452 research outputs found

    Automata and rational expressions

    Full text link
    This text is an extended version of the chapter 'Automata and rational expressions' in the AutoMathA Handbook that will appear soon, published by the European Science Foundation and edited by JeanEricPin

    Some Undecidability Results related to the Star Problem in Trace Monoids

    Get PDF
    This paper deals with decision problems related to the star problem in trace monoids, which means to determine whether the iteration of a recognizable trace language is recognizable. Due to a theorem by Richomme from 1994[30,31], we know that the Star Problem is decidable in trace monoids which do not contain a C4-submonoid. The C4 is (isomorphic to) the Caresian Product of two free monoids over doubleton alphabets. It is not known, whether the Star Problem is decidable in C4 or in trace monoids containing a C4. In this paper, we show undecidability of some related problems: Assume a trace monoid which contains a C4. Then, it is undecidable whether for two given recognizable languages K and L, we have K ⊆ L*, although we can decide K* ⊆ L. Further, we can not decide recognizability of K ∩ L* as well as universality and recognizability of K U L*

    A Connection between the Star Problem and the Finite Power Property in Trace Monoids

    Get PDF
    This paper deals with a connection between two decision problems for recognizable trace languages: the star problem and the finite power property problem. Due to a theorem by Richomme from 1994 [26, 28], we know that both problems are decidable in trace monoids which do not contain a C4 submonoid. It is not known, whether the star problem or the finite power property are decidable in the C4 or in trace monoids containing a C4. In this paper, we show a new connection between these problems. Assume a trace monoid IM (Σ, I) which is isomorphic to the Cartesian Product of two disjoint trace monoids IM (Σ1, I1) and IM (Σ2, I2). Assume further a recognizable language L in IM (Σ, I) such that every trace in L contains at least one letter in Σ1 and at least in one letter in Σ2. Then, the main theorem of this paper asserts that L* is recognizable iff L has the finite power property

    The submonoid and rational subset membership problems for graph groups

    Get PDF
    We show that the membership problem in a finitely generated submonoid of a graph group (also called a right-angled Artin group or a free partially commutative group) is decidable if and only if the independence graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely presented group with a decidable generalized word problem that does not have a decidable membership problem for finitely generated submonoids. We also show that the rational subset membership problem is decidable for a graph group if and only if the independence graph is a transitive forest, answering a question of Kambites, Silva, and the second author. Finally we prove that for certain amalgamated free products and HNN-extensions the rational subset and submonoid membership problems are recursively equivalent. In particular, this applies to finitely generated groups with two or more ends that are either torsion-free or residually finite

    Contextual partial commutations

    Get PDF
    We consider the monoid T with the presentation which is "close" to trace monoids. We prove two different types of results. First, we give a combinatorial description of the lexicographically minimum and maximum representatives of their congruence classes in the free monoid {a; b}* and solve the classical equations, such as commutation and conjugacy in T. Then we study the closure properties of the two subfamilies of the rational subsets of T whose lexicographically minimum and maximum cross-sections respectively, are rational in {a; b}*. © 2010 Discrete Mathematics and Theoretical Computer Science

    Contextual partial commutations

    Get PDF
    We consider the monoid T with the presentation which is "close" to trace monoids. We prove two different types of results. First, we give a combinatorial description of the lexicographically minimum and maximum representatives of their congruence classes in the free monoid {a; b}* and solve the classical equations, such as commutation and conjugacy in T. Then we study the closure properties of the two subfamilies of the rational subsets of T whose lexicographically minimum and maximum cross-sections respectively, are rational in {a; b}*. © 2010 Discrete Mathematics and Theoretical Computer Science
    • …
    corecore