2,349 research outputs found

    New adaptive partial distortion search using clustered pixel matching error characteristic

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    New results on exhaustive search algorithm for motion estimation using adaptive partial distortion search and successive elimination algorithm

    Get PDF
    Version of RecordPublishe

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Constrained one-bit transform for retinex based motion estimation for sequences with brightness variations

    Get PDF
    Author name used in this publication: Dagan FengRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Retinex based motion estimation for sequences with brightness variations and its application to H.264

    Get PDF
    Dagan FengRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Visual Odometry Estimation Using Selective Features

    Get PDF
    The rapid growth in computational power and technology has enabled the automotive industry to do extensive research into autonomous vehicles. So called self- driven cars are seen everywhere, being developed from many companies like, Google, Mercedes Benz, Delphi, Tesla, Uber and many others. One of the challenging tasks for these vehicles is to track incremental motion in runtime and to analyze surroundings for accurate localization. This crucial information is used by many internal systems like active suspension control, autonomous steering, lane change assist and many such applications. All these systems rely on incremental motion to infer logical conclusions. Measurement of incremental change in pose or perspective, in other words, changes in motion, measured using visual only information is called Visual Odometry. This thesis proposes an approach to solve the Visual Odometry problem by using stereo-camera vision to incrementally estimate the pose of a vehicle by examining changes that motion induces on the background in the frame captured from stereo cameras. The approach in this thesis research uses a selective feature based motion tracking method to track the motion of the vehicle by analyzing the motion of its static surroundings and discarding the motion induced by dynamic background (outliers). The proposed approach considers that the surrounding may have moving objects like a truck, a car or a pedestrian body which has its own motion which may be different with respect to the vehicle. Use of stereo camera adds depth information which provides more crucial information necessary for detecting and rejecting outliers. Refining the interest point location using sinusoidal interpolation further increases the accuracy of the motion estimation results. The results show that by using a process that chooses features only on the static background and by tracking these features accurately, robust semantic information can be obtained

    The 1993 Space and Earth Science Data Compression Workshop

    Get PDF
    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed

    On the architecture of H.264 to H.264 homogeneous transcoding platform

    Get PDF
    2007-2008 > Academic research: refereed > Invited conference paperVersion of RecordPublishe
    corecore