25 research outputs found

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page

    Graph Homomorphisms for Quantum Players

    Get PDF
    A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f:V(X) -> V(Y). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier with certainty that a graph X admits a homomorphism to Y. This is a generalization of the well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove new results for graph coloring. Most importantly, we show that the Lovász theta number of the complement lower bounds the quantum chromatic number, which itself is not known to be computable. We also show that other quantum graph parameters, such as quantum independence number, can differ from their classical counterparts. Finally, we show that quantum homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum homomorphisms to construct graphs for which entanglement-assistance increases their one-shot zero-error capacity.Published versio

    Graph-theoretical Bounds on the Entangled Value of Non-local Games

    Get PDF
    We introduce a novel technique to give bounds to the entangled value of non-local games. The technique is based on a class of graphs used by Cabello, Severini and Winter in 2010. The upper bound uses the famous Lov\'asz theta number and is efficiently computable; the lower one is based on the quantum independence number, which is a quantity used in the study of entanglement-assisted channel capacities and graph homomorphism games.Comment: 10 pages, submission to the 9th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2014

    Entanglement-assisted zero-error source-channel coding

    Get PDF
    We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice's input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given by graph parameters known as the Witsenhausen rate and Shannon capacity, respectively. The Lov\'asz theta number, a graph parameter defined by a semidefinite program, gives the best efficiently-computable upper bound on the Shannon capacity and it also upper bounds its entanglement-assisted counterpart. At the same time it was recently shown that the Shannon capacity can be increased if Alice and Bob may use entanglement. Here we partially extend these results to the source-coding problem and to the more general source-channel coding problem. We prove a lower bound on the rate of entanglement-assisted source-codes in terms Szegedy's number (a strengthening of the theta number). This result implies that the theta number lower bounds the entangled variant of the Witsenhausen rate. We also show that entanglement can allow for an unbounded improvement of the asymptotic rate of both classical source codes and classical source-channel codes. Our separation results use low-degree polynomials due to Barrington, Beigel and Rudich, Hadamard matrices due to Xia and Liu and a new application of remote state preparation.Comment: Title has been changed. Previous title was 'Zero-error source-channel coding with entanglement'. Corrected an error in Lemma 1.

    On a tracial version of Haemers bound

    Full text link
    We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over C\mathbb{C}) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lov\'asz theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.Comment: 39 pages, comments are welcom
    corecore