73,471 research outputs found

    New Trends in Quantum Computing

    Full text link
    Classical and quantum information are very different. Together they can perform feats that neither could achieve alone, such as quantum computing, quantum cryptography and quantum teleportation. Some of the applications range from helping to preventing spies from reading private communications. Among the tools that will facilitate their implementation, we note quantum purification and quantum error correction. Although some of these ideas are still beyond the grasp of current technology, quantum cryptography has been implemented and the prospects are encouraging for small-scale prototypes of quantum computation devices before the end of the millennium.Comment: 8 pages. Presented at the 13th Symposium on Theoretical Aspects of Computer Science, Grenoble, 22 February 1996. Will appear in the proceedings, Lecture Notes in Computer Science, Springer-Verlag. Standard LaTeX. Requires llncs.sty (included

    Unitary reflection groups for quantum fault tolerance

    Full text link
    This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, {\it J Phys A: Math Theor} {\bf 41}, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B3B_3 and G2G_2 (for single qubits), D5D_5 and A4A_4 (for two qubits), E7E_7 and E6E_6 (for three qubits), the complex reflection groups G(2l,2,5)G(2^l,2,5) and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the π/4\pi/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 {\it New J. of Phys.} {\bf 6}, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.Comment: new version for the Journal of Computational and Theoretical Nanoscience, focused on "Technology Trends and Theory of Nanoscale Devices for Quantum Applications

    The Emerging Commercial Landscape of Quantum Computing

    Get PDF
    Quantum computing technologies are advancing, and the class of addressable problems is expanding. Together with the emergence of new ventures and government-sponsored partnerships, these trends will help to lower the barrier for adoption of new technology and provide stability in an uncertain market. Until then, quantum computing presents an exciting testbed for different strategies in an emerging market

    Modern computing: vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Practical cryptographic strategies in the post-quantum era

    Full text link
    We review new frontiers in information security technologies in communications and distributed storage technologies with the use of classical, quantum, hybrid classical-quantum, and post-quantum cryptography. We analyze the current state-of-the-art, critical characteristics, development trends, and limitations of these techniques for application in enterprise information protection systems. An approach concerning the selection of practical encryption technologies for enterprises with branched communication networks is introduced.Comment: 5 pages, 2 figures; review pape

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl
    • …
    corecore