from BMRI scans [156],

ANN based CAD algorithms have been used to differentiate between BMRI images of malig-

nant and benign lesions [162], and SVM has been used to study the effect of MRI enhancement

thresholding on breast cancer detection rates [163]. Additionally, the ability of CAD to accurately

evaluate tumor sizes in breast cancer before and after neoadjuvant chemotherapy has also been

explored [164]. Typical sensitivity and specificity values of 73% and 56% have been reported for

all cancers [157].

4.2 Optical Imaging

In biomedical optics, CAD has only been applied in a very limited number of studies. For example

two papers related to Optical Coherence Tomography (OCT) explored its utility in the diagnosis of

esophageal and cervical cancer diagnosis [165,166]. In the first study, a center-symmetric auto cor-

relation scheme was employed to aid in the detection of dysplasia in Barrett’s Esophagus disease.

Sensitivity and specificity of 82% and 74% were achieved. In another study, the authors extract

attributes from three imaging parameters obtained by an NIR imaging system and employ an SVM

algorithm to distinguish between malignant and benign lesions [29]. A separate effort has focused

on the automated detection of contrast-to-noise ratio regions of interest for DOT imaging of breast

tissue [167, 168]. In yet another study, the ability to discriminate between breast tissue malignan-

cies using tissue fluorescence and reflectance measurements from diffuse reflectance spectroscopy

of excised [169] and in-vivo [170] breast tissue was investigated.

In a separate study, logistic regression (LR) was used in automatic detection of malignant breast

lesions by Busch et al. [171]. In that study, 89.0% sensitivity and 94.0% specificity were reported.

The average volume of the cancerous tissue was 6.7 ± 5.2 cm3, while the average breast volume

was 374± 231 cm3. A total of 35 DOT images of cancer-bearing breast were analyzed. However,

in the study, each DOT image of the breast had to be individually segmented in to “cancerous” and
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“healthy” regions. Subsequently, each breast image was reduced to two numbers, each represent-

ing a region (cancerous or healthy). A leave-one-out cross-validation scheme was used to validate

the classifier. Busch recently reported on a follow-up study that explores the utility of a feature

called “probability of malignancy,” computed from statistical analysis of total hemoglobin con-

centration, blood oxygen saturation, and scattering coefficient distributions in female breast from

DOT imaging [172]. The study shows that it may be possible to accurately predict the efficacy of

neoadjuvant chemotherapy.

To date, our group has been the most active in attempting to introduce CAD techniques to the

field of DOT. Over the past six years, our group has studied the use of CAD techniques in the field

of DOT, with particular emphasis on the diagnosis of RA. A recent clinical study was performed to

explore the feasibility of detecting RA from DOT scans of PIP joints II-IV. In total, 219 joints were

imaged and processed. Subsequently, the absorption and scattering coefficient images for each

joint were computed and analyzed.1 The standard for the clinical diagnosis of RA were guidelines

set forth by the ACR and the European League Against Rheumatism (EULAR) [10].

Visual inspection of the reconstructed absorption and scattering coefficient distributions did

not allow for accurate diagnosis of RA, resulting in low clinical sensitivity (Se) and specificity

(Sp) values [10]. This is partly because there is no set criteria for evaluating the presence of RA

in DOT images. In general, RA cannot be diagnosed from imaging alone (X-ray, US, or MRI).

In practice, a rheumatologist diagnoses RA after multiple consultations and physical evaluation of

the compromised finger joints and evaluation of any available radiological imaging (typically X-

ray). The inability to recognize the presence of RA from visual inspection has resulted in the need

for quantitative techniques that are more capable of evaluating and detecting differences between

healthy subjects and subjects with RA.

The difficulties in diagnosing RA from visual inspection of the DOT images alone motivated

the development of CAD tools for use in DOT. To date, our research on the use of CAD techniques

for diagnosing RA has focused on the classification of constant wavelength (CW) DOT images

1Full details on the clinical study and subsequent analysis are the focus of Chapters 5, 6, and 7.
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of PIP joints [140]. In early work, a small clinical trial was used to obtain data and show that

CAD enhanced diagnosis of RA from DOT images might be possible. Basic image features were

extracted from absorption images, and linear regression (LR), linear discriminate analysis (LDA),

and self-organizing maps (SOM) were used for classification. The results were promising, moti-

vating a larger clinical study to more definitively establish the ability to diagnose RA from DOT

images. The initial studies were limited in that only CW-DOT scans were performed on PIP joints.

As a result, the utility of scattering images in classification was poor, prompting classification to

be performed using only absorption data [140, 173].

The general approach to image classification has been a two-step method: (1) features are

extracted from DOT images and (2) features are subsequently used to classify images as belonging

to one type of subject or another. Thus far, only four basic image features have been explored:

(1) image maximum, (2) image minimum, (3) image variance, and (4) the ratio of maximum to

minimum [140].

In previous studies, our research group showed that the absorption coefficients inside the joint

cavity might be elevated in subjects with RA compared to healthy subjects [10,13,174]. However,

using just a single parameter (for example the smallest or the largest absorption coefficient) for

classification, sensitivities and specificities of only 71.0% were achieved. Subsequently, Klose et

al. showed that if optically derived parameters, such as the minimum and maximum absorption

values, are combined for the classification process, sensitivities and specificities can be increased

to 76.0% and 78.0%, respectively [140].

Beyond allowing for the diagnosis of RA in well established cases, it is also possible that

DOT can aid in the diagnosis of RA in subjects with early symptoms as it is conceivable that

changes in the optical properties of the synovial fluid in the compromised joints has started prior

to manifestation of the symptoms necessary for the ACR criteria to classify RA. The ACR criteria,

on its own, are not sensitive to the early onset of RA (subjects do not yet meet at least four of the

seven criteria for classification of RA) [39].
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4.3 Discussion

Even with the significant progress reported over the past decade, wide use of DOT for diagnos-

ing and monitoring RA remains elusive and sensitivities and sensitivities remain in the low 80%

range. The application of transport theory based reconstruction methods make the image forma-

tion and analysis process very time consuming. Both facts remain as major hurdles for wider

clinical acceptance. The work in this dissertation addresses these shortcomings in two ways. First,

I will develop a CAD toolbox to increase sensitivity and specificity values (Chapters 5, 6, and 7).

Second, the image reconstruction process is improved through the development of reconstruction

algorithms based on the simplified spherical harmonics (SPN ) equations (Chapters 8, 9, and 10).

The SPN equations are an approximation to the ERT model and can offer substantial improvements

in accuracy over the diffusion model in various application.
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Chapter 5
DOT Imaging Of Joints With RA

The content of this chapter focuses on presenting initial efforts towards achieving Aim 1 of this

dissertation, where the objective is to develop CAD tools for DOT that leads to clinically relevant

sensitivities and specificities in the diagnosis of RA. This work was published in 2011 on IEEE’s

Transaction of Medical Imaging [9].

In Chapters 5, 6, and 7 we introduce a general approach to CAD for DOT. We apply this ap-

proach to 219 images of finger peripheral interphalangeal (PIP) joints. DOT scans were performed

on PIP joints of 20 healthy subjects and 33 subjects with RA [9]. Details of the clinical trial and

initial statistical analysis of the data are presented in Chapter 5. The focus of Chapter 6 is to estab-

lish a general framework for extracting features of interest from three-dimensional DOT images.

Chapter 7 is dedicated to analyzing the ability to accurately classify each joint as affected or not

affected with RA through the use of machine learning algorithms, where combinations of multiple

individual features from Chapter 6 are used to construct multi-dimensional feature vectors. These

vectors are used as input to five different classification algorithms; k nearest neighbors (KNN), lin-

ear discriminate analysis (LDA), quadratic discriminate analysis (QDA), support vector machines

(SVM), and self-organizing maps (SOM). Algorithm performance is compared in terms of sensi-

tivity and specificity. For each algorithm, we determine the set of features that best differentiates

between PIP joints with RA and without RA.
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5.1 Background

The initial effort to understand if it was possible to accurately classify DOT images of joints with

RA focused on the analysis of data obtained using a continuous wave (CW-DOT or SS-DOT)

imaging system. The limitations of CW systems are profound and can result in various difficulties

that can limit our ability to diagnose RA. Such difficulties can include an inability to properly

separate the absorption and scattering effects. It is well know these limitations can be mitigated by

using systems that operate in the time domain (TD-DOT) or frequency domain (FD-DOT).1

Through collaborations with our colleagues at the University Medicine of Göttingen (Dept. of

Nephrology and Rheumatology), Charité University Medicine Berlin (Dept. of Medical Physics

and Laser-Medicine), and Georg-August Medical University (Dept. of Radiology), we conducted

an extensive clinical study exploring the use of FD-DOT imaging of human finger joints. This

study is the first of its kind, as each joint is independently imaged at three different modulation

frequencies (0, 300 and 600 MHz).

Like CW-DOT imaging, FD-DOT imaging records the amplitude of the exiting radiation. How-

ever, in contrast to CW-DOT, FD-DOT also allows the computation of phase information of the ex-

iting photons. Measurement data is used to reconstruct the three-dimensional absorption and scat-

tering properties of the scanned joint. The reconstruction process relies on using light-propagation

techniques that model the propagation of frequency modulated light in tissue. This is particularly

important as it has been shown that the additional information provided by phase data improves

the separation of scattering and absorption effects [175]. Then, these images are studied for any

correlations to the established clinical diagnosis. These results demonstrate that FD-DOT imaging

leads to higher sensitivities and specificities than CW-DOT imaging.

The remainder of this chapter is dedicated to presenting details of the clinical study in Sec-

tion 5.2, the FD-DOT data acquisition and reconstruction methodologies in Section 5.3, and results

1It should also be acknowledged that there are various applications in which CW-DOT is necessary and advanta-
geous over FD-DOT. Such application include applications in which high imaging frame-rates are required. This is
particularly true when the goal is to monitor physiological processes, such as the rate of change of oxygen concentra-
tion levels of blood.
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from statistical analysis of the reconstruction data in Section 5.4. The chapter ends with a summary

of results in Section 5.5 and a discussion in Section 5.6.

5.2 Clinical study design

5.2.1 Composition of clinical study

The clinical trial included 36 subjects with RA and 20 controls. The study was approved by the

Institutional Review Board (IRB) and each participating subject gave informed consent prior to

entering the study. Each of the subjects with RA were previously diagnosed with RA and were

enrolled at the Department of Nephrology and Rheumatology, University Medicine of Göettingen,

Germany. Data from three subjects was discarded because the FD-DOT imaging system failed to

operate correctly during the scan.

Of the remaining 33 subjects with RA, 24 were female and nine were male, reflecting the

higher prevalence of RA among females compared to males, which is 2 to 3 times more common

in women than in men. The mean age of these subjects was 51.5±13.9 years (range 21 to 77 years).

All 33 subjects met the criteria for the diagnosis of RA established by the ACR and the EULAR

[2, 38]. Most of the subjects with RA (21/33; 63.6%) received DMARD therapy (methotrexate,

leflunomide, adalimumab) and low-dose prednisone (< 10 mg/d). Positivity for the RF was found

in eight out of 33 cases (24%). All 33 subjects had active disease, defined as at least three swollen

and tender peripheral joints and morning stiffness for > 1 hour, with or without an elevated ESR

(> 28 mm/hr) or CRP (> 8 mg/l) level. The mean clinical disease activity, assessed according to

the method previously defined by van der Heijde et al. in [176], was 4.6 (range 1.59 to 8.02).

All 33 subjects underwent clinical examination (CE), US scans, and low-field MRI imaging

of the clinically predominant hand. Additionally, proximal interphalangeal (PIP) joints II-IV were

imaged using a sagittal FD-DOT system, resulting in 99 images of fingers from subjects with RA

(here referred to as “arthritic” or “affected” joints). PIP joints II-IV can be alternatively referred to

by name as the index, middle, and ring fingers, respectively [177]. Fig. 5.1 is a simple anatomical
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Figure 5.1: Bones of the human hand, highlighting (in red) the PIP joints (II-IV) imaged with
FD-DOT. For reference, PIP joint I is the thumb.

atlas of the bones of the human hand provided for reference on the location of the PIP joints relative

to the hand.

A control group of 20 healthy subjects was recruited to participate in the study (male to female

ratio of 6:14) with a mean age of 38.8 ± 14.1 years (range 22 to 60 years). PIP joints II-IV of

both hands of all 20 control subjects were imaged with FD-DOT (resulting in 2 × 20 × 3 = 120

FD-DOT images of healthy PIP joints).

5.2.2 Gold standard

The “true” diagnosis (or gold standard) of each joint is established based on CE, MRI, and US

results. The CE of each PIP joint is performed by bi-manual palpation to assess the degree of

swelling, tenderness and warmth. The joints are classified according to a clinical synovitis score

(CSS) [178, 179]. Laboratory tests (ESR2 and CRP3) are used to asses the overall state of the

disease. ESR and CRP are both tools for detecting the presence of inflammation (within the body).

Higher ESR values indicate the presence of inflammation and occur in inflammatory disease, such

as RA. CRP is a protein built in liver tissue and also considered a parameter of inflammation as part

2ESR is defined as the rate at which red blood cells sediment over a period of one hour
3CRP is an acute-phase protein whose concentration levels can be used to monitor the level of inflammation.
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of activating the immune system. Although not specific, both parameters show a good correlation

to RA disease activity.

Finally, an overall disease activity score (DAS) is assessed as part of the clinical exam. The

DAS28 is a combined index that has been developed to measure the disease activity in patients

with RA [180, 181]. It includes a classification of 28 joints according to the degree of swelling

and tenderness, the ESR, and a patient self-assessment according to the visual analogue scale

(VAS). The DAS28 results in a number between 0 and 10, indicating how active the RA is at this

moment. Using the DAS28, several thresholds have been developed for high disease activity, low

disease activity, or disease inactivity. Disease activity is defined as inactive when DAS28 < 3.2,

moderately active if 3.2 < DAS28 < 5.1 and highly active if DAS28 > 5.1.
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Figure 5.2: (a-b) The two figures show T1-weighted images before (a) and after (b) administration
of a bolus of Gd-DTPA. The regions marked with a white circle shows synovitis in a PIP joint.
(c-d) The two figures show T1-weighted images before (c) and after (d) administration of a bolus
of Gd-DTPA. The region marked with a white circle shows erosions in all three joints inside the
circle.
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MRI imaging is performed using a dedicated low-field (0.2T) MRI system (C-scan, ESAOTE,

Genova, Italy) equipped with a specifically designed hand coil. Imaging sequences included

native gradient-echo short-tau inversion-recovery (STIR) sequence in coronal slice orientation,

T1-weighted spin-echo high resolution sequence in transversal and coronal orientations, and T1-

weighted three-dimensional gradient-echo sequence in coronal slice orientation before and after

bolus administration of the paramagnetic contrast medium gadolinium diethylenetriaminepen-

taacetic acid (Gd-DTPA, Magnevist, Schering, Berlin, Germany) at a dose of 0.2 mmol/kg body

weight. The data set acquired with the T1-weighted three-dimensional gradient echo sequence is

used for reconstruction of axial views. Examples are shown in Fig. 5.2, which display how synovi-

tis (Figs. 5.2(a), 5.2(b)) and joint erosions (Figs. 5.2(c), 5.2(d)) appears in MR images before and

after administration of the contrast agent. Synovitis is clearly apparent in the contrast-enhanced

image, while erosion is visible even before the administration of a Gd-DTPA bolus. Scoring of

synovitis and erosions is performed according to the EULAR OMERACT criteria [178], using a

semi-quantitative scoring system as previously described by Schirmer et al. [179].

US imaging is performed with an Esaote Technos MPX ultrasound system. A 14.0 to 8.0 MHz

hockey stick linear array transducer was used for examination of the PIP joints. Examples of US

images taken from the palmar side are shown in Fig. 5.3. A healthy joint is shown in Fig. 5.3(a),

while Figs. 5.3(b)-5.3(d) show joints with inflammation. In US, two criteria of active inflamma-

tion were evaluated following Szkudlarek et al. [116]. Joint effusion (E) was visible as an ane-

choic area between the capsule and the bone in the proximal part from the palmar side of the hand

(Figs. 5.3(b)-5.3(d)). Second, thickening of the synovial membrane (S, synovitis) could be visual-

ized as hyper-echoic structures within the region affected by effusion (Figs. 5.3(d)). US scanning

is performed from the palmar side, as it was found that synovitis and effusion can best be evaluated

from the palmar as opposed to the dorsal side. This is probably due to the small amount of tissue

overlying the joint from the dorsal side.

The US and MRI images were evaluated by a radiologist and a rheumatologist in a blinded-

review. The images were evaluated for the presence of effusion, synovitis, and erosion in PIP
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(b)
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Figure 5.3: Ultrasound images of a healthy joint (a), and joints affected by RA (b,c,d). The larger
the anechoic area and/or extent of synovial hypertrophy, the higher was USS (USS = 1 minimal,
USS = 2 moderate, USS = 3 extensive effusion/hypertrophy). Images were produced by placing
a hockey stick linear array transducer on the palmar side of the PIP joint. (E ≡ effusion, S ≡
synovitis, T ≡ tendon, JC ≡ joint cavity)

joints II-IV. To be classified as affected by RA, joints must show either signs of effusion, synovitis

or erosions. Each reviewer classified each subject into one of five sub-groups on the basis of these

findings (Table 5.1). The study was designed so that a third reviewer served as a tiebreaker in cases

where the initial reviewers had differing opinions (none in this study). Subjects without signs of

joint effusion, synovitis, and erosion were divided into two subgroups: (1) subjects with RA and

(2) subjects without RA. This classification is used as ground truth for the classification of the

corresponding FD-DOT images.

Table 5.1: Six-group diagnostic table based on clinical evaluation and radiological imaging.

Group Effusion Erosion Synovitis RA Total Joints
A No No No Yes 18
B Yes No No Yes 18
C No Yes No Yes 12
D No No Yes Yes 27
E Yes Yes Yes Yes 24
H No No No No 120
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5.3 Instrumentation and imaging protocol

5.3.1 DOT imaging instrument

DOT imaging is performed with a frequency-domain imaging system that allows for source-

modulation frequencies up to 1.0 GHz [182]. A laser beam (wavelength λ = 670 nm, optical

power = 8 mW, beam diameter 1.0 mm) is directed onto the dorsal surface of a finger and scanned

across the PIP joint in a sagittal plane (Fig. 5.4). Transmitted light intensities are measured with

an intensified CCD (ICCD) camera. The ICCD camera operates in homodyne mode (i.e. the gain

of the ICCD is modulated by a slave signal generator at the same frequency as the laser). As a

result, a steady state image at the intensifier output is imaged to the CCD. The signal in every pixel

depends on the phase between source and detector modulation. Master and slave signal generators

are linked together and the phase delay is adjustable. To detect the complete oscillation of the

modulation, multiple images are taken at phase delays covering the range of 2π and are transferred

to a computer. From the stack of images, two-dimensional amplitude and phase images are derived

by data processing. More details concerning this setup can be found in [182].

In addition to scanning the finger for transillumination data, each joint is also scanned by an

(a) (b)

Figure 5.4: Set-up of tomographic scanning unit, schematic (a) and photograph (b). The hardware
parts shown are the (1) laser diode, (2) laser diode driver, (3,7) signal generator, (4) finger, (5)
focusing lens, (6) ICCD camera, (8) high rate imager, and (9) computer.
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independent laser-scanning unit in order to obtain the three-dimensional geometry of the scanned

finger (Fig. 5.5a). This is a crucial step in the imaging protocol because the true geometry of the

finger is needed for the reconstruction process. The finger is scanned simultaneously by two red

laser lines (wavelength λ = 650 nm, optical power = 5 mW, line width = 0.2 mm) at the dorsal

surface of the finger. Each diode lasers is mounted on a gear-wheel. A stepping motor generates

small rotations of the gear-wheel, resulting in small steps in the laser line on the finger surface.

Both gear-wheels are driven by a single stepping motor as this ensures simultaneous scanning of

the two lines. The shapes of the deformed laser lines on the finger surface are imaged with a fast

video camera (SPC 900 NC, Philips, Netherlands), which is controlled by the DAVID laser-scanner

software (version 1.6b, TU-Braunschweig, Germany).

The scanning unit is calibrated (i.e. adjusting the coordinate system of the camera) by using

two thin walls on the side of the scanned finger at known angles. The new coordinate system

of the camera system is used to transform the observed laser lines into three-dimensional surface

coordinates (or point clouds) in real-time.

Scanning of the geometry results in a point cloud that defines the surface points on the finger.

Background!

Camera! Laser Line !
Detection!

Laser!
Plane!

Laser!

(a) (b)

Figure 5.5: (a) Surface registration and (b) three-dimensional mesh generation. The surface
scanning unit detects the shape of the laser line on the finger surface and determines the three-
dimensional-surface coordinates while the laser line is scanned over the finger. The background
serves for calibration of the camera coordinate system. Surface registration and three-dimensional
mesh generation; (a) three-dimensional laser scanning to obtain a finger joint geometry and (b)
three-dimensional finite volume mesh generated using the laser scanned surface mesh.
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From this set of coordinate points, a (closed) surface mesh is constructed that accurately captures

the exposed geometry of the scanned finger. Then, the surface mesh is used to generate a volumet-

ric discretization of the surface encapsulated by the surface mesh. We employ the standard tetra-

hedral discretization technique, which is often referred to as a finite-element method (FEM) mesh

or simply an unstructured mesh (Fig. 5.5b). This process is done using the GID software package

(Micromechatornics Inc. at http://www.mmech.com/). The resulting mesh and transillumination

measurements are input to the reconstruction algorithm. Tests on standard surface phantoms show

that this set-up can resolve surface details with an accuracy of at least 0.4 mm. Both the tomo-

graphic unit and the laser-scanning unit are equipped with identical, ergonomic hand and arm rests

at the same height to allow for identical positioning of the patient’s arm and hand.

5.3.2 DOT imaging protocol

Before FD-DOT imaging, each finger is marked with a small black dot on the dorsal surface of the

finger, 17 mm distal from the PIP joint. This mark is used to position the finger identically in both

the FD-DOT imager and in the laser scanner unit. Then, the finger is place inside the FD-DOT

scanner using the hand rest to hold the hand. The laser beam is then moved to the marked position.

The finger axis (along the length of the finger) aligns with the scanning plane of the laser. Finally,

scanning begins by moving the laser to the first source position, located approximately 10 mm

distal from the PIP joint. The laser is then scanned over a range of 20 mm, from proximal to distal

end of the finger. The laser stops at 11 distinct and equally spaced positions as shown in Fig. 5.6.

Each position represents a unique “source.”

Transillumination (on the palmar surface) is recorded for each source position with an inten-

sified CCD camera. For every source position, the oscillation is sampled in 16 phase steps with

an exposure time of 80 ms each. The scan is performed twice, first in the forward direction with

modulation frequency of 600 MHz, and then in the reverse direction at 300 MHz. Two examples of

transillumination obtained from a single surface source, as captured by the ICCD-based detector

system, on the posterior (or palmar) surface of the finger are presented in Fig. 5.7.
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(a) Sources (anterior surface) (b) Detectors (posterior surface)

Figure 5.6: Position of 11 sources (a) and detectors (b) on the posterior (dorsal) and anterior
(palmar) surface of a sample PIP joint.

(a) (b)

Figure 5.7: Transillumination captured by the ICCD detector unit on the posterior (palmar) surface
of a PIP joint from a subject with RA (a) and a healthy control (b).
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The positioning of the finger in the laser scanner unit is determined by using the mark on the

finger as a reference. An additional laser line, placed across the finger as a pilot beam, helps find

the correct axial position for the mark. The finger is angled parallel to the scanning direction. The

scan starts approximately 3 mm before the mark and ends after a distance of 40 mm on both sides.

One step of the stepping motor yields a step of the laser line on the finger surface of approximately

0.05 mm and takes about 10 ms. Both cameras are in a free running mode and take images with

30 frames per second. A waiting time of 20 ms is inserted between the steps to get approximately

one step per frame.

Three fingers were scanned from the predominant hand of each subjects with RA and on both

hands of control subjects; the index, middle, and the ring finger (PIP II to PIP IV). To avoid

movement artifacts in the image reconstruction, the examiner controls the correct position of the

finger again after the tomographic scan is finished. Acquisition time for one finger (including laser

movement, image acquisition, and data storage) is about 35 seconds for one frequency. Positioning

of the finger averaged another 80 seconds. Thus, the complete tomographic scanning time needed

for six fingers and two modulation frequencies was about 15 minutes, or about 7 minutes when

using only one frequency.

After acquisition, the raw imaging data is processed. In every stack of images a fast Fourier

transformation (FFT) is performed through the stack in every pixel. The FFT yielded values

for the amplitude, phase and the DC components. This method allows the computation of two-

dimensional DC, amplitude, and phase images for every distinct source position.

5.3.3 DOT image reconstruction

Three-dimensional image reconstruction of absorption and scattering coefficients is performed us-

ing an algorithm based on the FD-ERT model. The reconstruction method uses the so-called

PDE-constrained reduced Hessian SQP (rSQP) method to solve the forward and inverse problems

simultaneously.4

4 The FD-ERT algorithm is presented in detail by Kim et al. in [20].
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A detailed treatment of the numerical techniques for solving the forward and inverse problems

in DOT is presented in Chapters 8 and 9. Going beyond a review, novel work is presented on

building an algorithm for solving the SPN light propagation model using the finite volume method

and for solving the inverse problem using this same PDE-constrained rSQP method is presented.

However, for completeness, in this section we present a brief overview of the reconstruction

algorithm used to obtain the absorption and scattering images shown in this chapter. The PDE-

constrained rSQP reconstruction algorithm employs the FD-ERT as the light propagation model.

Recalling from Section 2.3.2, the FD-ERT model is given by,

(∇ ·Ω)ψ (r,Ω, ω) +

(
µa + µs +

iω

c

)
ψ (r,Ω, ω) =

µs
4π

∫

4π

ψ (r,Ω′, ω) p (Ω,Ω′) dΩ′,

(5.1)

where ψ (r,Ω, ω) is the complex-valued radiance in unit [W cm−2sr−1], µa and µs are the absorp-

tion and scattering coefficients, respectively, in units of cm−1; ω is the external source modulation

frequency, c is the speed of light inside the medium, and p (Ω,Ω′) is the scattering phase function

that describes scattering from incoming direction Ω′ into scattering direction Ω. The algorithm

employs the widely used Henyey-Greenstein phase function with g = 0.9 [183].

The model accounts for partially-reflective boundary conditions, allowing for the consideration

of a mismatch in refractive index at the interface between tissue and air [61, 184],

ψb (rb,Ω, ω)|nb·Ω<0 = ψ0 (rb,Ω, ω)

+R (Ω,Ω′) · ψb (rb,Ω
′, ω) |nb·Ω′>0.

(5.2)

WhereR (Ω,Ω′) is the reflectivity at a Fresnel interface from direction Ω′ to direction Ω , ψ0 (rb,Ω, ω)

is the radiation intensity due to the external source function (i.e. the input source), subscript b de-

notes the boundary surface of the medium, and nb is the unit normal vector pointing outwards at

the boundary surface.

Given the spatial distribution of optical properties inside the medium, we solve the ERT (5.1)

with a discrete ordinates method [61], which provides the prediction of measurements obtained on
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the surface of the medium Pd,s (rb, ω) = Qdψs (rb,Ω, ω). Here Qd is the measurement operator

that projects the radiance vector ψs (rb,Ω, ω) of a forward model onto the image plane of a CCD

camera.

In PDE-constrained optimization theory, the inverse DOT problem requires computation of the

radiation intensity vector,

ψ =
(
ψ1, ψ2, . . . , ψm

)
, (5.3)

and the tissue absorption and scattering coefficient vectors,

µ =
(
µ1
a, µ

2
a, . . . , µ

n
a , µ

1
s, µ

2
s, . . . , µ

n
s

)
, (5.4)

such that

min f(µ, ψ) =
1

2

Ns∑

s=1

Nd∑

d=1

(Qdψs − zs,d)(Qdψs − zs,d)∗

s.t. A(µa, µs)ψs = bs; s = 1, . . . , Ns.

(5.5)

Here, (5.5) is the objective function that quantifies the error between the predicted measure-

ment data generated with the current estimate of the inverse variable and the measurement data.

Ns denotes the total number of unique boundary sources, and Nd represents the total number of

detectors per source. In this work, Ns = 11 and Nd are the same for each source (in general, Nd

does not need to be the same for each source). In this work we define over 150 mesh nodes as

detectors for each source (Nd > 150). The terms zs,d and Qdψs are the true detector measure-

ments and the simulated (i.e. generated with the forward model) predictions for source-detector

pair (s, d), respectively. The operator ()∗ denotes the complex conjugate of the complex vector

inside the parenthesis.
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Given the current estimates of forward and inverse variables (µk, ψk) at inverse iteration step

k, the rSQP scheme generates the new iterate (k + 1) for both forward and inverse variables by

updating the current iterate:

ψk+1 = ψk + αk∆ψk,

µk+1 = µk + αk∆µk,

(5.6)

where the step length αk provides a sufficient decrease in the l1 merit function, and a search direc-

tion ∆p = (∆ψ,∆µ)T can be obtained by solving the quadratic programming problem:

min ∆pkTgk +
1

2
∆pkTW k∆pk

s.t. CkT∆pk + (Aψ − b)k = 0.

(5.7)

Here g denotes the gradient of f , W k denotes the full Hessian (or approximations) of the La-

grangian function L (ψ, µ, λ) = f (ψ, µ) + λT (Aψ − b), and C represents the matrix of constraint

gradients. A detailed description of the rSQP algorithm for ERT-based FD-DOT is presented by

Kim et al. in [20].

The algorithm requires as input the three-dimensional unstructured mesh of each finger joint

(i.e. an “FEM” mesh), as described in Section 5.3.1 (also Fig. 5.5). The mesh consists of co-

ordinates of each mesh node and connectivity information that specifically indicate which set of

nodes (four in the case of tetrahedral elements) form a volume element. A so-called “finite-volume

mesh” (FVM) is then generated from the FEM mesh. The FVM mesh is used as the computational

grid on which the DOT problem is solved. Detailed information on the FVM method is presented

in Chapter 8 in the context of solving the SPN light propagation model.

The known coordinates of each of the 11 source locations is used to identify the unstructured

mesh node closest to that location (on the dorsal surface of the joint). An example of mesh nodes

identified as source nodes are shown in Fig. 5.6(a). Then, these 11 mesh nodes are input as source

positions to the reconstruction algorithm in the form of ψ0 (rb,Ω, ω) in (5.2).

Then, the transillumination images captured by the ICCD camera are mapped to the palmar
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surface of the unstructured mesh. All mesh points on the palmar side of the finger that map to

a pixel on the ICCD image are identified as “detector” nodes. Each of these detector nodes are

assigned a “measurement” value corresponding to the data captured by the ICCD image at that

location (composed of both amplitude and phase); this information is captured by the term z in

the objective function (5.5). An example of mesh points identified as detector nodes are shown in

Fig. 5.6(a).

All reconstructions are started with an initial estimate of µa = 0.3 cm−1 and µs = (1−g)µs = 8

cm−1 for all mesh points. Typically, the total reconstruction time is typically over 180 minutes on

a computer with an Intel Xeon 3.3 GHz processor. A typical three-dimensional unstructured mesh

is composed of approximately 30, 000 tetrahedral elements.

5.3.4 Diagnostic terminology

Computation of the sensitivity (Se) and specificity (Sp) of a diagnostic scheme is important as these

quantities inform on the method’s reliability. These parameters are computed from a “diagnostic

table” and rely solely on the number of accurate and inaccurate classifications. In general, each

imaged joint has been previously diagnosed as either positive or negative for RA (i.e. the gold

standard or ground truth). Then, each DOT image is classified as positive or negative by the

classification scheme. If the joint was positive for RA, then an image that is classified as “positive”

for RA is labeled a true positive (TP), while it is labeled a false negative (FN) if it is classified

as “negative” for RA. Similarly, if the joint was negative for RA, then an image that is classified

as “negative” for RA is labeled a true negative (TN), while it is labeled a false positive (FP) if

it is classified as “positive” for RA. Sensitivity and specificity are defined by these quantities, as

follows [185].
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Se =
TP

TP + FN
(5.8)

Sp =
TN

TN + FP
(5.9)

Sensitivity is a measure of the diagnostic method’s ability to accurately label a positive sample

as positive, while specificity is the ability to accurately label a negative sample as negative. Another

important quantity is called the Youden index (Y), as it captures the combined effects of sensitivity

and specificity on a scale from −1 to +1, and is defined as

Y = Se+ Sp− 1. (5.10)

In this formulation, sensitivity and specificity have equal weights and, individually, can range

between 0 and +1, with 0 corresponding to complete misclassification of all samples and +1

corresponding to accurate classification of all samples. Thus, sensitivity and specificity value as

close to +1 as possible are desirable. Obtaining sensitivity and specificity values of +1 is typically

difficult, and often, the value of the sensitivity or specificity is increased at the expense of the other.

An important decision in the design of CAD algorithms is the relative importance of sensitivity

and specificity. In certain circumstance, such as in the diagnosis of potentially terminal diseases, it

may be preferable to have higher specificity at the expense of sensitivity. This scenario may occur

because we prefer to err on the side of safety, which in this case means accepting the possibility of

more “false positives” in exchange for accurate diagnosis of the disease in additional subjects. In

other cases, however, the opposite may be true. Mainly, that the benefits of correctly diagnosing

additional subjects with the disease does not outweigh the costs (in a general sense) associated

with false positives.

In the case of RA, we have opted for equal weights to the sensitivity and the specificity. There-

fore, in general, we seek to maximize the Youden index instead of the sensitivity and specificity
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individually. However, we primarily comment on the sensitivity and specificity values as they are

more accurately inform us on the performance of the classifier. Exceptions to this rule are explicitly

mentioned throughout this work.

5.3.5 ROC curve analysis

Receiver operator characteristic (ROC) curves help understand the diagnostic accuracy of an clin-

ical marker (or image feature in this work). This method allows, in its simplest form, to measure

the ability to discriminate between two classes (e.g. healthy versus affected by RA) using a single

image feature (i.e. min (µa) or other similar features) [185]. A characteristic or curve is gener-

ated by plotting all of the sensitivity and specificity pairs that result from continuously varying

the decision threshold over its entire range (i.e. the value of the feature that separates affected

from healthy). The plot itself is the sensitivity (Y-axis) versus 1 − specificity (x-axis) and shows

the overlap between the two distributions (i.e. overlap between affected and healthy at the five

threshold).

A threshold that perfectly separates the two diagnostic classes results in sensitivity of 1.0 and

specificity of 1.0 (or 1 − Sp = 0.0 ), which corresponds to the Cartesian coordinates of (0.0, 1.0)

on the ROC plot. An image feature with perfect discrimination for its entire range results in a

horizontal line as y = 1.0 ∀ x ∈ [0.0, 1.0]. Conversely, a feature that has shown no ability to

discriminate between the two classes results in sensitivity and specificity of 0.5 for all threshold

values, resulting in a 45° line from (0.0, 0.0) to (1.0, 1.0). Qualitatively, the closer the curve is to

the upper left-hand corner (or to the point at (0.0, 1.0)), the better the classification accuracy.

For example, assuming a certain threshold [min(µa)th] for the feature min(µa), we say that

all images with min(µa) < min(µa)th belong to healthy subjects, while all other images belong

to subjects affected by RA. Then, we calculate the number of TP, TN, FP, and FN using this

classification methodology (Fig. 5.8a). Given these numbers, we determine the more clinically

significant values for Se and Sp as outlined in Section 5.3.4. By varying the threshold values from

0 to the largest value of min(µa), we obtain a series of Se and Sp values, which we plot as a ROC
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Figure 5.8: (a) Example of how TP, TN, FP, and FN can be computed given a threshold value
(vertical line). Se and Sp can be computed from those values. (b) By continuously varying the
threshold value, Se and Sp pairs can be computed and used to plot ROC curves. The 45° line is
shown for reference.

curve (Fig. 5.8b). The plot shows Se and (1 − Sp) for all threshold values. This curve itself can

further be described by the area under the curve (AUC) and the Youden index, which is equivalent

to the threshold for which Y = Se + Sp− 1 is largest.

5.4 Data analysis

5.4.1 Region of interest and feature extraction

Dimensionality reduction is necessary because it is impossible to compare joints using all of the

reconstruction data (i.e. all pixels) for two reasons. First, each mesh is unique to each joint, and as

such, comparisons between joints on a pixel-to-pixel basis is not feasible.5 Secondly, the number

of “features” that would arise if we were to consider each pixel as a feature would be much larger

than the number of unique samples (i.e. joints), thus creating a statistical problem where we have

significantly more observations than samples.6 This would inevitably lead to over-fitting problems.

Instead, we consider only a small number of image features that can be computed from all

reconstruction images. After reconstruction of the three-dimensional spatial distribution of µa and

µ′s, a three-dimensional region of interest (ROI) is determined for each finger. Only mesh points

5This problem could be mitigated by generating a standard joint map and transforming all imaged joints onto that
standard map. That strategy, however, remains beyond the scope of this analysis.

6This strategy presupposes that all joints are discretized with the exact same mesh.
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	   (a)

ROI 

(b)
	  

(c)

Figure 5.9: (a) Photo showing the approximate size of a finger for which an FVM mesh is gener-
ated and used to reconstruct the FD-DOT image. (b) Example of a two-dimensional cross-section
through a three-dimensional reconstruction of the absorption coefficients in a finger joint. Also
shown is the ROI from which various optical parameters are determined. The ROI is limited to
regions at least 2 mm away from boundaries and within the lateral extent of the source and detector
location. (c) For further orientation of the imaging range, the corresponding sagittal cross-section
from an MRI scan is shown.

that are at least 2 mm away from the tissue boundary are considered. This helps eliminate any

reconstruction artifacts that may occur near tissue boundaries. Furthermore, only mesh points that

are within the lateral extent of the light illumination points are included in the ROI. Only within this

range do the measurements provide useful information for the reconstruction code. Fig. 5.9b is an

example of the computed absorption map and the resulting ROI for a finger. For better orientation,

we also show a photograph and an MRI image that covers approximately the same area of the joint

and finger.

From each three-dimensional ROI we extract four parameters (i.e. “image features”) that are

subsequently analyzed. The first two features are the maximum (max) and minimum (min) of the

optical property within the ROI. The third feature is the ratio between maximum and minimum

(ratio). The fourth feature is the variance (var) across all pixels in each three-dimensional ROI

volume. These four features are extracted from µa and µ′s images, resulting in a total of eight image

features.

Thus, the reconstruction image of each joint is transformed into a vector of eight values corre-

sponding the extracted features (min, max, ratio, and var) of absorption and scattering, respec-

tively. Statistical analysis is then performed on these vectors. The general process is depicted by

the schematic in Fig. 5.10.
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“detector” nodes. Each of these detector nodes are assigned a “measurement” value corresponding to the data captured

by the ICCD image at that location (composed of both amplitude and phase) or z in the objective function (Eq. 4.5).

An example of mesh points identified as detectors nodes are shown in Fig.4.7(a)

(a) Sources (anterior surface) (b) Detectors (posterior surface)

Figure 4.7: Position of 11 sources (a) and detectors (b) on the posterior (dorsal) and anterior (palmar) surface of a
sample PIP joint.

All reconstructions are started with an initial estimate of µa = 0.3 cm�1 and µs = (1 � g)µs = 8 cm�1 for all

mesh points. Typically, the total reconstruction time is approximately 2-3 hours on a computer with an Intel Xeon 3.3

GHz processor. A typical three-dimensional unstructured mesh is composed of about 30,000 tetrahedron elements.

4.4 Data Analysis

4.4.1 Region of Interest (ROI) and Feature Extraction

After reconstruction of the three-dimensional spatial distribution of the µa and µ0
s, a three-dimensional region of

interest (ROI) is determined for each finger. Only mesh points that are at least 2 mm away from the tissue boundary

are considered. This helps eliminate any reconstruction artifacts that may occur near tissue boundaries. Furthermore,

only mesh points that are within the lateral extent of the light illumination points are included in the ROI. Only within

this range do the measurements provide useful information for the reconstruction code. Fig. 4.8 is an example of the

computed absorption map and the resulting ROI for a finger. For better orientation, we also show a photograph and an

MRI image that covers approximately the same area of the joint and finger.

We performed data analysis to obtain a quantitative measure of the difference between the three types of joints

(affected, unaffected, or healthy). However, quantitative analysis of the complete reconstruction (volumetric maps of
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Figure 5.10: Schematic of the feature extraction process. Four features are extracted from the
absorption and scattering images of each joint, resulting in a vector of eight image features.

5.4.2 ANOVA and student-t test

Additional analysis is performed by reducing the number of diagnosis subgroups from six to three,

by combining subgroups B, C, D, and E into one single group. This simplification was motivated

by the physiological differences between group A (subjects that have RA, but whose joints do not

have effusion, erosion, or synovitis) and groups B to E (subjects that have RA and whose joints

exhibit effusion, erosion, or synovitis). We refer to group A as “asymptomatic” (or simply group

A), as these joints have been diagnosed with RA but do not exhibit radiological symptoms. We

refer to the group that results from combining groups B to E as “symptomatic” (or simply group S),

as these joints belong to individuals with RA and have radiological signs of RA related symptoms.

The third group is simply the group of healthy control subjects (or simply group H).

Thus, to be classified as “symptomatic” and in group S, joints have to show signs of effusion,

synovitis or erosions. Joints classified as “asymptomatic” and in group A do not show any of these

signs. In total, there are 81 fingers in group S, 18 fingers in group A, and 120 fingers in group H.

See Table 5.2 for a summary.

We perform ANOVA (imbalanced one-way ANOVA using Tukey’s test in a multiple compari-

Table 5.2: Three-group diagnostic table based on clinical evaluation and radiological imaging.

Group Name Effusion, Erosion, or Synovitis RA Total Joints
A No Yes 18
S Yes Yes 81
H No No 120
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son procedure) to understand the differences, if any, between the six diagnostic groups in Table 5.1,

and, separately, the three diagnostic subgroups in Table 5.2. We also compute the F-statistic of the

data to show which, if any, groups are statistically different. The analysis is repeated for each of

the four image features from µa and µ′s images, respectively. In all cases, one feature is considered

at a time (i.e. min, max, ratio, or var) and we calculate the mean and variance of the feature

vectors of each group.

In the case of the three group data, we perform additional analysis by comparing only groups S

and H using the student-t test, from which we derive p-values for each image feature and determine

if a statistically significant difference between affected and healthy fingers exists.

5.4.3 Image classification

Clinically, image classification is more relevant than ANOVA and student-t test analysis as it in-

forms us of the potential diagnostic value of each image feature, allowing for computation of

diagnostic sensitivities and specificities. However, image classification requires that we consider a

two-class problem, where one class is “positive” for RA and the other is “negative” for RA. As a

result, we only consider groups S and H for this analysis.

We perform ROC curve analysis to study the performance of each image feature as a one-

dimensional classifier. Then, we perform LDA classification to understand the performance of

multi-dimensional feature combinations as classifiers. Refer to Section 5.3.5 for details on ROC

curve analysis and Section 7.2.2 for a summary of the theoretical aspects of LDA.

The use of LDA and multi-dimensional classification is motivated by our previous studies,

where we show that it can be advantageous to combine several of the image features as it may result

in more significant sensitivity and specificity values [140,173]. Thus, in addition to comparing Se,

Sp, and Y for specific individual image features, we also study the Se, Sp, and Y derived from

combining two or more of these individual parameters. To do so we employed two-, three-, and

four-dimensional LDA [186, 187].

We use the leave-p-out cross-validation technique to avoid over-fitting errors when using LDA.
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This process requires that we randomly select (100−p)% of the data set to calculate the separation

line (or hyperplane) as shown in Fig. 5.17. The remaining p% of data points are subsequently

classified by calculating the TP, FP, TN, FN, Se, Sp, and Y values. We perform this procedure

100 times for each set of features; therefore, 100 times we randomly select (100− p)% of the data

set to determine the optimal separation line and use the remaining p% of the data to calculate the

TP, FP, TN, FN, Se, Sp, and Y values. We report the performance of the algorithm by the average

values for Se, Sp, and Y over all 100 iterations. We use p = 10% throughout this work

5.4.4 Modulation frequency analysis

As was previously mentioned, all subjects were imaged at 600, 300, and 0 MHz. Thus, our data set

consists of reconstruction images of µa and µ′s computed from data at each of the three modulation

frequencies. To better understand the differences between the images obtained at each of the three

modulation frequencies, we perform the above analysis on the data computed from each frequency.

Then, we compare the ability to diagnose RA from each of the three frequencies. This allows us

to establish which of the three frequencies is optimal for discriminating between joints of subjects

with RA and healthy joints.

5.5 Results

We start by showing examples of two-dimensional cross-sections through the three-dimensional

tomographic reconstructions of optical properties of healthy fingers and fingers affected by RA.

Figure 5.11 shows images of µa, and Fig. 5.12 shows images of µ′s. All of theses reconstructions

were computed using measurement data obtained with a source modulation frequency of 600 MHz.

The most striking pattern in these images is that fingers from healthy subjects (Figs. 5.11(a),

5.12(a)) appear to show a larger variation of µa and µ′s values as compared to images of fingers from

subjects affected by RA (Figs. 5.11(b), 5.12(b)). Additionally, images of healthy joints appear to

show lower µa and µ′s values than joints affected by RA, especially in the region of the joint cavity,

74



(a) (b)

Figure 5.11: Examples of two-dimensional FD-DOT cross-sections through (a) healthy joints and
(b) joints affected by RA, showing the spatial distribution of µa. Imaging was performed with a
source modulation frequency of 600 MHz.

(a) (b)

Figure 5.12: Examples of two-dimensional FD-DOT cross-sections through (a) healthy joints and
(b) joints affected by RA, showing the spatial distribution of µ′s. Imaging was performed with a
source modulation frequency of 600 MHz.

in the center of the images.

This is in agreement with the well known fact the synovial fluid as well as the synovium of

joints in subjects with RA undergo changes in optical properties [135, 136]. The inflammatory

process starts in the synovium, leading to changes in tissue architecture and cell structure. Cell

proliferation can be observed and the appearance of the synovial fluid changes from a clear, yel-

lowish substance to a turbid, gray-yellowish substance. The number of leukocytes increases from

100/mL to 200/mL in healthy subjects, to 1, 000/mL to 100, 000/mL during stages 1 and 2 in
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subjects with RA. This is particularly important for optical techniques, since leukocytes have a

diameter of approximately 7 µm to 20 µm and therefore have a considerable effect on the scatter-

ing coefficient. Furthermore, the protein content in the synovial fluid approximately triples from

10 g/L to 20 g/L to 30 g/L to 60 g/L [132, 133]. This has the effect of making the content of

the synovial cavity more opaque, which is manifested in these FD-DOT images as an elevation in

absorption and scattering.

5.5.1 ANOVA analysis

In this section we present results from ANOVA analysis of the six diagnostic subgroups (A, B,

C, D, E, H) presented in Table 5.1 and the three diagnostic subgroups (A, S, H) in Table 5.2,

respectively.

Results from ANOVA on all six subgroups is summarized in Fig. 5.13, where the means of each

subgroup are plotted along with the 95% confidence interval. Results are provided for µa and µ′s

(or simply µs) images. Groups whose confidence intervals do not overlap each other’s confidence

interval are said to differ at statistically significant levels (here at p < 0.05). For convenience,

the lower and upper bound of the confidence interval of group H is depicted. Thus, group H is

statistically different from subgroups whose confidence intervals do not cross those bounds.

Group H is statistically different from groups A, B, C, D, and E in features max(µa), var(µa),

and var(µ′s). In most cases, group A appears to be in a range between group H and groups B, C, D,

and E. However, group A is not statistically different from the individual subgroups at significant

levels.

Results from an imbalanced one-way ANOVA (using Tukey’s test in a multiple comparison

procedure) on the three subgroups presented in Table 5.2 are summarized in Fig. 5.14. The means

of each subgroup are plotted along with the 95% confidence interval. Results are provided for

µa and µ′s (or simply µs) images. Groups whose confidence intervals do not overlap each other’s

confidence interval are said to different at statistically significant levels (here at p < 0.05). For

convenience, the lower and upper bound of the confidence interval of group H is depicted. Thus,

76



0.39 0.44 0.50 0.55 0.60 0.65

H
E
D
C
B
A

v18_600MHz_mu_a_max_6groups

 
max (µ

a
)

0.04 0.06 0.09 0.11 0.14 0.17

H
E
D
C
B
A

v18_600MHz_mu_a_min_6groups

 
min (µ

a
)

0.00 0.00 0.00 0.00 0.00 0.00

H
E
D
C
B
A

v18_600MHz_mu_a_var_6groups

 
var (µ

a
)

0.04 0.12 0.19 0.27 0.34 0.42

H
E
D
C
B
A

v18_600MHz_mu_a_ratio_6groups

 
ratio (µ

a
)

11.42 11.56 11.69 11.83 11.96 12.10

H
E
D
C
B
A

v19_600MHz_mu_s_max_6groups

 
max (µ

s
)

5.49 6.02 6.54 7.07 7.59 8.12

H
E
D
C
B
A

v19_600MHz_mu_s_min_6groups

 
min (µ

s
)

0.06 0.13 0.20 0.27 0.33 0.40

H
E
D
C
B
A

v19_600MHz_mu_s_var_6groups

 
var (µ

s
)

0.46 0.51 0.56 0.61 0.66 0.71

H
E
D
C
B
A

v19_600MHz_mu_s_ratio_6groups

 
ratio (µ

s
)

Figure 5.13: Mean values with 95% confidence intervals of all features (600 MHz data) from all
six diagnostic subgroups (A, B, C, D, E, and H in Table 5.1). The left column corresponds to
features from µa images, while the right column corresponds to features from µ′s images. If there
is no overlap between groups, then the mean of the given feature is different from the other means
at statistically significant levels (p < 0.05).

group H is statistically different from subgroups whose confidence intervals do not cross those

bounds.

As a reminder, these three subgroups consist of joints from subjects with RA but without ra-

diological symptoms and are therefore treated as “asymptomatic” (A); joints with RA and with

radiological symptoms - these joints are treated as “symptomatic” (S); and healthy joints (H).

Joints in group A are interesting because they appear to be healthy joints when only their MRI and

US scans are analyzed. However, these subjects are actually positive for RA.
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Figure 5.14: Mean values with 95% confidence intervals of all features extracted from FD-DOT
images (600 MHz) from groups S, A, and H (see Table 5.2). The left column corresponds to
features from µa images, while the right column corresponds to features from µ′s images. If there
is no overlap between groups, then the mean of the given feature is different from the other means
at statistically significant levels (p < 0.05).

We observe that for all features, the mean values of group A lie between the values of group

H and group S. In other words, the mean feature value of “asymptomatic” joints is somewhere

between the feature values of the “symptomatic” and “healthy” joints. In several cases, the dif-

ferences are statistically significant. This is particularly interesting because these “asymptomatic”

joints appear as “healthy” joints in US and MRI scans, but they clearly do not appear as healthy

joints in FD-DOT scans. However, they do not appear as “symptomatic” joints either. Instead, they

appear to be a distinct third category of joints.
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Figure 5.15: Distribution of features found in fingers of healthy (blue dots, group H), symptomatic
(red dots, group S), and asymptomatic (gray dots, group A) joints. The bars show the standard
error with respect to var(µa) and max(µa), respectively, for each group.

For example, for var(µa), var(µ′s), max(µa), the mean of group A differs significantly from

the mean of group H; and for max(µ′s) there is a significant difference between groups A and S.

ROC analysis for this case yields a sensitivity of Se = 0.79 and a specificity of Sp = 0.85. This

suggests that DOT imaging may not only be capable of distinguishing between healthy joints and

joints of subjects with RA, but it may also be more sensitive than MRI or US to early changes in

joints that do not yet appear to be affected by RA.

Figure 5.15 provides another look at this issue. Here we have plotted the combined image

features of var(µa) and max(µa) for fingers in group H (blue dots), group S (red dots), and group

A (gray dots). Symptomatic joints show smaller variations and lower maximum µa, and hence

can be predominately found in the lower left corner of this plot. Healthy joints tend to appear in

the upper right corner of this plot, as these joints exhibit larger spatial variations in µa and larger

maximum µa. Data from asymptomatic joints (group A) lie between these two classes. Indeed,

looking at the plot we can see that some joints fall clearly within the group of healthy joints, while

others fall within the group of affected joints.

This is clinically significant because subjects that do not yet have radiological symptoms may

be accurately diagnosed with FD-DOT and recommended to start treatment. Thus, these subjects

would begin treatment earlier than otherwise expected if the diagnosis was performed using only
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US, MRI, or x-ray imaging. These results are preliminary and studies with a larger number of

subjects are need to validate these findings.

5.5.2 Student-t test

Student-t test analysis is used to compare feature vectors of groups S and H (see Table 5.2).7 The

mean, and standard deviation (std) of each feature for each joint is summarized in Table 5.3. We

find that, indeed, the differences between healthy and affected joints in var(µa), var(µ′s), and

min(µa) are statistically significant, with p-values of 2.30× 10−13, 2.71× 10−12 and 2.01× 10−07

respectively. Interestingly, all features show statistically significant differences (p < 0.05) between

images of healthy and affected joints, except for min(µ′s) (p = 0.081 > 0.05).

Table 5.3: Mean and standard deviation of individual features extracted from images of joints from
groups S and H.

Healthy Affected
Absorption Group H Group A

Feature Name Mean ± Std Mean ± Std p-value
Maximum 0.62 ± 0.10 0.46 ± 0.12 3.36E-14
Minimum 0.06 ± 0.05 0.13 ± 0.08 2.01E-07
Variance 0.0037 ± 0.00210.0014 ± 0.0013 2.30E-13

Ratio 0.11 ± 0.10 0.32 ± 0.25 3.32E-09

Healthy Affected
Scattering Group H Group A

Feature Name Mean ± Std Mean ± Std p-value
Maximum 11.84 ± 0.12 11.34 ± 0.51 9.21E-12
Minimum 6.22 ± 1.82 6.86 ± 2.34 8.10E-02
Variance 0.35 ± 0.17 0.15 ± 0.14 2.71E-12

Ratio 0.53 ± 0.16 0.61 ± 0.22 1.20E-02

5.5.3 ROC curve

This section summarizes results from ROC curve analysis comparing features from joints in groups

S and H. Figure 5.16 shows the ROC curves for min(µa), max(µa), ratio(µa), and var(µa). The

7Here we neglect joints in group U.
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Figure 5.16: ROC curves for the features max, min, var, and ratio extracted from µa and µ′s
images obtained at 600 MHz, respectively.

area under the curve (AUC) is largest for var(µa), for which we find AUC = 0.86 compared

to AUC = 0.85 for max(µa). However, max(µa) yields a higher Youden index (Y = 0.56)

compared to to var(µa) (Y = 0.54). A similar analysis for µ′s-dependent features results in lower

values for Se, Sp, Y, and AUC. The performance of each feature in ROC analysis is summarized

in Table 5.4.

From the Student-t test analysis it is clear that the difference between groups S and H are

significant for most features (Table 5.3). However, it is also clear from ROC curves that not all fea-

tures are equally good classifiers. The two groups are statistically different in all µa features. This

correlates will all µa exhibiting good ROC curve performance as shown in Table 5.4. In contrast,

two µs features, (min(µ′s) and ratio(µ′s)), show weak or no statistically significant differences,

Table 5.4: ROC analysis results using image features derived from µa and µ′s images (data at
600 MHz).

Absorption Scattering
Feature Name Se Sp Y AUC Feature Name Se Sp Y AUC

Maximum 0.78 0.78 0.56 0.85 Maximum 0.56 0.80 0.36 0.55
Minimum 0.55 0.88 0.43 0.76 Minimum 0.63 0.62 0.24 0.63
Variance 0.73 0.82 0.54 0.86 Variance 0.75 0.75 0.50 0.83

Ratio 0.56 0.93 0.50 0.78 Ratio 0.64 0.60 0.24 0.64
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correlating with poor ROC curve performance.

5.5.4 LDA classification

Results from classification with LDA and cross-validation using the leave-n-out cross-validation

technique are summarized in Table 5.5. This analysis was only applied to data from groups S and

H, because the LDA algorithm, as used here, is only capable of acting on a set of data with two

labels (i.e. positive or negative for RA). Shown are the Se, Sp and Y values calculated with the

LDA method for all possible combinations of µa and µ′s parameters. The numbers in bold text

indicate the largest Se, Sp, and Y values observed for both µa and µ′s derived parameters. For

example, combining var(µa) with ratio(µa) resulted in Y = 0.66 (Se = 0.83, Sp = 0.83), which

is higher than when var(µa) is used on its own, for which we had Y = 0.58 (Se = 0.76 and

Sp = 0.82) (Fig. 5.16). When all four parameters are combined a higher specificity of Sp = 0.86

is achieved using LDA, however, Se drops to 0.80, yielding the same Y = 0.66.

Combining scattering derived image features resulted in even higher Y, Se, and Sp values. For

example, we observed that combining max(µ′s), min(µ′s), and var(µ′s) yields the largest Youden

index of Y = 0.76 as well as the largest Sp value of Sp = 0.86. The highest sensitivity Se = 0.93

Table 5.5: LDA classification results using image features derived from µa and µ′s distributions
obtained with imaging data generated at a modulation frequency of 600 MHz. The numbers in
bold indicate the largest values.

Absorption Scattering
Feature Combination Se Sp Y Feature Combination Se Sp Y
max, min 0.79 0.77 0.56 max, min 0.92 0.64 0.56
max, var 0.78 0.79 0.58 max, var 0.76 0.79 0.55
max, ratio 0.8 0.81 0.61 max, ratio 0.93 0.66 0.59
min, var 0.78 0.86 0.64 min, var 0.91 0.82 0.73
min, ratio 0.69 0.67 0.36 min, ratio 0.67 0.69 0.36
var, ratio 0.83 0.83 0.66 var, ratio 0.86 0.74 0.6
max, min, var 0.78 0.86 0.64 max, min, var 0.91 0.86 0.76
max, min, ratio 0.79 0.78 0.58 max, min, ratio 0.92 0.68 0.6
max, var, ratio 0.82 0.81 0.63 max, var, ratio 0.75 0.77 0.52
min, var, ratio 0.8 0.84 0.64 min, var, ratio 0.86 0.82 0.68
max, min, var, ratio 0.8 0.86 0.66 max, min, var, ratio 0.87 0.83 0.7
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Figure 5.17: Example of LDA decision boundary for discriminating between groups S (red) and H
(blue) based on features var(µa) and max(µa).

is reached if max(µ′s) is combined with ratio(µ′s).

An example of the typical decision boundaries generated by the LDA algorithm is shown in

Fig. 5.17, where LDA was used to separate affected joints from healthy joints using the variance

and maximum values of µa.

5.5.5 Influence of source-modulation frequency

To test the influence of the source modulation frequency on the classification results, we perform

the same analysis discussed in Section 5.5.4 with data gathered at 300 and 0 MHz. The results are

shown in Tables 5.6 and 5.7, respectively. In general, images from the scans at 300 and 600 MHz

yield significantly higher sensitivity, specificity, and Youden index values compared to the images

obtained from scans at 0 MHz. This clearly supports the hypothesis that FD-DOT data yields better

classification results than CW-DOT.

Comparing the classification results obtained with the 300 and 600 MHz data, we find that

overall Se, Sp and Y values are higher when 600 MHz data is used.8 This is in agreement with

our previous findings, which were based on numerical simulations and phantom experiments, that

at source modulation frequencies in the range of 400 to 600 MHz the signal-to-noise level is high-

est and the resulting image reconstructions are near optimal for geometries encountered in finger

8The only exception is the combination of min(µa) and ratio(µa), for which at 300 MHz is Y = 0.5, while at
600 MHz it is Y = 0.36.
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Table 5.6: LDA classification results using image features derived from µa and µ′s distributions
obtained with imaging data generated at a modulation frequency of 300 MHz. The numbers in
bold indicate the largest values.

Absorption Scattering
Feature Combination Se Sp Y Feature Combination Se Sp Y
max, min 0.78 0.74 0.52 max, min 0.75 0.70 0.45
max, var 0.74 0.76 0.50 max, var 0.75 0.76 0.51
max, ratio 0.74 0.78 0.52 max, ratio 0.58 0.45 0.03
min, var 0.80 0.71 0.51 min, var 0.81 0.74 0.55
min, ratio 0.80 0.70 0.50 min, ratio 0.68 0.63 0.31
var, ratio 0.69 0.77 0.46 var, ratio 0.73 0.77 0.50
max, min, var 0.76 0.72 0.49 max, min, var 0.73 0.73 0.46
max, min, ratio 0.79 0.72 0.51 max, min, ratio 0.75 0.71 0.47
max, var, ratio 0.73 0.82 0.54 max, var, ratio 0.76 0.76 0.52
min, var, ratio 0.79 0.71 0.50 min, var, ratio 0.72 0.69 0.41
max, min, var, ratio 0.78 0.75 0.53 max, min, var, ratio 0.72 0.69 0.42

Table 5.7: LDA classification results using image features derived from µa and µ′s distributions
obtained with imaging data generated at a modulation frequency of 0 MHz. The numbers in bold
indicated largest values observed.

Absorption Scattering
Feature Combination Se Sp Y Feature Combination Se Sp Y
max, min 0.42 0.33 -0.25 max, min 0.52 0.42 -0.06
max, var 0.55 0.46 0.01 max, var 0.47 0.43 -0.10
max, ratio 0.46 0.42 -0.12 max, ratio 0.29 0.46 -0.25
min, var 0.41 0.37 -0.22 min, var 0.59 0.47 0.06
min, ratio 0.37 0.35 -0.29 min, ratio 0.48 0.44 -0.08
var, ratio 0.43 0.37 -0.20 var, ratio 0.60 0.52 0.12
max, min, var 0.49 0.40 -0.11 max, min, var 0.64 0.51 0.15
max, min, ratio 0.37 0.31 -0.32 max, min, ratio 0.33 0.40 -0.27
max, var, ratio 0.52 0.44 -0.04 max, var, ratio 0.53 0.43 -0.04
min, var, ratio 0.36 0.33 -0.31 min, var, ratio 0.65 0.53 0.18
max, min, var, ratio 0.48 0.39 -0.14 max, min, var, ratio 0.64 0.55 0.19

imaging [77, 188].

5.6 Discussion

In this chapter we presented analysis of clinical data obtained using a new FD-DOT imaging sys-

tem. In total, 56 volunteers were imaged using a FD-DOT, including 36 subjects with various

stages of RA and 20 healthy control subjects [9]. Each subject was evaluated by a rheumatologist
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and diagnosed for RA according to guidelines set by the ACR [2]. In the study, the clinically

dominant hand of each subject with RA was imaged with US and low-field MRI.

The US and MRI images were evaluated by a radiologist and a rheumatologist in a blinded-

review. The images were evaluated for the presence of effusion, synovitis, and erosion in PIP joints

II-IV. Each reviewer classified each subject into one of five sub-groups on the basis of these findings

(Table 5.1). Each of the 219 joints were assigned to one of six subgroups based on evidence

of effusion, erosion, or synovitis in US and MRI images. Then, subjects with RA but without

radiological symptoms were assigned to a group of “asymptomatic” subjects (group A), while

those with joints with RA and with symptoms were assigned to a group of “symptomatic” joints

(group S). A third group of “healthy” joints was created from joints of subjects without RA (group

H).

Imaging with a FD-DOT sagittal laser scanner of PIP joints II-IV was performed on the clin-

ically dominant hand of subjects with RA and on both hands of the control group. A frequency-

modulated laser beam scanned the dorsal side of the finger from proximal to distal end, stopping at

11 discrete locations to allow for data acquisition. Transillumination was recorded from each

source position on the ventral side of the finger with an intensified CCD camera. The three-

dimensional geometry of the scanned finger was obtained with a separate laser-scanning unit

(650 nm, 5 mW, 0.2 mm line width). Imaging was performed at 0, 300, and 600 MHz. In to-

tal, 228 fingers were imaged. Transillumination measurements were used to reconstruct tissue µa

and µ′s coefficients. The system and imaging procedures are described in detail by Hielscher et

al. [9]. Data from three subjects with RA was discarded due to problems that occurred during

the FD-DOT data acquisition process that rendered the measurements unusable for reconstruction.

Thus, a total of 219 joints were considered in the analysis.

For each of these joints, transillumination measurements were used to reconstruct three-dimensional

absorption and scattering coefficient images using an algorithm based on the ERT light propaga-

tion model for NIR light in tissue. The algorithm leverages a PDE-constrained reduced-spaced

quadratic programming scheme to expedite the computational process. From each image we ex-
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tracted four image features (min, max, ratio, var).

In general we found that images generated with 600 MHz data allow for more accurate clas-

sification of each joint (i.e. higher Se, Sp, and Y) than images generated with continuous wave

data (0 MHz) or 300 MHz. This is in agreement with our previous numerical studies that identified

modulation frequencies in the range of 400 to 600 MHz as optimal for finger joint geometries.

Those studies, however, relied on numerical simmulations and did not include clinical data.

Furthermore, we found that combining several image features results in higher Se, Sp and Y

values as compared to using only a single feature. For example, combining max(µ′s), min(µ′s),

and var(µ′s) leads to Y = 0.76 with Se = 0.91 and Sp = 0.86. The highest sensitivity Se = 0.93

is reached if max(µ′s) is combined with ratio(µ′s). In general, it appears that scattering-derived

features perform slightly better than absorption-derived features in these multi-dimensional feature

classifications. This is in contrast to previous results, when only CW-DOT data was considered,

where absorption images were determined to provide the strongest classifiers.

Perhaps most importantly, we observed that the image features of joints from group A lie

somewhere between the optical properties of joints in group S and group H.9 This suggests that

optical methods may be useful in diagnosing very early signs of RA in these joints. Larger clinical

trials will be necessary to conclusively support this hypothesis.

These results motivate further research into the use of FD-DOT as a tool for the diagnosis

of RA. In particular, the use of more sophisticated image features and more advanced machine

learning techniques may result in improved sensitivity and specificity values. For this reason,

Chapter 6 is dedicated to extending the analysis of the data presented in this chapter by considering

features that go beyond the four basic features. The content of Chapter 7 focuses on the use of

machine learning techniques that go beyond LDA.

9As a reminder, joints in group A are considered “asymptomatic’,’ meaning that they belong to subjects with RA
but do not show signs of effusion, erosion, or synovitis on US and MRI images. Joints in group S are from subjects
with RA that do show signs of effusion, erosion, or synovitis on US and MRI images. Joints in group H are from
healthy control subjects.
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Chapter 6
Feature Extraction

Results from Chapter 5 show that FD-DOT images allow for more accurate classification of PIP

joints as affected or not affected by RA than CW-DOT images. Furthermore, FD-DOT scans

at 600 MHz yield more accurate image classification than data at 300 MHz. While only basic

statistical features and a basic multidimensional classification scheme (LDA) are considered, we

show that 91.0% sensitivity and 86.0% specificity can be achieved with 600 MHz data. In contrast,

the best classification results with CW-DOT data is 64.0% sensitivity and 55.0% specificity.

Furthermore, the study showed that features derived from µ′s images allowed more accurate

classification (91% Se and 86% Sp) when compared to µa derived features (83% Se and 83% Sp)

[9]. A limitation in that study was that classification was not performed using a mixture of µa and

µ′s derived features.

A natural progression of this research is to consider more advanced image features and more

sophisticated classification algorithms. We also consider combining features from µa and µ′s data,

as up to now, a mixture of these features has not been considered until now.

In this chapter we consider features extracted from the entire three-dimensional µa and µ′s im-

ages as well as from projections of these three-dimensional volumes onto two-dimensional planes.

We extract three types of features from these data sets. One set of image features is obtained from

coefficients of Gaussian mixture models (GMM) that fit the spatial distribution of the optical prop-

erties inside the finger. A second set of image features are spatial frequency parameters obtained
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through the application of the Fourier transform to these images. Finally, basic statistical features

similar to those discussed in Chapter 5 are obtained from all data sets. Overall, a total of 297

features are extracted from each µa and µ′s image (or 594 from each finger).

The statistical significance of each feature is evaluated with classical statistical methods, in-

cluding Kruskal-Wallis ANOVA, Dunn’s test, and ROC analysis. The intra-class correlation co-

efficient (ICC) is used to compute the effective sample size (ESS) of our data, which in turn is

used to adjust our results for any bias that may be introduced by treating each imaged finger as an

independent sample. This step is necessary as we imaged multiple fingers per subject. Through

this analysis we establish which individual features are best indicators of RA in terms of diagnos-

tic sensitivity and specificity. Links between these best features and physiological processes are

identified.

6.1 Clinical data

This analysis is applied to the clinical data set presented in Chapter 5, which includes 219 FD-

DOT images of PIP joints from 56 subjects (33 with RA and 20 without RA). All subjects are

assigned to one of six diagnostic groups (Table 6.1). All subjects are either positive or negative for

RA. Subjects with RA are categorized into one of five subgroups based on evidence of effusion,

erosion, or synovitis in PIP joints II-IV. Volumetric reconstructions of µa and µ′s within a given

finger are obtained for each imaged joint using an ERT-based algorithm (Fig. 6.1).

Examples of cross-sections are shown in Fig. 6.2. The most pronounced differences between

Table 6.1: Diagnostic table based on clinical evaluation and radiological imaging.

Group Effusion Erosion Synovitis RA Total Joints
A No No No Yes 18
B Yes No No Yes 18
C No Yes No Yes 12
D No No Yes Yes 27
E Yes Yes Yes Yes 24
H No No No No 120

88



(a) Coronal plane (b) Sagittal plane (c) Transverse plane

Figure 6.1: Visualization of typical finger geometries. Sample µ′s cross-sections are visualized
within the finger geometry: (a) coronal (xy), (b) sagittal (xz), and (c) transverse (yz) planes.

joints of subjects affected by RA and of subjects not affected by RA occur at the center of the

images, the region were the joint cavity is located. As expected, in healthy joints both µa and

µ′s often appear to be lower in this region than in the surrounding tissues. The synovial fluid that

fills the joint cavity is almost free of scattering and has lower absorption than surrounding tissue.

Joints affected by RA typically do not show a drop in optical properties in these regions. We find,

however, that relying on visual inspection of DOT images alone does not yield high sensitivities

and specificities. The promise of improved clinical diagnostic values motivates research into the

application of more advanced CAD techniques.

6.2 Data pre-processing

The reconstructed optical property maps shown in Fig. 6.2 are originally recovered on an unstruc-

tured mesh with tetrahedral elements. To simplify our data analysis, first, in a pre-processing step

we use interpolation to convert the reconstruction data from the unstructured mesh to a structured

Cartesian grid. This is a three step process: (1) define a structured grid that overlaps the tetrahe-

dral mesh; (2) identify the set of structured grid points np whose x-y-z coordinates are within the

tetrahedral element defined by the set of four unstructured mesh nodes p = {r1, r2, r3, r4}, where

ri refers to the x-y-z coordinates of a node in the unstructured mesh; (3) compute the µa and µ′s

values at structured grid point k (∀k ∈ np) using the values of µa and µ′s at each node ri of set p.
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Figure 6.2: (a-b) Absorption and (c-d) scattering coronal cross-sections of PIP joints from subjects
without (a,c) and with RA (b,d). All images are reconstructed from data obtained with 600 MHz
source modulation.

On the structured grid one can easily define stacks of sagittal (perpendicular to the xz-plane),

coronal (perpendicular to the xy-plane), and transverse slices (perpendicular to the yz-plane) as

seen in Fig. 6.1. Consider the following example for the rest of this section: structured image A

has dimensionsM×N×P (i.e. number of voxels per axis). There are P coronal slices, N sagittal

slices, and M transverse (Fig. 6.3) slices. These slices are “stacks” of images. We apply three

pre-processing procedures to each stack.

First we calculate the sum of all sagittal, coronal, and transverse slices, respectively, resulting

in three new data sets, which we call SS, SC, and ST (Eq. 6.1). The summation of these slices

magnifies regions with large optical parameters inside the finger, as seen in the example in Fig. 6.3.
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(a) Summation of Coronal Slices (b) Summation of Sagittal Slices (c) Summation of Transverse Slices

Figure 6.3: An example of the summation of coronal, transverse, and sagittal slices of the three-
dimensional data set to create new data sets (a) SC, (b) SS, and (c) ST .

SSmp =
N∑

n=1

Amnp

SCmn =
P∑

p=1

Amnp

STnp =
M∑

m=1

Amnp

(6.1)

Here, SSmp denotes pixel mp in SS, where 1 ≤ m ≤ M and 1 ≤ p ≤ P ensure that all pixels

in SS are defined. The same logic can be applied to interpret SCmn and STnp. Next, we compute

the variance between all sagittal, coronal, and transverse slices, respectively. This results in three

more data sets called V S, V C, and V T (Eq. 6.2). These data sets quantify the variation between

slices, which is a measure of variation in optical parameters inside the finger.

V Smp =
N∑

n=1

(
ISSmp − Amnp

)2

N − 1

V Cmn =
P∑

p=1

(
ISCmn − Amnp

)2

P − 1

V Tnp =
M∑

m=1

(
ISTnp − Amnp

)2

M − 1

(6.2)

As in our previous example, V Smp denotes pixelmp in V S, where 1 ≤ m ≤M and 1 ≤ p ≤ P
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ensure that all pixels in image V S are well defined. Furthermore, ISS is the average sagittal slice,

where ISSmp denotes pixel mp in ISS and is defined as
SSmp
N

. The remaining variables (V Cmn,

V Tnp, ISCmn , and ISTnp ) are defined in a similar manner.

Finally, data sets GS, GC, and GT are obtained by computing the average of all sagittal,

coronal, and transverse slices within± 2.0 mm from the center of the PIP joint, respectively. In this

region, where one typically finds the joint cavity, the differences between subjects affected by RA

and healthy volunteers are expected to be the largest. Furthermore, potential artifacts introduced

by boundary effects are minimal [19, 65]. The center of the joint is at the geometrical center of

the imaged finger, whose dimensions we know from the imaging procedure where the geometry

of each finger is captured. Subsequently, we use this geometry to generate the FVM on which we

compute the forward and inverse DOT problems [9].

Overall, including the entire volume of the unstructured and structured data, the pre-processing

procedures result in 11 distinct data sets per finger (and for each optical variable). The nomencla-

ture used for referencing each processed data set (SV, SS, SC, ST, VS, VC, VT, GS, GC, and GT)

is as follows: the first letter indicates the type of pre-processing (S = sum, V = variance, and G

= geometrically dominant) and the second letter refers to the physiological plane of the resulting

data set (S = sagittal, C = coronal, and T = transverse). Table 6.2 summarizes nomenclature used

in this paper and Fig. 6.4 summarizes the 11 distinct data pre-processing steps.

Table 6.2: Summary of data pre-processing nomenclature.

Name Description Name Description
UV Entire volume (unstructured data) VC Variance between coronal slices
SV Entire volume (structured data) VT Variance between transverse slices
SS Summation of all sagittal slices GS Geometrically dominant sagittal slice 
SC Summation of all coronal slices GC Geometrically dominant coronal slice 
ST Summation of all transverse slices GT Geometrically dominant transverse slice
VS Variance between sagittal slices
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Figure 6.4: Data processing steps, starting with the raw CCD data, followed by processing of the
unstructured and structured data sets, and ending with application of the 3 projection operators to
the three-dimensional structured data. This results in 11 distinct data sets (represented by each
circle and summarized in Table 6.2). The feature extraction operators are applied to each set.

6.3 Feature extraction

We extract three different types of features from all the data sets described in the previous section.

These features include: (1) basic statistical values, (2) Gaussian mixture model (GMM) parame-

ters, and (3) Fast-Fourier Transform (FFT) coefficients. Each type of feature is described in more

detail in the following sections.

6.3.1 Basic features

The basic statistical features are the maximum, minimum, mean, variance, and the ratio of maxi-

mum to minimum of each data set. These features are summarized in Table 6.3, where each feature

is assigned a number (#) that is used for referencing throughout this paper. These five features are

obtained from each of the 11 data sets (Table 6.2) by arranging the optical parameter into vectors

of ascending value. Each reconstructed property, x, is expressed as x = [x1, x2, x3,. . . , xN ], where
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Table 6.3: Definition of basic statistical features.

# Feature Name
1 Maximum
2 Minimum
3 Mean
4 Variance
5 Maximum/Minimum

the computational domain has N mesh points and xi is the optical property at the ith mesh node.

To avoid singular outliers, we calculate the average of the 10 largest and 10 smallest values

and assign them as the maximum and minimum features, respectively. The mean and variance are

computed from data that does not include the 10 largest and 10 smallest values. The ratio between

maximum and minimum is computed as the fifth basic feature.

6.3.2 GMM coefficients

An additional seven features are extracted from all data sets (except the unstructured data) by pa-

rameterizing the images with a two-dimensional or three-dimensional multivariate Gaussian mix-

ture model (GMM). Parameterization with GMMs is chosen because the reconstructed distribu-

tions of the optical properties are typically smooth varying functions in space. We fit the GMM by

finding estimates for amplitude A0, covariance matrix Σ, and mean x0 of the Gaussian function

(G),

G (x) = A0 exp [−1

2
(x− x0)T Σ−1 (x− x0)]. (6.3)

ParametersA0,Σ and x0 are estimated using the Expectation-Maximization (EM) algorithm [189].

The model data allows for more advanced statistical analysis as the entire image is described by

only a few parameters (Fig. 6.5). We set the total number of Gaussian functions in the GMM model

to 8, as we find that they provide sufficient accuracy.
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Table 6.4: Definition of GMM features. (∗ These feature are only applicable when considering
three-dimensional images.)

# Description
6 Absolute error between original image and GMM image
7 1st eigenvalue of Σ of largest positive Gaussian
8 2nd eigenvalue of Σ of largest positive Gaussian
9 3rd eigenvalue of Σ of largest positive Gaussian*
10 1st eigenvalue of Σ of largest negative Gaussian
11 2nd eigenvalue of Σ of largest negative Gaussian
12 3rd eigenvalue of Σ of largest negative Gaussian*

In the case where we consider data on unstructured grids, it is necessary to modify the algorithm

so that each data “point” has a corresponding weight. Using the volume of the FVM node around

each node as the weight works well.

Features that described the parameterization of the concave (positive) and convex (negative)

regions are extracted, including the absolute error between the mixture model and the original data

(Table 6.4). The eigenvalues of the dominant positive and negative Gaussians are computed and

extracted, as these features can quantify the spread of the Gaussian functions.

  

(c) (d)

(a) (b)

Figure 6.5: (a-b) Three-dimensional example of µa around a joint. (c-d) Coronal cross-section
of µa across the same PIP joint. (a) Iso-surfaces of the original three-dimensional data. (b) Iso-
surfaces of the GMM model showing a good approximation to the original data. (c) Isolines are
superimposed on the original image to show the resulting fit from GMMs. (d) The model image
generated from the coefficients of the GMM model.
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6.3.3 FFT coefficients

In addition to using GMMs, a two-dimensional image or three-dimensional volume can also be

parameterized by performing a two- or three-dimensional discrete fast Fourier transform (FFT).

The n-dimensional Fourier transform,

f̂(k) = [Fx→k](k) =

∫

Rn
e−ik·xf(x)dx, (6.4)

decomposes the reconstructed image, f(x), into its underlying frequency components. In this work

we use two- and three-dimensional discrete FFTs. In this case the extracted image features are the

coefficients of the FFT of the µa and µ′s images.

The three-dimensional-FFT (N1×N2×N3 in dimension) results in an N1×N2×N3 matrix of

FFT complex coefficients. We truncate the matrix to store only an n1×n2×n3 matrix of coefficients

centered at (N1 + 1)/2× (N2 + 1)/2× (N3 + 1)/2, resulting in n1×n2×n3 complex coefficients.

Because of the symmetry properties of the FFT and because we are only interested in the absolute

value of the coefficients, we reduce the number of distinct coefficients to (n1 × n2 × n3 + 1)/2.

This process allows for the representation of each µa and µ′s image by only (n1 × n2 × n3 + 1)/2

real-valued coefficients instead of N1 ×N2 ×N3 complex FFT coefficients.

In this work, three-dimensional images are parameterized using n1 = n2 = n3 = 5, resulting in

63 real-valued coefficients which are labeled from 1 to 63, and ranked based on decreasing distance

from the origin. This particular value is chosen because it is optimal in accurately representing the

original image and simultaneously maintaining a low coefficient The choice of this particular value

is based on one assumption: retaining the coefficients of the first few frequencies is sufficient to

represent the distribution of optical properties. This assumption is based on the known fact that the

light propagation operator is a smoothing operator that does not permit high frequency solutions,

a well-known fact in optical tomography. For this reasons we choose to discard high Fourier

frequencies. In general, this particular value appears to yield a sufficiently accurate representation

of the original image while simultaneously maintaining a low coefficient count.
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Table 6.5: Definition of FFT features.
# Description

13 Absolute error between original image and image captured by the first 5 
frequencies of the 2D- or 3D FFT

14-26 (For 2D images only) Absolute value of 2D-FTT coefficients (Fig. 6.6)
14-76 (For 3D images only) Absolute value of 3D-FTT coefficients

Each of the 63 coefficients are treated as independent image features. Similar methodology

is used in treating two-dimensional images, which results in 13 unique FFT coefficients for each

image. The spatial ordering of three-dimensional FFT coefficients follow the same logic as the

ordering scheme for two-dimensional FFT coefficients in Fig. 6.6. The FFT coefficients are labeled

according to Table 6.5.

More specifically, projection number two was analyzed with a three-dimensional DFT. The co-

efficients belonging to the first five frequencies are retained, resulting in a total of 125 coefficients.

Since the image f(x) is a real value function, it can be simply obtained that f̂(k) =
¯̂
f(-k). Since

only the absolute values of the coefficients are stored, these 125 features are reduced to 63, because

62 of them are the complex conjugates of the other 62 features. Thus, 62 features have duplicates

and only one is stored. Only features whose corresponding frequency k belonged to the set A3 are

stored (Eq. 6.5).

A

126

95348

131171012

x

y

Figure 6.6: FFT coefficients of a two-dimensional image A. Unique coefficients are numbered in
increasing order according to distance from the origin, with z > y > x axis preference used as a
tie breaker.
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A3 , {k : k1 > 0}
⋃
{k : k1 = 0, k2 > 0}

⋃
{k : k1 = 0, k2 = 0, k3 ≥ 0} (6.5)

Projections 3 to 11 are analyzed with the two-dimensional DFT. Only the coefficients of the

first five leading frequencies are stored (total of 25 coefficients). Similar to the three-dimensional

DFT, only the 13 features whose corresponding frequency k belong to the set A2 are stored (Fig.

6.6).

A2 , {k : k1 > 0}
⋃
{k : k1 = 0, k2 ≥ 0} (6.6)

Spectral analysis results in 180 features for each optical property, with 63 features derived from

the three-dimensional structured data set and 117 from the two-dimensional projections. Overall,

spectral analysis produces 360 features for each finger joint after applying this procedure to the

absorption and scattering distributions. We note that this procedure is very flexible and that the

number of FFT coefficients that are stored can be increased or reduced as necessary.

6.3.4 Short-hand notation

To succinctly refer to various data sets and extracted features we introduce the following shorthand

notation “Feature #:Projection Name:Optical Parameter.” For example, the maximum value of

the middle sagittal slice in µa images is denoted by F1:GS:a. Indices “a” and “s” denote µa

or µ′s distribution features, respectively. Labeling of FFT features starts with F13 for the first

FFT coefficient. For two-dimensional images, the last FFT coefficient is F26, while for three-

dimensional images it is F76 (Table 6.5). Feature numbers can be referenced from Tables 6.3, 6.4,

and 6.5. Projection names are summarized in Table 6.2.

Combined, features provide information on the distribution of the optical properties inside and

around a PIP joint. In total, 55 basic features, 52 GMM parameterization features, and 190 FFT

coefficient features are extracted from each finger’s µa and µ′s images (leading to (55+52+190)×

2 = 594 features).
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6.4 Statistical analysis

6.4.1 Kruskal-Wallis ANOVA test and Dunn’s test

The utility of each feature for classification is gauged by statistical analysis on the (null) hypothesis

that there are no statistically significant differences between the 5 diagnosis groups (A-E) and

the control group (H) (Table 6.1). The following three steps are taken to analyze the statistical

significance of each feature.

In the first step, through χ2 goodness of fit analysis we determine that there is only a small

likelihood that the extracted features are drawn from a normally distributed population [190]. In

the second step, the non-parametric (distribution-free or non-parametric) Kruskal-Wallis test is

used to determine if at least one of the six groups exhibits statistically significant differences from

the other groups. Unlike classical ANOVA, the Kruskal-Wallis test is used to determine confidence

levels for observed differences between multiple groups through analysis of data rank instead of

the actual observations. [190]

The ranking system is as follows: each observation (or feature) is ranked from smallest to

largest, without regard to group, with the smallest observation having rank 1. Then, the general

Kruskal-Wallis statistic, H , is defined as

H =
12

N(N + 1)

T∑

t=1

nt
(
R̄t − R̄

)2
, (6.7)

where R̄ is the average rank of all observations, R̄t is the mean rank observed in group t, and nt is

the size of group t, N is the total number of observations, and T is the total number of groups. The

observed differences between the groups are statistically significant if the H-statistic is larger than

the corresponding critical value from a χ2 distribution table with ν = T − 1 degrees of freedom,

where T = 6, the number of distinct groups [190].

In the third step, group-to-group comparison using Dunn’s test is performed to determine which

groups, if any, are significantly different from each other. This test is chosen because it allows di-
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rect comparison of two groups that do not have the same size [190]. This is of particular importance

in our work as group sizes vary significantly (Table 6.1). Dunn’s test is used to compare all possible

combinations of two subgroups (i.e. A vs. B, A vs. C, A vs. D, etc.).

Group-to-group comparison using Dunns test is performed to determine which groups are sta-

tistically different from each other when observed differences between groups are found statisti-

cally significant by the Kruskall-Wallis NOVA test. The Dunns test statistic is defined as,

Q =
R̄a − R̄b√√√√

(
N (N + 1)

12
−
∑N

i (τ 3
i − τi)

12 (N − 1)

)(
1

na
+

1

nb

) . (6.8)

where a and b denote variables from any two groups being compared. Terms involving τ are

corrections that account for tied ranks, where τ represents the total number of ties in the ith set of

tied ranks.

6.4.2 Effective sample size

Our clinical data consists of 99 fingers from 33 subjects with RA (three fingers per subject) and

120 fingers from 20 subjects without RA (six fingers per subject). In this work we treat each finger

as an independent sample. In our calculation of Se and Sp we use the effective sample size (ESS)

to account for inter-dependence between DOT images of PIP joints from the same subject (using

the intra-class correlation coefficient or ICC) [191, 192]. This procedure reduces the number of

independent data samples from 99 (to a minimum of 33) for subjects with RA and from 120 (to a

minimum of 20) for subjects without RA, and leads to reduced Se and Sp values.

For each feature we compute the ESS value for the affected (nA) and healthy (nH) groups,

respectively, and then compute confidence intervals for Se and Sp. The ESS (n) is defined as
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n =
mk

1 + ρ(m− 1)
, (6.9)

where k is the number of groups or clusters (i.e. subjects), m is the number of samples per group

or cluster (i.e. fingers per subject), and ρ is the ICC value, defined as

ρ =
s2
b

s2
b + s2

w

, (6.10)

where s2
b is the variance between clusters and s2

w is the variance within clusters. The ESS may

vary between features depending on the level of correlation between data samples from the same

subject as captured by ρ, which in turn may affect the computed Se and Sp values.

The effect of the ICC and ESS on our results is captured by computing the binomial propor-

tion confidence intervals of Se (CIαSe) and Sp (CIαSp) using a Wilson score interval [193]. The

confidence intervals are defined as

CIαSe =
Se+ 1

2nA
Z2

1−α/2 ± Z1−α/2

√
Se(1−Se)

nA
+

Z2
1−α/2
4nA

1 + 1
nA
Z2

1−α/2
, (6.11)

CIαSp =
Sp+ 1

2nH
Z2

1−α/2 ± Z1−α/2

√
Sp(1−Sp)

nH
+

Z2
1−α/2
4nH

1 + 1
nH
Z2

1−α/2
, (6.12)

where α is the error percentile and z1−α
2

is the 1 − α
2

percentile of a standard normal distribution.

For example, to achieve a 95% confidence level, we set α = 0.05, so that 1 − α
2

= 0.975 and

z1−α
2

= 1.96. This concept is expanded to a generalized ICC (GICC) when considering Se and Sp

for multi-dimensional feature combinations in the second part of this paper. The GICC coefficient

is defined as
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ρ =

∑
i,j|σbi,j|∑

i,j|σbi,j|+
∑

i,j|σwi,j|
, (6.13)

where σb and σw are the “between” and “within” cluster covariance matrices, respectively [194].

6.4.3 ROC analysis

ROC curve analysis is used to study the classification strength of each feature individually (see

Section 5.3.5). For this analysis, we consider only a traditional two-class problem, where one

group of data is “positive” and the other group is “negative.” In our case, the group of healthy

joints (or group H) is considered “negative” for RA, while the five subgroups that are positive for

RA (A, B, C, D, and E) are combined into a single group (group RA).

With ROC curve analysis we determine the classification strength of each feature by computing

the threshold value xth that best separates the two groups (i.e. H vs. RA). The best threshold is the

feature value x that maximizes the Youden index (Y), which is defined as Y = Se + Sp − 1. A

feature that perfectly separates the affected from the healthy joints yields Y = 1.0, while a feature

that completely fails to separate the two classes yields Y = 0.0 [185].

6.5 Results

6.5.1 GMM and FFT parameterization

Sample results from GMM parameterization and FFT analysis are presented in Fig. 6.7. The top

row corresponds to the middle µa cross-sectional slices from the original data. Images in the

middle row represent the GMM parameterization of a cross-sectional slice of the original data.

Parameterization of the data removes contributions from the boundary, leaving only the major

interior structures. In general, the GMM models are good approximations to the original data.

Images in the bottom row are reconstructed from only the first five FFT frequencies; they are
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Figure 6.7: (Top row) Sagittal, coronal, and transverse cross sections of a healthy PIP joint. (Mid-
dle row) GMM parameterization approximation. (Bottom row) Reconstruction of the original
image using only the extracted FFT coefficients of the first five frequencies.

representative of the level of detail captured by the FFT coefficients we extract, capturing the

general distribution of µa. Preserving the first five frequencies minimizes the contribution from

pixels near the boundary; this is important because values near the boundary are more prone to

numerical error and noise. Similar results are found for the µ′s data.

6.5.2 Kruskal-Wallis ANOVA test

Results from Kruskal-Wallis analysis of features from images of PIP joints from groups A-H are

summarized in Fig 6.8. We plot the H-statistic as a function of data set and feature number (see

Sections 6.2- 6.3; Tables 6.2, 6.3, 6.4, and 6.5). There are six distinct groups (k = 6), thus, H >

11.07, 15.09, and 20.52 are necessary to establish statistical significance in observed difference at

the 0.05, 0.01, and 0.001 confidence level; H ≥ 11.07 in 249 features (131 from µa and 118 from

µ′s) and H ≥ 20.52 in 129 features (55 from µa and 74 from µ′s).

Basic features (two-dimensional and three-dimensional) and features from the two-dimensional-

FFT of the V S and GS slice of µa data yield the most features with H > 20.52. In the case of

µ′s images, basic features (two-dimensional and three-dimensional) and two-dimensional-FFT co-

efficients of projections SC, V S, V T , V C, and GS result in many feature with H > 20.52.

103



The results show statistically significant differences between the spectral features of PIP joints of

subjects with RA and without RA.
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6.5.3 Dunn’s test

Table 6.6 shows results from Dunn’s test applied to the first five coefficients of the three-dimensional-

FFT of the structured data, corresponding to the low frequency components of the µa and µ′s

distributions. The critical Q values to establish statistically significant differences between two

subgroups at the 0.05 and 0.01 significance levels are Q = 2.936 and Q = 3.403, respectively.

Instances where Q > 2.936 are highlighted in bold.

One can see that Q is generally greater than 2.936 when features of group H are compared to

each of the other affected groups (A, B, C, D, E). This means that these features may be useful in

distinguishing between healthy volunteers and subjects with RA. On the other hand, Q is generally

smaller than 2.936 when affected groups are compared to each other; indicating that it may be

difficult to distinguish between the different subgroups of affected subjects. However, there are

some features with Q > 2.936, such as F14:SV:a and F14:SV:s (groups B vs. E), suggesting that

even these subgroups may be distinguishable. Similar results are obtained for all other features.

Figure 6.9 shows the mean values and standard errors of the maximum (nH = 59.9, nA =

52.1), minimum (nH = 45.1, nA = 53.6), mean (nH = 55.1, nA = 52.0), and variance (nH =

62.1, nA = 52.0) of µa and µ′s images for healthy volunteers and subjects with RA. The standard

error was computed using the effective sample size of the affected and healthy groups (Eq. 6.9),

denoted by nH and nA for each specific feature, respectively. One can see that, on average, the

healthy subjects show a higher maximum µa value and a higher variance. On the other hand, the

minimum and mean µa values are lower in healthy subject as compared to subjects with RA.

Similar to observations from µa images, subjects with RA have a lower maximum µ′s value

but a higher minimum µ′s value compared to healthy subjects. However, in contrast to results

from µa data, subjects with RA have a marginally lower mean µ′s value. Similar to results from

µa images, subjects with RA have a significantly lower variance in µ′s images when compared to

healthy subjects.
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Figure 6.9: Mean value and standard error of the maximum, minimum, mean, and variance of µa
and µ′s images. A two-sample student-t test shows differences between features from subjects with
RA and without RA are statistically significant at the α = 0.01 level. The variance is scaled to
display on the same axis († scaled by 100; ‡ scaled by 10).
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6.5.4 ROC analysis

Examples of ROC curves are given in Fig.6.10, while in Fig. 6.11 we show the results from ROC

curve analysis of µa and µ′s features. We plot the Youden index (Y ) as a function of the data

set and the feature number (see Sections 6.2- 6.3; Tables 6.2, 6.3, 6.4, and 6.5). Y ≥ 0.7 for 107

features, where 65% are from µ′s and 35% from µa images. Y ≥ 0.80 for three µ′s features; variance

of unstructured data (0.82), mean of variance between transverse slices (0.81), and the first FFT

coefficient (i.e. DC component) of the variance between coronal slices (0.80). The largest Y from

µa images is obtained with the ratio of maximum to minimum of the summation of all transverse

slices (0.77). In general, the best single feature classification results are from µ′s features.

Of the 107 features that achieve Y ≥ 0.70, approximately 50% were basic statistical features,

45% from spatial Fourier analysis, and 5% from GMM parameters. Over 47% of the features

resulting in Y ≥ 0.70 are derived from the variance across two-dimensional sagittal, transverse,

and coronal planes (51 of 107 features).
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Figure 6.10: (a-b) ROC curves for basic features from unstructured data (F01:UV:a and F01:UV:s,
F02:UV:a and F02:UV:s, etc.), (c) absolute error between original data and GMM model features,
and (d) DC component of two-dimensional-FFT features. FFT features perform better, in terms of
area under the curve, than basic features and GMM coefficients.
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Basic features from µ′s images are better classifiers than features from µa images (Fig.6.10(a-

b)). The variance of the unstructured data (F4:UV:s) is the best single feature classifier (Y = 0.82)

(Fig.6.10(b)). The absolute error between original images and GMM approximations performed

strongly as one-dimensional classifiers with up to Y = 0.75 (Fig.6.10(c)). The coefficients of the

lowest order term of the two-dimensional-FFT of variance images (VS, VT, VC) are very strong

one-dimensional classifiers with up to Y = 0.80 (Fig.6.10(d)).
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6.6 Discussion

In this chapter we presented a method for extracting features from DOT images that goes beyond

simple statistical values. The process consists of three steps: (1) data pre-processing, (2) feature

extraction, and (3) statistical and ROC curve analysis of individual features.

The framework is tested on 219 DOT images of PIP joints II-IV gathered through a clinical

trial (33 subjects with RA and 20 healthy control subjects). Clinical diagnosis of RA according to

the ACR criteria is the gold standard. Ultrasound and MRI scans of the clinically dominant hand

were performed. A rheumatologist and a radiologist, in a blinded review, analyzed the images and

classified each subject based on detectable symptoms of RA (groups B to E). Subjects without

signs of RA-induced joint deformities were classified as healthy (group H) or as affected with RA

(group A) based on non-imaging based evidence. A total of 297 features are extracted from each

µa and µ′s reconstruction of all imaged joints. Statistical analysis of the extracted features is used

to find features that reveal statistically significant differences between diagnosis groups.

Three important findings are discovered. First, through application of the non-parametric

Kruskal-Wallis ANOVA test we establish the existence of image features that show statistically

significant differences between subjects with RA and without RA.

Second, we use Dunn’s test (p < 0.05) to discover that features derived from group A (subjects

with RA but without abnormal findings in MRI and ultrasound scans) are statistically different

from features derived from healthy subjects (group H). At the same time, the differences in optical

properties between group A and groups B to E were generally not significant. This is an important

finding because it shows that DOT imaging of PIP joints has the potential to detect the presence of

RA even when ultrasound and MRI scans cannot detect effusion, synovitis, or erosion in the joint

cavity.

Third, we discover that the µ′s distribution yields stronger one-dimensional classifiers. ROC

analysis shows three µ′s features for which Y ≥ 0.8. This is a significant improvement over

previous work where Y ≤ 0.59 was obtained with ROC analysis [9]. This represents the first time

that µ′s images are exploited to yield strong differences between PIP joints of subjects with and
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without RA. Additionally, we establish that the variance between sagittal, transverse, and coronal

slices yields a large number of strong single feature classifiers (Y ≥ 0.70).

These three findings demonstrate that changes in optical properties induced by RA are de-

tectable using DOT. The statistically significant differences between image features from affected

and healthy subjects shows that it might be possible to accurately diagnose RA using FD-DOT.

Furthermore, the general lack of statistically significant differences between features from group

A and groups B to E is evidence that DOT is sensitive to changes in optical properties of the

synovium that MRI and ultrasound cannot resolve.

The following chapter, Chapter 7, focuses on multi-dimensional classification using the fea-

tures that result in the largest Youden indices from ROC analysis as presented in this chapter.

Employing five different classification algorithms, we show that using multiple rather than single

image features leads to higher sensitivities and specificities.
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Chapter 7
Image Classification

The content of this chapter advances the research in Chapter 6 by employing data mining tech-

niques to achieve high sensitivities and specificities. Our efforts in prior work and those in Chap-

ters 5 and 6 employ only basic feature extraction schemes and basic image classification tech-

niques. Those results show that there is a significant level of natural contrast in the optical proper-

ties of PIP joints, likely arising from the onset of RA, indicating that DOT is a promising technique

for diagnosing RA. Results from this chapter further demonstrate the utility of CAD in enhancing

our ability to diagnose RA from DOT images.

In Chapter 6 we present a framework for processing DOT images and extracting heuristic fea-

tures. The classification strength of each feature is evaluated with Kruskal-Wallis ANOVA, Dunn’s

test, and ROC curve analysis. Three important observations are made. First, we observe that fea-

tures of subjects with RA differ from features of healthy subjects (p < 0.05). This implies that

physiological differences between subjects with RA and healthy subjects can be captured by DOT

images. Our second major finding pertains to subjects with RA that do not exhibit effusions, syn-

ovitis, or erosion on MRI and ultrasound scans. The DOT images of these subjects are statistically

the same as the images of subjects with RA that do exhibit effusions, synovitis, or erosion; sug-

gesting that DOT can potentially detect the onset of RA in these joints before MRI and US show

macroscopic anatomical changes. Our third major finding shows that single features from µ′s im-

ages allow more accurate one-dimensional classification (i.e. using ROC curve analysis) of each
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joint as affected or not affected by RA compared to features from µa images.

In this chapter we present a general framework for classifying DOT images of PIP joints as

affected or not affected by RA using machine learning techniques that allow the use of multiple

features in the analysis; thus going beyond the ROC curve analysis of Chapter 6, which we limit

to the evaluation of one feature at a time. Classification of each PIP joint is performed with the

best 30 features from Chapter 6 and five distinct classification algorithms: (1) linear discriminant

analysis (LDA), (2) quadratic discriminant analysis (QDA), (3) k-nearest neighbors (KNN), (4)

self-organizing maps (SOM), and (5) support vector machines (SVM). We report the performance

of each algorithm in terms of sensitivity (Se) and specificity (Sp).

The work in this paper goes beyond previously published material [9,140,173] in several ways.

(1) First, unlike in previous studies, we combine µa and µ′s features in the classification analysis.

(2) Second, we are substantially increasing the number of features considered from 4 to 594. In

addition to basic features, such as smallest or largest µa and µ′s values, we now consider more

advanced features, such as Fourier coefficients of two-dimensional and three-dimensional spatial

distribution of optical properties. (3) Third, we compare the performance of five different classifi-

cation algorithms to determine which scheme is most suitable for DOT imaging data. (4) Fourth,

we employ a feature-selection algorithm to determine the subset of image features that achieves

highest Se and Sp. This step is essential given the large number of permutations possible when

594 features are considered together with five different classification algorithms. Here we employ

an evolution strategy that finds 5 to 10 optimal features out of 594. (5) Finally, we use intra-cluster

correlation coefficients (ICC) to compute the effective sample size (ESS) of each data group, which

we then use to adjust the Se and Sp values; this helps to account for bias that may arise as a result of

treating each imaged finger as an independent sample. This step allows us to compute confidence

intervals for Se and Sp, a necessary treatment as our data consists of multiple fingers per subject

and these images may not be statistically independent.

In the remainder of this chapter we address the general format of multi-dimensional classifica-

tion by presenting details on the five classification methods of interest. We review the mathematical
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and theoretical foundations of the feature-selection algorithm and present results from classifica-

tion of DOT images of PIP joints as affected or not affected with RA. All classification results

are validated through extensive cross-validation. The chapter concludes with a discussion on the

potential impact of CAD in the diagnosis of RA with DOT.

7.1 Data

As was previously mentioned, the analysis in this chapter is focused on a subset of the features

obtained in Chapter 6. Reducing the number of features from the original 594 features to a smaller

subset is motivated by various factors. (1) Features that poorly differentiate between the two diag-

nostic groups in ROC analysis are unlikely to offer substantial contributions in multi-dimensional

analysis and should be discarded. (2) To improve the generalizability of classification results it is

generally desirable for the ratio between the number of features (l) and data samples (N ) to be

small (generally l/N = 0.1 to l/N = 0.2 are acceptable) [189]. (3) The complexity of classifi-

cation algorithms can increase with l, sometimes exponentially. Ultimately, the final number of

features should strike a balance between these motivating factors and the desire to include as many

important features as possible.

In this work we select 30 features from the original 594 features, as it is a good compromise,

resulting in l/N = 0.13. These 30 features are selected based on Youden indices (Y = Se+Sp−1)

from ROC curve analysis. The features with the 30 largest Y values are selected, of these, 4 are

from µa and 26 are from µ′s images. Throughout this paper we refer to features by the numbering

in Table 7.1.

The original clinical data is divided into five groups (labels A, B, C, D, or E) of subjects with

RA (segmented based on symptoms detected on MRI and US scans) and one group without RA

(label H) (refer to Table 5.1). We establish in Chapter 6 that the subgroups of affected subjects are

not statistically different from each other based on the features we currently consider. However,

each of the affected subgroups is statistically different from the cohort of healthy subjects. As a
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Table 7.1: List of features with top Youden indices from ROC curve analysis (presented in Chap-
ter 6).

     
#

Descriptive 
Notation

Analysis 
Type

Optical 
Variable

     
#

Descriptive 
Notation

Analysis 
Type

Optical 
Variable

     
#

Descriptive 
Notation

Analysis 
Type

Optical 
Variable

1 F05:UV:a Basic Absorption 11 F05:ST:s Basic Scattering 21 F013:SC:s 2D-FFT Scattering
2 F05:SV:a Basic Absorption 12 F03:VS:s Basic Scattering 22 F014:VS:s 2D-FFT Scattering
3 F05:ST:a Basic Absorption 13 F01:VC:s Basic Scattering 23 F015:VS:s 2D-FFT Scattering
4 F05:GT:a Basic Absorption 14 F03:VC:s Basic Scattering 24 F014:VC:s 2D-FFT Scattering
5 F02:UV:s Basic Scattering 15 F04:VC:s Basic Scattering 25 F015:VC:s 2D-FFT Scattering
6 F04:UV:s Basic Scattering 16 F01:VT:s Basic Scattering 26 F016:VC:s 2D-FFT Scattering
7 F04:SV:s Basic Scattering 17 F03:VT:s Basic Scattering 27 F014:VT:s 2D-FFT Scattering
8 F05:SV:s Basic Scattering 18 F04:VT:s Basic Scattering 28 F015:VT:s 2D-FFT Scattering
9 F04:SS:s Basic Scattering 19 F03:GT:s Basic Scattering 29 F018:VT:s 2D-FFT Scattering
10 F05:SC:s Basic Scattering 20 F04:GT:s Basic Scattering 30 F019:GS:s 2D-FFT Scattering

result, in the following analysis we treat all subjects with RA as one group (affected with RA) and

attempt to accurately classify an unseen data point as affected or not affected with RA.

The nomenclature used in Table 7.1 is established in Chapter 6 and follows the pattern “Fea-

ture # : Projection Name : Optical Parameter.” Shorthand notation is necessary because of the

large number of features we consider in Chapter 6. For example, feature 19 is denoted by F03:GT:s,

which translates to the mean (F03 or feature number 3) of the geometrically dominant transverse

(GT) slice of the reduced scattering (s) reconstruction. Indices “a” and “s” denote µa or µ′s derived

features, respectively. Feature numbers F01 to F05 are basic statistical features, F06 to F12 are

Gaussian mixture model features, and labeling of FFT features starts from F13 for the first FFT co-

efficient. For two-dimensional images, the last FFT coefficient is F26, while for three-dimensional

images it is F76.

As an example and to visualize the reduction of subgroups A-E into a single group, consider

features 5 and 19 from Table 7.1. The allocation of data to subgroups A-E and H is presented in

Fig. 7.1(a), where all six groups are visualized. The same data is presented in Fig. 7.1(b); however,

in this plot, a single group (label RA) replaces subgroups A-E, resulting in only two groups of data.

For the purpose of consistency, we use features 5 and 19 throughout this text when it is necessary

to show two-dimensional plots.

In this work we study the classification performance of various multi-dimensional combina-

tions of these 30 features, starting with two-dimensional combinations. In Sections 7.2.1-7.2.4 we
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Figure 7.1: Distribution of sample features. In (a) the six distinct diagnosis groups (A, B, C, D, E,
H) are identified, while in (b) the five cohorts diagnosed with RA (A, B, C, D, E) are grouped into
one “RA” group.

briefly review the five classification algorithms. The cross-validation methodology is presented in

Section 7.2.5. The feature selection algorithm, which we use to find the optimal feature combina-

tion, is presented in Section 7.2.6.

7.2 Methods

7.2.1 The KNN method

The KNN algorithm is among the most basic classification algorithms because it does not require

much, if any, prior knowledge of the distribution of the training or testing data. Each unseen feature

vector, x, is classified according to the density of affected or healthy data points within a spatial

sphere of radius r (covering k neighboring data points and two distinct data classes M ) [189,195].

The rules governing which label is assigned to each testing vector x are:

1. From the training data, identify the k nearest neighbors to each vector x using the Euclidean

distance measure.

2. Count the number of training data vectors belonging to each class (Healthy or RA).

3. Assign test vector x to the class with the maximum number of ki samples (Healthy or RA).
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(a) KNN

Class 1

Class 2k = 1 3

k = 1

p

(b) QDA

Class 1

Class 2

H

(c) LDA
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Class 2

H

(d) SVM

d 1

d 2
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ξ i

Class 1
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Figure 7.2: (a) KNN, (b) QDA, (c) LDA, and (d) SVM boundaries for a non-linearly separable
two-class problem. (a) Examples of k = 1 and k = 13 for KNN are shown for a new data point p,
denoted by N. (d) Support vector data points from classes 1 and 2 are denoted by white square or
circle markers, respectively.

The choice of k affects classification: generally, larger values reduce the effect of noise, but

make boundaries between classes less distinct (Fig.7.2(a)). The simplest version of the algorithm

is when k = 1, known as the nearest neighbor (NN) rule. In other words, a feature vector x is

assigned to the class of its nearest neighbor.

7.2.2 The LDA and QDA methods

Classification with discriminant analysis (DA) is a popular parametric method based on Bayesian

statistics, primarily used when the training and testing data is believed to be normally distributed.

Even in cases where the data is not normally distributed, DA is generally an effective classifier as

it gives rise to linear and quadratic hyperplanes that are reasonably accurate at separating the two

classes.

References for the theoretical development and implementation of DA can be found in [189,

196]. In general, for classification with discriminant analysis (DA), the posterior probability

p (ωi|x) of feature vector x originating from class ωi is defined by Bayes theorem [187, 189, 195],

p (ωi|x) =
p (x|ωi)P (ωi)

P (x)
, (7.1)

where P (ωi) and P (x) are prior probabilities for class ωi and feature vector x, respectively [189].

Classification of x is done using the maximum a posteriori estimate, maxωi p̂ (ωi|x), and setting

the prior probability for each feature vector equal, p̂(ωi|x) ∝ p̂(x|ωi)P (ωi).
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The prior probabilities for each class is defined to be equal, P (ωi) = P (ωj) ∀ i, j, so classi-

fication depends only on the likelihood function estimate, p̂ (x|ωi). The likelihood functions are

assumed to follow the general multivariate normal distribution,

p(x|ωi) =
1

(2π)l/2|Σi|1/2
exp

[
−1

2
(x− µi)

TΣ−1
i (x− µi)

]
, i = 1, . . . ,M, (7.2)

where l is the dimensionality of x, M the number of classes (here M = 2), µi the mean value,

and Σi the covariance matrix of class ωi. For classification purposes, estimates for µi and Σi are

computed from the training data, using the maximum likelihood estimation. Following Bayes,

classification is performed using the discriminant function

gi(x) = ln(p(x|ωi)P (ωi)), (7.3)

where P (ωi) is the a priori probability of class ωi. Here, the assumption that P (ωi) = P (ωj) ∀i, j

is used. The decision surfaces resulting from the discriminant functions are gi(x)− gj(x) = 0.

Two distinct classification methodologies arise from this theory. In the first and more general

case, the covariance matrix for each class is estimated independently, resulting in hyperquadratic

decision curves (Fig. 7.2(b)). This method is generally referred to as quadratic discriminate anal-

ysis (QDA). In the second case, the covariance matrices of the two groups are assumed to be

identical (Σi = Σj ∀i, j). The resulting decision curves are hyperplanes and the method is called

linear discriminate analysis (LDA) (Fig. 7.2(c)). In both cases, the individual features are assumed

to be statistically independent, resulting in diagonal covariance matrix estimates [189].

More specifically, the DA method creates a “decision boundary” that allows for the classifica-

tion of a given data point (image) into one of the two classes: healthy or affected. The classification

is made based on the location of a data point relative to the decision boundary. The calculation

of the decision plane in DA relies on the distance between a given data point and the class cen-

troids. For example, in the two-dimensional case, where we consider a combination of two image

120



parameters, QDA produces a quadratic (Fig. 7.2b) while LDA produces a line as the decision plane

(Fig. 7.2c). Increasing the number of dimensions (i.e. number of image parameters considered)

increases the dimensionality of the decision hyperplanes.

7.2.3 The SOM method

The SOM algorithm is a type of constrained clustering algorithm, where an initial set of randomly

distributed and discrete points (“neurons” ) are allowed to “self-organize” into a smooth manifold.

The self-organizing process is achieved through training, a type of competitive learning process,

and is typically referred to as vector quantization. After “clustering” is complete, each neuron is

assigned a class label (Healthy or RA) based on the number of training vectors from each training

class (in this way, similar to the KNN algorithm). Finally, the testing data is input and each feature

vector x in the testing set is assigned to its topologically corresponding neuron. The test vector x

therefore inherits the class label of its assigned neuron.

Our team of researchers previously presented the theoretical developments necessary for the

application of SOMs to CAD of DOT images [173]. In this work we use SOMs to perform image

classification in multi-dimensional feature space, varying the number of neurons (n) and learning

rate (l) used for pattern learning. The total neurons are varied between 9, 16, and 25. The learning

rate is varied from 0.01, 0.1, and 1.0.

7.2.4 The SVM method

SVM has become very popular in the field of machine learning over the past two decades and

is increasingly popular because of its utility in classification and pattern recognition. It has been

shown to have very good generalization properties, and unlike statistical classification done us-

ing discriminate analysis (DA), SVM makes no assumption on the underlying distribution of the

sample data.

We use SVM for the general two-class problem, where the classes are not necessarily linearly

separable (Fig. 7.2d and Fig. 7.3b) [189, 195, 197]. We review the well-established SVM theory
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for completeness. We begin with the theory for linearly separable problems. We then present the

theory for non-separable problems.

Linearly separable problem

SVM is a quadratic optimization problem, where the line (or hyperplane in arbitrary dimensions)

that best separates the two classes (+ or −) is chosen so that the margin between the support

vectors from each class is maximized (Fig. 7.3a). The optimal separating line (hyperplane in n-

dimensional space), H , is denoted H → ωTx + b = 0. Then, the following terms can be defined

without loss of generality.

H → ωTx+ b = 0 (7.4)

H+ → ωTx+ b = +1 (7.5)

H− → ωTx+ b = −1 (7.6)

The distance from the origin to the separating hyperplane is given by,

q = min
x
‖x− 0‖1

2 subject to ωTx+ b = 0. (7.7)

The value of q can be solved using a Lagrange multiplier, by posing the problem as the following

optimization program,

min
x

(
‖x− 0‖1

2 + λ
(
ωTx+ b

))
. (7.8)

The value of q is minimized when x = −λω. Then, using the given condition, ωTx + b = 0,

it is clear that the value of the Lagrange constant is
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There are many kernel function that can be implemented. Some of the most popular are linear, quadratic,
nth order polynomials, radial basis functions (RBF), and sigmoid kernels. The linear kernel is trivial. The other
kernel are listed below.
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(b)

Figure 7.3: (a) Example of linearly separable two-class problem that can be separated by infinite
different lines, but there is only one optimal separating line. The “margin” corresponding to each
acceptable solution (separating line) is denoted with dashed lines. In this example, solution 2 is
preferred over solution 1 because of the size of the margin. (b) Example of non-linearly separable
two-class problem. The “slack” variable ξ is highlighted.

λ = − b

ωTω
. (7.9)

This result suggests that the distance from the origin to the hyperplane is

q =
|b|
‖ω‖ . (7.10)

Then, the constraints on the SVM for the linearly separable two-class problem are,

ωTxi + b ≥ +1 ∀yi = +1, (7.11)

ωTxi + b ≤ −1 ∀yi = −1, (7.12)
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or equivalently,

yi
(
ωTxi + b

)
− 1 ≥ 0. (7.13)

This allows the useful definition of the distance from the origin to the hyperplane, from the

origin to the positive margin boundary, and from the origin to the negative margin, respectively,

H → q =
|b|
‖ω‖ , (7.14)

H+ → q+ =
|b− 1|
‖ω‖ , (7.15)

H− → q− =
|b+ 1|
‖ω‖ . (7.16)

Then, the margin of the SVM can be defined as,

m = d+ + d− =
2

‖ω‖ . (7.17)

This is an important property of SVM. It states that maximizing the margin m is equivalent to

minimizing ‖ω‖. As a direct result, the primal SVM quadratic optimization problem can be stated

as

Lp : arg min
ω

1

2
‖ω‖2 subject to yi

(
wTxi + b

)
− 1 ≥ 0, (7.18)

where ω denotes the best separating hyperplane (i.e. f(x) = wTx), and yi is the class label of

the ith data feature vector. This can once again be re-written as an optimization problem using

Lagrange multipliers,
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min
ω,b

max
α≥0

(
1

2
‖w‖2 −

∑

i

αi
(
yi
(
wTxi + b

)
− 1
)
)
. (7.19)

This can be re-written in its dual form by solving for
∂Lp
∂ω

and
∂Lp
∂b

and plugging it into the

Lp. The resulting quadratic program is the dual SVM (no longer a mixture of minimization and

maximization), and is written as

LD : max
α≥0

(∑

i

αi −
1

2

∑

i

∑

j

αiαiαjyiyjx
T
i xj

)
subject to

∑

i

αiyi = 0, αi ≥ 0.

(7.20)

Classification is done using the following scheme

f (x) = sign
(
ωTx+ b

)
(7.21)

= sign

(∑

i

αiyix
Txi + b

)
, (7.22)

where the value of b is found from the non-zero α’s.

b̃ = yi − ωTxi ∀αi > 0 (7.23)

b = average(b̃) (7.24)

Thus, any data point (or feature vector) x can be classified using the above scheme, where f(x) =

±1 states whether data point x is classified into class 1 or −1.
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Non-separable problem

The SVM formulation must be altered for the case of non-separable two-class problems (Fig. 7.3b).

This is achieved by introducing a “slack” variable ξ, which allows for points to fall on the “wrong”

side of the separating plane (i.e. misclassified points). The new constraints are,

ωTxi + b ≥ +1− ξi ∀yi = +1, ξi ≥ 0, (7.25)

ωTxi + b ≤ −1 + ξi ∀yi = −1, ξi ≥ 0, (7.26)

or, simply

yi
(
ωTxi + b

)
− 1 + ξi ≥ 0, ξi ≥ 0. (7.27)

Slack values of ξi = 0 mean that data xi is correctly classified (it is on the correct side of the

decision boundary). The primal SVM problem for the non-separable two-class problem is

Lp : arg min
ω

1

2
‖ω‖2 + C

∑

i

ξi subject to yi
(
wTxi + b

)
− 1 + ξi ≥ 0. (7.28)

The variable C is a cost variable that penalizes the objective function for points that are misclassi-

fied. The case where C → 0 corresponds to the case where misclassified points do not adversely

affect the objective function. The case where C →∞ corresponds to the case where misclassified

points severely adversely affect the objective function. The non-separable SVM corresponds to the

case where C →∞. The primal SVM can be written using Lagrange multipliers,

min
ω,b,ξ

max
α≥0,β≥0

(
1

2
‖w‖2 + C

∑

i

ξi −
∑

i

αi
(
yi
(
wTxi + b

)
− 1 + ξi

)
−
∑

i

βiξi

)
. (7.29)
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By taking the partial derivatives of the objective function with respect to ω, b, and βi we obtain,

∂Lp
∂ω

= 0 = ω −
∑

i

αiyixi, (7.30)

∂Lp
∂b

= 0 = −
∑

i

αiyi, (7.31)

∂Lp
∂ξi

= 0 = C − αi − βi. (7.32)

This implies that αi = C − βi. Given that αi ≥ 0 and βi ≥ 0, these results suggest the following

constraints on the Lagrange multipliers

0 ≤α ≤ C, (7.33)

βi ≥ 0. (7.34)

The dual SVM for the non-separable two-class case can then be written as:

LD : max
α≥0

(∑

i

αi −
1

2

∑

i

∑

j

αiαiαjyiyjx
T
i xj

)
subject to

∑

i

αiyi = 0, αi ∈ [0, C] .

(7.35)

This quadratic program is solved for αi. Subsequently, the optimal separating hyperplane can

be recovered from one of the constraints, ω =
∑

i

αiyixi, and classification is done using the

scheme f (x) = sign
(
ωTx+ b

)
or f (x) = sign

(∑

i

αiyix
Txi + b

)
.

The value of b is found from only those data vectors that are on the margin (i.e. the support

vectors, Fig. 7.2(d)). The support vectors correspond to vectors with non-zero and not-C α’s and

by assuming ξi = 0. Then, b = b̃, where b is computed from yi

(
ωTxi − b̃i

)
− 1 + ξi = 0.

Thus, any data point (or feature vector) x can be classified using the above scheme, where
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f(x) = ±1 states whether data point x is classified into class +1 or −1.

Non-linear SVM

In general, the hyperplane that separates the two classes does not need to be linear. The dual SVM

for the non-separable two-class case can be written as

LD : max

(∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjk (xi, xj)

)
subject to

∑

i

αiyi = 0, αi ∈ [0, C] .

(7.36)

The kernel k (xi, xj) is a function that takes two input vectors and computes a scalar product,

k (x, y) = φ (x)T φ (y). This is popularly known as the “kernel” trick and defines the type of

separating hyperplane used for classification. The kernel trick is very useful as it allows classifica-

tion with non-linear hyperplanes. It allows mapping of a d-dimensional input vector into a higher

dimensional H (Hilbert) feature-space using the basis function Φ, such that xi → Φ(xi). The suf-

ficient conditions necessary to guarantee the existence of the feature space are given by Mercer’s

Theorem [196].

Again, after solving for the support vectors α, classification is performed using the following

schemes f(x) = sign

(∑

i

αiyik(xi, xj) + b

)
. There are many kernel functions that can be used,

and in this work we implement the linear, quadratic, polynomial, and radial basis function (RBF)

kernels. The linear kernel is trivial. The quadratic, polynomial, and RBF kernels are listed in order

below.

k(x, y) = (x1y1 + x2y2)2 (7.37)

k(x, y) =
(
xTy + 1

)p
(7.38)

k(x, y) = exp

(
− 1

2σ2
‖x− y‖2

)
(7.39)
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7.2.5 Cross validation and quantification of classification accuracy

In general, classification algorithms seek to determine a boundary that best separates two (or more)

distinct groups of data. In this work we consider a two-class problem, where the classes were

affected or not affected with RA. There are two steps to this process: (1) training and (2) testing

the algorithms. In the training phase, the algorithm determines the decision boundary that best

separates the training data into its two classes. In the testing phase, the ability of the algorithm to

accurately classify an “unseen” data point is evaluated (this is the only way to infer how well the

classification algorithm will perform on future data).

We remove any bias that may be introduced from treating each imaged finger as an independent

sample by employing a modified version of the leave one-out cross-validation procedure (LOOCV)

to train and test. In contrast to the standard LOOCV procedure, where one sample (finger) is used

for testing while the remaining samples are used for training, we leave out all samples (fingers)

belonging to one single subject (three for subjects with RA and six for subjects without RA). The

remaining samples are used for training the algorithm. In the testing phase, each of the testing

samples are classified as TP , TN , FP , or FN . This process is repeated for each of the 53 distinct

subjects (each repetition is called an iteration).

The overall performance of the algorithm is computed by summing the TP , TN , FP , and

FN values computed from each of the 53 LOOCV iterations. From these results, the sensitivity

(Se = TP
TP+FN

) and specificity (Sp = TN
TN+FP

) values are computed for each feature combination

and classification algorithm. We compute confidence intervals (CI) for Se and Sp that take into

account the effective sample size (as discussed in Section 6.4.2). We report the Se and Sp values

and their corresponding 95% confidence intervals (lower and upper bounds); that is, the interval

within which we are confident the true value of Se and Sp lie (with 95% confidence).

7.2.6 Selection of best features

In our work to date, our strategy for finding the combination of features that yield the best results

(Se and Sp) in the classification of RA has been to evaluate the ability to diagnose with all possible
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feature combinations [9, 140, 173]. The same analysis cannot be performed for large numbers of

features as the number of combinations is 2n − 1 − n, where n is the number of features. In this

work n = 594, and the number of possible combinations is astronomical.

We overcome this problem in two steps. (1) We reduce the dimensionality l of the feature space

by considering only the 30 features with the largest Youden index (Se + Sp− 1) computing using

ROC curve analysis. (2) We employ an optimization algorithm to determine the subset of these

30 features that yield optimal or near-optimal classification results. The algorithm does not test

all possible feature combinations, instead, it samples only a subset of these combinations and still

achieves high classification accuracy.

We employ an evolution strategy algorithm generally referred to as (1, λ)-single-parent evolu-

tion strategy (ES) or greedy feature selection rule. It is an optimization technique based on ideas

of adaptation and evolution [189, 198]. The ES algorithm determines which multi-dimensional set

of features achieves optimal (or near-optimal) Se and Sp.

Beginning with a set of parent features (pk), the algorithm has two steps: (1) mutation and

(2) selection. In the mutation step, a total of M mutants, denoted λk, are generated to compete

with their parents pk. The mutation occurs in three steps: (1) Ma new feature combinations are

generated by adding a new feature to pk; (2)Mr new features are generated by replacing an existing

features in pk with one of the remaining features; (3) Md new feature combinations are generated

by dropping an existing feature in pk. Thus, the total number of mutants M (Ma + Mr + Md) in

generation k are obtained by adding, dropping, or replacing one feature from parent features pk.

In the selection step, new parents pk+1 are selected from the current set of parents pk and

their λk mutants. The selection of the new parent features pk+1 is made by selecting the feature

combination (with dimensionality d) that yields the largest augmented Youden index, defined as

Y ∗(Se, Sp) = Se+ Sp+ αLSe + βLSp − δd− 1, (7.40)
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where LSe and LSp are the lower bounds of the confidence intervals for Se and Sp (i.e. CIαSe and

CIαSp from Chapter 6), respectively. The scaling factors α, β, and δ control the contribution of the

lower bound values (LSe and LSp) and dimensionality (d) of the selected feature combination on

Y ∗, and are all set to 0.001. In this way, feature combinations with higher lower bounds and low

dimensionality are preferred.

The mutation and selection operator is applied in a loop and an iteration of the loop is called

a generation, denoted by k. We begin the process by specifying the initial set of parents p0. The

sequence of generations continues until we are unable to improve Y ∗, that is Y ∗k = Y ∗k+1. The

algorithm finds the feature combination with the highest Se and Sp values, favoring combinations

with higher LSe and LSp, and lower dimensionality d. The process is summarized as follows:

1. A feature combination (may be a single feature) is chosen as the parents pk of the current

generation k.

2. All M possible λk mutants of generation k are obtained by adding (Ma), dropping (Md), or

replacing (Mr) one feature from the parent combination pk (M = Ma +Mr +Md).

3. Of all λk mutants and their pk parents, the combination with the largest Y ∗ becomes the

parents of the next generation (pk+1).

4. Set k ← k + 1 and repeat this process until the objective function Y ∗ does not improve (i.e.

Y ∗k = Y ∗k+1).

This procedure is formulated as an optimization problem, where the objective function, φkλ, is

defined as the winning Y ∗ of generation k (Fig. 7.4(a)). In this sense, we seek to maximize φ by

selecting the feature combination that maximizes Y ∗ at each generation and define it as:

φkλ → max
i

(Y ∗λ )k = max
i

(
Sek,i + Spk,i + αLk,iSe + βLk,iSp − δdk,i − 1

)
, (7.41)

where the index i refers to the ith feature combination in generation k. Sek,i and Spk,i are the Se and

Sp from the LOOCV procedure using the ith feature combination of the kth generation. Similarly,
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(a) Within generation performance

Feature Combination

Y
∗

(b) Evolution of objective function

Generation Number

φ k

λ

Figure 7.4: (a) Sample within-generation values of the augmented Youden index Y ∗ for all pos-
sible feature combinations (mutants). (b) Sample evolution of objective function over multiple
generations.

Lk,iSe and Lk,iSp are the lower bounds of the 95.0% confidence intervals for Sek,i and Spk,i, while

dk,i is the dimensionality of the corresponding feature combination. The algorithm guarantees that

φk+1
λ > φkλ until convergence, where the solution converges to a near optimal combination (a local

maximum) that maximizes φλ (Fig. 7.4(b)). However, Se and Sp are not constrained to always

increase.

To identify the appropriate parents for the first generation (p0), we first perform LOOCV using

all possible two-dimensional feature combinations and compute Y ∗ for each combination. Fea-

ture pairs that yield the five highest Y ∗ values are selected as first generation parents p0. Thus,

five distinct optimization runs are executed for each combination of algorithm type (KNN, DA,

SOM, SVM) and algorithm parameters (number of neighbors, discriminate type, SVM kernel,

etc.), where the initial set of features p0 is different for each run.

7.3 Results

We start by showing three examples of typical decision boundaries. Figure 7.5 shows these bound-

aries for three different classification algorithms applied to a data set consisting of two features.

The two features are the minimum and mean value of µ′s in images of all healthy subjects (blue

dots) and subjects with RA (red dots). The classification algorithms that produce the decision

boundaries are LDA, QDA, and SVM. In the case of LDA and QDA, all the data points influence

placement of the boundary, while the support vectors determine the SVM boundary only (red cir-

cles with white filling). Here, 34 support vectors (< 16% of the data) were identified, 20 from
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(a) LDA (b) QDA (c) SVM

Figure 7.5: (a) LDA, (b) QDA, and (c) SVM decision boundaries separating affected from healthy
data using image features 5 and 19. Support vector data points are identified by dots with white
filling.

healthy subjects and 14 from subjects with RA. In these three examples the entire data is used to

train (i.e. no cross-validation).

From these plots we determine TN , TP , FN , and FP values. In these example cases we

find that LDA achieves 91% Se and 91% Sp (FP = 11, FN = 9), QDA results in 93% Se

and 95% Sp (FP = 6, FN = 7), and SVM achieves 98% Se and 93% Sp (FP = 9, FN =

2). A similar analysis is performed for all other feature combinations identified by the feature

selection algorithm, however, in those cases we do perform extensive cross-validation as described

in Section 7.2.5.

Results from the evolution algorithm are summarized for each classification method in subsec-

tions 7.3.1-7.3.4. For brevity, we report only the results obtained with three distinct seed parents

used in the optimization algorithm (out of a possible five). The results of non-reported optimization

runs are well within the trend presented by the reported cases.

In general, the optimization algorithm always converges to a combination of two to six fea-

tures in one to six generations and always improves on the initial Se and Sp by 5.0% to 15.0%

for all classification methods (Fig. 7.6). The optimal set of features typically includes basic sta-

tistical features derived from the raw reconstruction data, basic features from projections of the

three-dimensional data set, as well as coefficients from the Fourier transform of the data (refer to

Table 7.1 for definitions). The algorithm fails to improve on the original set of feature only twice
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Figure 7.6: Sample Se and Sp evolution paths obtained with KNN, DA, SOM, and SVM classifiers.
The lower bounds (Lb) for the 95% confidence interval are shown for Se and Sp, respectively. The
upper bound in these cases is 100.0%.

(KNN, 1 neighbor, runs numbers 1 and 3).

We report the Se and Sp values to which the algorithm converges, the initial and final feature

combinations, and the lower and upper bounds of the 95.0% confidence interval for Se and Sp. The

following convention is used: Se (LSe,USe), where LSe and USe are the lower (L) and upper (U )

bounds around the computed Se value within which we are 95.0% confident that the true value of

Se lies. This interval is computed using the effective sample size (ESS) and intra-class correlation

coefficient (ICC) as presented in Chapter 6, and corrects for “correlation” between fingers from

the same subject. The ESS and ICC values used throughout the analysis are presented in Table 7.2.
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7.3.1 KNN

Classification with KNN is performed using seven distinct numbers of “neighbors” to ensure the

general performance of the algorithm is captured (k = 1, 3, 5, 7, 11, 15, 21). For each k, five

optimization runs, each with distinct original parent features, are executed, resulting in 7×5= 35

distinct executions of the optimization algorithm. The best optimization runs for k = 1, 5, 11

are summarized in Table 7.3. Results from the remaining optimization runs are well within the

trend represented by these sample results. The largest Y ∗ value is achieved using k = 5, with

Se = 96.0%(90.7%, 100.0%) and Sp = 94.2%(89.0%, 100.0%). All five distinct runs with k = 5

converge to the same final set of features, {3, 8, 15, 19}, independent of the initial set of features.

Using too few (i.e. k = 1) or too many (k > 11) neighbors results in lower Se and Sp.

Table 7.3: Classification results with the KNN algorithm using 1, 5, and 11 nearest neighbors.
Neighbors  

(k)
Sensitivity                       
(95% CI)

Specificity                     
(95% CI)

Initial 
Combination

Final     
Combination

Optimization 
Steps

93.9% (88.0%, 100.0%) 93.3% (88.0%, 100.0%) 6, 15 6, 15 1
93.9% (87.9%, 100.0%) 92.5% (86.8%, 100.0%) 8, 19 8, 14, 19 2
93.9% (88.1%, 100.0%) 91.7% (85.3%, 100.0%) 5, 19 5, 19 1
96.0% (90.7%, 100.0%) 94.2% (89.0%, 100.0%) 15, 19 3, 8, 15, 19 4
96.0% (90.7%, 100.0%) 94.2% (89.0%, 100.0%) 6, 18 3, 8, 15, 19 5
96.0% (90.7%, 100.0%) 94.2% (89.0%, 100.0%) 5, 19 3, 8, 15, 19 4
97.0% (92.1%, 100.0%) 92.5% (86.8%, 100.0%) 3, 10 7, 8, 19, 21 6
97.0% (92.1%, 100.0%) 92.5% (86.8%, 100.0%) 3, 12 7, 8, 19, 21 6
97.0% (92.1%, 100.0%) 92.5% (86.8%, 100.0%) 3, 6 7, 8, 19, 21 5

1

5

11

7.3.2 LDA and QDA

The three best classification results obtained with LDA and QDA algorithms are shown in Ta-

ble 7.4. Classification with QDA is marginally better than classification with LDA. Classifica-

tion with QDA converges to optimal features {5, 15, 19} with Se = 97.0%(92.1%, 100.0%) and

Sp = 95.0%(89.8%, 100.0%). Classification with LDA converges to features {5, 9, 15, 19} with

Se = 97.0%(92.1%, 100.0%) and Sp = 93.3%(87.8%, 100.0%). QDA achieves higher Se and

Sp, and converges to a lower dimensional optimal feature combination compared to LDA. Both

methods consistently select the same set of optimal features independent of the initial feature set,

although LDA selects one additional feature compared to QDA (feature number 9).
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Table 7.4: Classification results with the DA algorithm using linear and quadratic functions.
Discriminate 

Type
Sensitivity                       
(95% CI)

Specificity                     
(95% CI)

Initial 
Combination

Final     
Combination

Optimization 
Steps

97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 5, 12 5, 9, 15, 19 4
97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 5, 19 5, 9, 15, 19 3
97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 8, 19 5, 9, 15, 19 4
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 5, 30 5, 15, 19 4
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 5, 6 5, 15, 19 3
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 8, 19 5, 15, 19 3

Linear

Quadratic

7.3.3 SOM

For each set of first generation parents, the optimization algorithm is executed for each possible

combination of neurons (n = 9, 16, 25) and learning rates (l = 0.01, 0.1, 1.0), for a total of 9×5=

45 optimization runs. Results from classification with SOM are summarized for n = 9, 16 and

l = 1.0 in Table 7.5. While the number of neurons n did have an impact on the classification

accuracy, we find that the learning rate l does not make a significant difference; for this reason

only results that demonstrate dependence on n are shown.

Classification with SOMs leads to different optimal features for each run, meaning that the

optimal feature combination is dependent on the initial set of features. The best classification

results are Se = 97.0%(92.1%, 100.0%) and Sp = 91.7%(85.7%, 100.0%), with n = 9 and

l = 1.0. The performance of SOMs with n = 16 is similar, however, performance significantly

decreases with n = 25, suggesting that using 25 neurons results in over-fitting the data.

Table 7.5: Classification results with the SOM algorithm using neurons n = 9, 16, respectively
(l = 1.0).

Neurons     
(n)

Sensitivity                       
(95% CI)

Specificity                     
(95% CI)

Initial 
Combination

Final     
Combination

Optimization 
Steps

89.9% (82.7%, 100.0%) 92.5% (86.9%, 100.0%) 6, 10 10, 11 2
93.9% (88.1%, 100.0%) 90.8% (84.7%, 100.0%) 15, 19 15, 19 1
97.0% (92.1%, 100.0%) 91.7% (85.7%, 100.0%) 19, 24 8, 17, 19 5
90.9% (84.0%, 100.0%) 94.2% (89.1%, 100.0%) 3, 7 3, 12 3
94.9% (89.3%, 100.0%) 89.2% (82.7%, 100.0%) 6, 14 6, 11 2
90.9% (84.0%, 100.0%) 94.2% (89.1%, 100.0%) 6, 18 6, 14 2

16

9
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7.3.4 SVM

Classification with SVM is performed using linear, quadratic, polynomial, and RBF kernels. Clas-

sification with the polynomial kernel is explored with polynomials of degree 3, 4, 5, 6, and 7. The

RBF kernel was explored by varying σ (0.1, 0.5, 1.0, 2.0, 5.0, 10.0). A total of five distinct clas-

sification runs (each with distinct features as seeds) are performed for each combination of kernel

method and kernel parameter for a total of 5 + 5 + 5× 5 + 5× 6 = 65 distinct runs.

Results from classification with linear, quadratic, and polynomial kernels are summarized in

Table 7.6. Linear, quadratic, and low order polynomial kernels can separate the data well. The

classification accuracy of polynomials of higher order (p ≥ 6) is lower compared to low order

polynomials. This is expected, as it is well known that higher order polynomials can severely over-

fit the data, resulting in poor cross-validation results. Marginally lower accuracy is obtained with

the RBF kernel; σ = 3 providing the best results (omitted for brevity).

The optimal combination always converges to the same set of features, independent of initial

features, and only depends on the kernel type. The largest Y ∗ value is achieved using a polynomial

of order 3, with Se = 100%(96.4%, 100.0%) and Sp = 97.8%(93.8%, 100.0%), and converges to

optimal features {4, 5, 6, 12, 15, 30}. Feature 5 is selected as an optimal classifier by all kernels,

while features 15 and 19 are selected as optimal features by three different kernels.

Table 7.6: Classification results with the SVM algorithm using linear, quadratic, and polynomial
kernels.

SVM        
Kernel

Sensitivity                       
(95% CI)

Specificity                     
(95% CI)

Initial 
Combination

Final     
Combination

Optimization 
Steps

97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 5, 12 5, 9, 15, 19 4
97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 5, 19 5, 9, 15, 19 3
97.0% (92.1%, 100.0%) 93.3% (87.8%, 100.0%) 8, 19 5, 9, 15, 19 4
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 5, 30 5, 15, 19 4
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 5, 6 5, 15, 19 3
97.0% (92.1%, 100.0%) 95.0% (89.8%, 100.0%) 8, 19 5, 15, 19 3

100.0% (96.4%, 100.0%) 97.8% (93.8%, 100.0%) 5, 30 4, 5, 6, 12, 15, 30 5
100.0% (96.4%, 100.0%) 97.8% (93.8%, 100.0%) 5, 6 4, 5, 6, 12, 15, 30 5
100.0% (96.4%, 100.0%) 97.8% (93.8%, 100.0%) 6, 27 4, 5, 6, 12, 15, 30 6
97.0% (91.7%, 100.0%) 94.2% (88.0%, 100.0%) 5, 6 5, 30 2
97.0% (91.7%, 100.0%) 94.2% (88.0%, 100.0%) 6, 29 5, 30 3
97.0% (91.7%, 100.0%) 94.2% (88.0%, 100.0%) 8, 19 5, 30 3
97.0% (92.2%, 100.0%) 93.3% (87.5%, 100.0%) 5, 30 5, 19 2
97.0% (92.2%, 100.0%) 93.3% (87.5%, 100.0%) 8, 19 5, 19 2
97.0% (92.2%, 100.0%) 93.3% (87.5%, 100.0%) 5, 19 5, 19 1

Linear

Quadratic

Polynomial  
Order 3

Polynomial  
Order 4

Polynomial  
Order 5
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7.3.5 Best features

The frequency with which each of the original 30 features appears as an optimal classifier is pre-

sented in Fig. 7.7. Features 8, 15, and 19 are chosen as optimal features 73.0%, 40.0%, and 73.0%

of the time across all KNN optimization runs (Fig. 7.7(a)). Features 5 (100.0%), 15 (80.0%), and

19 (80.0%) are chosen as optimal features most often across all DA iterations (Fig. 7.7(b)). Simi-

larly, features 3 (20.0%), 6 (20.0%), 8 (33.0%) and 19 (33.0%) are chosen as optimal features most

often across all SOM iterations (Fig. 7.7(c)). Finally, features 5 (88.0%), 6 (60.0%), 19 (48.0%),

and 30 (48.0%) are chosen as optimal features most often across all SVM iterations (Fig. 7.7(d)).

Feature 5 is chosen most often by DA (100.0%) and SVM (88.0%), while feature 19 is chosen

most often by KNN (73.0%), and SOM ((33.0%). Feature 19 occurs as an optimal feature at least

20.0% of the time in all classification methods. Feature 15 appears as optimal features over 20.0%

of the time for three classification methods. Features 3, 5, 6, and 8 appear as an optimal feature

over 20.0% of the time for two classification methods. Finally, features 7, 11, 21, and 30 are chosen

at least 20.0% of the time by one classification method.
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Figure 7.7: Frequency with which all features appear as optimal classifiers using KNN, DA, SOM,
and SVM.
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7.4 Discussion

In Chapters 6 and 7 we present a general framework for the application of computer-aided diag-

nosis (CAD) techniques to diffuse optical tomography (DOT). In Chapter 6 we focus on feature

extraction methods, while in Chapter 7, image classification with machine learning techniques take

center stage. As a specific example, the framework is applied to the classification of frequency-

domain (FD) DOT images of 219 PIP joints. The goal is to classify each PIP joint as affected or

not affected with RA based on the analysis of single image features (Chapter 6), and combinations

of multiple image features (Chapter 7). For image classification with multiple features, we com-

pare the performance of five different algorithms, including KNN, LDA, QDA, SOM, and SVM.

Given the large number of possible permutations of the 594 features we extract, it is necessary to

implement a feature-selection algorithm to determine the subset of image features that achieves the

highest Se and Sp in combination with each of the five classification algorithms. Results are val-

idated through extensive cross-validation, where the ground truth was the clinical diagnosis made

according to the ACR revised criteria.

The procedure for training and testing the algorithms is a two step process using a modified

version of the leave-one-out cross validation procedure: (1) the first phase uses data from N − 1

subjects to train the classifier, then (2) retrospective classification is performed on the data from the

remaining (one) subject (testing phase). This procedure is repeated so that data from each subject

(three images for each subject with RA and six images for each subject without RA) is left-out one

time each.

We find that all five classification algorithms achieve clinically relevant sensitivities and speci-

ficities above 90%. The best combination of sensitivity and specificity is obtained with SVM

using a polynomial kernel of degree 3. The optimal features corresponding to these results are

{4, 5, 6, 12, 15, 30}. For this case, the sensitivity is 100% with a 95% confidence interval of

(96.4%, 100.0%). The specificity is 97.8% with a 95% confidence interval of (93.8%, 100.0%).

Features 4 and 5 capture the range and mean µa and µ′s values in the PIP joint, while features

6, 12, 15, and 30 all capture the variation of µ′s across the joint. Feature 4 corresponds to the ratio
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of maximum µa and minimum µa values in the transverse slice across the middle of the PIP joint

(F05:GT:a); feature 5 is the minimum value of the µ′s unstructured reconstruction (F02:UV:s);

feature 6 is the variance value of the unstructured reconstruction µ′s data (F04:UV:s); feature 12 is

the mean value of the variation between all µ′s sagittal slices (F03:VS:s); feature 15 is the variance

value of the variation between all µ′s coronal slices (F04:VC:s); feature 30 is the absolute value of

the sixth coefficient of the two-dimensional-FFT of the central sagittal slices of µ′s (F16:VC:s).

Features that most often achieve accurate classification are associated with global absolute

values of the absorption and scattering data and their spatial variation near the PIP joint. We see

evidence that features that quantify spatial variation across PIP joints are smaller for subjects with

RA compared to healthy subjects. This is in concordance with our earlier findings and the images

shown in Fig. 6.2 in Chapter 6. The synovial fluid as well as the surrounding tissue experience

changes in optical properties in subjects with RA [135, 136]. The inflammatory process starts in

the synovium, leading to changes in cell and tissue structure. Cell proliferation can be observed

and the appearance of the synovial fluid changes from a clear, yellowish substance to a turbid,

gray-yellowish substance. The number of leukocytes per mL increases from 100 to 200 in healthy

conditions to 1, 000 to 100, 000 during stages 1 and 2 of the disease. Leukocytes have a diameter

of approximately 7-20 µm and therefore have an effect on the scattering coefficient. Furthermore,

the protein content in the synovial fluid approximately triples from 10 to 20 g/L to 30 to 60 g/L

[132,133]. In addition, neovascularization in surrounding tissue has been related to synovitis [199],

which leads to an increase in the absorption coefficient.

Overall, the net effect of these changes is an increase in absorption and scattering in the fin-

ger joint affected by RA, resulting in an optical profile similar to the physiology surrounding the

joint. Thus the spatial variation of optical properties decreases in subjects with RA. While similar

results have been described before, it appears that our CAD algorithms can extract these features

with higher accuracy and produce sensitivities and specificities at levels not reported before. All

five classification algorithms achieve clinically relevant sensitivities and specificities above 90.0%,

some even beyond 97.0%. The computed 95.0% confidence intervals for our results all offer further
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validation that our results are robust. These observations warrant further multi-center prospective

clinical studies.

One particular focus of these trials should further investigate an intriguing finding in our cur-

rent study. We observed that joints of subjects with RA not yet affected by RA, as determined

by MRI and US scans, were optically much more similar to joints affected by RA than joints of

healthy volunteers. Indeed, the “unaffected” joints of subjects with RA exhibit statistically signif-

icant different optical features from healthy joints, yet they are optically not statistically different

from affected joints. A longitudinal study will be necessary to determine if these joints eventually

become affected in accordance with the ACR criteria and through MRI and US imaging. If that

turns out to indeed be the case, one could prove that DOT may be used to detect changes earlier

than any other imaging methods.

In addition to diagnosis of RA, we expect the framework established in this work (CAD with

DOT) can be deployed in the diagnosis and monitoring of other diseases, including breast cancer

and peripheral artery disease.

Outlook

If the results reported in this study are confirmed in multi-center prospective clinical trials, optical

tomographic imaging could play a substantial role in clinical management of RA. DOT imaging has

several advantages over MRI as well as US imaging. While MR imaging can provide anatomical

features in great detail, it is not typically used for the monitoring of RA. The cost related to MR

imaging are relatively high and the use of gadolinium as contrast agents is contraindicative in

several cases. For example it is well known that gadolinium increases the risk of various kidney

diseases. This is a particularly problematic for RA patients, since many of the drugs used to

treat RA patients can have serious nephrotoxic effects by themselves [127, 128, 200]. Karie et al.

recently reported that nearly half of RA patients who participated in their study presented some

kidney disease.

Compared to US, optical measurement can be performed contact free. This appears to be
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an advantage given the increased sensitivity to touch of joints affected by RA and the resulting

discomfort experienced by patients. Furthermore, the sensitivities and specificities reported in our

study compare favorably to a recent finding by Freeston et al. [201], who found a sensitivity of 0.71

and specificity of 0.82 using double ultrasound in a study involving 50 patients with RA. Further-

more, it should be noted that in current day-to-day clinical practice, medical imaging techniques

are only used for confirmation of the clinical findings. Neither MRI nor US have been elevated

to standard of care by the American College of Rheumatology (ACR) or the European League

Against Rheumatism (EULAR) [38]. It remains to be seen if DOT can breach that gap. But given

the low cost, relatively high sensitivity and specificity, as well as the contact and contrast-agent-

free measurement approach, it appears that DOT could become a valuable tool in the evaluation of

RA.

However, the computation time required to obtain the absorption and scattering images of

a single joint is over 180 minutes. Reconstruction can take significantly longer if we use the

“recommended” set of discrete ordinates (> S12) and a sufficiently dense numerical mesh that

minimizes numerical error. For practical reasons, up to this point, we have used a low level set of

discrete ordinates (S4) and relatively coarse numerical mesh. The risk in using such ordinates and

mesh is the potential for numerical error to corrupt the absorption and scattering images.

Thus, we now turn our attention to improving the reconstruction process, given that we feel

confident in the ability to accurately classify FD-DOT images of PIP joints as affected or not

affected by RA (and indeed this can be applied to any other disease detectable by DOT). In Chap-

ters 8 and 9 we present work that focuses on using an efficient reconstruction algorithm based on

the SPN light propagation model to reconstruct absorption and scattering from FD-DOT measure-

ments. After presenting the theoretical and numerical steps necessary to implement the algorithm,

we use the novel algorithm to reconstruct absorption and scattering in the PIP joints of the clinical

data presented in Chapter 5. Subsequently, in Chapter 10 we apply the feature extraction process

of Chapter 6 and image classification steps of Chapter 7 to the SPN -based reconstruction data.
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Chapter 8
Finite volume SPN Model: Forward Problem

In this chapter we investigate the properties and performance attributes of the two competing mod-

els of the frequency domain SPN equations (FD-SPN ) presented in Section 2.5.3. The SPN model

developed by Dominguez (2.22), which has only real-valued diffusion coefficients, is denoted SPN

(RD). The model proposed by Chu (2.24), which has complex-valued diffusion coefficients, is

referred to as SPN (CD). This nomenclature is used extensively throughout this chapter.

We introduce the finite volume (FV) approximation for each of the FD-SPN models (FV-FD-

SPN ). We employ a node-centered FV discretization of the computational domain [202]. The

resulting system of linear algebraic equations is solved with the restarted generalized minimal

residual method (GMRES), which is a well-known Krylov subspace iterative method for solving

systems of linear equations and famous for its computational efficiency [203]. The algorithm is

implemented using objective-oriented programming in C++.

This new approach to solving the FD-SPN equations for the application to DOT imaging is

attractive because the node-centered finite volume method (FVM) takes advantage of the beneficial

properties associated with the finite-element method (FEM) and the standard FVM technique.1 It

combines the conservation properties of the FVM formulation and the geometric flexibility of the

FEM approach. Furthermore, our FVM implementation is advantageous over the finite differences

1The standard FVM technique is so-called “cell-centered” as the finite volume mesh is identical to the FEM mesh.
In contrast, the node-centered FVM method defined control volumes around each node in the FEM mesh. These
differences are more clearly explained in Section 8.1, where a review of the finite volume mesh is provided.
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method (FDM), where the computational space is discretized with Cartesian grids, because it can

be easily formulated on unstructured grids to accommodate geometries of arbitrary shape. This

is a particularly important property as DOT applications often involve the imaging of complex

geometries (e.g. mice) that can be most accurately modeled by unstructured grids.

To date, an algorithm for solving the SPN equations with an FVM approach has not yet been

developed. The SPN equations have been solved in the steady state with an FDM approach by

Klose et al. [1], in the frequency domain with an FEM approach by Chu et al. [73], and in the

time domain with an FEM approach by Dominguez et al. [74]. The algorithms for solving the

SPN equations on unstructured grids reported to date have lacked computational efficiency.2 Klose

et al. achieved the desired computational speed improvements with an FDM approach, however,

accurately modeling curved boundaries with structured grids remains a challenge and may have

only limited success in various clinical and pre-clinal applications [66].

The FEM implementation of the SPN equations by Dominguez et al. did not report com-

putation time so an accurate evaluation of their algorithm’s efficiency is not possible [74]. The

implementation of the FD-SPN equations by Chu et al. [73] reported results from simulations on

a numerical phantom with 42, 386 mesh nodes (235, 869 linear tetrahedral elements), µa = 0.1

cm−1, µs = 200.0 cm −1, g = 0.5, and nm = 1.37. The computation time for the forward solution

of this model (4 × 2 × 3 cm3) was 4.2, 12.6, 31.7, and 69.7 minutes for the SP1, SP3, SP5, and

SP7, respectively. These computation times can be significantly improved with a more efficient

implementation. Furthermore, this algorithm by Chu et al. was implemented in MATLAB, a com-

putational program that is known for ease of use but can suffer from slow execution time when

compared to algorithms in C or C++.

In this chapter we present the necessary framework for the implementation of an algorithm

that solves the FV-FD-SPN equations. Our C++ based FV-FD-SPN algorithm is computation-

ally efficient, requiring low system memory and converging to acceptable solutions significantly

2We note that the reported computations were performed on a 3.0 Ghz, 64 bit Linux machine with 8 GB of physical
memory. In contrast, the machine in use of this work reports CPU speeds of 2.6 GHz (running OS X 10.8 with 12 GB
of physical memory).
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Table 8.1: Definition of variables.

Variable Description Units
FVM Finite volume method
FEM Finite element method
FDM Finite differences method
O Imaging object
V Computational domain (i.e. discretization of O)
M Total number of discrete mesh elements in V
m Ddiscrete mesh element, s.t. V = {m : m = 1 . . .M}
SB Number of boundary surfaces of the mth FV element
SI Number of internal surfaces of the mth FV element
ST Total number of finite volume surfaces in V
N Order of SPN model
µa Absorption coefficient cm−1

µs Scattering coefficient cm−1

µ′s Reduced scattering coefficient cm−1

µan nth order absorption coefficient cm−1

g Anisotropy factor
ϕn nth order composite moment of the SPN model W cm−2

φn nth order Legendre moments of the radiance W cm−2

n̂ Normal vector pouting outwards at outer surface of O
Ω Angular direction
r Spatial position
v Speed of light in tissue cm s−1

ω Modulation angular frequency (2πf ) s−1

Q Interior source W cm−3

S Boundary source W cm−2sr−1

J+ Partial current W cm−2

Jn Coefficients of the partial current
i Complex unit (

√
−1)
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faster than previously reported algorithms that use unstructured grids. The algorithm is capable

of accurately modeling light propagation in geometries of arbitrary shape as the imaging object

is discretized with unstructured grids. We validate the algorithm through numerical simulations,

using the ERT model as a benchmark. In Chapter 9 we use the FV-FD-SPN algorithm as the basis

of an efficient DOT reconstruction algorithm.

A general overview of the FVM technique is presented in Section 8.1. Then, the derivation of

the FV-FD-SPN model is developed over Sections 8.2-8.3. Results from numerical simulations are

presented in Section 8.4. Chapter 8 concludes with a discussion in Section 8.5.

8.1 Finite volume mesh

The imaging domain O is discretized with a computational domain V, composed of linked un-

structured Euclidean simplex elements (Fig. 8.1). These shapes are triangles in two-dimensional

space and tetrahedra in three-dimensional space. The discretized domain V consists of M mesh

nodes, where each mesh node m (m ∈M ) is the center of a finite volume dV (there are M distinct

finite volume elements). Thus, m refers to a specific mesh node and also to a specific finite vol-

ume element as pictured in Fig. 8.1b. Finite volume element m has SI internally facing surfaces

(i.e. not on the surface of V) and SB boundary surfaces (i.e. on the surface of V). This mesh is

generally referred to as an FEM mesh because it is typically used “as is” when solving systems of

equations with an FEM algorithm.

Without loss of generality, consider a two-dimensional object discretized by triangular ele-

ments (three dimensional objects would be discretized by tetrahedral elements). Figure 8.1 is an

example of a simple two-dimensional object and its corresponding discretization into an unstruc-

tured triangular FEM mesh (red) with its corresponding unstructured FVM mesh superimposed

(blue). In general, O is first discretized into an unstructured triangular mesh, from which the FVM

mesh is subsequently computed.

The mesh conversion process refers to finding the dual FVM mesh (blue mesh) of the original
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O!

(a) Physical object

a!

n̂b!
n̂

(b) Discretized object

Figure 8.1: (a) An example physical object O, (b) and its corresponding discretization into trian-
gular elements (red) and finite volume (FV) elements (blue). Each surface of the FV element has
a corresponding normal vector n̂.

FEM mesh (red mesh). Each node in the FEM mesh (red dots) becomes the center of an FVM

element, which is surrounded with faces or edges (blue dashed lines) that are formed by the centers

(blue dots) of edges, faces, and elements of the FEM mesh (Fig. 8.1b). There are two general

methods for obtaining the FVM mesh from an FEM mesh, the so called “median” and “Delaunay”

methods. Both methods require knowledge of the center of each triangular element in the FEM

mesh and the centers of all its edges and faces (blue dots). However, each method has a specific

way of defining the “center” of these geometries. The two methods are defined below.

1. Median dual method: treat the centroid of the edge, face or element as its center point

(Fig. 8.2a).

2. Delaunay dual method: treat the center of the circumsphere of the edge, face or element as

its center point (Fig. 8.2b).

The median dual method is used in this work. The median dual mesh method is attractive

because it guarantees that the center of each FEM element is inside the simplex element, while

this is not always the case with the Delaunay method. The Delaunay dual method has extra re-

quirements on the geometry of the simplex elements. When these requirements are not met, the

computed center of the simplex element may be outside the element itself, which can result in a
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poorly structured FVM mesh. Figure 8.2b is an example of a triangular element whose Delaunay

center is located outside the element itself.

(a) Mediam method (b) Delaunay method

Figure 8.2: Geometric center (blue dot) computed with the (a) median and (b) Delaunay methods.

8.2 Finite volume FD-SPN approximation

In this section we focus entirely on the FD-SP3 model and the derivation of its finite volume

formulation. Formulae for the finite volume form of other orders of the SPN models (i.e. N =

1, 5, or 7) can be derived by following the same procedures presented for the SP3 model and are

omitted for brevity.

We derive the FVM approximation to the FD-SP3 (RD) model in detail. The derivation of the

FVM approximation for the FD-SP3 (CD) model follows the same framework and is omitted for

brevity. The FD-SP3 (RD) and FD-SP3 (CD) models are reproduced in (8.1-8.2) and (8.3-8.4),

respectively.

−∇ · 1

3µa1

∇ϕ1 +

(
µa +

iω

v

)
ϕ1 = Q+

2

3

(
µa +

iω

v

)
ϕ2 (8.1)

−∇ · 1

7µa3

∇ϕ2 +

(
4

9
µa +

5

9
µa2 +

1

3

iω

v

)
ϕ2 = −2

3
Q+

2

3
µaϕ1 (8.2)
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−∇ · 1

3µ̄a1

∇ϕ1 +

(
µa +

iω

v

)
ϕ1 = Q+

2

3

(
µa +

iω

v

)
ϕ2 (8.3)

−∇ · 1

7µ̄a3

∇ϕ2 +

(
4

9
µa +

5

9
µ̄a2 +

iω

v

)
ϕ2 = −2

3
Q+

2

3

(
µa +

iω

v

)
ϕ1 (8.4)

The composite moments ϕ1 = ϕ1 (r, ω) and ϕ2 = ϕ2 (r, ω) are functions of space and modulation

frequency. The corresponding set of boundary equations for the FD-SP3 (RD) and FD-SP3 (CD)

models are given by (8.5-8.6) and (8.7-8.8), respectively.

(
1

2
+ A1

)
ϕ1 +

(
1 +B1

3µa1

)
(n̂ · ∇ϕ1) =

(
1

8
+ C1

)
ϕ2 +

(
D1

µa3

)
(n̂ · ∇ϕ2)

+

∫

Ω·n̂<0

S (Ω) 2|Ω · n̂| dΩ,
(8.5)

(
7

24
+ A2

)
ϕ2 +

(
1 +B2

7µa3

)
(n̂ · ∇ϕ2) =

(
1

8
+ C2

)
ϕ1 +

(
D2

µa1

)
(n̂ · ∇ϕ1)

+

∫

Ω·n̂<0

S (Ω)
(
5|Ω · n̂|3 − 3|Ω · n̂|

)
dΩ.

(8.6)

(
1

2
+ A1

)
ϕ1 +

(
1 +B1

3µ̄a1

)
(n̂ · ∇ϕ1) =

(
1

8
+ C1

)
ϕ2 +

(
D1

µ̄a3

)
(n̂ · ∇ϕ2)

+

∫

Ω·n̂<0

S (Ω) 2|Ω · n̂| dΩ,
(8.7)

(
7

24
+ A2

)
ϕ2 +

(
1 +B2

7µ̄a3

)
(n̂ · ∇ϕ2) =

(
1

8
+ C2

)
ϕ1 +

(
D2

µ̄a1

)
(n̂ · ∇ϕ1)

+

∫

Ω·n̂<0

S (Ω)
(
5|Ω · n̂|3 − 3|Ω · n̂|

)
dΩ.

(8.8)

The definitions of the partial current, J+ (r, ω), at the boundary of the object for the FD-SP3

(RD) and FD-SP3 (CD) models are given by (8.9) and (8.10), respectively.
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J+ (r, ω) =

(
1

4
+ J0

)(
ϕ1 −

2

3
ϕ2

)
−
(

0.5 + J1

3µa1

)
(n̂ · ∇ϕ1)

+

(
5

16
+ J2

)(
1

3
ϕ2

)
−
(

J3

7µa3

)
(n̂ · ∇ϕ2) .

(8.9)

J+ (r, ω) =

(
1

4
+ J0

)(
ϕ1 −

2

3
ϕ2

)
−
(

0.5 + J1

3µ̄a1

)
(n̂ · ∇ϕ1)

+

(
5

16
+ J2

)(
1

3
ϕ2

)
−
(

J3

7µ̄a3

)
(n̂ · ∇ϕ2) .

(8.10)

We note that the only difference between the FD-SP3 (RD) and FD-SP3 (CD) models is the

definition of the nth order absorption coefficient. The nth order absorption coefficients for the

FD-SP3 (RD) model (8.1,8.2, 8.5,8.6,8.9) is µan = µa + (1− gn)µs, while for the FD-SP3 (CD)

model (8.3,8.4,8.7,8.8,8.10) it is µ̄an = µa + (1− gn)µs +
iω

v
.

The fluence, φn, is computed from the individual composite moments of the SPN model and is

given by,

φ0 = ϕ1 −
2

3
ϕ2, (8.11)

φ2 =
1

3
ϕ2. (8.12)

8.2.1 Re-writing of the FD-SP3 system

Our attention now shifts to the derivation of the finite volume formulation of the FD-SP3 (RD)

model.3 For simplicity, we refer to the FD-SP3 (RD) model simply as “SP3” in this section. For

convenience, we re-write the SP3 equations (8.1, 8.2, 8.5, 8.6) as follows:

3We remind the reader that we omit the derivation of the finite volume formulation of the FD-SP3 (CD) model for
brevity. However, the derivation is almost identical to the derivation of the finite volume formulation of the FD-SP3

(RD) model.
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−∇ ·D1∇ϕ1 +

(
µa +

iω

v

)
ϕ1 = Q+

2

3

(
µa +

iω

v

)
ϕ2, (8.13)

−∇ ·D2∇ϕ2 +

(
4

9
µa +

5

9
µa2 +

1

3

iω

v

)
ϕ2 = −2

3
Q+

2

3
µaϕ1, (8.14)

with the following set of boundary equations,

α1ϕ1 + D1β1 (n̂ · ∇ϕ1) = γ1ϕ2 + 7D2δ1 (n̂ · ∇ϕ2) + S1, (8.15)

α2ϕ2 + D2β2 (n̂ · ∇ϕ2) = γ2ϕ1 + 3D1δ2 (n̂ · ∇ϕ1) + S2. (8.16)

The corresponding formula for the partial current is

J+ =

(
1

4
+ J0

)(
ϕ1 −

2

3
ϕ2

)
−D1 (0.5 + J1) (n̂ · ∇ϕ1)

+

(
5

16
+ J2

)(
1

3
ϕ2

)
−D2 (J3) (n̂ · ∇ϕ2) .

(8.17)

Coefficients that appear in (8.1-8.17) are defined and summarized in Tables 8.1, 8.2, and 8.3.

8.2.2 Finite volume derivation of FD-SP3 system

Begin by integrating (8.13-8.14) and applying Stoke’s theorem to convert the volume integral (de-

fined within a finite volume element of total volume ∆V ) into a surface integral along the surfaces

S of the volume element, such that

−
∫

S

D1(∇ϕ1 · n̂)dA+

(
µa +

iω

v

)
ϕ1∆V = Q∆V +

2

3

(
µa +

iω

v

)
ϕ2∆V, (8.18)

−
∫

S

D2(∇ϕ2 · n̂)dA+

(
4

9
µa +

5

9
µa2 +

1

3

iω

v

)
ϕ2∆V = −2

3
Q∆V +

2

3
µaϕ1∆V. (8.19)
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Table 8.2: Boundary and current coefficients for the SP3 model as defined by Klose and Larsen
in [1].

D1 =
1

3µa1

D2 =
1

7µa3

α1 =
1

2
+ A1

α2 =
7

24
+ A2

β1 = 1 +B1

β2 = 1 +B2

γ1 =
1

8
+ C1

γ2 =
1

8
+ C2

δ1 = D1

δ2 = D2

S1 =

∫

Ω·n̂<0

S (Ω) 2|Ω · n̂| dΩ

S2 =

∫

Ω·n̂<0

S (Ω)
(
5|Ω · n̂|3 − 3|Ω · n̂|

)
dΩ

ξ11 =
α1β2 − 7δ1γ2

β1β2 − 21δ1δ2

ξ12 =
7δ1α2 − γ1β2

β1β2 − 21δ1δ2

ξ13 =
β2

β1β2 − 21δ1δ2

ξ14 =
7δ1

β1β2 − 21δ1δ2

ξ21 =
3δ2ξ11 − γ2

β2

ξ22 =
3δ2ξ12 + α2

β2

ξ23 =
3δ2ξ13

β2

ξ24 =
3δ2ξ14 + 1

β2

φ0 = ϕ1 −
2

3
ϕ2

φ1 =
1

3
ϕ2
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The surface integrals in (8.18-8.19) are computed using numerical quadrature rules, exploiting

the fact that each volume element has a finite number of surfaces (typically less than 12 surfaces).

The directional derivative (boundary flux) terms (∇ϕ1 · n̂ and ∇ϕ2 · n̂) are simplified by using

these same properties of the finite volume element, and are written in discretized form as follows,

∇ϕ1 · n̂ ≈
[ϕ1]i − [ϕ1]m

dri
, (8.20)

∇ϕ2 · n̂ ≈
[ϕ2]i − [ϕ2]m

dri
. (8.21)

Consider an individual finite volume element m ∈ V with SI internal surfaces and SB bound-

ary surfaces (Fig. 8.1b). By definition, element m shares each of the surfaces SI with a single

neighboring finite volume element. Then, let i denote the ith neighbor of m, such that i = 1 . . . SI .

Then, the finite volume version (i.e. discrete formulae) of (8.13-8.14) are

−
SI∑

i=1

D1
[ϕ1]i − [ϕ1]m

dri
dAi +

(
µa +

iω

v

)
[ϕ1]m∆V = [Q]m∆V

+
2

3

(
µa +

iω

v

)
[ϕ2]m∆V,

(8.22)

−
SI∑

i=1

D2
[ϕ2]i − [ϕ2]m

dri
dAi +

(
4

9
µa +

5

9
µa2 +

1

3

iω

v

)
[ϕ2]m∆V = −2

3
[Q]m∆V

+
2

3
µa[ϕ1]m∆V.

(8.23)

8.2.3 Finite volume derivation of the boundary equations

Solving boundary equations (8.15-8.16) for (n̂ · ∇ϕ1) and (n̂ · ∇ϕ2) yields,
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(n̂ · ∇ϕ1) =
1

D1

(−ξ11ϕ1 − ξ12ϕ2 + ξ13S1 + ξ14S2) , (8.24)

(n̂ · ∇ϕ2) =
1

D2

(−ξ21ϕ1 − ξ22ϕ2 + ξ23S1 + ξ24S2) . (8.25)

Definitions of the coefficients ξ are summarized in Table 8.2. Equations (8.24-8.25) can be used

on (8.18-8.19) to solve for the following system of discretized boundary equations.

SB∑

i=1

ξ11[ϕ1]mdAi +

SB∑

i=1

ξ12[ϕ2]mdAi +

(
µa +

iω

v

)
[ϕ1]m∆V − 2

3

(
µa +

iω

v

)
[ϕ2]m∆V

= [Q]m∆V +

SB∑

i=1

ξ13[S1]pdAi +

SB∑

i=1

ξ14[S4]pdAi

(8.26)

SB∑

i=1

ξ21[ϕ1]mdAi +

SB∑

i=1

ξ22[ϕ2]mdAi +

(
4

9
µa +

5

9
µa2 +

iω

v

)
ϕ2∆V − 2

3
µa[ϕ1]m∆V

= −2

3
[Q]m∆V +

SB∑

i=1

ξ23[S1]pdAi +

SB∑

i=1

ξ24[S2]pdAi

(8.27)

8.2.4 Partial current operator

The partial current, J+, can be discretized by using (8.24-8.25) on (8.17). This operation results in

the following discretized partial current operator that acts on the fluence moments ϕn and boundary

sources Sn.

[J+]p = ν0[ϕ1]p + ν1[ϕ2]p + ν2[S1]p + ν3[S2]p (8.28)

The definition of the coefficients νn in (8.28) are defined in (8.29).
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ν0 =

[
1

4
+ J0 +

(
1

2
+ J1

)
ξ11 + J3ξ21

]

ν1 =

[
− 3

48
− 2

3
J0 +

1

3
J2 +

(
1

2
+ J1

)
ξ12 + J3ξ22

]

ν2 = −
[(

1

2
+ J1

)
ξ13 + J3ξ23

]

ν3 = −
[(

1

2
+ J1

)
ξ14 + J3ξ24

]

(8.29)

8.3 Algebraic formulation

8.3.1 Forward model

The FD-SP3 model given by (8.13-8.14) is described in the FVM formulation by (8.22, 8.23, 8.26,

8.27). These equations can be used to solve for the composite moments of the fluence, ϕ1 and ϕ2.

The fluence or Legendre moments of the radiance, φn, can be computed from ϕn. In DOT, the

quantity of interest is the partial current, J+ (r, ω), which is a measure of the energy that exits the

medium at surface point r and is measured by detectors. This partial current can be computed by

applying (8.28) to ϕn.4

It is convenient to convert the system of equations in (8.22, 8.23, 8.26, 8.27) into an algebraic

problem that is completely independent of the underlying physical problem (i.e. the computational

mesh). The forward problem for the SP3 model can be formulated into a system of algebraic

equations of the form

Ax = b, (8.30)

whereA is the “forward model” (i.e. FV-FD-SPN model), x is the “forward solution” (i.e. compos-

ite moments of the FV-FD-SPN model), and b denotes the source terms for the forward problem.

4Here we assume source points cannot be detector points at the same time. Thus, the boundary source terms, S1

and S2, do not contribute to J+ (r, ω) and are ignored in (8.28).
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Table 8.3: Definition of variables for the linear problem of the SP3 model.

Variable Description Dimensions
A Forward model C2M×2M

b Source vector C2M

x Solution vector (i.e. composite moments of SPN model) C2M

Q Projection operator; maps forward solution to detector readings Cp×M

p Number of source/detector pairs
µ̂a Rescaled absorption coefficient
µ̂sa Rescaled scattering coefficient
la Linear coefficient of the linear transformation of µa
ls Linear coefficient of the linear transformation of µs
ca Constant coefficient of the linear transformation of µa
cs Constant coefficient of the linear transformation of µs

This formulation is convenient because it is compact and it allows for the application of well estab-

lished algebraic techniques for solving for x and differentiating the entire expression with respect

to x.

Matrix A is a square matrix of size M ×M for SP1 and 2M × 2M for SP3, where M is the

number of distinct mesh nodes in the numerical grid that discretizes the imaging volume O. The

elements of A are given by the left hand side terms of (8.22, 8.23, 8.26, 8.27) that do not contain S

(boundary source) or Q (internal source). The contributions from associated boundary and internal

source terms are stored in b, a vector of length M for SP1 and 2M for SP3. The elements of b are

given by the terms in (8.22, 8.23, 8.26, 8.27) that contain S and Q.

The forward solution, x, is a vector of length M for SP1 and 2M for SP3. Specifically, x = ϕ1

for SP1 and x = [ϕ>1 ϕ>2 ]> for SP3. The algebraic system given by (8.30) allows for the solution

of ϕ1 and ϕ2 to be obtained simultaneously. The conjugate transpose of the complex vectors ϕ1

and ϕ1 are denoted by >.

For clarity and for improved computational performance, it is helpful to rewrite the final dis-

cretized form of the SP3 model defined by (8.22, 8.23, 8.26, 8.27). The absorption and scattering

coefficients are inherently in significantly different scales (µs >> µa), which can lead to slow

convergence during the reconstruction process. This issue can be overcome by defining scaled
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absorption (µ̂a) and scattering (µ̂s) coefficients. The scaled coefficients are

µ̂a = laµa + ca,

µ̂s = lsµs + cs,

where la, ca, ls, and cs are computed from predefined minimum and maximum allowed values for

µa and µs. For example, µa ∈ [0.0, 1.0] cm−1 and µs ∈ [0.0, 200.0] cm−1 (assuming the anisotropic

factor g ≈ 0.9). We note that these upper and lower bounds are for rescaling purposes only and

should not be confused with constraints on the admissible values of the variables.

The nth order diffusion operator (Dn) appearing in (8.22-8.23) are defined at the face of the

finite volume element and need to be replaced with corresponding nodal values (i.e. the value

at the center of the finite volume element). This is achieved by replacing the nth order diffusion

coefficients (D1 and D2) with the average of these coefficients between nodem and its neighboring

element i, as follows

D1 =
[D1]m + [D1]i

2
,

D2 =
[D2]m + [D2]i

2
.

Thus, the final version of the SP3 model can be obtained by expanding the D1 and D2 terms,

then expanding all µan terms, and then replacing µa and µs with µ̂a and µ̂s throughout. This leads

to the following expanded expressions for D1 and D2:
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D1 =
1

2




1

3

(
[µ̂a]m − ca

la
+ (1− g)

[µ̂s]m − cs
ls

) +
1

3

(
[µ̂a]i − ca

la
+ (1− g)

[µ̂s]i − cs
ls

)


 , (8.31)

D2 =
1

2




1

7

(
[µ̂a]m − ca

la
+
(
1− g3

) [µ̂s]m − cs
ls

) +
1

7

(
[µ̂a]i − ca

la
+
(
1− g3

) [µ̂s]i − cs
ls

)


 . (8.32)

Matrix A is a symmetric sparse matrix, with up to 2ST + 4M non-zero elements for the SP3

system, where ST is the total number of finite volume surfaces in a mesh that has M mesh nodes.

The elements of the forward model A can be summarized as a contributions from (8.22, 8.23, 8.26,

8.27). We note that the composite moments are shown in the formulation of A and b. However, it

should be noted that the composite moments do not occur in either of these variables. Instead,

I. Elements of matrix A : From (8.22)

(a) Elements stored in (row m, column m)

[ϕ1]m

(
[µ̂a]m − ca

la
[∆V ]p +

iω

v
[∆V ]p +

SI∑

i=1

D1
dAi
dri

)

(b) Elements stored in (row m, column i)

[ϕ1]i

(
−D1

dAi
dri

)
(For each interior surface i = 1 . . . SI)

(c) Elements stored in (row m, column m+M )

[ϕ2]m

(
−2

3

[µ̂a]m − ca
la

[∆V ]p −
2

3

iω

v
[∆V ]p

)

II. Elements of matrix A : From (8.26)

(a) Elements stored in (row m, column m)

[ϕ1]m

(
[µ̂a]m − ca

la
[∆V ]p +

iω

v
[∆V ]p +

SB∑

i=1

ξ11dAi

)
(For each boundary surface i =

1 . . . SB)

(b) Elements stored in (row m, column m+M )
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[ϕ2]m

(
−2

3

[µ̂a]m − ca
la

[∆V ]p −
2

3

iω

v
[∆V ]p +

SB∑

i=1

ξ12dAi

)
(For each boundary surface

i = 1 . . . SB)

III. Elements of vector b : From (8.22, 8.26)

(a) Interior Eq. (row m)

[Q]m[∆V ]p

(b) Boundary Eq. (row m)

[Q]m[∆V ]p +
(
ξ13[S1]p + ξ14[S2]p

) SB∑

i=1

dAi (For each boundary surface i = 1 . . . SB)

Contributions from (8.23,8.27).

I. Elements of matrix A : From (8.23)

(a) Elements stored in (row m+M , column m)

[ϕ1]m

(
−2

3

[µ̂a]m − ca
la

[∆V ]p

)

(b) Elements stored in (row m+M , column m+M )

[ϕ2]m

(
[µ̂a]m − ca

la
[∆V ]p + (1− g2)

5

9

[µ̂s]m − cs
ls

[∆V ]p +
1

3

iω

v
[∆V ]p +

SI∑

i=1

D2
dAi
dri

)

(c) Elements stored in (row m+M , column i+M )

[ϕ2]i

(
−D2

dAi
dri

)
(For each interior surface i = 1 . . . SI)

II. Elements of matrix A : From (8.27)

(a) Elements stored in (row m+M , column m)

[ϕ1]m

(
−2

3

[µ̂a]m − ca
la

[∆V ]p +

SB∑

i=1

ξ21dAi

)
(For each boundary surface i = 1 . . . SB)

(b) Elements stored in (row m+M , column m+M )

[ϕ2]m

(
[µ̂a]m − ca

la
[∆V ]p + (1− g2)

5

9

[µ̂s]m − cs
ls

[∆V ]p +
1

3

iω

v
[∆V ]p +

SB∑

i=1

ξ22dAi

)
(For

each boundary surface i = 1 . . . SB)

III. Elements of vector b : From (8.23, 8.27)

160



(a) Interior Eq. (row m+M )

−2

3
[Q]m[∆V ]p

(b) Boundary Eq. (row m+M )

−2

3
[Q]m[∆V ]p+

(
ξ23[S1]p + ξ24[S2]p

) M∑

i=1

dAi (For each boundary surface i = 1 . . . SB)

8.3.2 Partial current

The partial current, J+(r), is formally computed as

J+(r, ω) = Q[x> b>]>, (8.33)

where Q is a projection operator that transforms the composite moments ϕn and source termsQ(r)

and S(r,Ω) into partial current measurements. For the SP3 model, the projection operator Q is

given by

Q = [Q0 Q1 Q2 Q3] .

Matrix Q can be derived from (8.28-8.29) and has dimensions p×4M , where p is the total number

of source-detector pairs. Matrices Qn ∈ Rp×M have the following structure,

Qn =




νn 0 · · · 0 0

0 νn · · · 0 0

...
... . . . ...

...

0 0 · · · νn 0

0 0 · · · 0 νn




.

Each νn term is computed for each mesh node that maps to a detector.
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8.3.3 Numerical solver for the forward model

The system of linear equations resulting from the FV-FD-SPN model (8.30) is solved with a Krylov

subspace iterative method famous for its efficiency in solving systems of linear equations known as

the (restarted) generalized minimal residual method (GMRES) [203,204]. GMRES is an attractive

iterative solver as it can properly handle the forward model, where the coefficient matrix A is

complex-valued and symmetric. The GMRES algorithm is reproduced in Algorithm 1 as it is

presented in [204].

Algorithm 1 GMRES [204]
Compute r0 = b− Ax0, β := ||r0||2, and v1 := r0/β
for j = 1, 2, . . . ,m do

Compute wj := Avj
for i = 1, . . . , j do
hij := (wj, vi)
wj := wj − hijvi

end for
hj+1,j = ||wj||2.
if hj+1,j = 0 then

Set m := j and go to last line
end if
vj+1 = wj/hj+1,j .

end for
Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m.
Compute ym the minimizer of ||βe1 − H̄my||2 and xm = x0 + Vmym.

The solution to the linear system (8.30) is given by xm in the GMRES algorithm. It is worth-

while noting that the coefficient matrix A, and vectors x and y are complex-valued. As a result,

the Hessenberg matrix (H̄), the associated vectors (r, v, w), and the coefficient h are all complex-

valued.

The derivation of the FVM algorithm for the alternate version of the FD-SPN model [the FD-

SPN (CD) model in (8.3, 8.4, 8.7, 8.8, 8.10)], follows the same logic presented for FD-SPN (RD).

The only differences are the locations throughout the equations where the imaginary terms,
iω

v
,

and its preceding weights occur.
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8.4 Validation of FV-FD-SPN algorithm

8.4.1 Numerical phantoms

The fluence (φ) and partial current (J+) measurements obtained with the FV-FD-SPN model

are compared to solutions obtained with a benchmark algorithm based on the ERT model using

a dense set of discrete ordinates (S12). To differentiate between solutions from the SPN (RD)

(i.e. the model has strictly real-valued diffusion coefficients) and SPN (CD) (i.e. the model has

complex-valued diffusion coefficients) models, we use the following nomenclature: solutions com-

puted with SPN (RD) are labeled “SPN (RD)” and solutions computed with SPN (CD) are labeled

“SPN (CD).”

For numerical simulations we use a two-dimensional circular phantom with a diameter of

2.0 cm whose origin is at the center of the disk (x = 0.0 cm, y = 0.0 cm). The performances

of the SPN models are analyzed by varying the optical properties of the medium. Four specific sets

of optical properties are considered, which together provide insight into the appropriateness of the

various SPN models in the extremely diffuse regime and in the non-diffuse regime.

The phantom is discretized by a dense numerical grid to ensure the numerical error from the

ERT algorithm is minimal. The FEM mesh consists of 37,247 mesh nodes and 73,236 triangular

(a) FEM mesh (b) FVM mesh (c) Source and detectors

Figure 8.3: Discretization of a disk (2.0 cm diameter) into (a) triangular elements (i.e. FEM mesh)
and (b) into finite-volume elements (i.e. FVM mesh). (c) A single boundary source (red dot)
and 50 detectors (blue dots) are distributed around the boundary of the phantom. The internal
cross-section of interest consists of mesh points 0.5 ± 0.01 cm from the center of the phantom,
represented by the inner circle.
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Table 8.4: Background properties of the numerical phantoms. The modulation frequency is from
the relation ω = 2πf .

Case Optical properties characteristics µa [cm−1] µs [cm−1] g nm ω [MHz]
1 Homogeneous 0.001 400.0 0.95 1.0 600
2 Absorbing inclusions 0.1 100.0 0.95 1.0 600
3 Scattering inclusions 0.1 100.0 0.95 1.0 600
4 Absorbing and scattering inclusions 0.1 200.0 0.95 1.0 600

elements, resulting in an FVM mesh with 37,247 volume elements and 220,964 surfaces. The

mesh is not shown as it is too dense to properly display, however, a significantly less dense mesh

of the same phantom is shown [Fig. 8.3(a,b)]. The FEM mesh and FVM mesh are presented

for comparison. In the example, the FEM mesh consists of 1,309 FEM nodes (2,360 triangles),

while the FVM mesh contains 1,309 finite volume elements with 6,028 surfaces. The computation

time required to generate the FVM mesh from the FEM mesh is minimal (0.011s in the example

presented) and generally ignored.

There is a source on the boundary of the disk at position (x = 0.7071 cm, y = 0.7071 cm) with

source power S(Ω) = 1.0 W cm −2 sr −1 and 50 detectors distributed evenly around the phantom

boundary at points away from the source (Fig. 8.3c). The partial current, J+(r), is computed at

each of the detectors. The fluence, φ(r), is computed on all 37,247 FVM elements. To analyze

the differences between the fluence computed with the SPN models and the benchmark solution,

a cross-section of interest is defined within the phantom, which includes all mesh points 0.5 ±

0.01 cm from the center of the phantom (Fig. 8.3c).5

The background optical properties of the four phantoms are summarized in Table 8.4 and the

specific location of the inclusions and their optical properties are shown in Fig. 8.4. The first

phantom (Fig. 8.4a) is homogeneous with low absorption (µa = 0.001 cm−1) and high scattering

(µs = 400 cm−1, g = 0.95). This medium simulates highly diffuse tissue where the diffusion

equation is known to be an accurate model of light propagation.

5This cross-section of interest is chosen as it crosses all inclusions and, therefore, allows for the analysis of the
fluence within those objects of interest.

164



 

 A
b
so

rp
ti

o
n
 [

cm
−

1
]

0.001

 

 

S
ca

tt
er

in
g
 [

cm
−

1
]

400.0

(a)

 

 A
b
so

rp
ti

o
n
 [

cm
−

1
]

0.1

0.5

0.9

1.2

1.6

2.0

 

 

S
ca

tt
er

in
g
 [

cm
−

1
]

100.0

(b)

 

 A
b

so
rp

ti
o

n
 [

cm
−

1
]

0.100

 

 

S
ca

tt
er

in
g

 [
cm

−
1
]

20.0

33.0

47.0

60.0

74.0

87.0

(c)

 

 A
b
so

rp
ti

o
n
 [

cm
−

1
]

0.1

0.2

0.3

0.4

0.5

0.6

 

 

S
ca

tt
er

in
g

 [
cm

−
1
]

100.0

117.0

134.0

151.0

168.0

185.0

(d)

Figure 8.4: (a-d) Definition of two-dimensional phantoms number 1 through 4, respectively. (a)
Homogeneous and (b-c) inhomogeneous phantoms. All simulations on these phantoms are per-
formed with anisotropic factor g = 0.95, source modulation frequency ω = 2πf = 600 MHz, and
refractive index nm = 1.0.

The remaining three phantoms are inhomogeneous distributions of optical properties with ei-

ther highly absorbing inclusions (phantoms number two, Fig. 8.4b), low scattering inclusions

(phantoms number three, Fig. 8.4c), or a combination of these inclusions (phantoms number four,

Fig. 8.4d). Each of the inclusions are disks with 0.25 cm diameter. Phantoms number two, three,

and four are designed to test the accuracy of the SPN equations in the transport regime, where the

diffusion equation is known to be a poor approximation to the ERT.

The relative error, J+
e (r), between the benchmark partial current, J+

ERT (r), and the partial

current computed with the SP1 and SP3 models, J+
SP1(r) and J+

SP3(r), is computed at each mesh

node i using the following formula:

J+
e (r)i = 100× J+

SPN(r)i − J+
ERT (r)i

J+
ERT (r)i

(8.34)

The average relative error of the partial current, J̃+
e (r), is also reported as a measure of over-

all error. The relative error, φe(r), between the benchmark fluence, φERT (r), and the 0th order
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moment of the radiance (i.e. the fluence) computed with the SP1 and SP3 models, φSP1(r) and

φSP3(r), is computed at each mesh node i using (8.35). A second parameter that quantifies the

error between the SPN and ERT solutions is the average error between the solutions at each mesh

point, denoted φ̃e(r), and is given by (8.36). The finite volume ∆V (or finite area in the case of

two-dimensional problems) of each FVM element is used as a weight factor in the Riemann sum.

φe(r)i = 100× φSPN(r)i − φERTi (r)i
φERT (r)i

(8.35)

φ̃e(r) =
100

V
×

N∑

i=1

(
φSPN(r)i − φERTi (r)i

φERT (r)i

)
∆Vi (8.36)

Here, V represents the total computational volume (or total area in two-dimensional problems).

Error measures equivalent to (8.35-8.36) between the fluence computed with the SPN and ERT

along the internal cross-section (Fig. 8.3c) are denoted as φ•e(r)i and φ̃•e(r), respectively.

The restarted GMRES algorithm is used to solve the forward problem in all cases. In these

examples, the GMRES algorithm is set to restart after 30 iterations with no limit on the number of

total iterations. The convergence criteria is set to 1× 10−12.

With the SP3 model, the photon fluence (φ0) throughout the medium is obtained by a linear

combination of the first two composite moments, ϕ1 and ϕ2 (φ0 = ϕ1 − 2
3
ϕ2). The individual

moments are presented for all simulations with the SP3 model for detailed analysis.
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8.4.2 Numerical study - phantom 1: homogeneous media

Results from simulations on the homogeneous phantom with highly diffuse properties (Fig. 8.4a)

are presented in this section. All three light propagation models return fluence distributions that are

qualitatively similar, verifying that all models converge to similar solutions in highly diffuse media.

Images of the amplitude and the phase of the fluence computed with the SPN models and the ERT

model are presented in Figs. 8.5-8.6. Maps of the relative error between the SPN solutions and the

benchmark ERT solution are also presented in these figures. The average errors of the fluence and

the partial current are summarized in Table 8.5.

The relative error of the amplitude of the fluence, Fig. 8.5(f-i), shows agreement between all

models. The average relative error between the SPN solutions and the benchmark solution is

between 9.90% and 10.51%. At the individual mesh node level, the error is typically in the range

of ±20.0%, however, the error at mesh nodes near the source can reach much higher values and

has been artificially capped at ±20.0% in order to properly display the error across the rest of the

phantom. Thus, all SPN models are incapable of accurately modeling the “transport” behavior of

photons near the source. However, because the media is highly diffuse, transport photons become

diffuse after only a short distance, which is the reason why the error in the SPN solutions is lower

(generally bounded by ±20.0%) across the rest of the medium.

Similar observations can be made from analysis of the phase of the fluence (Fig. 8.6), again

suggesting there is significant agreement between all solutions. The average relative error between

the phase of the fluence ranges from 9.32% to 10.04%. While there is significant error at mesh

Table 8.5: Average relative error of the fluence, φ̃e(r), and partial current, J̃+
e (r), for phantom 1.

φ̃e(r) [%] φ̃e(r) [%] φ̃•e(r) [%] φ̃•e(r) [%] J̃+
e (r) [%] J̃+

e (r) [%]
Model (Amplitude) (Phase) (Amplitude) (Phase) (Amplitude) (Phase)
SP1 (CD) 9.90 9.65 8.89 9.76 3.85 10.72
SP1 (RD) 10.51 9.32 9.55 9.47 4.29 10.09
SP3 (CD) 9.96 10.04 9.30 10.09 4.10 10.85
SP3 (RD) 10.31 9.64 9.68 9.77 4.35 10.36
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(a) SP1 (CD) (b) SP1 (RD) (c) SP3(CD) (d) SP3 (RD) (e) ERT (S12)

(f) SP1 (CD) (g) SP1 (RD) (h) SP3 (CD) (i) SP3 (RD)
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Figure 8.5: [Phantom 1] Amplitude (log scale) of the fluence computed with the (a) SP1 (CD), (b)
SP1 (RD), (c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at
each node relative to the ERT benchmark (S12).

nodes within close proximity to the source, the error at nodes a short distance from the node is

significantly lower.

The individual components of the fluence computed with the SP3 model (i.e. the first two

composite moments ϕ1 and ϕ2) are presented in Fig. 8.7. The amplitude and the phase distributions

of ϕ1 are similar for both CD and RD methods, although the SP3 (CD) model exhibits marginally

lower overall relative error in amplitude (9.96%) than the SP3 (RD) model (10.31%). However,

there are significant differences between the amplitude and phase distributions of ϕ2. The CD

model produces a ϕ2 with significantly larger amplitude, suggesting that the CD model “corrects”

ϕ1 more than the RD model. It is interesting to note that this does not actually result in improved

solutions. Instead, the SP3 (CD) model exhibits higher overall relative error in phase (10.04%)

than the SP3 (RD) model (9.64%).

The partial current at the boundary (Fig. 8.8) is approximated to similar accuracies by all SPN

models. The average error of the amplitude of the partial current ranges from 3.85% to 4.35%. The

average error between the phase of the partial current is larger, ranging from 10.09% to 10.85%.

The fluence within the internal cross-section of interest (Fig. 8.9) also supports the observation

that all SPN models exhibit similar performance in the diffuse phantom. The errors in the amplitude
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(a) SP1 (CD) (b) SP1 (RD) (c) SP3(CD) (d) SP3 (RD) (e) ERT (S12)

(f) SP1 (CD) (g) SP1 (RD) (h) SP3 (CD) (i) SP3 (RD)
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Figure 8.6: [Phantom 1] Phase of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD), (c)
SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).
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Amplitude and (g,h) phase of ϕ2.
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Figure 8.8: [Phantom 1] (a,b) Amplitude and phase of the partial current, J+(r). (c,d) Error in the
amplitude and the phase of the partial current, J+

e (r), computed with the SPN models relative to
the benchmark ERT (S12) solution.

Table 8.6: Computation time for phantom 1.

Model Time [s] RAM [MB]
SP1 (RD) 53.5 172.6
SP1 (CD) 76.6 194.3
SP3 (RD) 115.9 313.1
SP3 (CD) 150.3 359.4
ERT (S12) 1188.0 6,140.0

of the fluence from all SPN models are similar, with the average error φ̃•e(r) ranging from 8.89%

to 9.68%, while the average error in the phase of the fluence ranges from 9.47% to 10.09%.

The computation time required to obtain the fluence with each of the models make the bene-

fits of the SPN model over the ERT model clear (Table 8.6). Relative to the computational time

required to obtain the fluence with the SP1 model, the SP3 takes 2.06 times longer, while the ERT

(S12) solution requires 184.5 times more computation time. These results are consistent with our

expectations, as the SP3 model results in a system of linear equations twice as large as the SP1

system of equations.

Analysis of the performance of the SPN models in a diffuse media reveals that they all perform
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Figure 8.9: [Phantom 1] (a,b) Amplitude and phase of the fluence at mesh nodes within the internal
cross-section. (c,d) Error in the amplitude and the phase of the fluence of the SPN solutions relative
to the benchmark ERT (S12) solution.

similarly well in approximating the ERT.
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8.4.3 Numerical study - phantom 2: absorbing inclusions

Results from simulations on the phantom that includes highly absorbing inclusions (Fig. 8.4b)

are presented in this section. There are three objects in the medium; two objects with µa =

1.0 cm−1 and one object with µa = 2.0 cm−1. The average relative errors are summarized in

Table 8.7. Images of the amplitude and the phase of the fluence are presented in Figs. 8.10 and

8.11, respectively. The individual composite moments of the SP3 models are shown in Fig. 8.12.

The fluence on the cross-section of interest and the partial current at the boundary detectors are

presented in Figs. 8.13 and 8.14, respectively.

The fluence and the relative error of the fluence (Fig. 8.10) show that the SP3 models are

significantly better than the SP1 models at approximating the benchmark solution. In general,

all SPN solutions exhibit large positive errors near the source (overestimation of the fluence) and

negative errors far from the source (underestimation of the fluence). While both models exhibit

large errors near the source, the area within which large errors occur is larger in the SP1 solutions

than in the SP3 solutions. Similarly, the SP3 solutions are more accurate approximations to the

benchmark than the SP1 solutions at locations far from the boundary.

Furthermore, it is clear that the SP3 models are able to more accurately approximate the bench-

mark solution in the region of the highly absorbing inclusions, as indicated by the presence of

pronounced areas of error in the SP1 solutions at the location of the inclusions. The error profiles

of the SP3 solutions in these same regions are less pronounced, indicating that the SP3 equations

model light propagation in highly absorbing media more accurately than the SP1 equations.

Table 8.7: Average relative error of the fluence, φ̃e(r), and partial current, J̃+
e (r), for phantom 2.

φ̃e(r) [%] φ̃e(r) [%] φ̃•e(r) [%] φ̃•e(r) [%] J̃+
e (r) [%] J̃+

e (r) [%]
Model (Amplitude) (Phase) (Amplitude) (Phase) (Amplitude) (Phase)
SP1 (CD) 8.14 5.44 4.09 3.15 15.21 8.68
SP1 (RD) 8.51 2.93 4.62 1.77 15.53 1.61
SP3 (CD) 5.26 4.27 3.89 3.46 11.64 6.27
SP3 (RD) 5.47 2.54 4.15 1.43 11.82 1.51
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Figure 8.10: [Phantom 2] Amplitude of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).

Both SP3 models (CD and RD) produce more accurate solutions than the two SP1 models (CD

and RD). Additionally, both SP3 models (CD and RD) exhibit similar overall relative error in the

amplitude (5.26% and 5.47%, respectively), but differ significantly in the error of the phase.

Analysis of the phase of the fluence reinforces the observation that the SP3 models are better

approximations to the ERT solution than the SP1 models (Fig. 8.11). All models produce phase

distributions that significantly underestimate the phase near the source and moderately overesti-

mate it far from the source. However, the area around the source within which the SP3 models

underestimate the source is significantly smaller than the area in which the SP1 models severely

understate the phase. This suggests that the “transport” regime, within which the phase accumula-

tion of photon propagation can only be modeled by the ERT, is smaller for the SP3 models than the

SP1 models. We note that the pronounced areas of error that appear in the amplitude of the fluence

at the location of the highly absorbing inclusions are not present in the relative error of the phase.

The average relative error of the phase of the SP3 (RD) solution (2.54%) is significantly smaller

than the average relative error of the phase of the SP3 (CD) solution (4.27%). This observation is

in contrast to the pattern observed in the amplitude of the phase, where the differences between

the SP3 (RD) and SP3 (CD) solutions are minimal (5.47% and 5.26%, respectively). Surprisingly,
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Figure 8.11: [Phantom 2] Phase of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).

the SP1 (RD) model achieves a lower average relative error of the phase (2.93%) than the SP3

(CD) model (4.27%). This suggests that the SP1 (RD) model is more accurate than the SP1 (CD)

and SP3 (CD) models in modeling phase accumulation. The SPN (RD) solutions, however, have a

marginally bigger area of large error near the boundary when compared to the SPN (CD) solutions.

Analysis of the composite moments of the radiance produced by the SP3 models is informa-

tive (Fig. 8.12). The amplitude and the phase of the first composite moment (ϕ1) are similar for

both CD and RD models [Fig. 8.12(a,b,e,f)]. There are small perturbations of the solution in the

region of the inclusions. The second moment (ϕ2) is particularly interesting because the amplitude

of ϕ2 is prominently higher in the exact locations of the highly absorbing inclusions, making it

exceptionally clear where the inclusions are located [Fig. 8.12(c,d)]. This is interesting as it may

be possible to exploit this information to improve the image reconstruction process. For example,

this knowledge may be used to dynamically increase mesh density in the areas with prominent

“correction” terms (i.e. as observed in ϕ2).

It is also interesting to note that there are significant differences between the CD and RD models

in the phase of ϕ2, as the location of the absorbing inclusions are clearly visible in ϕ2 (CD) but not

in ϕ2 (RD) [Fig. 8.12(g,h)]. The value of ϕ2 (CD) near the source is much larger than the values
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Figure 8.12: [Phantom 2] Amplitude and phase of the composite moments (ϕ1 and ϕ2) of the
fluence computed with the SP3 (CD) and SP3 (RD) models. (a,b) Amplitude and (e,f) phase of ϕ1.
(c,d) Amplitude and (g,h) phase of ϕ2.

at the same locations of ϕ2 (RD). It is likely that this strong “correction” near the boundary is

responsible for improved accuracy in the phase of the fluence computed with the SP3 (CD) model

at mesh nodes near the source. However, the strong “correction” in the interior of the ϕ2 (CD)

solution may also be the reason why mesh nodes far from the source see an increase in error in the

phase of the fluence computed with the SP3 (CD) model.

Thus, while ϕ2 (CD) correction terms result in a reduction of the error in the phase of the

fluence near the boundary, they are also responsible for the increase in error in the phase of the

fluence far from the boundary.

Comparing the fluence along the internal cross-section (Fig. 8.13) supports the observations

thus far. Both SP3 (CD and RD) models are better approximations to the amplitude of the bench-

mark solution than the SP1 models, with insignificant differences between the RD and CD models.

In the case of the phase of the fluence, however, the SP1 (RD) and SP3 (RD) models are a bet-

ter approximation than either the SP1 (CD) or SP3 (CD) models. This is in agreement with our

observations in the analysis of the fluence not the entire phantom.

The partial current at the boundary (Fig. 8.14) supports these same observations. The SP3 mod-
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Figure 8.13: [Phantom 2] (a,b) Amplitude and phase of the fluence at mesh nodes within the
internal cross-section. (c,d) Error in the amplitude and the phase of the fluence of the SPN solutions
relative to the benchmark ERT (S12) solution.

els (CD and RD) predict the amplitude of J+(r) more accurately that the SP1 models. However,

the SP1 (RD) and SP3 (RD) models are better at approximating the phase of J+(r) than the SP1

(CD) and SP3 (CD) models.

The computation time and memory requirements necessary to solve for the fluence with each of

the models makes the benefits of the SPN models over the ERT model clear (Table 8.8). The com-

putation time required to obtaine the fluence using the SPN (RD) models is significantly lower than

the time required by the SPN (CD) models (approximately 40% lower). The increase in computa-

tion time (and memory requirements) for SPN (CD) is expected as all entries of the forward model

operator A are complex-valued, while only the main diagonal and some off-diagonal elements are

complex-valued in the RD system.

Overall, the SP3 (RD) model performs better than all other SPN models. Furthermore, the SP1

(RD) model is more accurate than the SP1 (CD) and SP3 (CD) model on approximating the phase

of the benchmark fluence and partial current values. This is not surprising, given that we expect

SP1 (RD) SPN (RD) equations to be the more accurate model of light propagation.
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Figure 8.14: [Phantom 2] (a,b) Amplitude and phase of the partial current, J+(r). (c,d) Error in
the amplitude and the phase of the partial current, J+

e (r), computed with the SPN models relative
to the benchmark ERT (S12) solution.

Table 8.8: Computation time for phantom 2.

Model Time [s] RAM [MB]
SP1 (RD) 30.9 172.6
SP1 (CD) 49.1 194.3
SP3 (RD) 63.2 313.1
SP3 (CD) 100.1 359.4
ERT (S12) 4819.3 6,140.0
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8.4.4 Numerical study - phantom 3: scattering inclusions

Results from simulations on the phantom with areas with low scattering values (Fig. 8.4c) are pre-

sented in this section. There are three objects in the medium; two objects with µs = 20.0 cm−1 and

one object with µs = 60.0 cm−1. The average relative errors are summarized in Table 8.9. Images

of the amplitude and the phase of the fluence are presented in Figs. 8.15 and 8.16, respectively.

The individual composite moments of the SP3 models are shown in Fig. 8.17. Plots of the fluence

on the cross-section of interest and the partial current at the boundary detectors are presented in

Figs. 8.18 and 8.19, respectively.

Overall, the SP3 models perform better than the SP1 models (Table 8.9). The error in the

amplitude of the fluence obtained with both SP3 models is similar (4.87% and 4.69%, respectively).

The SP3 (CD) models, however, yield solutions with lower relative error in the phase of the fluence

(2.67%) compared to the SP3 (RD) model (3.94%).

All SPN solutions have large errors in the amplitude and the phase of the fluence near the

source. The amplitude of the fluence is generally overestimated near the source (Fig. 8.15), while

the phase is underestimated at these same locations (Fig. 8.16). Compared to the SP3 solutions,

the amplitude of the SP1 solutions exhibit large positive errors across a larger area near the source.

In addition, the amplitude of the SP1 solutions are severely overestimated at the boundary directly

opposite the source (Fig. 8.15).

The amplitude and phase of the first moment ϕ1 is similar between the SP3 (CD) and SP3 (RD)

models. However, there are significant differences between the phase profiles of ϕ2. The fluence

Table 8.9: Average relative error of the fluence, φ̃e(r), and partial current, J̃+
e (r), for phantom 3.

φ̃e(r) [%] φ̃e(r) [%] φ̃•e(r) [%] φ̃•e(r) [%] J̃+
e (r) [%] J̃+

e (r) [%]
Model (Amplitude) (Phase) (Amplitude) (Phase) (Amplitude) (Phase)
SP1 (CD) 5.45 3.56 2.07 1.65 13.27 5.00
SP1 (RD) 4.99 4.28 1.10 3.54 13.79 3.09
SP3 (CD) 4.87 2.67 0.67 1.09 12.56 3.74
SP3 (RD) 4.69 3.94 0.27 3.20 12.88 3.04
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(a) SP1 (CD) (b) SP1 (RD) (c) SP3(CD) (d) SP3 (RD) (e) ERT (S12)
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Figure 8.15: [Phantom 3] Amplitude of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).
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Figure 8.16: [Phantom 3] Phase of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).
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Figure 8.17: [Phantom 3] Amplitude and phase of the composite moments (ϕ1 and ϕ2) of the
fluence computed with the SP3 (CD) and SP3 (RD) models. (a,b) Amplitude and (e,f) phase of ϕ1.
(c,d) Amplitude and (g,h) phase of ϕ2.

along the internal cross-section (Fig. 8.18) of interest and the partial current (Fig. 8.19) support

the same observations. The scattering inclusions are identifiable in the images of the amplitude

of ϕ2 [Fig.8.17(c,d)]. However, the scattering inclusions are not identifiable in the images of the

phase of ϕ2 [Fig.8.17(g,h)]. The contrast at the site of the scattering inclusions is lower than the

contrast at the site of the absorbing inclusions considered in the second phantom, particularly in

the amplitude images [Fig. 8.12(c,d)].

In general, the SP3 models outperform the SP1 model. The SP3 (RD) model is better than

the SP3 (CD) model at approximating the phase of the fluence and partial current. However, the

SP3 (CD) model is better at approximating the amplitude of the benchmark solutions. The fluence

along the internal cross-section (Fig. 8.18) of interest and the partial current (Fig. 8.19) support the

same observations.

The computation times required to obtain the fluence using the SPN (RD) models are approx-

imately 70% lower than the time required by the SPN (CD) models (Table 8.10). The increase in

computation time (and memory requirements) associated with solving the SPN (CD) equations is

larger than what is observed when only highly absorbing inclusions are considered.
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Figure 8.18: [Phantom 3] (a,b) Amplitude and phase of the fluence at mesh nodes within the
internal cross-section. (c,d) Error in the amplitude and the phase of the fluence of the SPN solutions
relative to the benchmark ERT (S12) solution.
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Figure 8.19: [Phantom 3] (a,b) Amplitude and phase of the partial current, J+(r). (c,d) Error in
the amplitude and the phase of the partial current, J+

e (r), computed with the SPN models relative
to the benchmark ERT (S12) solution.
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Table 8.10: Computation time for phantom 3.

Model Time [s] RAM [MB]
SP1 (RD) 99.6 176.6
SP1 (CD) 333.2 194.3
SP3 (RD) 205.8 313.1
SP3 (CD) 684.6 359.4
ERT (S12) 7816.4 6,140.0

8.4.5 Numerical study - phantom 4: absorbing and scattering inclusions

Results from simulations on the fourth phantom, which contains absorbing and void like inclusions

(Fig. 8.4d) are presented in this section. There are four objects in the medium; two objects with

µa = 0.6 cm−1 and two objects with µs = 100.0 cm−1. The average relative errors are summarized

in Table 8.11. Images of the amplitude and the phase of the fluence are presented in Figs. 8.20 and

8.21, respectively. The individual composite moments of the SP3 models are shown in Fig. 8.22.

Plots of the fluence on the cross-section of interest and the partial current at the boundary detectors

are presented in Figs. 8.23 and 8.24, respectively.

All SPN models approximate the amplitude of the ERT solution with similar accuracy. The

SPN (CD) models are marginally more accurate than the SPN (RD) models (Fig. 8.20). However,

the SPN (RD) models perform significantly better than the SPN (CD) models in approximating the

phase of the benchmark solution (Fig. 8.21). The same trends are evident in the amplitude and the

phase of the fluence along the internal cross-section of interest (Fig. 8.23).

Analysis of the partial current reveals similar trends (Fig. 8.24). The SP3 models approximate

Table 8.11: Average relative error of the fluence, φ̃e(r), and partial current, J̃+
e (r), for phantom 4.

φ̃e(r) [%] φ̃e(r) [%] φ̃•e(r) [%] φ̃•e(r) [%] J̃+
e (r) [%] J̃+

e (r) [%]
Model (Amplitude) (Phase) (Amplitude) (Phase) (Amplitude) (Phase)
SP1 (CD) 5.84 4.89 5.10 4.60 7.88 7.06
SP1 (RD) 6.38 3.13 5.18 3.01 8.21 3.76
SP3 (CD) 5.72 5.02 5.53 4.95 6.80 6.29
SP3 (RD) 6.01 3.28 5.83 3.22 7.01 3.67
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(a) SP1 (CD) (b) SP1 (RD) (c) SP3(CD) (d) SP3 (RD) (e) ERT (S12)

(f) SP1 (CD) (g) SP1 (RD) (h) SP3 (CD) (i) SP3 (RD)
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Figure 8.20: [Phantom 4] Amplitude of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).

the benchmark partial current more accurately than their corresponding SP1 models. However,

the SP3 (CD) model yields the most accurate amplitude of the partial current, while the SP3 (RD)

model best approximates the phase of the partial current.

The location of the absorbing objects are clearly visible in the phase of ϕ2 (Fig. 8.22). Thus,

while scattering and absorbing inclusions are undifferentiated in the amplitude of ϕ2, the phase

of ϕ2 clearly differentiates between the absorption and the scattering coefficients values in the

inclusions. The amplitude and the phase of the first moment (ϕ1) are similar for both CD and RD

models, with the appearance of small perturbations of the solution in the region of the inclusions.

The SPN (RD) models require less computation time compared to the SPN (CD) models (Ta-

ble 8.12). Furthermore, the SPN (RD) models require less RAM than the SPN (CD) models during

the execution of the algorithm. The benefit of using any of the SPN models is clear when consid-

ering the computation time (∼ 150 times more than SP1) and the memory requirements associated

with using the ERT S12 model (≥ 6.14 GB).
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Figure 8.21: [Phantom 4] Phase of the fluence computed with the (a) SP1 (CD), (b) SP1 (RD),
(c) SP3 (CD), (d) SP3 (RD), and (e) ERT (S12) models. (Bottom row) Percent error at each node
relative to the ERT benchmark (S12).
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Figure 8.22: [Phantom 4] Amplitude and phase of the composite moments (ϕ1 and ϕ2) of the
fluence computed with the SP3 (CD) and SP3 (RD) models. (a,b) Amplitude and (e,f) phase of ϕ1.
(c,d) Amplitude and (g,h) phase of ϕ2.
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Figure 8.23: [Phantom 4] (a,b) Amplitude and phase of the fluence at mesh nodes within the
internal cross-section. (c,d) Error in the amplitude and the phase of the fluence of the SPN solutions
relative to the benchmark ERT (S12) solution.
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Figure 8.24: [Phantom 4] (a,b) Amplitude and phase of the partial current, J+(r). (c,d) Error in
the amplitude and the phase of the partial current, J+

e (r), computed with the SPN models relative
to the benchmark ERT (S12) solution.
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Table 8.12: Computation time for phantom 4.

Model Time [s] RAM [MB]
SP1 (RD) 44.5 176.6
SP1 (CD) 70.7 194.3
SP3 (RD) 113.1 313.1
SP3 (CD) 155.1 359.4
ERT (S12) 6,715.4 6,140.0

8.5 Discussion

Overall, the SP3 model is better at approximating the non-diffuse properties of light propagation

throughout the entire phantom, and in particular at distances near the source. This is in accordance

with our expectations, as it is well known that incoming photons do not become diffuse until

they travel a short distance within media with absorbing and scattering properties. Thus, the SP3

solution is able to better approximate the “transport” behavior of photons at short distances from

the source. Typically, the first composite moment (ϕ1) is a close approximation to the final fluence

value. However, to account for “transport” properties, ϕ1 is “corrected” by ϕ2, particularly near

the source. It is this correction that generally leads to improved solutions with the SP3 model.

The differences between the two SPN models (CD and RD) are best observed when considering

the phase of the fluence. In general, the SPN (RD) models can more accurately approximate the

phase of the fluence and the phase of the partial current than the SPN (CD) models. In contrast,

the SPN (CD) models only marginally outperform the SPN (RD) models in approximating the

amplitudes of the fluence and the partial current.

We recommend using the SPN (RD) model over the SPN (CD) model. This recommendation

is justified by overall performance of the two models; both models approximate the amplitude to

similar degrees of accuracy. The SPN (RD) model, however, is substantially better at approxi-

mating the phase values of the fluence and the partial current. In addition, the SPN (RD) model

requires lower computation time compared to the SPN (CD) model. Furthermore, the SP3 (RD)

model is significantly better at approximating the benchmark solutions than the SP1 (RD) model.
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Thus, we specifically recommend using the SP3 (RD) model as the light propagation model in

DOT applications.

In Chapter 9 we present an algorithm for performing reconstructions of the absorption and the

scattering coefficients using the SPN (RD) model, hereafter referred to simply as the SPN model.
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Chapter 9
Finite volume SPN Model: Inverse Problem

The image reconstruction step in DOT refers to the process of solving an inverse problem to “re-

construct” unknown tissue properties from the data at our disposal, such as photon counts measured

with CCD cameras or optical fibers connected to photodiodes. Tissue properties of interest typi-

cally include µa and µs, but more generally, may include any variable that appears in the forward

model. The variable or variables to reconstruct are denoted simply as µ. Due to the inability to

directly invert the forward model, the reconstruction step is typically a large-scale optimization

process, where the goal is to find the optical properties that minimize an objective function that

measures the error between simulated detector readings generated with the forward model and the

experimentally measured data.

That is, given our understanding of the light probing the tissue (O), we wish to determine the

value and distribution of µ inside the medium that leads to the experimentally measured data M .

Assuming a forward model F (µ) that mathematically describes the way in which light propagates

through tissue and can produce “simulated” detector measurements P , analogous to M , we can

construct an objective function f (µ) that quantifies how well P , produced by F (µ), compares

to M . Then, the goal is to find the value of µ that minimizes f (µ) as this also minimizes the

mismatch between P and M .

In this chapter we focus on presenting a summary of the necessary mathematics needed to

implement an efficient DOT reconstruction algorithm for the FV-FD-SPN model for reconstruction
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of the absorption and the scattering coefficients. While the theory is presented in a general form

that is well suited for application to any deterministic light propagation model, we focus on the

implementation of the techniques presented in this chapter to the FD-SPN model in (2.22), where

the imaginary term arising from modulation of the light source does not appear in the diffusion-like

coefficients.

In general, the objective function is the least-squares cost function, which minimizes the resid-

ual sum of the squared error. In its most general form, the objective function is written as

f(µ, u) =
1

2
(M − P )> (M − P ). (9.1)

Here ( · ) represents the complex conjugate of (·) and P is the projection of the solution u of

the forward problem (i.e. fluence or radiance intensity) onto detectors, such that

P = Qu. (9.2)

Q is a projection operator that maps the solution to the forward problem u onto boundary detectors

as defined in Section 8.3.2. In this work, P is the partial current at the boundary, J+(r, ω), where r

denotes spatial position and ω is the modulation frequency of the source. The optimization problem

necessary for finding the value of µ that minimizes (9.1) is typically written, in its most general

form, as the following PDE-constrained quadratic problem,

min f(µ, u) =
1

2
(M −Qu)> (M −Qu),

subject to c(µ, u) = A(µ)u− b = 0.

(9.3)

The operator matrix A and vector b represent the discretized version of the FD-SPN model.

189



The problem in (9.3) is generally referred to as an “equality-constrained” optimization problem

because it requires an accurate solution of the forward problem [i.e. A(µ)u− b].

We explore two principal techniques for solving (9.3), the so called “unconstrained” and “PDE-

constrained” optimization methods. The main difference between the techniques lies in how de-

pendencies between µ and u are treated. The PDE-constrained method has been shown to yield sig-

nificant improvements in computational efficiency compared to the unconstrained method. How-

ever this gain comes at a cost of increased algorithm complexity that results in implementation

challenges.

With both methods, the goal is to solve a quadratic problem. In general, all quadratic problems

require the computation of the first and second order derivatives of the objective function (9.1) with

respect to all independent variables (i.e. µ for the unconstrained method; u and µ for the PDE-

constrained method).1 This procedure can be time consuming and impractical for optimization

problems of even moderate size. Fortunately, numerical techniques for solving these types of

quadratic problems have been widely studied in various areas of engineering and mathematics,

and multiple efficient techniques for obtaining the inverse solution have been reported.

In this work, the challenges associated with computing the gradient of the objective function are

overcome by making use of the adjoint equation to the forward problem, which allows calculation

of the gradient at the computational cost of solving one forward problem.

We address the challenges of computing the Hessian matrix, H , through the use of the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. L-BFGS is a type of quasi-

Newton optimization algorithm specifically developed to address the computational burden asso-

ciated with computing H of f (µ) by allowing us to instead use an approximate Hessian matrix

B that can be easily computed explicitly. Furthermore, with the L-BFGS algorithm we can avoid

having to explicitly compute B, instead only the product of B−1 and its associated vectors need to

be stored and updated for the calculation of the descent (or search) direction.

1Indeed, in the unconstrained formulation, the forward variable is a function of the inverse variable such that u(µ).
In contrast, in the PDE-constrained formulation, both u and µ are independent variables. This topic is explored further
in the remainder of this chapter.
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Another key aspect of the approach we pursue for solving the inverse problem with the SPN

model is in how we simplify the Hessian matrix in the case of the PDE-constrained algorithm. Ad-

ditional computational efficiency is gained by implementing a reduced Hessian sequential quadratic-

programming (rSQP) scheme, which allows for computationally efficient solutions to the optimiza-

tion problem by reducing the size of the Hessian matrix needed to be stored and updated.

In Section 9.1 we briefly summarize the theoretical developments associated with quasi-Newton

schemes for solving quadratic problems. Then, we present the unconstrained and constrained al-

gorithms for solving the SPN model in Sections 9.2 and 9.3. Algorithms for computing the partial

derivative of the SPN forward model matrix, A, with respect to the inverse variables µa and µs (an

important part of the reconstruction algorithm) are presented in Section 9.4. The unconstrained

and PDE-constrained algorithms are validated and their performance is analyzed in Section 9.5.

Chapter 9 concludes with a discussion in Section 9.6. Common variables that appear throughout

this chapter and that are central to the reconstruction process are summarized in Table 9.1.

Table 9.1: Definition of inverse problem variables.

A ∈ Cm×m SPN forward model operator matrix
Q ∈ Rd×m Partial current operator
H ∈ Rn×n Hessian matrix
M ∈ Cd Experimental measurement vector (d = # of total measurement points)
P ∈ Cd Predicted measurement vector (d = # of total measurement points)
u ∈ Cm SPN forward solution (i.e. fluence)
b ∈ Cm SPN forward model source vector
λ ∈ Cm Adjoint/Lagrangian variable
µ ∈ Rn DOT inverse variable (e.g. µa or µ′s)

f (x) ∈ R Objective function
∇f (x) ∈ Rn Gradient of objective function
∇2f (x) ∈ Rn×n Hessian of objective function

x ∈ Rn General inverse variable
∆x ∈ Rn Update direction of inverse variable
α ∈ R Update step size
φ ∈ R Merit function

Dφ ∈ R Directional derivative of merit function
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9.1 Quasi-Newton methods

Newton’s method is the best know procedure for computing the roots of an equation, and its ap-

plications in numerical optimization are well established [205, 206]. Extensive research has been

dedicated to the generalization of the procedure to a wide range of systems of both linear and non-

linear equations. Newton’s method has a rapid rate of convergence, typically quadratic, making it

particularly appealing as it converges very rapidly once an iterate is sufficiently close to the root of

the function [206]. However, application of Newton’s method to large scale optimization problems

is typically prohibitively expensive from a computing stand point. Instead, other methods that

exhibit convergence properties similar to Newton’s method have been extensively researched and

reported. One of these methods, so called quasi-Newton, is merely an approximation to Newton’s

method.

In this chapter we present a brief review of quasi-Newton methods that will serve as a founda-

tion to the optimization algorithms we apply to solve (9.3). An excellent reference for an in-depth

presentation of methods for numerical optimization is the book “Numerical Optimization” by No-

cedal and Wright [205].

Consider a general objective function that is a function of the general inverse variable x, f (x).

The goal of the optimization problem is to find the roots of this function, where the solution

achieves an extremum. In particular, we are interested in the value of x that minimizes f (x).

To understand the application of quasi-Newton methods to solving this type of optimization

problem, we first derive Newton’s method for the following optimization problem,

min
x

g (x) , (9.4)

where g : Rn → R is a smooth function of x. The special meaning of this function will be-

come clear momentarily. Then, with an assumption of differentiability, the optimal solution x that

minimizes g (x) will satisfy the following condition,
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∇xg (x) = 0. (9.5)

We can apply Newton’s method to solve for roots of (9.5), which corresponds to the value of x

that minimizes (9.4). In particular, Newton’s method tells us that for a function g(x) that satisfies

∇g(x) = 0, beginning with an initial guess x0, a sequence xk for k > 0 is built such that it

approaches the optimal solution x. The relationship can be stated as follows,

xk+1 = xk + (∇g (x))−1 g (x) . (9.6)

In this work g(x) is the gradient of the DOT objective function f(µ, u) in (9.1) and (9.3) [i.e.

g(x) = ∇f(x)]. Thus, iterative formula (9.6) can be written as follows,

xk+1 = xk +
(
∇2f (x)

)−1∇f (x) . (9.7)

The focus is on computing the term (∇2f (x))
−1∇f (x). The first step is to expand f by a

second order Taylor series at x + ∆x,

f (x + ∆x) ≈ f (x) +∇f (x)>∆x +
1

2
∆x>∇2f (x) ∆x. (9.8)

The function f (x + ∆x) attains it minimum when its gradient with respect to ∆x vanishes. Thus,

differentiating both sides of the expression with respect to ∆x and equating the results to zero,
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∂

∂∆x
f (x + ∆x) ≈ ∂

∂∆x

(
f (x) +∇f (x)>∆x +

1

2
∆x>∇2f (x) ∆x

)
, (9.9)

yields a standard quadratic equation for the Newton direction or ∆x,

∇2f (x) ∆x = −∇f (x) . (9.10)

We recognize the gradient (∇f) and second-order derivative or Hessian (∇2f) in the above equa-

tion. Thus, given the gradient and Hessian of the objective function, this expression gives us a

formula for computing ∆x,

∆x = −
[
∇2f (x)

]−1∇f (x) . (9.11)

Optimization algorithms that use the Newton direction have been shown to have a fast con-

vergence rate, typically quadratic. However, the computational demands of directly calculating

∇2f (x) or its inverse are challenging and often insurmountable. As a result, the Newton method is

typically not directly used for large scale optimization problems. Instead, so-called quasi-Newton

algorithms, which approximate the product term, [∇2f (x)]
−1∇f (x), are preferred because of the

reduced computational demand and their superlinear convergence properties. Two well-established

and particularly efficient quasi-Newton algorithms are the L-BFGS and the symmetric-rank-one

(SR1) algorithms.

Given the formula (9.11) for computing the Newton direction ∆x, the unknown variable x

can be updated iteratively with quasi-Newton algorithms, such as the L-BFGS and SR1. More

generally, the iterative formula is stated as follows,
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xk+1 = xk + αk∆xk. (9.12)

Central to this process is the computation of the Newton direction ∆xk and the step length

αk. The inclusion of αk is to ensure that the change along the Newton direction results in a lower

objective function value compared to the current iteration. The process of finding the Newton

direction and the corresponding step length are crucial in the reconstruction process as they affect

the convergence speed and the accuracy of the solution.

The initial guess vector may be homogeneous or inhomogeneous, the choice reflecting our a

priori information on the distribution of optical properties inside the medium. For example, in a

homogeneous initial guess the optical properties may be set to µa = 0.3 cm−1 and µ′s = 10.0 cm−1.

Then, given the initial guess µ0, the optimization algorithm seeks to find sequential approximations

{µk}∞0 that continuously (with few exceptions) decrease the objective function (or a secondary

measure termed the “merit” function).

The rest of this chapter is devoted to presenting a practical method for computing∇f and∇2f

so that ∆x can be obtained. Formulae for the gradient and Hessian can be derived by directly

differentiating the objective function (9.1). We consider the unconstrained and PDE-constrained

methodologies for reconstructing the optical properties using the FV-FD-SPN model.

In Sections 9.2 and 9.3 we describe the necessary steps needed to compute ∆xk with the un-

constrained and the PDE-constrained approaches, respectively. Both optimization methods rely

on the L-BFGS algorithm, which does not require computation or storage of the full Hessian of

the objective function. Instead, it uses an easy-to-compute approximation to ∇2fk that is updated

after each inverse iteration. This ensures that the most recent changes to the gradient (∇fk) inform

the most up-to-date approximation to the Hessian Bk. For reference, the L-BFGS algorithm is

presented in Appendix B.1.

Two principal techniques exist for finding the update direction and step length, the line search
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and trust region methods. In this work we consider two specific types of line search methodologies

for computing αk, each varying in the definition of the merit function. The methodologies differ

according to the type of optimization algorithm. The line search routine used in the unconstrained

algorithm is presented in Section 9.2.3, while the line search method for the PDE-constrained

algorithm is presented in Section 9.3.4.

9.2 Unconstrained optimization

In the unconstrained formulation of the inverse problem in DOT, u is treated as dependent variables

of an independent variable µ. The objective function that minimizes the sum of squared errors is

therefore written as

min
µ

f (µ) =
1

2
[M −Qu (µ)]> [M −Qu (µ)]. (9.13)

The forward model is explicitly written as

A (µ)u (µ) = b. (9.14)

Alternatively, the objective function can be expressed as

min
µ

f (µ) =
1

2

[
M −Q

(
A−1 (µ) b

)]>
[M −Q (A−1 (µ) b)]. (9.15)

This is called unconstrained because the original constraint A(µ)u− b = 0 no longer appears

in the minimization problem and we are free to select any value for the inverse variable µ that

minimizes the objective function. In general, additional constraints on the acceptable values of µ
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can be enforced, such as µ ≥ 0. In this work we do not consider any specific constraints. However,

the procedure detailed herein can be easily extended to circumstances where constraints on µ exist.

9.2.1 Gradient of objective function

From (9.11) we know that the gradient of the objective function [∇µf (µ)] is needed by the L-

BFGS algorithm in order to compute the Newton direction ∆µ. Directly differentiating (9.13)

with respect to µ,

∇µf(µ, u) =
∂f(µ, u)

∂u

∂u(µ)

∂µ
=
∂u

∂µ

∂f

∂u
, (9.16)

yields the gradient. The second term on the right hand side of (9.16), the derivative of the objective

function with respect to the forward solution u, is obtained by differentiating (9.1) with respect to

u (see Appendix B.2 for a detailed derivation),

∂f(µ, u)

∂u
= Q>(Qu−M). (9.17)

The first term on the right hand side of (9.16), the derivative of the forward variable with respect

to the inverse variable µ, is obtained by differentiating (9.14) with respect to u and solving for the

appropriate term (see Appendix B.3 for a detailed derivation), resulting in

∂u(µ)

∂µ
= −∂Au

∂µ

(
A>
)−1

(9.18)

Using the results from (9.17-9.18) on (9.16) yields the formula for computing the gradient of

the objective function,
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∇µf(µ, u) = −∂Au
∂µ

(
A>
)−1
[
Q>(Qu−M)

]
. (9.19)

Given the value of the inverse variable µk at inverse iteration k, the forward model
(
Ak
)
, and

its partial derivative with respect to µ are updated using µk. The uk term is computed using the

latest forward model, Ak. The termsQ and b do not vary across iterations. Then, all terms in (9.19)

are well defined. We recognize that the term

(
A>
)−1
[
Q>(Qu−M)

]
= λ (9.20)

as part of a linear problem which we can re-write as

A>λ = Q>(Qu−M). (9.21)

This is the adjoint equation to the forward model, where we have introduced the adjoint variable

λ. We can solve this linear system for λ and use the solution in (9.19). Then, to obtain the

gradient of the objective function [∇µf(µ, u)] it only remains to compute the term ∂Au
∂µ

. The

adjoint equation technique is the most efficient method for computing the gradient of the objective

function [20, 175], as the cost associated with computing the gradient is on the same order of

magnitude as the cost of solving a forward problem.

Using the adjoint variable, we can re-write the gradient of the objective function into a version

that can be used in the L-BFGS algorithm,
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∇µf(µ, u) = −
(
u>
∂A

∂µ
λ

)

Re
. (9.22)

The derivation of the final form of ∇µf(µ, u) is presented in Appendix B.4 for reference. A

subroutine for computing
∂A

∂µ
is given in Section 9.4.

9.2.2 Merit function

The merit function for the unconstrained problem is simply the objective function itself (9.15),

φkη(u
k, µk) =

1

2

(
Quk −M

)>
(Quk −M). (9.23)

The line search routine requires the computation of the directional derivative of φkη(u
k, µk) along

the descent direction ∆p = ∆µ, which is given by

Dφkη(µ
k) =

(
uk
>∂Ak

∂µ
λk
)>

Re
∆µk. (9.24)

This term is simply the inner product of the gradient of the objective function and the descent

direction.

9.2.3 Unconstrained algorithm

The final form of the unconstrained algorithm is presented in Algorithm 2. A subroutine for com-

puting the step size αk is presented in Algorithm 3. The algorithm exits when the objective function

reaches a tolerance ε (typically ε = 1.0× 10−5) or reaches a maximum allowed number of inverse

iterations K. The tolerance of the GMRES solver varies throughout the algorithm and is denoted

by τ .
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The reconstruction algorithm requires solving the forward and adjoint problems using the

restarted GMRES algorithm with high degrees of tolerance within the outer loop (typically up

to 1.0 × 10−12). These steps are necessary to obtain accurate approximations to the gradient of

the objective function, ∇k
µf(µk, uk), which is an integral part of the L-BFGS algorithm that up-

dates the Newton direction, ∆µk. There is an additional requirement to solve the forward problem

accurately inside the line search routine. This step, repeated until a satisfactory αk is found, is

necessary to ensure sufficient decrease in the merit function over the previous inverse iteration.

The repetitive need to solve forward and adjoint problems within each inverse iteration is the

primary reason for the extensive computation time associated with the unconstrained reconstruc-

tion technique. This deficiency is addressed in Section 9.3 through the use of a PDE-constrained

optimization approach.

Algorithm 2 Uconstrained optimization for DOT with the FD-FV-SPN model.
INV ERSE ← true
k ← 0
µk ← Set initial guess (e.g. µa and µs)
Hk ← I Set the initial value of the Hessian matrix to the identity matrix
Ak ← A(µk)

uk ← Ak
−1
b (using GMRES, τ = 1.0× 10−12)

while INV ERSE do
λk ←

(
Ak
>
)−1

Q>(Quk −M) (using GMRES, τ = 1.0× 10−12)

∇k
µf(µk, uk)← −

(
uk
>∂Ak

∂µ
λk
)

Re

∆µk ← −
(
Hk
r

)−1∇k
µf(µk, uk) (using L-BFGS)

Line search: Compute αk (see Algorithm 3)
µk+1 ← µk + αk∆µ
Ak+1 ← A(µk+1)

uk+1 ←
(
Ak+1

)−1
b (using GMRES, τ = 1.0× 10−12)

lk+1 ← f
(
µk+1, uk+1

)

if (lk+1 < ε or k >= K) then
INV ERSE ← false

else
k ← k + 1

end if
end while
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Algorithm 3 Line search subroutine for unconstrained optimization.
Compute φ(0) using (9.23)
Compute Dφ(0) using (9.24)
LINESEARCH ← true
i← 0
αi ← 1
while LINESEARCH do
µi+1 ← µi + αi∆µ

k

Ai+1 ← A(µi+1)
ui+1 ← (Ai+1)−1 b (using GMRES, τ = 1.0× 10−12)
Compute φ(αi) using (9.23)
if ( φ(αi) ≥ φ(0) + cαiDφ(0) or i >= imax) then
αk ← αi
LINESEARCH ← false

else
αi+1 = αi ·max

(
min

(
0.9,

Dφ (0)αi
φ (0) + αiDφ (0)− φ (αi)

)
, 0.1

)

i← i+ 1
end if

end while

9.3 PDE-Constrained optimization

A powerful method for accelerating the image reconstruction process, and indeed for solving large

scale optimization problems, is known as “PDE-constrained” optimization. The key difference

between “unconstrained” and PDE-constrained optimization approaches is that the forward and

inverse variables are treated as independent variables in the latter technique. This assumption

allows simultaneous solutions to the DOT problem with respect to both the forward and inverse

variables, µ and u, respectively.

The importance of this property cannot be over-stated. Typically, the unconstrained problem

requires that the forward solution, u, be computed after each inverse iteration (i.e. after every

update to µ). This process can be very time consuming because the forward problem typically

must be solved very accurately (i.e. to a GMRES tolerance of approximately 1.0E − 12). In

contrast, the PDE-constrained algorithm does not require that the forward problem be computed to

such degree of accuracy. Instead, the value of u is iteratively updated in parallel to the update of

µ. This results in significant reduction in computation time.
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A second technique that is important in obtaining significant acceleration during the PDE-

constrained optimization process involves making simplifications to the Hessian matrix of the

quadratic problem that results from the DOT objective function. This method is commonly re-

ferred to as a reduced-Hessian or reduced sequential quadratic programming (rSQP) approach.

The SQP approach itself is particularly effective at solving large-scale non-linear optimization

problems [205]. The rSQP method improves on the SQP method by reducing the effective size of

the Hessian matrix that needs to be computed (or approximated) and, therefore, provides significant

gains in computation time.

In this section we present the necessary mathematics for understanding the rSQP PDE-constrained

optimization approach. We specifically focus on the application of this technique to solving the

DOT problem with the FD-FV-SPN model.

We begin the derivation by reformulating (9.3), exploiting the fact that we now treat µ and u as

independent variables. Using the Lagrange multiplier λ, the objective function is written, subject

to the forward problem, as

min
µ,u,λ

L (µ, u, λ) =
1

2
(Qu−M)>(Qu−M) + λ> (A(µ)u− b) . (9.25)

This is a standard PDE-constrained problem which can be simultaneously solved for the for-

ward and inverse solutions. For convenience, the problem can be written as

min
x

L (x) = f I + λ>fF , (9.26)

where f I denotes the inverse error and fF denotes the error contribution from the forward model.

The Lagrangian variable, λ, is a measure of the ratio between the inverse and forward errors. The

goal of the optimization problem is to find the optimal values of µ, u, and λ that minimize L (x),

where for notational purposes, we define the total unknown variable x as
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Table 9.2: Definition of PDE-constrained optimization terms.

f I =
1

2
(Qu−M)>(Qu−M)

fF = Au− b
f Iµ = 0

f Iµµ = 0

f Iu = Q>(Qu−M)

f Iuu = Q>Q

f Iµu = 0

f Iuµ = 0

fFµ = u>
∂A

∂µ

fFµµ = u>
∂2A

∂µ2

fFu = A>

fFuu = 0

fFµu =
∂A

∂µ

fFuµ =
∂A

∂µ

f Iλ = 0

f Iλλ = 0

f Iµλ = 0

f Iλµ = 0

f Iuλ = 0

f Iλu = 0

W =

[
fFµµ
>

fFµu>
λ>fFuµ λ>f Iuu

]

F =
[
fFµ fFu

]

C =

[
f Iµ

f Iu

]

∆p =

[
∆µ

∆u

]

Ẑk = −(fFu
k
)
−1
fF

k

Ŷ k = −(fFu
k
)
−1
fFµ

k
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x =




µ

u

λ



. (9.27)

Then, applying the techniques from Section 9.1 to (9.26), yields a standard quadratic equation

for ∆x as a function of the gradient (∇L) and second-order derivative or Hessian (∇2L),

∇2L (x) ∆x = −∇L (x) . (9.28)

Because this is an “all-in-one” updating scheme, finding ∆x implies that we determine the

Newton directions of the inverse variable (∆µ), the forward variable (∆u), and the Langrange

multiplier (∆λ). The rest of this chapter is devoted to presenting a practical method for computing

∇L and ∇2L so that ∆x can be obtained.

Formulae for the gradient and Hessian can be derived by directly differentiating the objective

function (9.26). Minimizing solutions can be obtained at points where the first order Karush-Kuhn-

Tucker (KKT) conditions are met. That is, at points where the derivative of the functional L (x)

with respect to x (i.e. its arguments µ, u, and λ) vanishes or

∇xL (x) = 0. (9.29)

An expression for the gradient of the Lagrangian function is obtained by differentiating the inverse

f I and forward fF error functions with respect to x.
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∇L (x) =




∇µL (x)

∇uL (x)

∇λL (x)




=




f Iµ + fFµ
>
λ

f Iu + fFu
>
λ

f Iλ + fF




(9.30)

The expression ∇µL (x) is the derivative of the forward operator with respect to the inverse

variable µ (i.e. the sensitivity equation of the Lagrangian), while the term ∇uL (x) can be recog-

nized as the adjoint equation to the forward problem. The expression for ∇λL (x) is equivalent to

the residual of the discretized SPN forward model.

An expression for the Hessian matrix is obtained from the second order derivatives of the

Lagrangian with respect to the forward, inverse, and Lagrange variables.

∇2L (x) =




f Iµµ + fFµµ
>
λ f Iµu + fFµu

>
λ f Iµλ + fFµ

>

f Iuµ + λ>fFuµ f Iuu + λ>fFuu f Iuλ + fFu
>

f Iλµ + fFµ
>

f Iλu + fFu
>

f Iλλ




(9.31)

Remembering that u, µ, and λ are treated as independent variables, we can easily compute

the first and second order derivatives of the forward and inverse error functions as summarized

in Table 9.2. Using the definitions in Table 9.2, (9.30-9.31) can be simplified to the following

equations.

∇L (µ) =




fFµ
>
λ

f Iu + fFu
>
λ

fF




(9.32)
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∇2L (µ) =




fFµµ
>
λ fFµu

>
λ fFµ

>

λ>fFuµ λ>f Iuu fFu
>

fFµ
>

fFu
>

0




(9.33)

We can now re-write (9.28) with the expanded gradient and Hessian terms defined by (9.32-

9.33), where we have introduced the variables F and C to denote the partial derivatives of the

forward and inverse error functions, respectively (defined in Table 9.2).



W F>

F 0







∆p

∆λ


 = −



C + F>λ

f


 (9.34)

This quadratic system can be solved using a quasi-Newton algorithm, such as L-BFGS, as we

now have equations to compute the gradient of the objective function with respect to all unknown

variables. However, solving for the optimal solution at this point can be difficult because of the

burden associated with computing and updating the Hessian matrix, which is now larger than the

Hessian matrix in the unconstrained problem. To overcome this challenge, various techniques have

been widely reported that allow for the use of approximations to the Hessian matrix and that lead

to significant reductions in its size and complexity.

9.3.1 Reduced Hessian approach

The system of equations defined by (9.34) can be written in quadratic form by considering the

solution to the following equivalent system,

minimize
∆p,λ

L(∆p, λ) =

(
1

2
∆p>W∆p+ ∆p>C

)
+
(
λk+1

)>
(F∆p+ f) , (9.35)
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where the relationship λk+1 = λk + ∆λk is used. The equivalence to the original system is seen

by differentiating L(∆p, λ) with respect to ∆p (9.36) and λ (9.37), setting the expressions equal

to zero, and then adding the resulting expressions. The resulting system of equations is equivalent

to (9.34).

∂

∂∆p
L = 0 = W∆p+ C + F>λk+1 (9.36)

∂

∂λ
L = 0 = F∆p+ f (9.37)

We begin by linearizing the inverse and forward variables. Note that we have separated the forward

(u) and inverse (µ) variables from the Lagrange variable (λ). We have grouped the ∆u and ∆µ

terms together into a new variable ∆p, such that

∆pk = Zk + Y k∆µk. (9.38)

The values of Z and Y have been studied in literature and are typically optimally defined as the

following functions of f I and fF ,

Zk =




0

Ẑk


 ,

Y k =



I

Ŷ k


 .

(9.39)

The terms Ẑk and Ŷ k are defined by (9.40) and (9.41).
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Ẑk = −(fku )−1fk (9.40)

Ŷ k = −(fku )−1fkµ (9.41)

Therefore, substituting (9.38) and (9.39) into (9.36) and multiplying both sides by Y k>, results in

Y k>W kY k∆µk + Y k>W kZk + Y k>F k>λk+1 = −Y k>Ck. (9.42)

Which can be simplified to

Hk
r ∆µk + dkr = −gkr . (9.43)

The term Hk
r = Y k>W kY k is the “reduced Hessian,” dkr = Y k>W kZk is the “cross-term,”

Y k>F k> = 0, and the “reduced gradient” is given by

gkr = Y k>Ck. (9.44)

The update direction, ∆µk, to the inverse variable, µk, can be obtained from (9.43), after ignoring

the cross term dkr , as follows,

∆µk = −(Hk
r )−1(gkr ). (9.45)

The L-BFGS algorithm is used to compute and directly update the inverse of the reduced Hessian

matrix (Hk
r )−1 at each inverse iteration k. We can now solve for ∆u using the second equation in
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(9.34), where F k∆pk = −fk can be re-written as fkµ∆µk + fku∆uk = −fk, and then solved and

simplified as follows,

∆uk = −
(
fku
)−1

fk −
(
fku
)−1

fkµ∆µ,

= Ẑk − Ŷ k∆µk.

(9.46)

Expressions (9.40) and (9.41) were used to simplify (9.46). We can re-write the original quadratic

problem, where the Hessian (W ) is reduced to Hk
r at the kth inverse iterations, as follows,




Hk
r 0 f>µ

0 Q>Q f>u

fµ fu 0







∆µ

∆u

∆λ




=




cµ + f>µ λ

cu + f>u λ

f



. (9.47)

We could derive an expression for the update direction of the Lagrance multiplier ∆λ, however,

instead we compute the updated value of the variable λk+1 using the adjoint equation method.

Differentiating the Lagrangian function in (9.25) with respect to the forward variable u and setting

the derivative to zero results in,

0 = −Q>(Qu−M) + A>λ. (9.48)

Then, λk+1 can be obtained by solving the following problem with a linear solver, such as GMRES.

λk+1 = −
(
A
(
µk+1

)>)−1 [
Q>(Quk+1 −M)

]
(9.49)

In this work, the update to the Lagrangian variable λk+1 is always computed by solving the adjoint

problem.
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9.3.2 Summary of formulations

Finally, we have well-prescribed sets of equations for computing the update to each of the three

optimization variables. The forward and inverse variables are updated along ∆u and ∆µ, such that

uk+1 = uk + αk∆uk (9.50)

µk+1 = µk + αk∆µk (9.51)

where ∆µ and ∆u are given by (9.45) and (9.46), respectively. The update to the Lagrange vari-

able λ is obtained by solving the adjoint problem to the forward model as specified by (9.49),

reproduced below,

λk = −
(
A
(
µk
)>)−1 [

Q>(Quk −M)
]
. (9.52)

The adjoint equation (9.52) is solved using the restarted GMRES solver, with the right hand

side vector inside brackets, [ · ]. Then, given λk and by expanding the expression for the reduced

gradient (9.44) into (9.45) we can obtain a clear expression for ∆µ that is a function of the forward

model, forward solution, and the Lagrangian variable. The reduced gradient is simplified to

gkr = −
(
uk
>∂Ak

∂µ
λk
)

Re
. (9.53)

The details of this expansion are given in Appendix B.5. Given the gradient of the objective

function with respect to the inverse variable µ, the update direction ∆µ is simply given by
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∆µk = −(Hk
r )−1

(
uk
>∂Ak

∂µ
λk
)

Re
. (9.54)

This vector, the Newton direction, is computed using the L-BFGS algorithm. The update to the

forward variable ∆u can be simplified by expanding (9.46), which results in

∆uk = −
(
Ak
)−1
[(
Akuk − b

)
+ uk

>∂Ak

∂µ
∆µk

]
. (9.55)

Thus, to obtain the Newton direction (update direction) of the forward variable, ∆uk, the sys-

tem of linear equations in (9.55) has to be solved using the restarted GMRES algorithm, where the

right hand side vector is the bracketed term, [ · ]. See Appendix B.6 for a detailed derivation of

(9.55).

Now, the Lagrange variable λ (9.52), inverse variable µ (9.54), and forward variable u (9.55)

are all functions of the SPN forward model matrixA and source vector b. The optimization problem

and its associated variables are, therefore, all defined.

9.3.3 Merit function

The merit function is designed to ensure that the error contribution from the inverse and forward

variables both decrease. The objective function used in this work is the following,

φkη(u
k, µk) =

1

2

(
Quk −M

)>
(Quk −M) + ηk

∥∥Akuk − bk
∥∥

1
. (9.56)

The Line search routine requires the computation of the directional derivative of φkη(u
k, µk) along

the descent direction ∆p = (∆u,∆µ), which is given by
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Dφkη(u
k, µk) =

(
uk
>∂Ak

∂µ
λk
)>

Re
∆µk − ηk

∥∥Akuk − b
∥∥

1
. (9.57)

The derivation of Dφkη(u
k, µk) is given in Appendix B.7.

9.3.4 rSQP PDE-constrained algorithm

A general algorithm for iteratively solving for the optimal values of µ and u that simultaneously

minimizes the error contribution from the inverse and forward models is presented in Algorithm 4.

The algorithm exits when the objective function reaches a tolerance ε (typically ε = 1.0× 10−5) or

reaches a maximum allowed number of inverse iterations K. The tolerance of the GMRES solver

varies throughout the algorithm and is denoted by τ .

In contrast to the unconstrained reconstruction algorithm, the PDE-constrained algorithm does

not require the solution of the forward and the adjoint problems with accurate tolerances. Instead,

the forward problem is solved accurately only once, at the beginning of the inverse algorithm

(τ = 1.0 × 10−8). The adjoint problem is solved with relaxed tolerances compared to the uncon-

strained problem. There is significant freedom in choosing this tolerance, but we have found that

an adequate range is between τ = 1.0×10−4 and τ = 1.0×10−6. Solving the adjoint problem with

more accuracy may only lead to marginal increases in accuracy, but it can result in a significant

increase in computation time.

The Newton direction for the forward variable, ∆uk, is obtained by solving a linear problem

with the GRMES algorithm, but only a very relaxed tolerance is required. We have found that an

adequate range is between τ = 1.0× 10−2 and τ = 1.0× 10−4.

The line search process is repeated until a satisfactory αk is found, which ensures a sufficient

decrease in the merit function over the previous inverse iteration. However, the line search rou-

tine of the PDE-constrained algorithm does not require solving a linear problem, unlike the line

search routine in the unconstrained algorithm. This is the main reasons why the PDE-constrained
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reconstruction algorithm achieves convergence at reduced computation time compared to the un-

constrained algorithm.

Algorithm 4 rSQP PDE-constrained optimization for DOT with the FD-FV-SPN model.
INV ERSE ← true
k ← 0
µk ← Set initial guess (e.g. µa and µs )
Ak ← A(µk)

uk ← Compute from Ak
>
uk = b using GMRES (τ = 1.0× 10−8)

Hk ← I Set the initial value of the Hessian matrix to the identity matrix
while INV ERSE do
λk ← Compute from Akλk = Q>(Quk −M) using GMRES (τ = 1.0× 10−4)

gkr ← −
(
uk
> ∂

∂µ
Ak
)>

λk

∆µk ← −
(
Hk
r

)−1
(
uk
> ∂

∂µ
Ak
)>

λk using L-BFGS algorithm

∆uk ← −
(
Ak
)−1

[
(Au− b)k +

(
u>

∂

∂µ
A

)k
∆µk

]
using GMRES solver (τ = 1.0× 10−2)

Line search: Compute αk (see Algorithm 5)
µk+1 ← µk + αk∆µ
uk+1 ← uk + αk∆u
lk+1 ← f

(
µk+1, uk+1, λk+1

)

if (lk+1 < ε or k >= K) then
INV ERSE ← false

else
k ← k + 1

end if
end while
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Algorithm 5 Line search subroutine for rSQP PDE-constrained algorithm.
Compute φ(0) using (9.56)
Compute Dφ(0) using (9.57)
LINESEARCH ← true
i← 0
αi ← 1
while LINESEARCH do
µi+1 ← µi + αi∆µ

k

ui+1 ← ui + αi∆u
k

Ai+1 ← A(µi+1)
Compute φ(αi) using (9.56)
if ( φ(αi) ≥ φ(0) + cαiφ

′(0) or i >= imax) then
αk ← αi
LINESEARCH ← false

else
αi+1 = αi ·max

(
min

(
0.9,

Dφ (0)αi
φ (0) + αiDφ (0)− φ (αi)

)
, 0.1

)

i← i+ 1
end if

end while

9.4 Gradient of forward model

The gradient of the forward model matrix A with respect to the inverse variables (i.e. optical

properties) appears in the constrained and unconstrained optimization approaches. In this section

we detail the derivation of formulae for computing the gradient with respect to µa and µs, as these

are the two primary optical properties of interest in DOT.

It is common in DOT to want to avoid the direct computation of the partial derivative of A

with respect to µs (i.e.
∂A

∂µs
). Instead of µs, the reduced scattering coefficient µ′s = (1 − g)µs

is preferred for simplicity. To further simplify the computation of
∂A

∂µs
, the following additional

approximation is made:

D =
1

3 (µa + µ′s)
, (9.58)

≈ 1

3µ′s
. (9.59)
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Then, instead of solving for µs or µ′s, one typically solves for D (i.e. the diffusion coefficient),

from which the scattering coefficient can be recovered. This approximation only works well for

applications in which the diffusion model is valid (i.e. µa << µ′s).

In this work we do not make these approximations. Instead, we differentiate A with respect to

µa and µs directly. The formulae for computing this term depends on the order of the SPN model.

Algorithms 6 and 7 present the definitions of the partial derivatives of A with respect to µs and µa

for the SP3 model, respectively.

Algorithm 6 Gradient of SP3 model matrix A with respect to µs.
∇µsA← 0
for (i = 0; i < M ; i++) do
∇µsAii += ∆Vi
for (j = 0; j < ST ; j++) do

if (Sj is interior surface) then
k ← neighbor node number

β1 ← β1 −
3(1− g)

2ls

[
dAj
drj

]
[D1]

2
i

β2 ← β2 −
7(1− g3)

2ls

[
dAj
drj

]
[D2]

2
i

∇µsAiik ← −
3(1− g)

2ls

[
dAj
drj

]
[D1]

2
k

∇µsAiki ←
3(1− g)

2ls

[
dAj
drj

]
[D1]

2
i

∇µsAikk ←
3(1− g)

2ls

[
dAj
drj

]
[D1]

2
k

∇µsAi+M,i+M,k ← −
7(1− g3)

2ls

[
dAj
drj

]
[D2]

2
k

∇µsAi+M,k+M,i ←
7(1− g3)

2ls

[
dAj
drj

]
[D2]

2
i

∇µsAi+M,k+M,k ←
7(1− g3)

2ls

[
dAj
drj

]
[D2]

2
k

end if
end for
∇µsAiii ← β1

∇µsAi+M,i+M,i ←
5(1− g2)

9ls
[∆V ]i + β2

end for
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Algorithm 7 Gradient of SP3 model matrix A with respect to µa.
∇µaA← 0
for (i = 0; i < M ; i++) do
∇µaAii += ∆Vi
for (j = 0; j < ST ; j++) do

if (Sj is interior surface) then
k ← neighbor node number

β1 ← β1 −
3

2la

[
dAj
drj

]
[D1]

2
i

β2 ← β2 −
7

2la

[
dAj
drj

]
[D2]

2
i

∇µaAiik ← −
3

2la

[
dAj
drj

]
[D1]

2
k

∇µaAiki ←
3

2la

[
dAj
drj

]
[D1]

2
i

∇µaAikk ←
3

2la

[
dAj
drj

]
[D1]

2
k

∇µaAi+M,i+M,k ← −
7

2la

[
dAj
drj

]
[D2]

2
k

∇µaAi+M,k+M,i ←
7

2la

[
dAj
drj

]
[D2]

2
i

∇µaAi+M,k+M,k ←
7

2la

[
dAj
drj

]
[D2]

2
k

end if
end for
∇µaAiii ←

[∆V ]i
la

+ β1

∇µaAi,i+M,i ← −
2

3

[∆V ]i
la

∇µaAi+M,i,i ← −
2

3

[∆V ]i
la

∇µaAi+M,i+M,i ←
[∆V ]i
la

+ β2

end for
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9.5 Validation and numerical simulations

We validate the unconstrained and the PDE-constrained algorithms through numerical studies,

using numerical phantoms with known optical properties. We test multiple ranges of optical prop-

erties to better understand how well each algorithm performs in terms of accuracy and computation

speed.

9.5.1 Numerical phantoms

We compare the performance of the algorithms through simulations on a two-dimensional circular

phantom and a three-dimensional phantom that resembles a human finger. Absorbing and scatter-

ing inclusions are placed inside each phantom and simulated measurement data (M ) is generated

using the SP3 model on a dense FVM mesh and corrupted with 1.0% Gaussian white noise.2 These

two precautions help mitigate the risk of committing an inverse crime during the reconstruction

process. We then attempt to reconstruct the location and optical properties of the phantom, begin-

ning with a standard homogeneous initial guess for µa and µ′s. All simulations on these phantoms

are performed with g = 0.95, ω = 600 MHz, and nm = 1.4 These values are chosen to approxi-

mate the optical properties encountered in real-world applications.

The two-dimensional phantom is defined to have 8 distinct boundary sources distributed along

the perimeter of a circle with a diameter of 2 cm (Fig. 9.1a). For each source a total of 110

detectors are defined along the perimeter of the phantom. The detectors are required to be at least

0.5 cm away from the source (Fig. 9.1b). In certain circumstances it is convenient to analyze

the optical properties along a specific cross-section inside the medium. For this reason, a circular

cross-section 0.5 cm from the center of the phantom is defined and will be referred to in subsequent

sections (Fig. 9.1b).

2The two-dimensional mesh with which the simulated measurements are computed contains 37, 247 nodes (73, 236
tetrahedral elements), while the mesh on which the reconstructions are performed has 1, 309 nodes (2, 360 tetrahedral
elements).
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(a) (b)

Figure 9.1: (a) Location of boundary sources (red). (b) Location of boundary detectors (blue) for
a single boundary source (red) and placement of the internal cross-section of interest (black).

9.5.2 Performance evaluation

The accuracy of each reconstruction is quantified using the correlation coefficient, defined as

r =

∑n
i=1

(
φri − φri

) (
φai − φai

)
√∑n

i=1

(
φri − φri

)2
√∑n

i=1

(
φai − φai

)2
, (9.60)

where φa is the analytical (i.e. benchmark) solution and φr is the reconstruction image. The mean

of each image is denoted by ( · ) and n refers to the total number of distinct mesh nodes. The

analytical solution is known because it is used by the forward model to generate the “measurement”

data M . The correlation coefficient r is between -1 and 1, with r = 1.0 corresponding to an exact

match between the analytical and reconstruction images.

The computation efficiency is captured by plotting the value of the inverse error over time for

each combination of SPN model and reconstruction algorithm. The algorithm is set to exit when the

inverse error decreases by four orders of magnitude from its original value (i.e. relative decrease of

1e−4). We note that the accuracy of the reconstruction can be significantly improved by allowing

the reconstruction process to continue for a longer amount of time. In this analysis, however, we

only require the inverse error to decrease by four orders of magnitude from its original value (i.e.

the final inverse error is 0.01% of the original error).
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9.5.3 Disk phantom: case 1

The optical properties of the first phantom are well within the diffuse regime, where the diffusion

model performs well as a light propagation model (Fig. 9.2a,f). The optical properties of the

background medium are µa = 0.01 cm−1 and µ′s = 12.50 cm−1; the absorbing inclusions have

a value of µa = 0.05 cm−1, while the low scattering inclusion is defined by µ′s = 10.0 cm−1.

Reconstruction images of µa and µ′s are presented in Fig. 9.2. In general, reconstructions obtained

with the SP3 model are more accurate than the reconstruction obtained with the SP1 model. All

SPN models correctly identify the general location of each inclusion. However, reconstructions

with the SP1 model have significant boundary artifacts in both µa and µ′s, and strong cross talk in

µa images.

Analysis of the reconstruction values along the internal cross section allows for better under-

standing of the performance of the SPN models (Fig. 9.3). Both models underestimate µa in the

region of the absorbing inclusions and marginally underestimate µa in the region of the µs inclu-

sion. In the case of µ′s reconstructions, the SP1 model severely underestimates µ′s in the location

of the scattering inclusion, while the SP3 model accurately predicts the lower bounds of µ′s. The

cross-talk between absorption and scattering in the µ′s reconstruction is evident in the SP1 recon-
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Figure 9.2: (Top) µa and (bottom) µ′s distribution in the two-dimensional phantom. (a,f) Exact
distribution, (b,g) SP1 (unconstrained), (c,h) SP1 (PDE-constrained), (d,i) SP3 (unconstrained),
and (e,j) SP3 (PDE-constrained).
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Figure 9.3: Values of (a) absorption and (b) scattering coefficient along the internal cross section
defined in Fig. 9.1b.

struction, where the SP1 models significantly underestimate µ′s at the location of the absorbing

inclusions. Thus, the SP3 model is more resistant to cross talk between µa and µs.

The correlation coefficient between the reconstruction and the analytical solutions verify that

the SP3 model generates reconstructions that are significantly more accurate than reconstructions

with the SP1 model (Table 9.3) in both optical parameters, as is evident from the reconstruction

images. With the SP3 model, the µ′s reconstruction is more accurate than the µa reconstruction,

with correlation coefficients of r = 0.85 and r = 0.66, respectively. Similar patterns are observed

for the SP1 model, although the overall accuracy of the reconstructions are significantly lower than

those obtained with the SP3 model. The choice of optimization strategy, whether constrained or

unconstrained, does not impact the overall accuracy of the reconstruction solution.

The computational advantages of using the PDE-constrained algorithm over the unconstrained

algorithm is clear from Fig. 9.4a, where we plot the value of the objective function over time

for each of the four reconstruction methods. In the case of the SP1 model, the PDE-constrained

algorithm converges approximately 12.2 times faster than the unconstrained algorithm. In the case

of the SP3 model, a speedup factor of 11.75 was achieved with the PDE-constrained algorithm

Table 9.3: Correlation coefficient between reconstruction and analytical solutions for the first phan-
tom.

SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.51 0.51 0.66 0.66
c (µ′s) [%] 0.51 0.51 0.85 0.85
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Figure 9.4: Performance profile of reconstruction algorithms. Objective function value over (a)
time and (b) at the conclusion of each inverse iteration. (c) Evolution of the forward model residual
associated with the PDE-constrained algorithm across each inverse iteration.

compared to the unconstrained algorithm.

The decrease in the inverse error after each inverse iteration is not significantly affected by the

type of optimization algorithm, but is significantly affected by the choice of SPN model (Fig. 9.4b).

The SP3 model exhibits a faster decay rate in the inverse error compared to the SP1 model. Fig. 9.4c

is an example of how the “forward” error decreases over inverse iterations. The forward error

decreases in parallel to the inverse error. This phenomena is a fundamental property of the PDE-

constrained algorithm.

9.5.4 Disk phantom: case 2

The optical properties of the second phantom are in the regime where the diffusion model is in-

creasingly a poor approximation, with highly absorbing regions (µa = 0.5 cm−1) and an area

with low scattering values (µ′s = 2.5 cm−1) (Fig. 9.5a,f). The background properties are µa =

0.1 cm−1 and µ′s = 10.0 cm−1. These values closely resemble absorption and scattering of

NIR light in various biological media, including the human breast (µa ∈ [0.34, 0.8] cm−1,

µs ∈ [181.0, 492.0] cm−1, g ∈ [0.95, 0.98]) and human brain gray matter (µa ∈ [0.16, 0.49] cm−1

and µ′s ∈ [5.9, 9.3] cm−1) [207]. Reconstructions of µa and µ′s are shown in Fig. 9.5. As in the

case of the diffuse phantom (Section 9.5.3), the reconstructions obtained with the SP3 model are

more accurate than those obtained with the SP1 model.

The µa objects are more accurately resolved (based on separation) by the SP3 model compared
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Figure 9.5: (Top) µa and (bottom) µ′s distribution in the two-dimensional phantom. (a,f) Exact
distribution, (b,g) SP1 (unconstrained), (c,h) SP1 (PDE-constrained), (d,i) SP3 (unconstrained),
and (e,j) SP3 (PDE-constrained).

to the SP1 model. In the case of µ′s, the reconstructions with the SP1 model have more significant

boundary artifacts compared to the reconstructions with the SP3 model.

In general, the SP3 model yields more accurate reconstructions than the SP1 model, while

reconstructions obtained with the PDE-constrained algorithm are as accurate as those obtained

with the unconstrained algorithm (Table 9.4.). With the PDE-constrained algorithm, the correlation

coefficient of the SP3 model for µa is 0.68, while it is only 0.63 for the SP1 model. In the case

of µ′s, the correlation coefficients are 0.82 and 0.79, for the SP3 and SP1 models, respectively. As

in the case of the first phantom, the scattering coefficient reconstruction is more accurate than the

absorption reconstruction.

The PDE-constrained algorithm achieves speedup factors of 16.6 and 10.7 compared to the

unconstrained algorithm, using the SP1 and SP3 models, respectively (Fig. 9.6). The difference

Table 9.4: Correlation coefficient between reconstruction and analytical solutions for the second
phantom.

SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.64 0.64 0.68 0.68
c (µ′s) [%] 0.79 0.80 0.82 0.82
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Figure 9.6: Performance profile of reconstruction algorithms. Objective function value over (a)
time and (b) at the conclusion of each inverse iteration. (c) Evolution of the forward model residual
associated with the PDE-constrained algorithm across each inverse iteration.

in computation time between the SP1 and SP3 models is surprisingly minimal (Fig. 9.6a), sug-

gesting that the traditional computation superiority of the SP1 model over higher order models

is diminished when considering optical properties outside the diffuse regime. The similarities in

computation performance between then SP1 and SP3 models are evident by considering the value

of the objective function over inverse iterations (Fig. 9.6b) and the value of the forward model error

over inverse iterations (Fig. 9.6c); the performance of the SP3 is almost identical to that of the SP1

model.

9.5.5 Disk phantom: case 3

The optical properties of the third phantom are chosen to be well outside the diffuse regime, with

highly absorbing inclusions (µa = 1.0 cm−1) and a region with low scattering values (µ′s =

2.5 cm−1), all inside a moderately diffuse background (µa = 0.1 cm−1 and µ′s = 10.0 cm−1)

(Fig. 9.7a,f). These absorption and scattering values closely approximate the properties of most

biological media (a comprehensive list of optical properties for biological media can be found in

Chapter 5 of [207]). Reconstruction images of µa and µ′s are presented in Fig. 9.7. As in the case

of the first two phantoms, including the diffuse phantom, the reconstructions obtained with the SP3

models are more accurate than those obtained with the SP1 model.

In contrast to the diffuse phantom (Section 9.5.3), the difference in accuracy between the SP1

and SP3 models are only marginal, as the correlation coefficients of the reconstructions obtained
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Figure 9.7: (Top) µa and (bottom) µ′s distribution in the two-dimensional phantom. (a,f) Exact
distribution, (b,g) SP1 (unconstrained), (c,h) SP1 (PDE-constrained), (d,i) SP3 (unconstrained),
and (e,j) SP3 (PDE-constrained).

with the SP3 model are only 0.02 larger than the correlation coefficients of reconstructions with

the SP1 model. Furthermore, the accuracy of the µa and µ′s reconstruction are similar, with a

correlation coefficient between 0.71 and 0.73 (Table 9.5).

Computationally, the PDE-constrained algorithm performs significantly better than the uncon-

strained algorithm, achieving speedup factors of approximately 12.3 and 15.2 with the SP1 and SP3

models, respectively (Fig. 9.8).

Table 9.5: Correlation coefficient between reconstruction and analytical solutions for the third
phantom.

SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.71 0.72 0.73 0.73
c (µ′s) [%] 0.71 0.71 0.73 0.73
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Figure 9.8: Performance profile of reconstruction algorithms. Objective function value over (a)
time and (b) at the conclusion of each inverse iteration. (c) Evolution of the forward model residual
associated with the PDE-constrained algorithm across each inverse iteration.

9.5.6 Disk phantom: case 4

The optical properties of this phantom are chosen to be well outside the diffuse regime, with two

absorbing inclusions (µa = 0.2 cm−1) and two regions with low scattering values (µ′s = 6.0 cm−1)

in a moderately diffuse background (µa = 0.1 cm−1 and µ′s = 10.0 cm−1) (Fig. 9.9a,f).

Reconstruction images of the µ′s are more accurate than reconstructions of the µa, as the scat-

tering objects are very accurately resolved while the absorbing objects appear as single continuous

objects (Fig. 9.9). The SP3 model achieves better resolution of the absorbing objects compared

to the SP1 model. In general, the reconstructions with the SP3 model are more accurate than the
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Figure 9.9: (Top) µa and (bottom) µ′s distribution in the two-dimensional phantom. (a,f) Exact
distribution, (b,g) SP1 (unconstrained), (c,h) SP1 (PDE-constrained), (d,i) SP3 (unconstrained),
and (e,j) SP3 (PDE-constrained).
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Table 9.6: Correlation coefficient between reconstruction and analytical solutions for the fourth
phantom.

SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.64 0.64 0.67 0.67
c (µ′s) [%] 0.77 0.77 0.87 0.87

reconstructions with the SP1 model (Table 9.6).

Computationally, the PDE-constrained algorithm performs significantly better than the uncon-

strained algorithm, achieving speedup factors of approximately 9.6 and 9.7 with the SP1 and SP3

models, respectively (Fig. 9.10).
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Figure 9.10: Performance profile of reconstruction algorithms. Objective function value over (a)
time and (b) at the conclusion of each inverse iteration. (c) Evolution of the forward model residual
associated with the PDE-constrained algorithm across each inverse iteration.

9.5.7 Disk phantom: case 5

In this phantom we test the performance of the algorithms on media with moderately absorbing

inclusions (µa = 0.2 cm−1) and two regions with low scattering values (µ′s = 4.0 cm−1) in a

moderately diffuse background (µa = 0.1 cm−1 and µ′s = 10.0 cm−1) (Fig. 9.11a,f). This phantom

is similar to the fourth phantom (Section 9.5.6), with the only difference being the value of the low

scattering regions. As in the case of the fourth phantom, the SP3 model performs better than the

SP1 model and the µ′s reconstruction is more accurate than the µa reconstruction (Fig. 9.11).
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Figure 9.11: (Top) µa and (bottom) µ′s distribution in the two-dimensional phantom. (a,f) Exact
distribution, (b,g) SP1 (unconstrained), (c,h) SP1 (PDE-constrained), (d,i) SP3 (unconstrained), and
(e,j) SP3 (PDE-constrained).

In contrast to the fourth phantom, where the SP3 model performed significantly better than

the SP1 model, the differences in accuracy between the SP1 and SP3 models are smaller in this

example (Table 9.7). The accuracy of the µa reconstruction decreases compared to reconstruction

of the phantom in Section 9.5.6, where the scattering inclusions were defined by µ′s = 6.0 cm−1.

The accuracy of the µ′s reconstructions with the SP3 model remains relatively unchanged, while

the accuracy of the µ′s reconstructions with the SP1 model improves.

This change is presumed to occur as a result of the significant decrease in the scattering values

of the inclusions (µ′s = 6.0 cm−1 to µ′s = 4.0 cm−1). It is expected that approximations to the ERT

will perform increasingly poorly as the optical properties of the tissue approach low-scattering

media (i.e. void-like).

Computationally, the PDE-constrained algorithm performs significantly better than the uncon-

Table 9.7: Correlation coefficient between reconstruction and analytical solutions for the fifth
phantom.

SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.61 0.61 0.62 0.62
c (µ′s) [%] 0.82 0.82 0.86 0.86
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Figure 9.12: Performance profile of reconstruction algorithms. Objective function value over (a)
time and (b) at the conclusion of each inverse iteration. (c) Evolution of the forward model residual
associated with the PDE-constrained algorithm across each inverse iteration.

strained algorithm, achieving speedup factors of approximately 11.1 and 10.5 with the SP1 and

SP3 models, respectively (Fig. 9.12).

9.5.8 Finger phantom

In this section we consider a three-dimensional numerical phantom that is based on the surface

geometry of a human finger. The source and detector configuration of this phantom is modeled

after a trans-illumination imaging setup, where the finger is illuminated on the posterior (dorsal)

side and escaping photons are measured on the anterior (palmar) side. In total, 11 distinct point

sources (Fig. 9.13a) and 155 detector points (Fig. 9.13b) are defined for this phantom.

Two cases of the finger phantom are considered. In both cases we defined one inclusion with el-

evated absorption and one inclusion with lower scattering than the background medium (Fig. 9.14).

The section of the finger under consideration is approximately 4.0 cm in length (y-axis) and has

width and height of approximately 2.0 cm. The inclusions are spheres with a 1.5 cm diameter. The

reconstruction process is allowed to continue until the inverse error decreases by a factor of 0.0001

(or to 0.01% of the original value).

Optical properties are chosen to closely resemble those typically found in and around the prox-
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(a) Sources (posterior surface) (b) Detectors (anterior surface)

Figure 9.13: (a) Position of the 11 sources and (b) location of the 155 detectors on the posterior
and anterior surface of the finger phantom, respectively.

Figure 9.14: Definition of finger-like phantoms; both phantoms have one absorbing (red object,
top row) and one scattering (blue object, bottom row) inclusion in a homogeneous background.
The optical properties of the first phantom are as follows; the background properties are µa =
0.01 cm−1 and µ′s = 12.5 cm−1 (g = 0.95), the absorbing inclusion is µa = 0.05 cm−1, and the
scattering region is µ′s = 12.5 cm−1. The second finger phantom is similar, except for differences
in the optical properties of the background (µa = 0.1 cm−1 and µs = 12.5 cm−1, g = 0.95), the
absorbing inclusion (µa = 0.25 cm−1), and the scattering region (µs = 7.5 cm−1).
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Table 9.8: Correlation coefficient between reconstruction images and analytical
solution for the first finger phantom (one absorbing object with µa = 0.05 cm−1

and one scattering object with µ′s = 10.0 cm−1).
Measure SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.54 0.54 0.67 0.66
c (µ′s) [%] 0.60 0.60 0.71 0.71

Table 9.9: Correlation coefficient between reconstruction images and ana-
lytical solution for the second finger phantom (one absorbing object with
µa = 0.25 cm−1 and one scattering object with µ′s = 7.5 cm−1).

Measure SP1 SP1 (PDE) SP3 SP3 (PDE)
c (µa) [%] 0.65 0.65 0.72 0.72
c (µ′s) [%] 0.60 0.60 0.67 0.67

imal interphalangeal (PIP) joint of the human hand [9]. The inclusions are chosen to resemble

regions of high absorption and low scattering that can be found in and around the PIP joint cavity.

In the first case, the background media is defined with µa = 0.01 cm−1 and µ′s = 12.5 cm−1

(g = 0.95); the absorption inclusion has µa = 0.05 cm−1 and the scattering inclusion has µ′s =

10.0 cm−1 (Fig. 9.14). The second finger phantom is similar, with only differences in the value of

the optical properties. The background media is defined with µa = 0.1 cm−1 and µs = 12.5 cm−1

(g = 0.95); the absorption inclusion has µa = 0.25 cm−1 and the scattering inclusion has µs =

7.5 cm−1. The reconstruction of these optical properties allows us to determine how accurately

each algorithm can determine the underlying optical properties and their individual computational

efficiency. These simulations closely resemble clinical applications.

The accuracy of reconstructions obtained with the SP1 and SP3 models are summarized in

Tables 9.8 and 9.9, respectively. In both cases, the reconstructions obtained with the SP3 model

are more accurate than the reconstructions obtained with the SP1 model. The differences between

the models are more significant for the first finger phantom.

An example of the absorption and scattering coefficient maps obtained with the SP3 model

using the PDE-constrained algorithm is presented in Fig. 9.15. In general, the algorithm is able to

accurately locate the inhomogeneities and can accurately identify the value of the absorption and
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Figure 9.15: Three-dimensional reconstruction images corresponding to the second finger phan-
tom. Depicted are the absorption inclusion (red object) and scattering void (blue object) in
otherwise homogeneous media. The true optical properties of the absorbing inclusion is µa =
0.25 cm−1, the scattering region is µs = 7.5 cm−1, and the background are µa = 0.1 cm−1 and
µs = 12.5 cm−1. The reconstruction algorithm is able to accurately locate the inhomogeneities
and estimate their optical properties. The phantom is defined in Fig. 9.14.

scattering coefficients in the same general location (Fig. 9.16).

The computational performance of the reconstruction process of both numerical phantoms are

summarized by Fig. 9.17, which plots the value of the objective function over time. The PDE-

constrained algorithms significantly outperform the unconstrained algorithms in the reconstruction

of both phantoms. However, the computational efficiencies gained by the PDE-constrained algo-

rithm is more significant in solving for the first phantom. In that case, computational speedup

factors of up to 5 are obtained.

Another computational aspect of interest is the system memory (RAM) requirements of each

algorithm as these two finger phantoms closely resemble clinical applications. Reconstructions

with the SP1 model requires up to 177.5 MB, while up to 212.7 MB are used by the SP3 algorithm.

These computational requirements are not significant compared to the RAM found in typical desk-

top computers (12 GB in the desktop used for these studies), which is important as it is proof that

our algorithm is efficient in memory management. This efficiency is expected to translate to gen-

eral DOT problems and is not specific to the simulations presented in this section. For example,

we expect similar efficiencies when considering clinical data.
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Figure 9.16: Cross-sectional slices inside the finger phantom of the reconstruction images of the
absorption (top row) and scattering (bottom row) coefficients obtained with the PDE-constrained
SP3 models for the second finger phantom. The true optical values of this phantom are as follows;
background media is defined with µa = 0.1 cm−1 and µs = 12.5 cm−1 (g = 0.95), the absorption
inclusion has µa = 0.25 cm−1, and the scattering inclusion has µs = 7.5 cm−1.
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Figure 9.17: Performance profile of reconstruction algorithms. Objective function value over (a,c)
time and (b,d) at the conclusion of each inverse iteration for the (top row) first and (bottom row)
second finger phantom.
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9.6 Discussion

Two image-reconstruction algorithms for use in DOT imaging that are based on solving the finite-

volume frequency-domain SPN model (FV-FD-SPN ) are presented in this chapter. Both optimiza-

tion methods use the quasi-Newton limited-memory BFGS algorithm to directly compute the New-

ton direction (∆x), which is then used to directly update the inverse variable in a iterative manner

(xk+1 = xk + α∆xk). Line search based on cubic interpolation is used to find the update step size

(α) that achieves sufficient decrease in the merit (or objective) function. One approach is based

on unconstrained optimization, where the goal of the algorithm is to repeatedly solve the forward

model to iteratively update the inverse variable. The second approach is based on PDE-constrained

optimization theory, where the inverse and forward variables are both solved simultaneously and

iteratively updated.

The algorithms are validated using numerical phantoms of two- and three-dimensional geome-

tries. Simulated measurement data is created using the SP3 model on dense numerical grids and

corrupted with 1% Gaussian white noise. The reconstruction process is performed on less dense

numerical grids using the SP1 and SP3 models. The accuracy and computational efficiency of each

type of optimization algorithm and SPN model is analyzed. Optical parameters within the dif-

fuse regime and outside the diffuse regime are considered to understand how the algorithms may

perform in clinical data applications, where optical parameters can lie within large ranges.

Overall, the absorption and scattering coefficient maps are more accurately reconstructed with

the SP3 model than with the SP1 model. The PDE-constrained algorithm is typically more than

one order of magnitude faster than the unconstrained algorithm. This speedup factor is obtained

without loss of accuracy by the PDE-constrained algorithm. The speedup factor is lower when

three-dimensional geometries are considered. We find that the PDE-constrained algorithm per-

forms well when the adjoint variable and Newton direction for the forward variable are both solved

with the GMRES algorithm with outer and inter loop tolerances of 0.001.

We note that the difference in computation time between the algorithms that use the SP1 and

SP3 model is minimal when using the PDE-constrained approach. While a typical inverse iteration
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with the SP1 model is completed in about half the time it takes for an SP3 iteration, the recon-

struction process with the SP3 model typically requires fewer inverse iterations than the process

that uses the SP1 model; these convergence properties result in reducing the overall difference in

reconstruction time between the SP1 and SP3 models.

The focus of Chapter 10 is the application of the PDE-constrained optimization algorithm to

clinical data. We focus on investigating the utility of the SP3 algorithm when considering clinical

data. Modifications necessary to incorporate clinical data into the algorithm are presented. Finally,

results from the application of computer added diagnosis (CAD) techniques to the reconstruction

data are presented.
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Chapter 10
Application Of The PDE-Constrained SPN

Algorithm To Clinical Data

The focus of the work reported in this chapter is to combine the image analysis and DOT recon-

struction tools presented thus far to study our ability to diagnose RA using the SPN light prop-

agation model. First, we use the SPN reconstruction algorithm to recover the absorption and

scattering parameters from the finger joint clinical data introduced in Chapter 5, which consists

of frequency domain DOT images of 219 peripheral interphalangeal (PIP) joints. Then, we use the

computer-aided diagnosis (CAD) algorithm presented in Chapters 6 and 7 to investigate our ability

to diagnose RA using the reconstruction images obtained with the SPN model.

We have at our disposal clinical data captured at 600, 300, and 0 MHz, as well as reconstruc-

tion algorithms with an unconstrained or a constrained optimization approach. We also have a large

suite of classification techniques available, as presented in Chapters 6 and 7. Instead of investi-

gating all possible scenarios, we use results from Chapters 5, 6, 7, 8, and 9 to make the following

choices.

We choose to use clinical data captured with modulation frequency of 600 MHz. The choice of

modulation frequency is made based on evidence shown in Chapter 5 that indicates that 600 MHz

data leads to higher sensitivities and specifies than data at 300 and 0 MHz.

The PDE-constrained reconstruction algorithm is used instead of the unconstrained algorithm
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for the two reasons that are discussed in detail in Chapter 9. Primarily, the PDE-constrained

reconstruction algorithm has superior computational performance compared to the unconstrained

algorithm, achieving speed-up factors between 5 and 20 times without loss in accuracy.

Lastly, we choose to use the support vector machine (SVM) algorithm in our feature extraction

and optimal feature selection algorithm, as presented in Chapter 7. This choice is based purely

on the results presented in Chapter 7, where it is shown that classification based on SVM with a

polynomial kernel1 yields the highest sensitivities and specificities in the diagnosis of RA.

As a final analysis step, we will report on the ability to diagnose RA from reconstructions

obtained with the SPN model and compare them to the ability to diagnose RA from reconstructions

obtained using the equations of radiative transfer (ERT), a more accurate light propagation model.

We begin this chapter with Section 10.1, where we introduce modifications to the PDE-constrained

reconstruction algorithm presented in Chapter 9 that are necessary for the application to clinical

data. Then, in Section 10.2, we provide a brief review of the clinical data that forms a basis to the

analysis presented in this chapter. Results from performing image reconstructions on the clinical

data with the PDE-constrained reconstruction algorithm are presented in Section 10.3. Results

from the application of the CAD algorithm to the SPN based reconstruction images are presented

and discussed in Section 10.4. Furthermore, these results are directly compared to classification

results obtained with ERT-based images. This chapter concludes with Section 10.5, a summary of

the results presented in Chapter 10 and a discussion on the impact these results may have on the

field of diffuse optical tomography.

10.1 Objective function for use with clinical data

Due to practical considerations, when working with experimental data, the objective function of the

inverse problem must be modified from the version presented in Chapter 9. First, recall the general

form of the objective function that is used to solve the unconstrained optimization problem, given

1The optimal kernel is a third-order polynomial.
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by

f(µ, u) =
1

2
(M − P )T (M − P ). (10.1)

This function must be modified because, in general, the absolute strength of the boundary

source (W cm−2 sr−1) (i.e. laser) is not precisely known. As a result, it is impossible to directly

compare the predicted measurement values (P ) with the true measurement data (M ). The inability

to directly compare these vectors is due to a severe mismatch in scale that can occur when the

source strength is not precisely known. As a result, the true measurement data is often normalized

by the average overall measured intensity.

In the remainder of this section we specify the necessary changes to the standard DOT objec-

tive function and how those changes impact the rest of the reconstruction algorithm. First, the

normalized measurement data (M̃ ) is given by

M̃ij =
(
M
)−1

Mij. (10.2)

The indices i ∈ S and j ∈ D denote all possible sources and detectors, respectively. Here,

M represent the average measured intensity, which is a complex valued number when considering

frequency domain DOT, and is given by

M =
1

SD

S∑

i=1

D∑

j=1

(M)ij . (10.3)

Then, mirroring the normalization of M , the predicted detector measurements P must be nor-

malized in a similar manner. The normalized predicted partial current can be computed as follows,
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P̃ =
(
P
)−1

P. (10.4)

Here, P is the average predicted partial current across all source-detector pairs and is defined as

P =
1

SD

S∑

i=1

D∑

j=1

(Qu)ij (10.5)

After incorporating these changes , the augmented objective function can be stated as follows,

f(µ, u) =
1

2

(
M̃ − P̃

)T (
M̃ − P̃

)
. (10.6)

This change necessitates several specific considerations. In particular, the right hand side of the

adjoint equation is more complicated because P itself is a function of u, the variable over which

differentiation occurs. The adjoint equation for the constrained and unconstrained approach is

discussed in detail in Section 9.2.1 and given by (9.21). A numerical recipe for using the solution

to the adjoint equation in the PDE-constrained algorithm is described in Section 9.3.1 and given

by (9.49). Then, given the changes introduced as a result of normalizing measurement data, the

correct adjoint equation is now (a detailed derivation is provided in Appendix B.8),

A>λ = Q>



P̃>
(
M̃ − P̃

)∗ 1

SD
1−

(
M̃ − P̃

)∗

P


 ‘ (10.7)

Normalization of each element of the error (or difference) vector
(
M̃ − P̃

)
ij

by the corre-

sponding norm of the measurement element (i.e. |M̃ |ij) often leads to improved convergence

(where i ∈ S and j ∈ D denote the source-detector pair). In this case, the objective function is
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redefined as,

f(µ, u) =
1

2

(
M̃ − Qu

P

)T (
M̃ − Qu

P

)

M̃>M̃
. (10.8)

The only change to Eq. 10.7 is the use of the appropriate normalized terms when computing the

difference between the predicted measurements and the true measurements,
(
M̃ − P̃

)
.

10.2 Clinical data

Details of the clinical data can be found in Chapter 5. To summarize, the clinical data consists

of 219 PIP joints that were imaged using a sagittal trans-illumination frequency-domain DOT

scanner. PIP joints II-IV were imaged on the dominant hand of 33 subjects with RA and on both

hands of 20 healthy control subjects, resulting in 99 joints from subjects with RA and 120 joints

of subjects without RA.2 Scanning was performed at 600, 300, and 0 MHz. The source laser

illuminated the joint on the posterior (dorsal) side and escaping photons were measured on the

anterior (palmar) side using an intensified CCD-based detection system. In total, 11 distinct point

sources (Fig. 10.1a) and over 100 detector points (Fig. 10.1b) were defined for each joint.

An example of transillumination from a single surface source, as captured by the ICCD-based

detector system, on the posterior (or palmar) surface of the finger is presented in Fig. 10.2. The

value of the detector mesh points (Fig. 10.1b) are obtained by mapping those pixels onto the ICCD

image and then extracting the measured data at the corresponding pixels.

2A total of 36 subjects with RA were scanned, however, data from three subjects was discarded due to errors that
occurred during the DOT imaging procedure.
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(a) Sources (posterior surface) (b) Detectors (anterior surface)

Figure 10.1: An illustration of a typical finger section. The PIP joint is located approximately in
the middle of the object, whose length is approximately 4 cm. (a) The position of the 11 unique
sources are indicated on the posterior surface of the finger. (b) The position of the detectors (i.e.
mesh nodes that map directly to a pixel on the CCD camera-based detection system) are shown on
the anterior surface of the finger section.

(a) (b)

Figure 10.2: Transillumination captured by the ICCD detector unit on the posterior (palmar) sur-
face of a PIP joint belonging to (a) a subject with RA and (b) a healthy control.

240



10.3 Reconstruction results

Reconstruction of the absorption and scattering coefficients of each imaged joint is performed

using the PDE-constrained SP3 algorithm. Qualitatively, the images appear as expected, with

regions of low absorption and scattering within the area where we expect the PIP joint cavity.

Each reconstruction requires between 150 to 200 MB of RAM and is completed in less than 15

minutes. The objective function typically decreases to between 1.0% and 10.0% of the original ob-

jective function value. We note that the 10,000 fold reduction of the inverse error from its original

value that we achieve in the numerical simulations (Section 9.5.8) is not, in general, obtained in the

reconstructions of clinical data. The inability to obtain more substantial reductions in the objective

function can be attributed to the loss of information that arises from normalizing the measurement

data by the average overall measured intensity.

This is a necessary step, however, as the reconstruction results without normalization can be

significantly more inaccurate and unreliable when using clinical data. Indeed, attempting to re-

construct clinical data without performing the aforementioned normalization often leads to early

termination of the reconstruction process (i.e. the algorithm cannot progress beyond the initial

guess) or if left unchecked, the value of the objective function can increase dramatically (this only

occurs if we do not add specific constrains on allowable values of the objective function, such as

requiring it to constantly decrease at each inverse iteration).

The reconstruction images of absorption and scattering within and around the imaged PIP joint

show distinct differences between subjects with RA and the control group. The µa and µ′s images

of 40 joints are presented in Figs. 10.3 and 10.4. In these images, it is clear that compared to joints

of healthy subjects, subjects with RA have elevated regions of absorption and scattering around the

PIP joint.

In these images, a region of low scattering and absorption is identifiable around the location

where we expect the PIP joint. This region may correspond to the synovial cavity of the joint,

which we expect has lower absorption and scattering compared to the surrounding tissues (bone,

muscle, ligament, tendon). This region is identifiable in all joints of healthy subjects and some
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joints of subjects with RA. However, these same regions exhibit elevated absorption and scattering

(compared to the background) in joints of subjects with RA. This may suggest that the synovial

cavity of these joints has experienced significant changes in physiology that results in an elevated

concentration of absorbers and scatterers; such changes can be expected due to the onset of symp-

toms associated with RA.

The reconstruction parameters used to obtain these results are summarized by Table 10.1.

The absorption and scattering coefficients were rescaled by transforming the absorption range of

[0.0, 0.4] cm−1 and the scattering range of [0.0, 400.0] cm−1 to [0.0, 1.0] cm−1. We note that this

rescaling does not imply that we restrict the acceptable solutions to lie within this range. Indeed,

the acceptable range of solutions itself is not restricted.

Table 10.1: Summary of values assigned to reconstruction variables.

Parameter Name Value
Background µa 0.3 cm−1

Background µs 200.0 cm−1

Anisotropy factor g 0.95
Refractive index of medium n 1.4
Refractive index of air n 1.0
Modulation frequency ω 600.0 MHz
Speed of light in medium c 299.87× 108

GMRES forward model tolerance (τ ) 1.0× 10−12

GMRES adjoint model tolerance (τ ) 1.0× 10−4

GMRES inexact forward model tolerance (τ ) 1.0× 10−4

GMRES maximum number of iterations 500
GMRES restart iterations (mr) 50
Boundary regularization No
Inverse tolerance 0.01
Minimum decay rate 1.0× 10−8

Boundary source power 1.0 W cm−2 sr−1

Discrete ordinates S12 (168)
Absorption rescaling range [0.0, 0.4] cm−1

Scattering rescaling range [0.0, 400.0] cm−1
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Figure 10.3: (a-b) Absorption and (c-d) scattering cross-sections of distinct joints from subjects
with and without RA.
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Figure 10.4: (a-b) Absorption and (c-d) scattering cross-sections of distinct joints from subjects
with and without RA.
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10.4 Analysis of SPN reconstruction data with CAD

The next step in our analysis is to use reconstruction results obtained with the SPN model to

diagnose RA. We use the k-fold cross-validation technique to gauge the ability to diagnose RA

with this new data. Here, approximately 2/3 of the data is used to train and 1/3 is used to test.

The training set consists of 22 subsets with RA (or 66 PIP joints) and 14 healthy individuals (or

84 PIP joints), together consisting of 150 distinct joints. The testing set includes 11 subjects with

RA (or 33 PIP joints) and six healthy patients (or 36 PIP joints). The allocation of subjects into the

training of the testing group is done randomly to help minimize any potential bias.

The cross-validation process used in Chapters 6 and 7 is modified in two small, yet important

ways. First, the rule for selecting the top 30 features for use in the optimization algorithm is

changed from the classical Youden index (i.e. Y = Se + Sp − 1) to the augmented Youden index

introduced in Section 7.2.6, given by

Y ∗(Se, Sp) = Se+ Sp+ αLSe + βLSp − δd− 1. (10.9)

Here, the Youden index is a function of sensitivity (Se) and specificity (Sp), and the lower bounds

of the confidence intervals of Se and Sp, given by LSe and LSp, respectively.

The second modification is the use of the k-fold method to enhance the cross-validation pro-

cess. With k = 2, we segment the entire data set into two sets, a training and a testing set. The

training set is subjected to the data-mining process presented in Chapters 6 and 7, which yields

a set of optimal feature vectors and the corresponding choice of classification algorithm for the

training data. The testing set is not used until the optimal classifier (features and classification al-

gorithm) is chosen. The resulting classifier is used to subsequently evaluate the ability to diagnose

RA with the testing data. The process is summarized by the flowchart in Fig. 10.5.

Thus, the only difference between this analysis and the analysis in Chapters 6 and 7 is the

additional layer of cross-validation that arises from keeping a set of data away from the data mining
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Data (219 joints, 33 RA pts, 20 healthy pts) 

Data mining 

Optimal Features Optimal Classification 
Algorithm 

Optimal Classifier 

Training (22 RA pts, 14 healthy pts) Testing (11 RA pts, 6 healthy pts) 

Validation 

Performance: Sensitivity & Specificity 

Figure 10.5: Flow chart of k-fold cross-validation.

process and then subsequently applying the results from the optimization algorithm on the testing

set. This so-called k-fold process provides additional safety layers to ensure our classification

results are as unbiased as possible and thus more reliable.

As a reminder, the data mining process presented in Chapter 7 is summarized by the flowchart

in Fig. 10.6. This process is performed on reconstruction images obtained with the SP1, SP3, and

ERT models.3

For each data set (i.e. SP1, SP3, or ERT based reconstructions) we report the sensitivity and

the specificity obtained when the data mining results are used to classify the testing data. As in

Chapter 7, we report the 95% confidence intervals (CI) associated with the sensitivity and the

specificity. As a reminder, the CI informs us of the lower and upper bounds of the sensitivity and

the specificity within which we are confident the true performance of the classifier is located (with

up to 95% confidence). The CI is computed to account for the effective sample size of our data,

3As a reminder, the ERT-based reconstructions are the original data set and are first discussed in Chapters 5, 6, and
7.
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Figure 10.6: Flow chart of the data mining process that selects optimal features and the best clas-
sification algorithm for diagnosing RA from DOT images.

which removes bias that may be introduced into our statistical parameters through correlation be-

tween joints of the same subject. See Section 6.4.2 for details on the computation of the confidence

intervals.

Classification results are summarized in Tables 10.2 and 10.3. The sensitivity and specificity

(and their respective confidence intervals) achieved when using the reconstruction images gen-

erated with the SP1, SP3, and ERT models are summarized in Table 10.2. The number of true

positives, false negatives, true negatives, and false positives are also summarized in Table 10.2.

We consider three criteria for comparing the performance of the SP1, SP3, and ERT models.

The three categories are computational efficiency, feature extraction optimality, and image classi-

fication performance.
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Table 10.2: Classification results for SPN and ERT based reconstructions with the k-fold method.

Model TP FN TN FP Se [% (95% CI)] Sp [% (95% CI)] Youden Number of Features

SP1 22 11 34 8 66.7 (46.6,100) 81.1 (64.8,100) 0.48 8

SP3 29 4 39 3 87.9 (78.1,100) 92.9 (84.6,100) 0.81 3

ERT 30 3 41 1 90.9 (83.1,100.0) 97.6 (85.1,100.0) 0.88 5

The first category in which we compare the models is computational efficiency, which consists

of the total reconstruction time and the total system resources needed. The reconstruction times

with the SP1 and SP3 models are similar, typically requiring less than 15 minutes to complete the

reconstruction process. In contrast, the reconstruction time with the ERT model always exceeds

180 minutes.4 Additionally, reconstructions with the ERT always required over 6 GB of RAM,

while the SP1 and SP3 models always required less than 200 MB of RAM. In the computational

efficiency category the SPN models outperform the ERT model.

The second category is feature extraction optimality, where we compare the number of “opti-

mal” features selected during the training process. In general, we prefer optimal feature vectors

with low-dimensionality as this helps reduce the probability of over-fitting the data. Over-fitting

the data can result in classification results that do not generalize well and therefore may be an un-

reliable predictor of future performance. In this work, the number of optimal features is eight for

the SP1 model, three for the SP3 model, and five for the ERT model. As we are generally interested

in the fewest possible features to avoid over fitting problems, it is clear the SP3 model is superior

in this category to the ERT and SP1 models.

The third category to compare is the classification performance of each of the three models.

Here, we are primarily concerned with the sensitivity and the specificity that is computed by pro-

cessing the data set reserved for testing with the classifier that results from the training phase. In

addition to seeking values of the sensitivity and the specificity as close to 100.0% as possible, we

4Indeed, this reconstruction time is actually orders of magnitude faster than traditional ERT-based reconstruction
algorithms that do not solve the optimization problem using a PDE-constrained approach. Furthermore, these ERT-
based reconstruction were obtained with a low order discrete ordinates set (S6), which is significantly lower than the
recommended set of ordinate to accurate capture transport behavior (> S12).
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are also interesting in comparing the 95% confidence interval for each parameter. The CI is im-

portant because it informs us of the range within which we expect the true values of the sensitivity

and the specificity to exist.

The reconstruction images computed with the SP3 model allow higher sensitivity and speci-

ficity values than images obtained with the SP1 model. The SP1 model yields sensitivity of

66.7 (46.6, 100.0)% and specificity of 81.1 (64.8, 100.0)%. The SP3 model clearly outperforms the

SP1 model and yields 87.9 (78.1, 100.0)% sensitivity and 92.9 (84.6, 100.0)% specificity. Images

computed with the ERT-based algorithm yield 90.9 (83.1, 100.0)% sensitivity and 97.6 (85.1, 100.0)%

specificity.

We note that the upper bound of the CI for all models is 100.0%. The lower bound varies

between models and between the sensitivity and the specificity. As in the case of the sensitivity

and the specificity values, the CI of the ERT are smaller than those obtained with the SPN models.

However, the lower bounds of the SP3 model are significantly higher than the lower bounds of the

SP1 model. The lower bound of the sensitivity with the SP1 model in only 46.6% which is sig-

nificantly lower than the 78.1% lower bound that is computed with the SP3 model. Furthermore,

the sensitivity computed with SP1 images (66.7%) is lower than the lower bound of the sensitiv-

ity computed with the SP3 model (78.1%). Similar results can be observed when comparing the

specificity values.

Overall, these results indicate that the SP3-based reconstruction algorithm provides computa-

tional advantages over the ERT-based algorithm without sacrificing significant classification accu-

racy. In contrast, the SP1 model provides computational advantages compared to the ERT at the

expense of classification accuracy.

The names of the optimal features selected during the training phase and used in the testing

phase are presented in Tables 10.3. The mean and standard error of the optimal features corre-

sponding to the ERT and SP3 models are plotted in Fig. 10.7.

The three optimal features chosen using the SP3 model are F01:SV:a, F02:ST:a, and F13:VT:a.

The first two features are the maximum and minimum values of the three dimensional data and the
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Table 10.3: Name of optimal features selected during the training phase of the k-fold method
using SPN and ERT based reconstructions. Refer to Section 6.3.4 for a detailed explanation of the
naming convention adopted for referencing image features.

Model Name of Optimal Features

SP1 F01:ST:a, F04:GT:a, F34:SV:a, F16:VS:a, F03:SV:s, F04:VS:s, F05:VS:s, F04:VT:s

SP3 F01:SV:a, F02:ST:a, F26:VT:a

ERT F01:UV:a, F02:SV:a, F05:SV:a, F02:ST:a, F08:GS:s
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Figure 10.7: Mean value and standard error of the optimal features selected from analysis of the (a)
ERT and (b) SP3 based reconstruction images. A two-sample student-t test shows that differences
between features from subjects with RA and without RA are statistically significant at the α = 0.01
level. (a) Features denoted by † are scaled by a factor of 10. (b) Features denoted by † and ‡ are
scaled by a factor of 50 and 500, respectively.

sum of transverse slices, respectively (refer to Section 6.3.4 for details on the naming convention).

The third feature corresponds to the largest coefficient of the Fourier transform of the variance

between transverse slices.

The five optimal features chosen using ERT-based reconstruction images are F01:UV:a, F02:SV:a,

F05:SV:a, F02:ST:a, and F08:GS:s. The first three features are the maximum, minimum, and ratio

values of the three dimensional data, respectively. The fourth feature is the minimum of the sum

of transverse slices. The fifth feature is a Gaussian mixture model (GMM) parameter.5.

Together, the optimal features fit the general pattern first discussed in Chapter 7. While the

optimal features are not the same features identified in Chapter 7, the general conclusion is still

the same, primarily that the optimal features are associated with global absolute values of the

5More specifically, it is the second eigenvalue of the dominant positive Gaussian

250



absorption and scattering data and their spatial variation within the imaged section of the finger.

The difference in optimal features is attributed to the difference in the rule for selecting the top 30

features and in the use of the k-fold method as an additional cross-validation step.
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10.5 Discussion

Modifications to the objective function presented in Section 10.1 and the subsequent changes to the

reconstruction algorithm are necessary when considering clinical data as the input measurements.

The primary change that results from modification of the objective function is to the right hand

side of the adjoint equation. Reconstruction with the PDE-constrained SP1 and SP3 algorithms is

performed on a set of 219 human PIP joints, with 99 joints belonging to subjects with RA and 120

joints belonging to healthy subjects.

Computationally, the PDE-constrained SP3 algorithm performs as expected, reaching conver-

gence in less than 15 minutes. We note that compared to phantom studies, the algorithm is unable

to reduce the objective function by several orders of magnitude. Instead, the algorithm settles on a

local minimum that yields an objective function typically between 1.0% and 10.0% of the original

objective function value. This difference in algorithm performance between phantom studies and

the application to clinical data occurs because of the changes to the objective function, primarily

due to the normalization of the input measurements by the average overall measured intensity. The

normalization process is necessary as we are often not able to accurately specify the input source

power and has the unfortunate effect of causing some loss of information provided by the input

measurements.

Regardless of the challenges associated with using clinical data, the reconstruction algorithm

performs as expected. Qualitatively, the reconstruction images of absorption and scattering meet

our expectations. There appears to be a clear difference between joints of subjects with RA and

subjects without RA. Primarily, joints from subjects with RA appear to have regions of elevated

absorption and scattering. In contrast, these same regions in the joints of healthy individuals appear

to have lower absorption and scattering values.

Corroborating one of the central theories of this thesis, we show that the sensitivity and speci-

ficity values computed with ERT-based images are higher than the values computed with the SP3-

based images and even higher when compared to values obtained with SP1-based images. Addi-

tionally, the sensitivity and specificity values computed with SP1-based images are extremely poor
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and may be of little clinical value. However, the sensitivity and specificity values computed with

SP3-based images remain relatively high and may be sufficient for use in a clinical setting. Thus,

the SP3 model is clearly preferred over the SP1 based on classification performance. From a com-

putational efficiency standpoint, the differences between the SP1 and SP3 models is not significant.

The SP3 models also compares favorably to the ERT model. While, both models achieve

clinically relevant sensitivity and specificity values that compare favorably to values that can be

expected from analysis of MRI and US images, it must be noted that the ERT-based images allow

for very high sensitivities and specificities as compared to the SP3-based images. However, the

SP3 model requires significantly less computational resources compared to the ERT model. For

example, in a typical high-performance desktop computer (such as a 6-core Mac Pro with 12 GB

of RAM), one can easily perform the reconstruction of six finger joints (i.e. PIP joints II to IV

of both hands of one subject) in less than 15 minutes, as all six reconstructions can be performed

simultaneously (i.e. one reconstruction per core). In contrast, only one ERT-based reconstruction

can be performed on the same computer, suggesting that a total of over 18 hours would be needed

to complete the reconstruction of joints associated with a single subject.

Thus, a compelling argument can be made for favoring the SP3 model over the ERT model as

they both achieve clinically significant sensitivity and specificities, however, using the SP3 model

requires significantly less computational resources.

We note that the reconstruction maps of absorption and scattering obtained with the SPN model

do not, in general, match the images obtain with the ERT model. However, both sets of images

fit into our understanding of what the true distribution of optical properties inside the imaged joint

should be. This is generally expected as small differences in the algorithms can often lead to

significant differences in the resulting reconstruction. This phenomena is due to the severe ill-

posedness of the DOT inverse problem, where small differences in the optimization algorithm can

results in the solution converging to any of the various local minima of the objective function.
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Chapter 11
Conclusion

The focus of this dissertation was to help further establish diffuse optical tomography (DOT) imag-

ing as a valuable and clinically relevant tool. The work presented here reports on the development

and implementation of computational algorithms that enhance the efficiency of the image recon-

struction process and allow for the diagnosis of rheumatoid arthritis (RA) from analysis of DOT

images.

11.1 Diagnosis of RA with CAD techniques

This dissertation first presented detailed analysis of frequency-domain DOT data from a clinical

study where 36 subjects with RA where recruited, along with 20 healthy control subjects. The

peripheral interphalangeal (PIP) joints II-IV of the dominant hand of each subject with RA was

imaged, while PIP joints II-IV on both hands of the control subjects were also imaged. A total

of 228 PIP joints were scanned during the study. Each joint were scanned with modulation fre-

quencies of 600, 300, 0 MHz. The absorption and scattering coefficient maps of each joint was

computed using a DOT reconstruction algorithm that uses the equation of radiative transfer (ERT)

to model light propagation in biological tissue.1

1While a total of 36 subjects with RA were scanned, it must be noted that data from three subjects was discarded
due to errors that occurred during the imaging procedure that rendered the DOT data unusable. Thus only 99 joints
of subjects with RA were used in the analysis, resulting in a total of 219 joint (120 of the joints were from healthy
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This set of PIP joint reconstruction-images formed the basis of the subsequent analysis, with

a focus on understanding our ability to diagnose RA from these DOT images. The ability to

diagnose RA was quantified through classification of each image as affected or not affected by RA

using linear discriminate analysis (LDA) and leave-n-out cross validation.2 Sensitivity (Se) and

specificity (Sp) values were computed to quantify the ability to accurately diagnose RA.

The first set of results established that significantly higher sensitivities and specificities can

be obtained from analysis of images obtained from 600 MHz (Se = 91.0%, Sp = 86.0%) and

300 MHz (Se = 81.0%, Sp = 74.0%) data than from 0 MHz (Se = 64.0.0%, Sp = 55.0.0%)

data. The second set of results showed that joint classification using images computed with 0 MHz

data were poor and, therefore, 0 MHz data was unlikely to play a significant role in the diagnostic

process.

The third set of results showed that joints of subjects with RA that do not have detectable

symptoms of RA on MRI and US scans,3 and therefore can falsely appear as healthy joints, are

clearly different from healthy joints when comparing DOT images.4 Furthermore, these joints may

also differ from joints with detectable symptoms on MRI and US images.

The fourth set of results showed for the first time that scattering image biomarkers were of

significant importance. This is important as it had been previously reported that only absorption

image features led to clinically relevant sensitivities and specificities. Features derived form the

absorption coefficient image yield better one-dimensional classification results (Se = 78.0%, Sp =

78.0%) compared to features from the scattering coefficient images (Se = 75.0%, Sp = 75.0%).

However, features from the scattering coefficient images yield significantly better performance

subjects).
2To be precise, the images themselves were not used. Instead, basic statical parameters were computed from

each image and these features were subsequently used in the analysis. The image features included the maximum,
minimum, variance, and ratio of maximum over the minimum of the spatial distribution of each optical parameter.

3The symptoms under consideration were erosion, effusion, and synovitis. Joints of subjects with RA that do
not exhibit any of these symptoms are called asymptomatic PIP joints and they would be classified as not exhibiting
symptoms of RA and the subjects may therefore be misdiagnosed if the diagnosis is made based on analysis of MRI
or US images.

4ANOVA analysis was used to verify that joints of subjects with RA were statistically different from joints of sub-
jects without RA at the 95.0% level. The same analysis showed that asymptomatic joints were not always statistically
different from joints with RA, but were generally statistically different from healthy joints.
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(Se = 83.0%, Sp = 83.0%) compared to the absorption coefficient images (Se = 91.0%, Sp =

86.0%) when multidimensional classification is considered.5

These findings are important as the study was the first to demonstrate that images of joints with

RA can be successfully discriminated from image of joints without RA with significant accuracy.

Furthermore, this study was the first to present conclusive evidence of the superiority of frequency

domain imaging over steady-state domain imaging in the diagnosis of RA. Additionally, the study

showed the importance of scattering coefficient images that had not been previously demonstrated.

Those results inspired studies that evaluated the ability to diagnose RA using a combination of

absorption and scattering coefficient features.

Together, these results showed that accurate classification of joints as affected or not affected

with RA from analysis of DOT images can only be done when imaging is performed with a instru-

ment that operates in the frequency domain, preferably at 600 MHz. Furthermore, it was shown

that both the absorption and scattering coefficient images provide important pathological informa-

tion that can aid in accurately classifying each joint.

Indeed, these results inspired the development of a computer-aided diagnosis (CAD) algorithm

for automatically mining DOT data for image biomarkers that correlate with the presence of RA.

Going beyond the initial analysis, the CAD algorithm was designed to take as input a set of DOT

reconstruction data, extract a large set of image features that went well beyond the initial set of

basic features, and mine the resulting set of image features for optimal classifiers that yield optimal

or near optimal classification results.6

The CAD algorithm works as follows. Upon completion of the image reconstruction on un-

structured tetrahedral meshes, the data is first converted into a Cartesian mesh for better analysis.

Then, pre-processing of the reconstruction data is performed. This includes the computation of 9

two-dimensional data sets that are formed by projecting the three-dimensional structured data set

5All results presented here were obtained from analysis of images computed from data obtained with 600 MHz
modulation frequency.

6The feature selection algorithm takes as input the 594 features extracted from each joint image and determines a
subset of those features that yield the best diagnostic results.
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along physiological planes.7 Features are then extracted from each of the 11 data sets.8

Three types of features are extracted from each of the 11 data sets. First, basic statistical pa-

rameters are computed, including the maximum, minimum, mean, and variance. The second type

of features are Gaussian mixture models (GMM) coefficients.9 The third type of image features

are the coefficient of the Fourier transform of each of the structured data sets.10 Overall, 297 fea-

tures are extracted from each of the absorption and scattering coefficient images, resulting in 597

features for each joint.

The CAD algorithm then performs one-dimensional ROC analysis of each of the 597 features

and selects the 30 features with the highest Youden index.11 These 30 features are then used by

the optimal feature selection algorithm to select a smaller subset of features that yield near opti-

mal classification results. The algorithm was designed to use linear discriminate analysis (LDA),

quadratic discriminate analysis (QDA), k-nearest neighbors (KNN), self-organizing maps (SOM),

or support vector machines (SVM) to generate a decision rule for classifying an image as “affected”

or “not affected” by RA.

The output of the algorithm is the optimal classifier and its performance metrics. The opti-

mal classifier includes the optimal features and the accompanying classification algorithm. Per-

formance is measured by the sensitivity, the specificity, and their corresponding 95.0% confidence

intervals. The confidence intervals are particularly important because they account for any bias that

may be introduced into the analysis by correlation between joints of the same subject.12 Robust

leave-one-subject-out cross-validation was used throughout the algorithm to ensure the integrity of

the results.
7Projection planes are defined to coincide with each of the three physiological planes. Three projection operators

were used. The operators sum all slices, compute the variance between all slices, or compute the average between all
slices along each direction.

8The 11 data sets include the unstructured reconstruction data, the structured reconstruction data, and the 9 two-
dimensional images computed by projecting the structured three-dimensional data.

9GMMs are a collection of Gaussian functions and are used to fit the spatial distribution of each optical parameter.
The parameters that define the GMM accurately describe the distribution and location of volumes of high or low
absorption (or scattering) coefficients in the image.

10Note that the Fourier transform was not applied to the unstructured data set.
11The Youden index is defined as Sensitivity + Specificity -1.
12The confidence interval is computed using the so-called effective sample size (ESS) and intra-class correlation

coefficient (ICC).
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The algorithm was tested using the same clinical data mentioned above, using only the 600 MHz

data. We discovered that classification with SVM always performs better than classification with

LDA, QDA, KNN, and SOM. Furthermore, for the SVM algorithm, a polynomial of order 3 was

typically the optimal kernel.13 Finally, 100% (96.4%, 100.0%) sensitivity and 97.8% (93.8%, 100.0%)

specificity values were achieved with an SVM classifier using a third-order polynomial kernel. The

optimal image features were generally seen to capture the variation in optical parameters within a

PIP joint.

11.2 Image reconstruction algorithm

The issue of inefficient image reconstruction was addressed by showing that an algorithm based on

the SPN light propagation model offers sufficient accuracy and is significantly more efficient than

an algorithm based on the ERT model. To achieve the necessary improvements in reconstruction

speed, a reduced-Hessian sequential quadratic programming (rSQP) PDE-constrained optimization

approach was explored.

The derivation of the finite-volume discretization of the frequency-domain SPN model, for

N = 1 or 3, was presented in detail. For the first time, we identified two competing versions of

the frequency-domain SPN model, a subject that has not been reported on previously. Algorithms

for solving the two competing models were implemented, using the GMRES algorithm to solve

the large-scale linear problem. Simulation results from each model were used to compare the

accuracy and computational performance of each model. Each algorithm was validated through

extensive numerical simulations. We discovered that the frequency-domain SPN model which has

only real-value diffusion-like coefficients is most accurate in situations where the optical properties

more closely resemble tissue-like properties. As expected, the computational efficiency of the SPN

model compared to the ERT model was significant, performing up to 76 times faster than the ERT

model. Additionally, the RAM required to solve the forward problem on a dense computational

13A low order polynomial kernel is indeed ideal as it helps to ensure the data is not over-fit by the model.
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mesh with the SPN model was approximately 315.1 MB, while solving the forward problem with

the ERT model on the same phantom required over 6.15 GB of RAM.

Then, the necessary mathematical formulations for performing DOT reconstructions using the

finite-volume frequency-domain SPN model with a PDE-constrained optimization approach was

presented. For comparison, the formulation of the traditional (“unconstrained”) reconstruction

algorithm for the SPN model was also developed and presented. A subroutine based on the limited-

memory BFGS algorithm was developed to approximate and update the Hessian matrix of the

quadratic problem associated with performing the image reconstruction. The algorithms were

validated and their performance evaluated through extensive numerical simulations. The PDE-

constrained approach was significantly faster than the unconstrained approach, often performing

over one order of magnitude faster.

This was the first time that the finite-volume SPN model was used to perform image reconstruc-

tions in DOT. This was also the first time that the SPN model was used to perform reconstructions

with a PDE-constrained optimization approach.

Finally, the rSQP PDE-constrained algorithm was used to reconstruct the absorption and scat-

tering coefficient values of the finger joint clinical data. Reconstructions were performed with the

N = 1 (i.e the diffusion equation) and the N = 3 models using the 600 MHz data. This was the

first time reconstructions of frequency domain DOT data of finger joints were performed with light

propagation models other than the ERT.

Analysis of the reconstruction data showed that subjects with RA had elevated absorption and

scattering values in the location of the PIP joint compared to the images of healthy subjects. How-

ever, the images obtained with the SPN -based algorithm differed from those obtained with the

ERT-based algorithm. As both algorithms have been validated, it is difficult to definitively say

which of the images are more correct as the true distribution of optical parameters in each joint

is not known. It is encouraging, nevertheless, that the absorption and scattering coefficient dis-

tributions match our expectations (based on our understanding of the physiological processes and

symptoms associated with the onset of RA).
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To quantitatively compare the utility of the SPN and ERT-based images, the CAD algorithm

was used to process the resulting reconstruction data and to quantify the ability to diagnose RA us-

ing these SPN -based images. Clinically significant sensitivity and specificity values were achieved

when using images obtained using the SP3 model, while images obtained with the SP1 model re-

sulted in significantly lower sensitivity and specificity values. While images obtained with the SP3

allowed for clinically relevant sensitivity and specificity values, it was clear that reconstruction

images obtained using the ERT model allowed for even higher sensitivity and specificity values.

An additional step was taken to ensure the integrity of the classification results. In a blinded pro-

cess, the data was divided into training and testing sets. The training set was used as input to the

CAD algorithm, from which optimal classifiers were computed. Then, the testing set was used to

compute the sensitivity and specificity with the selected classifier.14

The classification performance achieved with ERT-based images was used as a benchmark, as

analysis of these images resulted in 90.9% (77.1%, 100.0%) sensitivity and 97.6% (81.1%, 100.0%)

specificity.15 The SP3 model performed relatively well, with 87.9% (69.4%, 100.0%)% sensitivity

and 92.9% (71.7%, 100.0%) specificity. The performance of the diffusion model (SP1) was the

worst, with 66.7% (46.6%, 100.0%) sensitivity and 81.1% (64.8%, 100.0%) specificity.

From a computational standpoint, however, the difference in resources required to solve a typ-

ical inverse problem with the ERT model (≥ 6.0 GB) was significantly more than the resources

required to solve the same inverse problem with the SP3 model (≤ 200.0 MB). The low computa-

tional resources required by the SP3 model imply that multiple reconstructions can be performed

simultaneously on standard desktop computers. This is advantageous when the goal is to produce

a clinically useful tool. For example, the rSQP PDE-constrained SPN algorithm can reconstruct

the absorption and scattering coefficient images of a single subject in less than 15.0 minutes on a

standard desktop computer. In contrast, using a highly efficient ERT algorithm would require at

14This is the so-called k-fold cross-validation procedure. The training set consisted of 2/3 of the data and the testing
set contained the remaining 1/3 of data.

15The numbers in parentheses represent the 95.0% confidence interval for the reported diagnostic value. The con-
fidence interval incorporates any potential correlation that may exist between finger joints of the same subject and
corrects for that bias. Correlation between joints results in decreasing the effective sample size and therefore widens
the confidence interval.
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least 18.0 hours on the same computer.16 The advantages are clear, as the SPN based algorithm

would allow the generation of finger joint images that could be analyzed almost immediately after

scanning the subject.

Overall, we presented sufficient evidence to establish that the SP3 light propagation model pro-

vides sufficiently accurate DOT reconstruction images to achieve clinically significant diagnostic

results with a significant reduction in computation time and system resources.

11.3 Future work

A prospective study involving a large number of subjects is necessary to further validate the diag-

nostic results presented in this dissertation. For example, the top features discovered in Chapter 7

and in Chapter 10 can be used along with the SVM classifier to diagnose future subjects. Such a

prospective study will offer sufficient insight into whether RA can or cannot be diagnosed from

DOT images. Furthermore, the identified classifiers can be used to identify subjects with RA that

respond to therapy and those that do not respond. Indeed, such a study has already been designed

and is under consideration by our team of collaborators. The study is designed to be a longitudinal

study where response to therapy will also be monitored. Based on power calculations, it was estab-

lished that 110 subjects would provide sufficient statistical power to accurately identify responders

from non-responders to therapy.17

There are three additional areas that I believe should be the focus of future work that builds on

the results reported in this dissertation. These include the application of the algorithms presented

in this dissertation to additional therapeutic areas, refinement of these fragmented algorithms into a

clinically useful all-in-one package, and further enhancement of the SPN reconstruction algorithm

through the use of parallel computing techniques.

16Here we assume that a typical desktop computer is a machine with at least a six cores and 6 GB of RAM. We also
assume that a given subject has three joints imaged per hand.

17The effective sample size is actually much larger than 110 as all 10 fingers of each subjects will be imaged,
resulting in 1, 100 distinct joints. The effective sample size, taking into consideration the correlation between joints of
the same subjects, is expected to be approximately between 400 and 700.
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First, a logical extension of the computer-aided diagnosis work is to focus on the application

of the feature selection techniques used throughout this dissertation to clinical data associated with

the diagnosis and monitoring of peripheral arterial disease (PAD) and breast cancer. Indeed, pre-

liminary results from the use of the CAD algorithm to time-domain DOT data from a small clinical

study involving subjects with PAD shows that sensitivity and specificity values in the range of 80%

to 90% can be achieved. Modification to the algorithm as presented in this dissertation include the

extraction of heuristic temporal features to augment the spatial features already discussed. In breast

imaging, the CAD algorithm can be used to discover spatial-temporal features that correlate with

the presence of breast cancer. These DOT image features can also be used to predict and monitor

response to therapy in the neoadjuvant chemotherapy setting. As in the case of RA, retrospective

studies can be used to determine optimal image biomarkers and prospective studies can be used to

validate their utility.

Similarly, the PDE-constrained SPN reconstruction algorithm can be a valuable tool for use

in clinical studies that involve large data sets, such as PAD and breast imaging, where often over

1, 000 three-dimensional “frames” are captured and must be reconstructed. Using ERT-based re-

construction schemes is impractical because of the associated computational burden and using the

diffusion model introduces severe modeling errors. However, the SP3 model is not more expensive

to use with clinical data than the diffusion model and yields solutions that can more accurately

approximate ERT-based reconstructions.

Second, a holistic approach to the integration of DOT into the clinical setting should include an

algorithm that directly integrates into the imaging hardware and is capable of taking as input the

“raw” imaging data and automatically output DOT images and a diagnosis recommendation. This

would require integrating the reconstruction algorithm and the CAD algorithm, as they individually

are already capable of providing the necessary results. This would help further establish DOT as a

valuable tool in the clinical setting as it would be user-friendly.

Third, the reconstruction process can be further enhanced so that images can be obtained within

one to two minutes, providing almost immediate results that can be easily analyzed at the point of
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imaging, without sacrificing significant accuracy. This can be achieved by reducing the recon-

struction time associated with executing the PDE-constrained SPN algorithm through the use of

parallel computing techniques. For example, a typical DOT imaging scan uses multiple sources

(11 sources in the case of PIP joints) and records each source with all detectors. Recovering the

optical parameter distribution requires solving the forward problem at least twice during the re-

construction process and the adjoint problem at least once per inverse iteration. However, each of

these problems can be decomposed into smaller linear problems that are associated with only one

source at a time. As such, using at least 11 processors allows one to distribute the work associated

with a single source (i.e. the forward or adjoint problem) to a specific processor. Then, the time

necessary to solve these smaller linear problems for each of the 11 sources can be reduced to the

time needed to solve for one source.18 This strategy is becoming increasingly feasible as desktop

computers with 12 and 16 CPU cores are becoming increasingly common and inexpensive.

11.4 Discussion

The field of diffuse optical tomography has progressed significantly over the past 20 years and is

now close to being established as a valuable tool at the clinical level, having already shown great

value as a pre-clinical tool. To ensure the continual progress of this novel imaging modality it is

imperative that researchers continue to formulate and execute clinical studies and apply computa-

tional and statistical techniques to this data to further demonstrate the diagnostic utility of DOT.

Large prospective clinical studies are needed to effectively and irrefutably show what there are

disease specific image biomarkers that can be used to accurately diagnose and monitor a multitude

of diseases, including RA, breast cancer, peripheral arterial disease, and infantile hemangiomas,

among others. We have taken but a first step towards that goal with the work presented in this

dissertation, and undoubtedly, the case for DOT as a vital clinical tool will be further strengthened

over the next five to ten years as results from additional studies are published.

18A near-linear speedup is expected with this type of domain decomposition as the associated communication
between processors is minimal.
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Appendix A
Forward Model

A.1 Conversion of FEM mesh into FVM mesh

The pseudo code for converting the 3D GID finite element mesh to finite volume mesh.

Pseudo code:

Step 1: Go over all the tetrahedron elements. For each tetrahedron EiE with the nodes (pip ,pjp ,pkp ,plp),

we record

• The coordinates of the centroid of EiE : cEiE = (pip + pjp + pkp + plp)/4.

• All the triangle faces of the tetrahedron element EiE .

Step 2: Go over all the triangle faces after removing those duplicate ones. For each face FiF with nodes

(pip ,pjp ,pkp), we record

• The indices of tetrahedron elements that FiF belongs to. (Practically these were record in step 1)

• The coordinates of the centroid of FiF : cFiF = (pip + pjp + pkp)/3.

• All the edges of the face FiF .

step 3: Go over all the edges after removing those duplicate ones. For each edge eie , with nodes (pip ,pjp),

we record

288



• The indices of triangle faces that eie belongs to. (Practically these were record in step 2)

• The coordinates of the centroid of eie : ceie = (pip + pjp)/2.

• The node indices ip and jp.

Step 4: Go over all the nodes. For each node pip , we record

• The indices of edges that pip belongs to. (Practically these were record in step 3)

Step 5: Build the finite volume mesh and gather the information as below:

for every node pip

Construct a finite volume element Vip centered at pip ;

Set the volume of this element Vip = 0;

Set the face number of this element nip = 0;

for every edge eie that pip belongs to

Let pjp be the other node that belongs to eie ;

Let n = pjp − pip ;

for every face FiF that eie belongs to

for every element EiE that FiF belongs to

Add a face formed by (ceie , c
F
iF
, cEiE ) to Vip ;

The outgoing normal vector of this face is n;

The neighbor element to Vip on this face is Vjp ;

Let ∆V be the volume of tetrahedron (pip , c
e
ie
, cFiF , c

E
iE

);

Vip = Vip + ∆V ;

nip = nip + 1;

end for

if FiF is on the boundary (it only belongs to one element)

Add a face formed by (pip , c
e
ie
, cFiF ) to Vip ;

Compute the outgoing normal vector for this face;

The neighbor element to Vip on this face is Null;

nip = nip + 1;
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end if

end for

end for

end for
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The pseudo code for converting the 2D GID finite element mesh to finite volume mesh.

Pseudo code:

Step 1: Go over all the triangle faces. For each face FiF with nodes (pip ,pjp ,pkp), we record

• The coordinates of the centroid of FiF : cFiF = (pip + pjp + pkp)/3.

• All the edges of the face FiF .

step 2: Go over all the edges after removing those duplicate ones. For each edge eie , with nodes (pip ,pjp),

we record

• The indices of triangle faces that eie belongs to. (Practically these were record in step 2)

• The coordinates of the centroid of eie : ceie = (pip + pjp)/2.

• The node indices ip and jp.

Step 3: Go over all the nodes. For each node pip , we record

• The indices of edges that pip belongs to. (Practically these were record in step 2)

Step 4: Build the finite volume mesh and gather the information as below:

for every node pip

Construct a finite volume element Vip centered at pip ;

Set the area of this element Vip = 0;

Set the edge number of this element nip = 0;

for every edge eie that pip belongs to

Let pjp be the other node that belongs to eie ;

Let n = pjp − pip ;

for every face FiF that eie belongs to

Add a edge formed by (ceie , c
F
iF

) to Vip ;

The outgoing normal vector of this edge is n;

The neighbor element to Vip on this edge is Vjp ;
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Let ∆V be the area of triangle (pip , c
e
ie
, cFiF );

Vip = Vip + ∆V ;

nip = nip + 1;

end for

if eie is on the boundary (it only belongs to one face)

Add a edge formed by (pip , c
e
ie

) to Vip ;

Compute the outgoing normal vector for this edge;

The neighbor element to Vip on this edge is Null;

nip = nip + 1;

end if

end for

end for
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Appendix B
Inverse Problem

B.1 L-BFGS algorithm

The L-BFGS algorithm is defined by Algorithms 8 and 9.

Algorithm 8 L-BFGS (outer loop) [205]
Choose starting point x0, integer m > 0
k ← 0
while rSQP do

Choose H0
k

(
H0
k = γkI, γk =

s>k−1yk−1

y>k−1yk−1

)

Compute pk ← −Hk∇fk (See inner loop details in Algorithm 9)
Compute xk+1 ← xk + αkpk
if k > m then

Discard the vector pair {sk−m, yk−m} from storage
end if
Compute and save sk ← xk+1 − xk, yk = ∇fk+1 −∇fk
k ← k + 1

end while
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Algorithm 9 L-BFGS (inner loop) [205]
q ← ∇f
for i = k − 1, k − 2, ..., k −m do
ρi = 1

y>i si

αi = ρis
>
i q

q = q − αiyi
end for
r ← H0

kq
for i = k −m, k −m+ 1, ..., k − 1 do
β ← ρiy

>
i r

r ← si (αi − β)
end for
∴ Hk∇fk = r

B.2 Right hand side of adjoint equation

The derivation of the terms associated with the right-hand side of the adjoint equation are derived in this

section. In particular, we are interested in the gradient of the objective function, u, with respect to the

forward variable, u. It is important, however, to to note that u is a complex-valued vector and, therefore,

care must be taken when performing the necessary differentiations. First, expand the objective function into

its real and imaginary parts.

f(µ, u) =
1

2
(Qu−M)> (Qu−M)

=
1

2
[(QuRe −MRe) + i (QuIm −MIm)]> [(QuRe −MRe) + i (QuIm −MIm)]

=
1

2
[(QuRe −MRe) + i (QuIm −MIm)]> [(QuRe −MRe)− i (QuIm −MIm)]

=
1

2

[
(QuRe −MRe)

> (QuRe −MRe)− (QuIm −MIm)> (QuIm −MIm)
]

=
1

2

[(
u>ReQ

>QuRe −M>ReQuRe +M>ReMRe

)
+
(
u>ImQ

>QuIm −M>ImQuIm +M>ImMIm

)]
.

(B.1)

The partial derivative of f with respect to the complex-valued forward variable u can be decomposed into a

real and imaginary part,
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∂f(µ, u)

∂u
=
∂f(µ, u)

∂uRe
+ i

∂f(µ, u)

∂uIm
. (B.2)

Then, differentiating (B.1) according to (B.2) yields the sought after expression,

∂f(µ, u)

∂u
= Q> (QuRe −MRe)− iQ> (QuIm −MIm)

= Q> [(QuRe − iQuIm)− (MRe − iMIm)]

= Q>(Qu−M).

(B.3)

B.3 Partial derivative of u

The partial derivate of the the forward variable u (µ) with respect to the inverse variable is needed in order

to compute the gradient of the objective function using the adjoint equation method. The computation of

this quantity is as follows.

∂

∂µ
A (µ)u (µ) = u (µ)>

∂A (µ)

∂µ
+A (µ)

∂u (µ)

∂µ
(B.4)

Setting (B.4) equal to zero allows for the following simplification.

∂u (µ)

∂µ
= −A (µ)−1

(
u (µ)>

∂A (µ)

∂µ

)
(B.5)

Alternatively,

∂u(µ)

∂µ
= −∂Au

∂µ

(
A>
)−1

. (B.6)

295



B.4 Gradient of objective function

The expression for the gradient of the objective function of the unconstrained problem is

∇µf(µ, u) = −λ>∂Au
∂µ

, (B.7)

where it was shown in (9.21) that λ, the adjoint variable, is defined as

λ = A−1Q>(Qu−M). (B.8)

The final version of the gradient is found by decomposing the forward problem and the objective func-

tion into an equivalent system that explicitly accounts for the real and imaginary parts as follows.

Au = b


ARe −AIm

AIm ARe






uRe

uIm


 =



bRe

bIm




Then,
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λ>
∂Au

∂µ
=



λRe

λIm




>

∂

∂µ






ARe −AIm

AIm ARe






uRe

uIm







=



λRe

λIm




>

∂

∂µ



AReuRe −AImuIm

AImuRe +AReuIm




=



λRe

λIm




>

∂

∂µ



AReuRe

AReuIm




= u>Re
∂ARe

∂µ
λRe + u>Im

∂AIm

∂µ
λIm

=

(
u>

∂A

∂µ
λ

)

Re
.

The final expression for the gradient of the objective function is

∇µf(µ, u) = −
(
u>

∂A

∂µ
λ

)

Re
. (B.9)

B.5 Reduced gradient for rSQP method

The reduced gradient (9.44) is given by

gkr = Y k>Ck. (B.10)

Then, using the definitions of Y k> and Ck, the following simplification steps can be taken:
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gkr = Y k>Ck

= ICkµ + Ŷ k>Cku

= Ŷ k>Q>(Quk −M)

= −
((

fku

)−1
fkµ

)>
(Quk −M)

= −
(
A−1∂

(
Akuk

)

∂µ

)>
(Quk −M)

= −
(
∂
(
Akuk

)

∂µ

)>
(A>)−1(Quk −M)

= −
[
(Ak

−1
(Quk −M)

]>
(
∂
(
Akuk

)

∂µ

)

= −λk>
(
∂
(
Akuk

)

∂µ

)

= −
(
uk
>∂Ak

∂µ
λk
)

Re
.

(B.11)

The derivation of the last step is presented in detail in Appendix B.4. Note that the following algebraic

relationships are used: A> = A, (AB)> = B>A>, (A−1)> = (A>)−1, and
∂

∂µ
(Au) = u>

∂

∂µ
A.
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B.6 Update direction for the forward variable

Derivation of (9.46) and (9.55) from the second equation in (9.34) is shown below. The quantity ∆uk is the

direction along which the forward variable, u, is updated via Newton’s method.

∆uk = −(fku )−1fk − (fku )−1fkµ∆µk

= −(fku )−1fk + (fku )−1fkµ(Hk
r )−1(gkr )

= Ẑk − Ŷ k(Hk
r )−1(gkr )

= −
(
Ak
)−1

(Au− b)k +
(
Ak
)−1

(
u>

∂

∂µ
A

)k (
Hk
r

)−1
(gkr )

= −
(
Ak
)−1

[
(Au− b)k −

(
u>

∂

∂µ
A

)k (
Hk
r

)−1
(gkr )

]

= −
(
Ak
)−1

[
(Au− b)k +

(
u>

∂

∂µ
A

)k
∆µk

]

(B.12)
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B.7 Merit function

The merit function used with the PDE-constrained algorithm, as detailed in Section 9.3.3, is the following

φ(µk, uk) =
1

2

(
Quk −M

)>
(Quk −M) + ηk

∥∥∥Akuk − b
∥∥∥

1
(B.13)

The directional derivative of φηk(µk, uk), a necessary quantity for the line search subroutine, is obtained as

follows.

Dφ(µk, uk) = ∇µφ(µk, uk) ·∆µk +∇uφ(µk, uk) ·∆uk − ηk
∥∥∥Akuk − b

∥∥∥
1

= ∇µφ(µk, uk) ·∆µk +
���

���
���

�:0

∇uφ(µk, uk) ·∆uk − ηk
∥∥∥Akuk − b

∥∥∥
1

= ∇µφ(µk, uk) ·∆µk − ηk
∥∥∥Akuk − b

∥∥∥
1

=

(
uk
>∂Ak

∂µ
λk
)>

Re
∆µk − ηk

∥∥∥Akuk − b
∥∥∥

1

(B.14)

B.8 Right hand side of adjoint equation: clinical data

The objective function that is used when considering clinical data generated with unknown source power is

presented in Section 10.1 and reproduced below:

f(µ, u) =
1

2

1

M>M

(
M − Qu

p̃

)>(
M − Qu

p̃

)
. (B.15)

The average intensity (or average predicted detector reading) is a complex valued number and defined as,

p̃ =
1

SD
(Qu)> 1. (B.16)

Where 1 is a vector of ones, S is the total number of sources, and D is the total number of detector per

source. Here we assume each source has the same number of detector; however, the above equation can be
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easily modified to account for different source-detector configurations. The right hand side of the adjoint

equation can be constructed by differentiating f with respect to the forward variable, u, as follows.

∂

∂u
f(µ, u) =

∂

∂u

1

2

(
M − Qu

p̃

)>(
M − Qu

p̃

)

= − ∂

∂u

[
1

2

(Qu)>Qu

p̃2
− M>Qu

p̃
+

1

2
M>M

]

= −Q
> (Qu)

p̃2
−

(Qu)>Qu · ∂p̃
∂u

p̃3
− Q>M

p̃
+
M>Qu · ∂p̃

∂u
p̃2

= −Q
> (P −M)

p̃
− P> (P −M)

p̃

∂p̃

∂u

= −Q>



(P −M)∗ − P> (P −M)∗
1

SD
1

p̃




(B.17)

Where the following terms was used,

∂p̃

∂u
= Q>

1

SD
1, (B.18)
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Appendix C
Block-Structured Grids

A deterrent to more widespread implementation of the ERT on structured grids is computational cost. Finely

discretized grids are often required when modeling light transport on complex geometries, as it is often

important for the numerical grid to match the physical boundary. It is important to note that this can only

be achieved with finely discretized grids. However, solving the ERT on a finely discretized grid can be

prohibitively expensive. Performing calculations on a coarse grid to save computation time can lead to

significant error, which is further compounded if partly reflective boundary conditions are considered.

In addition, a grid that is too coarse at the boundary might not be able to accurately locate boundary

sources and detectors. Fiber bundles are typically used to direct photons from a laser source to the medium.

Similar sets of fibers are used to direct the escaping photons to a detector [208, 209, 210]. Thus, these

sources and detectors are highly localized and a finely discretized grid is necessary to accurately describe

their position on the surface. Additionally, in the area of small animal fluorescence and bioluminescence

imaging, where it is possible to have internal sources close to the tissue boundary, it is well known that

this types of light source can lead to severe modeling errors [67]. Thus, a coarse grid can potentially fail

to accurately model the boundary effects and this can lead to further error. For this reason, increased grid

refinement near the boundary is desired, and it is something that has not been explored to date for the ERT

equations.

These problems can be overcome by using an algorithm that solves the ERT on a grid that is refined

only near the object boundary. This results in a grid with various levels of refinement; the grid is coarsely

discretized in the interior and finely discretized near the boundary. These types of grids are called block-
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structured grids (BSGs) and are a subset of the more general topic known as “adaptive mesh refinement”

[75]. A single dense Cartesian grid is transformed into a relatively sparse grid. Thus, solving the ERT on

a BSG requires less computational effort than solving it on a single dense grid as there are less grid nodes

inside the computational domain.

The subject of generating Cartesian grids with local refinements has itself been a topic of research

[75, 211]. BSGs have been particularly studied in the field of computational fluid dynamics, especially in

the study of shock-hydrodynamics [212] and general fluid flows [213]. Previous work has mainly focused

on solving numerical models using the finite volume method (FVM) on BSGs [214].

In connection with the ERT, only one group has used BSGs to date. In 1998, Jesse et al. [215] presented

a method to solve the time-independent (or steady-state) ERT on BSGs using the an FVM discretization

technique. Their code was limited to two-dimensional rectangular media with isotropic scattering and did

not consider partially reflective boundary conditions. While useful for applications in nuclear physics and

heat transfer, this algorithm is not suited for problems concerning light propagation in arbitrarily shaped

media with highly anisotropic scattering and partially reflective boundary conditions; thus, the algorithm

has limited utility in modeling light propagation in biological tissue. In the area of tissue optics, BSGs have

been employed for solving the diffusion equation for fluorescent light propagation [216]. That work was

limited to treating rectangular geometries and was developed as the finite-element method.

The work presented in this chapter goes beyond the approaches previously presented and implement

the first frequency-domain (FD) ERT with reflective boundary conditions on BSGs of arbitrary shape. The

FD-ERT is particularly important in small animal imaging, where the diffusion approximation has limited

validity, since light travels only a few mean-free path and non-diffusive boundary conditions dominate the

solutions [58, 77, 217]. It is highly desirable to have a fast and accurate numerical solver for this and other

similar applications (e.g. imaging of arthritic human finger joints [13]) that require solutions to the problem

of light propagation in small domains.

This work was published in the journal of Biomedical Optics Express [66]. The remainder of this chapter

is organized as follows. The algorithm for generating BSGs is presented in Section C.1. The necessary

discretization of the FD-ERT is presented in Section C.2. Numerical phantoms presented in Section C.3

are used to validate and benchmark the algorithm. The chapter concludes with a summary of results in

Section C.4 and a discussion in Section C.5.
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C.1 Grid generation

The overall structure of the algorithms is shown in Fig. C.1. First the boundary information has to be pro-

vided by giving the coordinates and normal vectors of the surface that encloses the medium to be considered.

Once this is given, the code determines the computational domain by filling the volume defined in the first

step with grid points or mesh elements (with a user defined grid spacing ∆x). Next, given certain user-

defined conditions, this grid is transformed into a BSG using the block-structure mesh generator. The code

then solves the light propagation problem using the discretized FD-ERT on this BSG.

To generate the appropriate BSG, we first need to determine the active computational domain given the

information of the physical boundary (surface coordinates and normal vectors), which is provided as input.

This process starts by defining a rectangular nominal domain that completely enclosed the arbitrarily shaped

object given by the boundary information. This rectangular nominal domain is discretized on a Cartesian

grid with a user specified spatial resolution ∆x = ∆y = ∆z. This resolution has to be small enough to

capture all physical effects. In our case a ∆x of 1/10 µs is usually sufficient. This method is known as the

blocking-off method [79]. An overview of the major aspects of the mesh generator subroutine is presented

in Fig. C.2.

The algorithm then finds all points within this nominal domain that lie inside the volume enclosed by

the boundary. After discretizing Euclidean space with a fine grid, the grid points closest to the physical

boundary are found (called “boundary points”) and are assigned to be part of the active region. In the next

step the algorithm checks one grid point at a time and determines if it is a boundary point. When a boundary

point is encountered the algorithm uses the normal vector of the surface at that grid point to determine in

which direction the “inside” and “outside” regions of the medium are, relative to the current grid point. All

future non-boundary points in the “inside” region of the medium are labeled as “interior points” and they

are assigned to be part of the active computational domain. Points in the “outside” region of the medium

are labeled “exterior points,” are inactive, and will not be used in later calculations. This labeling process is

 
Fig. 1: General sequence in which major subroutines are executed in our algorithm. 
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Figure C.2: Visualization of algorithm for determining computational domains.

(a) (b) (c) (d) (e)

Figure C.3: Examples of the increased boundary resolution attained with BSGs relative to a single
coarse grid (b,c,d) and reduction in mesh density attained by a BSG relative to a fine grid (d,e). The
geometry the grids approximate is the cross-section of a mouse obtained from a segmented MRI
image (a). Depicted in (b-d) are 1-, 2-, and 3-level BSGs, while (e) is the fine grid discretization
of the mouse cross-section.

restarted once a new boundary point is encountered. The result of this subroutine is a Cartesian grid where

all grid points are classified as exterior, boundary, or interior points.

As an example consider a cross-section through a mouse obtained from a magnetic resonance imaging

(MRI) scan shown in Fig. C.3(a). A coarse discretization of the geometry defined by the tissue boundary

is shown in Fig. C.3(b). The mismatch between physical and mesh boundaries is evident. It is already

clear that a 2-level BSG (Fig. C.3(c)), adaptively fitted to the same cross-section, can resolve the physical

boundary better than single coarse grid. A 3-level grid is able to resolve the target boundary even better

(Fig. C.3(d)). Increasing the number of grid levels results in improved boundary resolution. Additionally,

the number of grid points in the 3-level BSG is significantly less than then number of grid points in a single

fine grid (Fig. C.3(e)).
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C.2 Discretization of FD-ERT

To discretize the FD-ERT we implemented a finite-differences upwind step-method for the spatial variable

and a discrete-ordinates method for the angular variable [19,67,68,69,70,71]. Here, we will first review how

this is implemented on a single Cartesian grid. Subsequently, we will describe how this method is adapted

to work on BSGs.

The FD-ERT is presented in detail in Section 2.3.2. For completeness, the FD-ERT and its boundary

equation is reproduced below.

(
Ω · ∇+ µt(r) +

iω

v

)
ψ (r,Ω, ω) = µs(r)

∫

4π
p
(
Ω ·Ω′

)
ψ
(
r,Ω′, ω

)
dΩ′ +

Q(r, ω)

4π
, (C.1)

ψ (r,Ω, ω) = S (r,Ω, ω) +R
(
Ω′ · n̂

)
ψ
(
r,Ω′, ω

)
, r ∈ ∂V, Ω · n̂ < 0.

(C.2)

C.2.1 Discretization on single grid

The first step in discretizing the ERT was to use the discrete-ordinates method to replace the integral term

with the extended trapezoidal rule [19]. This approximation was given by Eq. C.3, where k is the ordinate

number, ψk is the radiance in the kth ordinate, and ωk is a predetermined ordinate weight with full level

symmetry [70, 71]. The integral term does not require special treatment for implementation on BSGs.

∫

4π
ψ (r,Ω) dΩ =

K∑

k=1

ωkψk (r) (C.3)

The partial derivative terms were discretized using the upwind-step method. The directional cosines

of a given ordinate determined the upwind-direction for that particular ordinate. There were eight possible

numerical schemes, one for each octant in the three dimensional Cartesian coordinate system. For example,

when all directional cosines are positive the upwind-step method requires an Euler step in the negative x-, y-,

and z-axis. For this example, the discretization of (C.1) and (C.2) is given by (C.4) and (C.5), respectively.
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Ωx

[ψ]ijlk − [ψ](i−1)jlk

∆x
+ Ωy

[ψ]ijlk − [ψ]i(j−1)lk

∆y
+ Ωz

[ψ]ijlk − [ψ]ij(l−1)k

∆z

+ [µt]ijl [ψ]ijlk +
ωmi

ν
[ψ]ijlk = [µs]ijl

K∑

k′=1

ωk′pkk′ [ψ]ijlk′ +
Qijl
4π

(C.4)

[ψ]ijlk = Sk +R (Ωk′ · nijl) [ψ]ijlk , Ωk · nijl < 0 (C.5)

The term pkk′ in (C.4) is the Henyey-Greenstein phase function and is given by (C.6), where g is the

anisotropy factor.

pkk′ =
1− g2

4π (1 + g2 − 2gΩk · Ωk′)
3/2

(C.6)

The radiance, ψ, can be solved from (C.4) to (C.5) with any number of established algorithms. In this

work we implement the source iteration technique (i.e. the matrix-free point-wise Gauss-Seidel Method).

The fluence is given by

φ̂ (r, ωm) =

∫

4π
ψ̂ (r,Ω, ωm) dΩ, (C.7)

and is discretized through application of the extended trapezoidal rule [67, 70, 71, 206, 218], and is given by

φijl =

K∑

k=1

ωkψijlk (C.8)

C.2.2 Discretization of FD-ERT on BSGs

To solve the FD-ERT on BSGs, the Euler step used in the step-method (Eq. C.4) had to be changed to a

step of variable size and became dependent on the local grid. For example, ∆x became ∆xijl where ijl

denoted the current grid point and its value was determined by the size of the local grid. Implementing a
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finite differences numerical scheme with a variable Euler step in a matrix-free formulation on BSGs was a

complicated endeavor and requires great care. The main difficulty arises when solving for the FD-ERT on

mesh points on an interior grid boundary (i.e. points that straddled both a coarse grid and a fine grid region).

(a) (b)

Figure C.4: (a) Example of possible grid points on interior boundaries. There are five distinct
cases. The first four cases are labeled i-iv and the fifth case is specified by the black dot. (b) The
grid point denoted by the black diamond is an interior boundary point; the fine grid is to its left
and the coarse grid is to its right. The black dot is the virtual point that must be created when the
differencing scheme in the x-direction requires a forward Euler-step. Solutions at the four white
dots surrounding the black dot are averaged to create the virtual point.

Mesh points on a boundary between fine and coarse grids required special attention because the points

necessary to complete the numerical stencil were not always present. The numerical stencil requires four

neighbors in two-dimensions and six neighbors in three-dimensions. Mesh points on an interior grid bound-

ary do not always have a full set of neighboring mesh points to complete the numerical stencil. This problem

can be overcome by adjusting the numerical scheme for each individual boundary point, or by creating the

missing point so that the normal scheme is applicable. In this work we consider the latter option. The

missing point (virtual point) is constructed through interpolation using neighboring points.

For illustration consider the 2-dimensional example in Fig. C.4. Here five cases must be considered

independently for a given octant. For example, when all directional cosines are positive, points ii and iii

will require creating a virtual point interior to the coarse grid. However, points i and iv have all neighbors

necessary to complete the stencil (Fig. C.4(a)). The fifth case (black dots in Fig. C.4(a)) can be treated as

points on the fine grid or on the coarse grid. By treating these boundary points as coarse grid points we assure

that they will always have a complete set of neighbors and no further special treatment is necessary. The set

of points used to create the virtual point varies according to the type of boundary point. The different types

of boundary points can be reduced to five in two dimensions (Fig. C.4(a)) and nineteen in three dimensions.

There are many ways to interpolate values for the virtual points needed to complete the differencing
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schemes. Possible interpolation methods include averaging of the nearest four neighbors, as well as bilinear,

biquadratic, and bicubic interpolation [206]. Higher order interpolation schemes are typically preferred

because they are able to better resolve the curvature of the solution field. However, higher order methods

are computationally more expensive. Therefore, the type of interpolation scheme to be used must be chosen

based on accuracy and computational cost.

In this work we implement the four-neighbor averaging scheme because it yields sufficiently accurate

results. The solutions from the missing point’s four nearest neighbors (Fig. C.4(b)) are averaged to create

the virtual point.

C.3 Numerical phantoms

The accuracy and computation speed of the BSG algorithm was compared to a previously published single

grid algorithm that also uses a combination of discrete ordinates and the finite differences upwind-step

method to solve the FD-ERT [19]. The performance of the BSG algorithm was tested on multiple numerical

phantoms. For brevity, only results from two phantoms are presented: (1) a 2 cm diameter disk and (2)

a homogenous three-dimensional mouse phantom obtained from an MRI data set (Fig. C.5). We solved

the FD-ERT on these phantoms on single Cartesian grids, on both coarse and fine grids, and on BSGs.

We evaluated the performance of the BSG algorithm by comparing these solutions. The specific optical

properties used are summarized in Tables C.1 and C.2.

Figure C.5: (a) disk, (b) 2D mouse cross section, (c) cylinder, and (d) 3D mouse model. The
positions of boundary sources are shown for as black dots, while detectors are assigned to every
boundary point. (d) Sources for the mouse are located within the interval defined by x = [16, 18],
y = [43, 46], and z = 0. Similarly, detectors are defined within x = [16, 18], y = [43, 46], and
z = 15.
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Table C.1: Properties of embedded fluorescent probes.
Property Value
Quantum Yield 0.93%
Life Time 5.0 ns
Absorption 0.4 cm−1

Dimensions 0.125× 0.125 cm−1

Table C.2: Summary of parameter values used for simulations.
Case ω [MHz] µa [cm−1] µs [cm−1] n

1 100.00 0.1 10.0 1.00
2 100.00 0.2 10.0 1.00
3 100.00 0.1 5.0 1.00
4 100.00 0.1 10.0 1.37
5 200.00 0.1 10.0 1.00

The disk phantom is of interest because it represents an instance where a coarse grid cannot place a

single grid point on the true phantom surface, whereas a finer grid can always better approximate the true

boundary. This is a worst-case scenario for the coarse grid. The anatomically correct phantom is of interest

because it is representative of the arbitrarily shaped geometries encountered in practice where boundaries

can have convex and concave regions. Generating a mesh for the anatomically correct phantom and solving

the light propagation problem is a good test for both the mesh-generating routine and the FD-ERT numerical

solver.

As can be seen from Fig. C.5(a), the disk phantom has two embedded fluorescent probes. The properties

of the fluorescent probes are listed in Table C.1. The frequency modulated boundary sources are defined on

the top-left quadrant of the disk (represented by black dots). Thus, instead of defining a single boundary

source we define a constant source area. This is important because the number of boundary points on a

given model increases with decreasing ∆x. With this setup we ensure the number of photons injected into

the phantom is independent of the number of boundary points. The source density is 8× 109 photons cm−2

sr−1. The optical properties of the disk phantom are varied and they are summarized in Tables C.1 and C.2.

Figure C.5(b) shows the two-dimensional mouse-like phantom. As in the disk-shaped phantom, this

phantom has two embedded fluorescent probes. The boundary sources for excitation are on the top-left

quadrant and are defined as external boundary sources for reasons similar to those presented for the disk
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phantom. Source density is 8× 109 photons cm−2 sr−1.

The grid spacing used for simulations in two dimensions was ∆x = 2/256, 2/128, 2/64, 2/32 cm (where

∆x = ∆y). For each grid refinement, we determined the solution to the ERT on 1-, 2-, and 3-level BSGs

and compared them to the benchmark solution. The benchmark solution for these simulations was the

solution on the finest single grid (∆x = 2/256 cm). In addition, the optical parameters (µa, µs), modulation

frequency (ω), and refractive index (nm) of each phantom were varied.

Simulations on three-dimensional phantoms (Fig. C.5(c,d)) were carried out using parameters from case

4 in Table C.2. The benchmark solutions for the cylinder and mouse phantoms are defined on grids with

∆x = 2/128 cm and ∆x = 0.1 cm, respectively (∆x = ∆y = ∆z).

Figure C.6: (a-c) Examples of single structured grids fitted to the disk, cylinder, and mouse phan-
tom, respectively. (d-f) 2-level BSGs fitted to same three phantoms. Three-dimensional BSGs and
their interior structure are visualized by showing only a section of the full three-dimensional shape
(e,f).

C.4 Results

The results from this study are briefly summarized. Examples of BSGs fitted to two- and three-dimensional

phantoms are show that the BSG generator worked properly (Fig. C.6). The computation time required for

each forward problem and the accuracy of the solution at the boundary using the mean percent error (MPE)

measure was computed. The results presented in this section focus on case 4 (Table C.2) only. The cited

grid spacing (∆x) always refers to the spacing of the finest grid (i.e. the grid near the boundaries). As an

example, a 2-level BSG with grid spacing ∆x has an embedded section of coarse grid points whose spacing

is 2∆x. The terms 1L, 2L, and 3L refer to the number of grid levels in the BSGs. Computation time is
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quantified as relative speed up (RSU) compared to the benchmark.

Table C.3: Computation time, MPE, and RSU on a mouse cross-section.
Time [s] MPE [%] RSU

Case ∆x [cm] 1L 2L 3L 1L 2L 3L 1L 2L 3L
2/32 10.7 4.9 – 25.3 60.3 – – 1.2 –

1 2/64 58.5 19.4 13.8 3.6 7.1 20.3 – 2.0 3.2
2/128 305.3 98.1 59.1 1.2 2.1 4.5 – 2.1 4.2
2/256 1453.8 523.0 380.3 0.0 0.2 0.8 – 1.8 2.8
2/32 8.9 4.3 – 108.9 444.4 – – 1.1 –

2 2/64 47.9 16.3 11.8 6.9 24.6 127.7 – 1.9 3.0
2/128 235.5 77.8 51.1 2.0 5.6 18.3 – 2.0 3.6
2/256 1134.3 405.6 294.2 0.0 0.9 2.3 – 1.8 2.9
2/32 4.7 2.3 – 4.4 6.5 – – 1.0 –

3 2/64 24.4 8.5 6.5 1.2 1.6 2.9 – 1.9 2.7
2/128 119.3 40.4 26.8 0.5 0.6 0.8 – 2.0 3.5
2/256 559.1 201.8 149.1 0.0 0.3 0.2 – 1.8 2.8
2/32 11.8 5.6 – 43.9 102.1 – – 1.1 –

4 2/64 62.4 21.2 15.6 6.2 14.7 46.8 – 2.0 3.0
2/128 308.9 101.0 65.5 1.5 3.2 7.1 – 2.1 3.7
2/256 1558.3 566.9 405.4 0.0 0.3 1.2 – 1.7 2.8
2/32 10.1 4.8 – 27.3 62.7 – – 1.1 –

5 2/64 53.8 18.5 13.3 3.6 7.4 21.1 – 1.9 3.0
2/128 266.5 88.4 57.5 1.2 2.1 4.6 – 2.0 3.6
2/256 1275.9 458.9 331.8 0.0 0.2 0.8 – 1.8 2.8

The results for the mouse cross-section phantom are summarized in Table C.3. Solutions to the excita-

tion problem using a 2-level BSG were obtained about 2 times faster than the benchmark with a relatively

small increase in error. The notable exceptions to these observations are the results from 2-level BSGs with

∆x = 2/32 cm. In these cases the solution on 2-level BSGs is obtained only 1 time faster than the single

grid solution and the increase in error is very large. This may occur because the interior of the BSG is very

coarse (∆x = 2/16 cm), which may lead to large numerical error.

Comparing case 1 and case 4 was particularly interesting because the results are significantly different

while the only difference in the simulations was the use of refractive index mismatch in case 4. In case 1,

when there was no refractive index mismatch at the phantom surface, the error in the solution computed on

the coarsest grid was 25.3%. However, in case 4, this same error increased to 43.9% when the phantom was

assigned a refractive index of nm = 1.37. This is evidence that a finer mesh is required when taking into
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account the refractive index mismatch at the tissue boundary.

As expected, the performance of the algorithm with the given set of grid discretization is heavily de-

pendent on scattering and absorption parameters. For example, the error in the solution computed on coarse

grids is particularly large when the absorption coefficient is large (case 2). However, the error is relatively

small even on the coarse grid when the scattering coefficient is very small (case 3). We note that the perfor-

mance of the algorithm is not dependent on modulation frequency (case 5).

Representative examples of solutions to the FD-ERT on the cylindrical and three-dimensional mouse

phantoms are shown in Fig. C.7. Results from simulations on the cylindrical phantom are summarized in

Table C.4. The error in the solution computed on a 2-level grid (∆x = 2/128 cm) is only 0.28%, while the

solution computed on a single coarse grid (∆x = 2/64 cm) 2.94%. Thus, solving the FD-ERT on a 2-level

grid instead of a coarse grid reduced the error by 2.66%. Similarly, the solution computed on a 3-level grid

(∆x = 2/128 cm) is 30.21%, while the error in the solution computed on the coarsest grid (∆x = 2/32 cm)

is 78.25%. The error in the solution is reduced by 48.29%. In addition, using BSGs reduces computation

time. Solutions on 2- and 3- level grids are obtained 1.5 and 3.0 times faster than the solution on the fine

grid, respectively. Results from simulations on the three-dimensional mouse phantom are similar.

Figure C.7: Three-dimensional representations of excitation (a) and emission (b) fluence on the
cylindrical phantom. (d) Sample excitation on the three-dimension mouse phantom.

C.5 Discussion

The motivation for solving the FD-ERT on BSGs came from the need to reduce computation time without

sacrificing accuracy of numerical solutions to the FD-ERT on structured grids. The error in the solutions to
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Table C.4: Computation time, MPE, and RSU on a cylindrical phantom

Time [s] MPE [%] RSU
Case ∆x [cm] 1L 2L 3L 1L 2L 3L 1L 2L 3L

2/32 394.5 201.2 – 78.25 104.31 – – 0.96 –
4 2/64 5464.15 2068.4 1054.2 2.94 5.06 80.25 – 1.64 4.18

2/128 68489.96 27892.7 17233.3 0 0.28 30.21 – 1.46 3.0

the light propagation problem obtained on structured grids come from (1) inherent truncation errors from

approximating a continuous equation with a discrete numerical scheme and (2) a mismatch between the

numerical and physical boundary. Finely discretized grids can accurately model complex boundaries but

solving the ERT on these grids is computationally expensive. Solving the ERT on coarse grids requires less

computational effort; however, the accuracy of the solution can be very poor. A compromise between fine

grids and coarse grids was the use of BSGs as presented in this paper. The interior of a BSG is primarily

a coarse grid, while the outer layers of the grid, which are closer to the physical boundary, are more finely

discretized.

In this work we presented the first algorithm for solving the FD-ERT on BSGs. This is also the first

algorithm that incorporates reflective boundary conditions and a subroutine for generating BSGs directly

into the algorithm for solving the FD-ERT. The BSG generator uses boundary information to determine the

computational domain, discretizes it with a fine grid, then it adaptively coarsens the grid up to a user defined

level. The final computation grid is a union of fine and coarse grids, where the coarse grid is restricted to

the interior and the grid spacing becomes smaller near the boundary. The ERT is solved on this grid with a

combination of the upwind step method and the discrete ordinates approximation. We use the blocked-off

region method to treat curved boundaries.

Solutions to the ERT computed on single structured grids are corrupted by inherent error of the numer-

ical approximation to the continuous equation and error due to poorly resolved boundaries. The inherent

numerical error arises from the first order upwind step method approximation to the derivative terms and is

proportional to spatial discretization (∆x =). In addition, there is numerical error due to the SN approxima-

tion to the integral terms (it decreases with increasing order of the SN method). Error due to poorly resolved

boundaries arises when the single Cartesian grid does not accurately approximate the physical boundary.

This error is particularly large when a coarse grid is used to approximate curved geometries.
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The total error associated with solutions to the ERT on BSGs is similar to the errors associated with

solutions on a single coarse grid; however, there are two fundamental differences: (1) boundary errors are

reduced because refining the grid near the boundary more accurately captures boundary effects and (2) a

new source of error is introduced by interpolating at boundaries between coarse and fine grid sections inside

the computational domain. The inherent numerical error associated with using the upwind step method on

BSGs is similar to the numerical error expected from using this scheme on a single coarse grid because the

majority of the BSG is composed of coarse grid points.

The need for BSGs becomes apparent when geometries are arbitrarily shaped. Results from 2D and 3D

mouse phantoms confirm that the error due to a poorly resolved boundary is significant, especially when the

refractive index mismatch at the air/tissue interface is taken into account. In this case, we found that the

error in the solution computed on a single coarse grid was 25.3% when the refractive index mismatch was

not taken into account. However, the error increased to 43.9% when there was refractive index mismatch at

the boundary.

Simulations on a disk and mouse phantom show that solutions on BSGs are always obtained faster than

the corresponding fine grid solutions. Solutions on 2- and 3-level BSGs were obtained in about 1/3 and

1/4 the time it took to obtain the same solution on a single fine grid, respectively. In general, the speed up

achieved by the algorithm was not affected by changes in optical properties, refractive index, or modulation

frequency.

Through analysis of simulations on the phantoms we show that solutions on BSGs are significantly

more accurate than solutions on single coarse grids. Increasing the refinement of the grid near the boundary

decreased the overall error in the solution for all cases studied. The general trend can be summarized as

follows: the MPE of partial current measurements from solutions computed on 2- and 3-level BSGs are

reduced to about 1/3 and 1/6, respectively, from the MPE of a solution obtained on a single coarse grid.

Overall we find that solving the FD-ERT on BSGs yields an attractive algorithm for modeling the light

propagation problem on geometries with arbitrary shape without using dense and finely discretized Cartesian

grids. The algorithm provides a method to substantially reduce the error due to poorly resolved boundaries.

Furthermore, solutions to the FD-ERT on BSG are obtained at a lower computation cost compared to solu-

tions computed on a single fine grid.

Overall, this method of solving the ERT is still burdened with high computational demand, motivating
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the need for using a more economical light propagation model, such as the SPN approximation to the ERT.
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