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A Connection between the Star Problemand the Finite Power Propertyin Trace Monoids�Daniel KirstenDepartment of Computer ScienceDresden University of TechnologyD-01062 Dresden, GermanyDaniel.Kirsten@inf.tu-dresden.dehttp://www.inf.tu-dresden.de/�dk11October 12, 1998AbstractThis paper deals with a connection between two decision problems for recognizable tracelanguages: the star problem and the �nite power property problem. Due to a theorem byRichomme from 1994 [26, 28], we know that both problems are decidable in trace monoidswhich do not contain a C4 submonoid. It is not known, whether the star problem or the�nite power property are decidable in the C4 or in trace monoids containing a C4.In this paper, we show a new connection between these problems. Assume a tracemonoid IM(�; I) which is isomorphic to the Cartesian Product of two disjoint trace monoidsIM(�1; I1) and IM(�2; I2). Assume further a recognizable language L in IM(�; I) such thatevery trace in L contains at least one letter in �1 and at least one letter in �2. Then, themain theorem of this paper asserts that L� is recognizable i� L has the �nite power property.
�This work has been supported by the postgraduate program \Speci�cation of discrete processes andsystems of processes by operational models and logics" of the German Research Community (DeutscheForschungsgemeinschaft).
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1 IntroductionFree partially commutative monoids, also called trace monoids, were introduced by Cartierand Foata in 1969 [3]. In 1977, Mazurkiewicz proposed trace monoids as a potential modelfor concurrent processes [18], which marks the beginning of a systematic study of trace monoidsby mathematicians and theoretical computer scientists, see e.g., the recent surveys [7, 8, 9].A part of the research in trace theory deals with examinations of well-known classic results forfree monoids in the framework of traces.One main stream in trace theory is the study of recognizable trace languages, which canbe considered as an extension of the well studied concept of regular languages in free monoids.A major step in this research is Ochma�nsky's PhD thesis from 1984 [24]. Some of the resultsconcerning regular languages in free monoids can be generalized to recognizable languages intrace monoids. However, there is one major di�erence: The iteration of a recognizable tracelanguage does not necessarily yield a recognizable language. This fact raises the so called starproblem: Given a recognizable language L, is L� recognizable? In general, it is not knownwhether the star problem is decidable.The �nite power property problem, for short FPPP, is related to the star problem: Given arecognizable language L, has L the �nite power property, for short FPP, i.e., is there a naturalnumber n such that L� = L0 [ L1 [ : : :[ Ln?The strategy to achieve partial solutions of these problems by examining connections betweenthem turned out to be fruitful. The main result after a stream of publications is a theorem statedby Richomme in 1994, saying that both the star problem and the FPP are decidable in tracemonoids which do not contain a particular submonoid called C4 [26, 28]. It is not known whetherthe star problem and the FPP are decidable in trace monoids with a C4 submonoid. Although theFPP for �nite trace languages is obviously decidable, decidability of the star problem for �nitetrace languages is only known for just a few special cases.In this paper, we establish a new connection between the star problem and the FPP. We dealwith trace monoids which are isomorphic to Cartesian Products of two trace monoids. We showthat for a certain class of recognizable languages in Cartesian Products, the iteration of alanguage is recognizable i� the language has the FPP.The paper is organized as follows. In Section 2, we show some concepts from algebra andformal language theory. In the �rst subsection, we get familiar with some basic notions fromalgebra, formal language theory, and trace theory. In the next subsection, we deal with recog-nizable sets and rational sets. Then, we discuss the two main problems for recognizable tracelanguages, their connections, and solutions as far as known. After this discussion, I explain themain results of this paper.In Section 3 and 4, we deal with concepts which we require to prove the main results.In Section 3, we get familiar with ideal theory which will be a crucial tool. In Section 4, we dealwith product automata.After these preliminary tools, we prove the main theorems in Section 5. In several subsec-tions, we deal with special cases. In the last subsection, we summarize these special cases.2 Formal Overview2.1 Monoids, Languages and TracesI briey introduce the basic notions from algebra and trace theory. Unless I do not state precisesources, I consider the concepts and notions as well-known.By IN, we denote the set of natural numbers including zero, i.e., IN = f0; 1; 2; : : :g.We say a set K is a subset of a set L, and we denote this by K � L i� every element of K1



2 2. FORMAL OVERVIEWbelongs to L. We say K is a proper subset of L, and we denote this by K � L i� every elementof K belongs to L, and additionally, there is an element in L which does not belong to K.A semigroup (S; �S) is an algebraic structure consisting of a set S and a binary operation �Ssuch that �S is associative, i.e., for every p; q; r 2 S, we have (p �S q) �S r = p �S (q �S r). We call Sthe underlying set and we call �S the operation or product of S. Usually, we drop the symbol �Sand denote the product by juxtaposition. We call a semigroup (S; �S) �nite i� S is a �nite set.We use the letter S to denote both the semigroup and its underlying set.We call a semigroup (IM; �IM) a monoid i� IM contains an element �IM such that for everym 2 IM, we have �IM �IM m = m �IM �IM = m. We call �IM the neutral element. We drop theindex at �IM as long as no confusion arises.In the rest of this subsection, we assume some semigroup S and some monoid IM.For every natural number n � 1, we de�ne the n-fold product as follows: For every p in S,p1 yields p itself, and further, for n � 1, pn+1 denotes pnp. For every monoid IM, we extend thisde�nition by claiming that for every p 2 IM, we have p0 = �IM.We extend the product to subsets of S. If K and L are two subsets of S, the set KL containsall elements kl for some k in K and l in L. We extend the n-fold product to sets. We de�neK1 = K, and for n � 1, we set Kn+1 = KnK. For every subset K of IM, we de�ne K0 = f�IMg.For every subset K of S, we de�ne the non-empty iteration K+ as the union of the sets K1,K2, K3, : : : For every subset K of IM, we additionally de�ne the iteration of K by K� andde�ne it by K� := K+ [ f�IMg.For every subsetK of S and for every n � 1, we abbreviate the union K1[: : :[Kn byK1;:::;n.For every subset K of IM and for every n, we abbreviate K0 [ : : : [Kn by K�n.Assume two semigroups S and S0. Their Cartesian Product is the semigroup denoted by � SS0�and de�ned in the following way: The underlying set is the Cartesian Product of the underlyingsets of S and S0. We de�ne the operation componentwise, i.e., for every pair of elements �p1p01�and �p2p02�, their product yields �p1p2p01p02�. The products p1p2 and p01p02 are the products in S and S0,respectively. The Cartesian Product of two monoids yields a monoid.Again, assume two semigroups S and S0. We call a function h : S ! S0 a homomorphismi� h preserves the product, i.e., for every k; l 2 S, we have h(k) �S0 h(l) = h(k �S l). We call ahomomorphism h between two monoids IM and IM0 a monoid homomorphism i� h preserves theneutral element, i.e., we have h(�IM) = �IM0 . There are homomorphisms between two monoidswhich do not preserve the neutral element.We extend the notion of homomorphisms to sets. If K is a subset of S, we de�ne h(K) asthe set of all q 2 S 0 such that for some p 2 K, we have h(p) = q. We denote the inverse of hby h�1. We de�ne it on subsets of S 0: If L is a subset of S0, h�1(L) yields the set of all m 2 Ssuch that h(m) 2 L. We call h a surjective homomorphism from S to S 0 i� h(S) = S 0. We call han isomorphism i� for every p 2 S0, the set h�1(fpg) is a singleton. Then, we can regard h�1 asa homomorphism from S 0 to S. We call the semigroups isomorphic i� an isomorphism betweenS and S 0 exists.A special kind of homomorphisms are the projections. Assume two semigroups S and S0.We de�ne the projections �1 and �2 from the Cartesian Product � SS0 � to S and S 0, respectively:For every �pq� 2 � SS0 �, we de�ne �1�pq� = p and �2�pq� = q.Assume three semigroups S1; S2, and S3. Assume two homomorphisms g : S1 ! S2 andh : S2 ! S3. We denote the composition of g and h by h � g. It yields a homomorphism fromS1 to S3. For every p 2 S1, h � g(p) yields h(g(p)), i.e., we apply g on p, and we apply h on theresult of g(p).Assume four semigroups S1; S2; S 01, and S02. Assume two homomorphisms g : S1 ! S 01 andh : S2 ! S 02. We can de�ne a homomorphism � gh� from �S1S2 � to �S01S02 � as follows: For every



2.1 Monoids, Languages and Traces 3�pq� 2 �S1S2 �, � gh��pq� yields �g(p)h(q)�. If both g and h are surjective homomorphisms from S1 to S01and S2 to S02, resp., then � gh� is a surjective homomorphism from �S1S2 � to �S01S02 �. As an exercise,you can verify that the homomorphisms h ��2 and �2 � � gh� from �S1S2 � to S02 are identical.By an alphabet, we mean a �nite set of symbols. We call its elements letters. Assume analphabet �. We denote the free monoid over � by ��. Its underlying set is the set of all words(strings) consisting of letters of �, the monoid product is the concatenation, and the neutralelement is the empty string. We call the subsets of the free monoid languages. For every wordw in ��, we call the number of letters of w the length of w, and denote it by jwj.Cartier and Foata introduced the concept of the free partially commutative monoidsin 1969 [3]. In 1977, Mazurkiewicz considered this concept as a potential model for con-current systems [18]. Since then, free partially commutative monoids are examined by bothmathematicians and theoretical computer scientists. For a general overview, I recommend thesurveys [7, 8, 9].Assume an alphabet �. We call a binary relation I over � an independence relation i� I isirreexive and symmetric. For every pair of letters a and b with aIb, we say that a and b areindependent, otherwise a and b are dependent. We call the pair (�; I) an independence alphabet.We call two words w1; w2 in �� equivalent i� we can transform w1 into w2 by �nitely manyexchanges of independent adjacent letters which we denote by w1 �I w2. For instance, if a andc are independent letters, baacbac, bacabac and bcaabca are mutually equivalent words.The relation �I is an equivalence relation. For every word w in ��, we denote by [w]I theequivalence class of w. Moreover, �I is a congruence relation. This means, for every wordsw1; w01; w2; w02 in �� with w1 �I w2 and w01 �I w02, we have w1w01 �I w2w02. Therefore, we cande�ne a monoid with the sets [w]I as elements. For any words w1 and w2, we de�ne the productof [w1]I and [w2]I by [w1w2]I . We denote this monoid by IM(�; I) and call it the trace monoidover � and I . Its elements, i.e., the equivalence classes [w]I , are called traces and its subsets arecalled trace languages or shortly languages. The function [ ]I is a homomorphism from the freemonoid �� to IM(�; I). As long as no confusion arises, we omit the index I at [ ]I .If I is the empty relation over �, the trace monoid IM(�; I) is the free monoid. If I isthe largest irreexive relation over �, i.e., two letters a and b are independent i� a and b aredi�erent, then the trace monoid IM(�; I) is the free commutative monoid over �.Assume two disjoint independence alphabets (�1; I1) and (�2; I2). We can de�ne anotherindependence alphabet (�; I) by merging the alphabets (�1; I1) and (�2; I2) in the followingway: (�; I) = ��1 [ �2 ; I1 [ I2 [ (�1 � �2) [ (�2 � �1) �. Two letters a and b in � areindependent i� either they do not belong to the same alphabet or both a and b belong to �1(resp. �2) and we have aI1b (resp. aI2b). The trace monoid IM(�; I) is naturally isomorphic tothe Cartesian Product � IM(�1 ;I1)IM(�2 ;I2)�. Consequently, we can regard the Cartesian Product of twotrace monoids as a trace monoid.We de�ne the trace monoid P3 by the independence alphabet consisting of �P3 = fa; b; cgand IP3 = n(a; b); (b; a); (c; b); (b; c)o. The P3 is isomorphic to the Cartesian Product �fa;cg�fbg� �.We de�ne the trace monoid C4 by the independence alphabet consisting of �C4 = fa; b; c; dgand IC4 = IP3 [ n(a; d); (d; a); (c; d); (d; c)o. The C4 is isomorphic to �fa;cg�fb;dg��.Assume an independence alphabet (�; I). A trace t in IM(�; I) is called connected i� forevery non-empty traces t1 and t2 with t = t1t2, there is a letter a occurring in t1 and there is aletter b occurring in t2, such that a and b are dependent. A trace language L is called connectedi� every trace in L is connected. A trace �uv� in P3 or C4 is connected i� u or v is the emptyword �.Assume some trace monoid IM(�; I). Assume a trace language T in IM(�; I) such thatfor every traces t1; t2 2 T , their concatenation t1t2 belongs to T . Then, we say that T is



4 2. FORMAL OVERVIEWconcatenation closed. Moreover, T is a semigroup. If additionally � 2 T , then T is a monoid.Consequently, it is quite natural to ask for generators of T .De�nition 2.1 Assume a trace monoid IM(�; I) and some concatenation closed language Tin IM(�; I) such that � 62 T . The set of generators of T is de�ned by Gen(T ) = T n T 2. 2Consequently, the generators of T are the traces in T which cannot be factorized into sometraces in T .Lemma 2.2 Assume a trace monoid IM(�; I) and a concatenation closed language T in IM(�; I)such that � 62 T . We have1. Gen(T )+ = T , and2. for every language L � IM(�; I) with L+ = T , we have Gen(T ) � L. 2Proof: At �rst, we show assertion 1. We have Gen(T ) � T . Hence, we have Gen(T )+ � T+.Because T is concatenation closed, we have T+ = T . Consequently, we have Gen(T )+ � T .We show that T is a subset of Gen(T )+ by a contradiction. Assume that there are tracesin T n Gen(T )+. Then, let t be a smallest trace in T n Gen(T )+, i.e., for every trace t0 in Twith jt0j < jtj, we have t0 2 Gen(T )+. The trace t does not belong to Gen(T )+. Thus, t doesnot belong to Gen(T ), i.e., t does not belong to T n T 2. Consequently, t belongs to T 2. We canfactorize t into t1 and t2 in T . We have jt1j < jtj and jt2j < jtj. Hence, the traces t1 andt2 belong to Gen(T )+, but, t does not belong to Gen(T )+. This contradicts that Gen(T )+ isconcatenation closed.Now, we prove assertion 2 by a contradiction. Assume a language L such that L+ yields T ,but, Gen(T ) is not a subset of L. Then, let t be a trace in Gen(T ) n L. The trace t belongsto Gen(T ). Thus, t belongs to T , i.e., t belongs to L+. Because t does not belong to L, we canfactorize t into two non-empty traces t1 and t2 in L+. Thus, t belongs to (L+)2. This means, tbelongs to T 2. Consequently, t does not belong to T n T 2, i.e., we contradicted that t belongsto Gen(T ). 22.2 Recognizable SetsThe concept of recognizability describes a formal method how to use �nite machines to deal within�nite objects. It originates from Mezei and Wright from 1967 [22]. There are numerousequivalent de�nitions. I introduce it as far as we use it in this paper, for a more general overviewI recommend [1, 10]. I took most of the contents of this section from there.De�nition 2.3 Assume a monoid IM. An IM-automaton is a triple A = [Q; h; F ], where Q isa �nite monoid, h is a homomorphism h : IM ! Q and F is a subset of Q. The language of anIM-automaton A is de�ned by L(A) = h�1(F ). 2We call Q the underlying monoid of A, and the elements of Q the states of A. We further callF the set of accepting states of A, and h the homomorphism of A. Without loss of generality,we can assume that h is a surjective homomorphism from IM to F . If L(A) = L, then wesay that A de�nes L or A is an IM-automaton for L. We call a subset L of IM a recognizablelanguage over IM i� there is an IM-automaton A, such that L = L(A). We denote the class ofall recognizable languages over IM by REC(IM).De�nition 2.3 shows a common way to de�ne recognizability in arbitrary monoids. FollowingCourcelle [6], we call the triple [Q; h; F ] an IM-automaton.Assume a product automation A such that L(A) is closed under monoid product. Then,F is the image of the semigroup L(A) under the surjective homomorphism h. Hence, F is asubsemigroup of Q.The following theorem is a classic one, you �nd the proof, e.g., in [1, 10].



2.2 Recognizable Sets 5Theorem 2.4 Assume a monoid IM. The class REC(IM) contains the empty set ;, IM itselfand it is closed under union, intersection, complement and inverse homomorphisms. 2There are monoids containing �nite subsets which are not recognizable and monoids in which theproduct of two recognizable subsets is not always a recognizable set. And further, the iterationof a recognizable set is not always recognizable. However, we have the following theorem fortrace monoids:Theorem 2.5 Assume a trace monoid IM(�; I). The class REC(IM(�; I)) contains all �nitesubsets of IM(�; I), and it is closed under monoid product and under iteration of connectedtrace languages. 2Recognizability of �nite trace languages is obvious. The proof of the closure under monoidproduct originates from Fliess [11]. Closure under iteration of connected trace languages isdue to Ochma�nsky [24], Clerbout and Latteux [4], and M�etivier [19]. In [23], you �nd arecent survey on recognizable trace languages, it contains neat little proofs of the assertions inTheorem 2.5.Example 2.6 Assume the free monoids IM1 = fag� and IM2 = fbg�. Let L1 be the singletonlanguage n�ab�o in the trace monoid � IM1IM2�. The language L1 is recognizable, because it is �nite.Further, L1 is not a connected language. We have L�1 = n�anbn � ���n 2 INo. Below, we show thatL�1 is not recognizable. 2We need a theorem by Mezei concerning recognizable sets in Cartesian Products. It is notpublished by the author himself, but, it is widely known as Mezei's Theorem, you �nd it in,e.g., [1, 10].Theorem 2.7 Assume two monoids IM and IM0. A set L is recognizable in � IMIM0 � i� there are anumber n, recognizable sets L1; : : : ; Ln � IM and recognizable sets L01; : : : ; L0n � IM0, such that:L = � L1L01 � [ : : :[ � LnL0n � 2Example 2.6 (continued) We show by a contradiction that L�1 is not recognizable. Assumethat L�1 is recognizable. Then, by Theorem 2.7, L�1 is the union of �nitely many CartesianProducts. Consequently, there are two numbers i 6= j, such that �aibi � and �ajbj � belong to thesame Cartesian Product. Hence, the traces �aibj � and �ajbi � belong to this Cartesian Product,i.e., they belong to L�1. This is a contradiction. 2Let us shortly mention the notion of rational sets. Assume some monoid IM. The class of rationalsubsets of IM is the smallest class which contains the empty set and every singleton subset of IM,and is closed under union, monoid product, and iteration. We have Kleene's classic resultwhich asserts that in free monoids the recognizable sets and the rational sets coincide [17, 31].In trace monoids, we have just one direction: Due to a more general result by McKnight,every recognizable trace language is a rational trace language. However, there are rationaltrace languages which are not recognizable unless the underlying trace monoid is a free monoid.For instance, the language L�1 in Example 2.6 is a rational language which is not recognizable.See [2, 8] for more information on rational trace languages.



6 2. FORMAL OVERVIEW2.3 Some Decision Problems for Trace LanguagesTwo decision problems concerning the iteration of recognizable trace languages arise:� Star Problem: Can we decide whether the iteration of a recognizable trace languageyields a recognizable language?� Finite Power Property Problem: Can we decide whether a recognizable language hasthe �nite power property, i.e., for a recognizable language L, can we decide whether thereis a natural number n such that we have L� = L�n.By FPP, we abbreviate the �nite power property, and by FPPP, we abbreviate the �nite powerproperty problem. If a recognizable language L has the FPP, then we have L� = L0[L1[: : :[Lnfor some n 2 IN. Hence, if L has the FPP, then L� is recognizable by Theorem 2.4 and 2.5.Below, we will see languages L such that L� is recognizable but L does not have the FPP.Although during the recent 14 years many papers have dealt with the star problem andthe FPPP, only partial results have been achieved. In general, both problems have remainedunsolved. I give a survey about their history.The star problem in the free monoid is trivial due to Kleene's Theorem from 1956, and it isdecidable in free commutative monoids due to Ginsburg and Spanier [13, 14]. Brzozowskiraised the FPPP in the free monoid in 1966, and it took more than ten years till Simon andHashiguchi independently showed its decidability [30, 16]. In 1984, Ochma�nsky examinedrecognizable trace languages in his PhD thesis [24] and stated the star problem. During theeighties, Ochma�nsky [24], Clerbout and Latteux [4], and M�etivier [19] independentlyproved that the iteration of a connected recognizable trace language yields a recognizable tracelanguage. In 1990, Ochma�nsky showed the decidability of the star problem in C4 for �nitetrace languages containing at most one non-connected trace [25]. He used the decidability ofthe FPP in free monoids. This marks the beginning of the examination of connections betweenthe FPP and the star problem. In 1992, Sakarovitch solved the recognizability problem [29]:Theorem 2.8 Assume a trace monoid IM(�; I). We can decide whether a rational language inIM(�; I) is recognizable i� IM(�; I) does not contain a P3 submonoid. 2This theorem includes that the star problem is decidable in trace monoids which do not containa P3 submonoid. For a short time, one had hope to solve the star problem. One conjecturedthat the above theorem can be generalized to the star problem. However, just in the sameyear, Gastin, Ochma�nsky, Petit and Rozoy showed the decidability of the star problemin P3 [12]. Decidability of the FPP in free monoids plays a crucial role in their proof.During the subsequent years,M�etivier and Richomme developed these ideas. They showeddecidability of the FPP for connected trace languages and decidability of the star problem fortrace languages containing at most four traces as well as for �nite languages containing at mosttwo connected traces [20, 21]. They showed the following connections between the star problemand the FPP.Theorem 2.9 Assume an independence alphabet (�; I) and a letter b with b 62 �.1. If the star problem is decidable in � IM(�;I)fbg� �, then the FPP is decidable in IM(�; I) [20, 21].2. If both the star problem and the FPP are decidable in IM(�; I) then both problems aredecidable in � IM(�;I)fbg� � [26, 28]. 2Assertion 1 is a conclusion from the following connection [20, 21]:



2.4 Main Results 7Theorem 2.10 Assume an independence alphabet (�; I) and a letter b with b 62 �. Assume arecognizable language T in IM(�; I) and let K = � Tfbg+�. Then, the language T has the FPP i�K� is recognizable. 2An obvious conclusion from assertion 1 in Theorem 2.9 is that if the star problem is decidable inany trace monoid, then so is the FPP [20, 21]. Richomme improved the induction in assertion 2and showed the following theorem:Theorem 2.11 Assume a trace monoid IM(�; I). If the monoid IM(�; I) does not contain aC4-submonoid, then the star problem and the FPP are decidable. 2The main ideas of the proof are in [28], the complete proof is in [26]. Please note that the if inthe theorem has just one f.In 1994, Richomme tried to prove that the trace monoids with a decidable star problem areexactly the trace monoids with a decidable FPP [27]. However, one of the proofs in this reportcontains an error such that the result was not proved.The subsequent years were designated by stagnation. One did not achieve new results andone ceased the research on the star problem and the FPPP. Today, especially two questions areinteresting:1. Are the star problem and the FPP decidable in trace monoids which contain a C4 sub-monoid?2. Are the trace monoids with a decidable FPP exactly the trace monoids with a decidablestar problem?2.4 Main ResultsIn this paper, we work on connections between the star problem and the FPP. As alreadymentioned, for every recognizable language L, the iteration of L is recognizable if L has the FPP.The other direction is not true. Let us consider some examples in the trace monoid �fag�fbg� �.Example 2.12 Assume the language L2 = n� a��; ��b �o. Both L2 and L�2 are recognizable,because L2 is �nite and L�2 is the complete monoid. However, L2 does not have the FPP.For every n 2 IN, the language L�n2 contains only traces consisting of at most n letters, i.e.,L�n2 is �nite, and thus, it is di�erent from L�2. 2Example 2.13 We examine the language L3 = � fagfbg��. We have L�3 = n����o[�fag+fbg� �. Both L3and L�3 are recognizable. Recognizability of L�3 follows, e.g., from Theorem 2.7. As well as L2,the language L3 does not posses the FPP. For every n 2 IN, L�n3 contains only traces in whichthe letter a occurs at most n times, i.e., L�n3 is di�erent from L�3. 2Example 2.14 Assume the recognizable language L4 = n����o [ �fag+fbg+ �. We have L4 = L�4.Hence, L4 has the FPP. We ask whether there is a language L such that L� = L4 and further Ldoes not have the FPP. We show that such a language L does not exist. Just assume a languageL such that L� = L4.Assume some number n � 1. The trace � abn� belongs to L4, i.e, it belongs to L�. We cannotfactorize � abn� into some non-empty traces in L4. Otherwise, we could conclude that � abn�contains the letter a more than once. Hence, � abn� belongs to L. Accordingly, the trace �anb �belongs to L. To sum up, for every n � 1, the traces � abn� and �anb � belong to L.



8 3. SEMIGROUPS AND IDEALSNow, assume two numbers n > 1, m > 1. The trace � anbm � belongs to L4. We do not knowwhether it belongs to L. However, we can factorize it into the traces � abm�1� and �an�1b � in Lsuch that � anbm� belongs to L2. Hence, for every n > 1, m > 1, the trace � anbm � belongs to L2.Thus, we have L4 = L�2. Consequently, for every language L such that L� = L4, we knowthat L has the FPP. Note that this statement is not restricted to recognizable languages L. 2By examining many similar examples, one makes an observation. Assume two disjoint tracemonoids IM1 and IM2. Whenever one considers recognizable languages L in � IM1IM2 �, such that L�is recognizable but L does not have the FPP, then certain traces play a crucial role. Namely,traces which have an empty and a non-empty compound, i.e., non-empty traces in �f�gIM2 � and� IM1f�g� play a crucial role. This leads to Theorem 2.15, which is the main result of this paper.Richomme stated it in [27], but, the proof there contains an error. Up to now, it remainedopen to correct the error or to disprove the theorem.Theorem 2.15 Assume two disjoint independence alphabets (�1; I1) and (�2; I2). Assumesome recognizable language L in � IM(�1;I1)IM(�2;I2)� such that every trace in L contains at least oneletter of �1 and at least one letter of �2.Then, the language L� is recognizable i� L has the FPP. 2We will prove Theorem 2.15 as a corollary of the following theorem. Its proof is the main partof the present paper.Theorem 2.16 Assume two disjoint independence alphabets (�1; I1) and (�2; I2). Assumesome recognizable, concatenation closed language T in � IM(�1;I1)IM(�2;I2)� such that every trace t in Tcontains at least one letter of �1 and at least one letter of �2.Then, the set of generators of T has the FPP. 2We close this section by deriving Theorem 2.15 from Theorem 2.16.Proof of Theorem 2.15: Assume some recognizable language L in � IM1IM2� such that every tracein L contains at least one letter from �1 and at least one letter from �2. If L has the FPP,then L� is recognizable because of the closure properties of recognizable trace languages inTheorem 2.4 and 2.5.To show the other direction, assume that L� is recognizable. We examine L+. It is alsorecognizable. Further, every trace in L+ contains at least one letter of �1 and at least one letterof �2. We can use Theorem 2.16 on L+. Hence, there is a natural number l > 1 such that wehave Gen(L+)1;:::;l = L+.By Lemma 2.2, we have Gen(L+) � L. Hence, we have Gen(L+)1;:::;l � L1;:::;l. Thus, wehave L+ � L1;:::;l, i.e., L+ = L1;:::;l. Consequently, we have L� = L�l, i.e., L has the FPP. 23 Semigroups and IdealsWe deal with some notions on semigroups. In the �rst subsection, we get familiar with ideals.Then, we examine non-empty �nite semigroups without and with proper ideals. In the lastsubsection, we use ideal theory to work out a useful classi�cation of non-empty �nite semigroups.To understand the rest of the paper, you have to become familiar with the notions of left idealsand ideals and you have to understand Lemma 3.2 and Proposition 3.7.



3.1 Basic De�nitions and Notions 93.1 Basic De�nitions and NotionsIdeal theory originates mainly from Green. This subsection contains a suitable adaptationof a tiny selection of notions and results from ideal theory. For more detailed information,I recommend teaching books on semigroups, e.g. [5, 15], rather than books concerning automatatheory. I developed this subsection in a way that the reader does not require previous knowledgein ideal theory.As already mentioned, a semigroup is a set together with a binary associative operation.Assume some semigroup S. We call a semigroup H a subsemigroup of S i� the underlying setof H is a subset of S and the operation of H is the operation of S restricted to the elementsin H . Hence, we can regard H as a subset of S which is closed under the operation of S.We call a subset U of S a left ideal of S i� we have SU � U . Hence, a left ideal is a specialsubsemigroup. Every semigroup has itself and the empty set as left ideals. We call a left idealU of S proper i� we have ; � U � Q. The intersection and the union of two left ideals of Syield left ideals of S.We call a subset J of S an ideal of S i� we have JS � J and SJ � J . Hence, an ideal is aspecial left ideal. We call an ideal J of S proper i� we have ; � J � Q.For simplicity, we develop the following notions just for �nite semigroups. Assume some�nite semigroup Q. Assume some ideal J of Q which is di�erent from Q. We call a left ideal Uof Q J-minimal i� we have J � U and there is not any left ideal U 0 with J � U 0 � U . Assumetwo di�erent J-minimal left ideals U and V of Q. Their intersection contains J . Assume J isproperly contained in the left ideal U \V . Then, one of the left ideals U or V is not J-minimal,because we have J � (U\V ) � U or J � (U\V ) � V . Consequently, we have U \ V = J .If J = ;, we shortly say minimal instead of ; -minimal.We close this subsection with a technical lemma:Lemma 3.1 Assume a non-empty �nite semigroup Q and an ideal J 6= Q. Then, the union ofall J-minimal left ideals yields an ideal of Q. 2Proof: There is at least one left ideal properly containing J , namely Q itself. Hence, there isalso some smallest left ideal which contains J properly.Let J 0 be the union of all J-minimal left ideals. Then, J 0 is a left ideal with J � J 0. We haveto show J 0Q � J 0. We prove this by showing that for every J-minimal left ideal L and for everyelement q 2 Q, the set J [Lq yields J or some J-minimal left ideal. Just assume J � (J [Lq).Because L is a left ideal, we have QL � L. Thus, we have QLq � Lq. Therefore, Lq andJ [ Lq are left ideals of Q.Now, we show by a contradiction that J [Lq is J-minimal. Just assume a left ideal K suchthat we have J � K � (J[Lq). We de�ne a set K 0 by K 0 := fx 2 L j xq 2 Kg. We show theproper inclusions J � K0 � L.We have J � L and Jq � J � K. Hence, we have J � K0.We show that the inclusion J � K0 is proper: There is some p 2 K n J . Then, p 2 Lq.Hence, there is some p0 2 L with p = p0q. We have p0 62 J , because J is an ideal and p = p0qdoes not belong to J . However, p0 2 K 0.The inclusion K0 � L is obvious. There is some r 2 (J [Lq) nK. Then, we have r 2 Lq n J .Thus, there is some r0 2 L with r0q = r. Then, r0 62 K 0, i.e., we have K 0 � L.We show that K 0 is a left ideal. Just assume some x in K 0 and some y in Q. We have yx 2 L,because x belongs to L which is a left ideal. Further, we have yxq 2 K, because xq belongs tothe left ideal K. Thus, we have yx 2 K0.Hence, the set K 0 is a left ideal with J � K0 � L, i.e., L is not J-minimal. This is acontradiction, such that the assumed left ideal K does not exist. Therefore, the set J [ Lq is aJ-minimal left ideal. 2



10 3. SEMIGROUPS AND IDEALS3.2 Finite Semigroups without Proper IdealsIn this subsection, we examine non-empty �nite semigroups without proper ideals. Assume somenon-empty �nite semigroup Q without proper ideals. We distinguish two cases: Q has or Q doesnot have proper left ideals. At �rst, we deal with the case that Q does not have proper leftideals.Lemma 3.2 Assume a non-empty �nite semigroup Q which has not any proper left ideal. Then,for every elements p; p0 and q in Q, the equality pq = p0q implies p = p0. 2Proof: We show that a counter example implies the existence of a proper left ideal. Just assumethree elements p; p0; q 2 Q such that pq = p0q, but nevertheless, p 6= p0. We have QQ � Q, andthus, QQq � Qq such that Qq is a left ideal. Further, the product Qq yields a proper subsetof Q, because the result of the product pq \occurs twice", such that at least one element of Qcannot occur in Qq. Consequently, the set Qq is a proper left ideal of Q. This contradicts thepresumption of the lemma. 2Now, we examine non-empty �nite semigroups with proper left ideals but without proper ideals.Example 3.3 Assume the semigroup Q1 with the underlying set fa0; â; �a; c0; ĉ; �cg. We de�nethe operation in Q1 as follows: For every two elements p and q in Q1, the result of the productpq has the letter (i.e. a or c) of p with the index (i.e. 0, ^ or � ) of q. For instance, we havea0c0 = âc0 = �aa0 = a0 and ĉ�c = c0�a = �c�c = �c. This operation is associative. Obviously, for twoelements p and q of Q1, we have qpq = q.The semigroup Q1 does not have proper ideals. Assume J is a non-empty ideal of Q1.Assume an element p 2 J . For every q 2 Q1, the product qp belongs to J . Then, we also haveqpq = q 2 J . Thus, J = Q.It is immediate that the subsets fa0; c0g, fâ; ĉg and f�a; �cg are the minimal left ideals of Q1.By merging two of these minimal left ideals, we obtain three proper left ideals of Q1 which arenot minimal. 2Lemma 3.4 Assume a non-empty �nite semigroup Q with at least one proper left ideal butwithout proper ideals. Then, Q has two disjoint proper left ideals U and V with Q = U [ V . 2Proof: We apply Lemma 3.1 with J = ;. The union of all minimal left ideals of Q yields anideal of Q. Because Q does not have proper ideals, the union of all minimal left ideals of Qyields Q itself.Now, assume that Q has exactly one minimal left ideal. Then, this minimal left ideal is Qitself. Thus, the semigroup Q does not have proper left ideals, which is a contradiction. Hence,Q has at least two minimal left ideals.Let U be an minimal left ideal and let V be the union of all other minimal left ideals of Q.Then, the subsets U and V are two disjoint left ideals and their union yields Q. 2Example 3.3 (continued) The semigroup Q1 ful�lls Lemma 3.4, e.g., we choose U = fa0; c0gand V = fâ; �a; ĉ; �cg. 2By Lemma 3.2 and 3.4, we have strong assertions for �nite semigroups without proper ideals.Depending on whether a �nite semigroup without proper ideals has a proper left ideal or not,we can apply either Lemma 3.4 or Lemma 3.2.



3.3 Finite Semigroups with Proper Ideals 113.3 Finite Semigroups with Proper IdealsIn this subsection, we deal with �nite semigroups with proper ideals.Lemma 3.5 Assume a non-empty �nite semigroup Q with a proper ideal. Then, there is aproper ideal J of Q such that Q and J ful�ll one of the following assertions:1. The set Q n J yields a singleton frg and r2 belongs to J .2. The set Q n J yields a subsemigroup of Q.3. There are two proper left ideals U and V of Q, such that U [ V = Q and U \ V = J . 2Note that in assertion three both the left ideals U and V are di�erent from J . Just assumethat U = J . Then, we have J [ V = Q. Because J is contained in V , we have V = Q, whichcontradicts that V is a proper left ideal.Proof: Let J be a proper ideal of Q such that there is not any ideal J 0 with J � J 0 � Q. Suchan ideal exists because Q is �nite and Q has at least one proper ideal. We show that Q and Jful�ll assertion 3, provided that they contradict assertion 1 and 2.Since J is proper, there is some r 2 Q n J . Then, Q n J = frg implies assertion 1 or 2,depending on whether r2 2 J or r2 = r. Hence, Q n J contains at least two elements.Since, Q n J is not a subsemigroup of Q, there are p; q 2 Q n J with pq 2 J . We haveJ [ Qq = J [ �J [ fpg [ Q n J n fpg�q = J [ Jq [ fpqg [ �Q n J n fpg�q. The sets Jq andfpqg are contained in J such that we have J [Qq = J [ �Q n J n fpg�q.Now, we have ���J [Qq��� = ���J [ (Q n J n fpg)q��� � ���J���+���(Q n J n fpg)q��� � ���J���+���Q n J n fpg���.We have p 2 Q n J , and thus, ���J���+ ���Q n J n fpg��� < ���J���+ ���Q n J��� = ���Q���. Therefore, we have���J [Qq��� < ���Q���. Hence, we have the proper inclusion J [ Qq � Q.We show the existence of some left ideal U 0 of Q with J � U 0 � Q. Assume that Qq is not asubset of J . Then, the union J [Qq yields the desired left ideal U 0. Assume that Qq is a subsetof J . Then, the set J [ fqg is the desired left ideal U 0. The inclusion (J [ fqg) � Q is propersince Q n J contains at least two di�erent elements.Now, we can apply Lemma 3.1. The union of all J-minimal left ideals of Q yields an ideal.This ideal properly contains J . The only ideal properly containing J is Q itself. Hence, theunion of all J-minimal left ideals yields Q itself.Assume there is exactly one J-minimal left ideal. Then, this J-minimal left ideal is Q itself.However, Q cannot be a J-minimal left ideal, because we have shown that there is some leftideal U 0 with J � U 0 � Q. Therefore, there are at least two di�erent J-minimal left ideals.Now, let U be a J-minimal left ideal and let V be the union of all other J-minimal left ideals.Then, U and V are the desired left ideals in assertion 3. 2The assertions in Lemma 3.5 are not exclusive. Assume a non-empty �nite semigroup Q with aproper ideal J such that Q and J satisfy assertion 1 in Lemma 3.5. They obviously contradictassertion two by r2 2 J . They also contradict assertion three. Depending on whether r belongsto U , we either have J = U or Q = U , which is a contradiction. However, assertions 2 and 3are not exclusive.Example 3.6 Assume the semigroup Q with the underlying set f0; a; bg. We de�ne the oper-ation in Q as follows: For every p 2 Q, we set 0p = p0 = 0. For p; q 2 Q n f0g, the product pqyields q. Every ideal of Q has to contain 0. Assume that an ideal J contains one of the elementsa or b. Then, the product JQ yields Q. Consequently, the set f0g is the only proper ideal of Q.We see that Q and f0g ful�ll assertion two. However, Q and f0g also ful�ll assertion threeby U = f0; ag and V = f0; bg. 2



12 4. PRODUCT AUTOMATA3.4 A Classi�cationWe work out a suitable classi�cation of all non-empty �nite semigroups. We use ideal theory todistinguish several classes of non-empty �nite semigroups.Proposition 3.7 Every non-empty �nite semigroup Q ful�lls one of the following assertions:(A) Q has not any proper left ideal.(B) Q has two proper left ideals U , V such that U [ V = Q and U \ V is an ideal of Q.(C) Q has an ideal J such that Q n J yields a singleton frg with r2 2 J .(D) Q has a proper ideal J and a subsemigroup H such that J \H = ; and J [H = Q. 2Proof: Assume Q does not have a proper ideal. If Q does not have a proper left ideal, it ful�llsassertion (A). If Q has a proper left ideal, then Q ful�lls assertion (B) by Lemma 3.4, becausethe empty set is an ideal.Now, assume Q has a proper ideal. Then, by Lemma 3.5 there is some proper ideal J of Qsuch that J ful�lls one of the assertions (C), (D) or (B). 2Assume a non-empty �nite semigroup Q. Every proper ideal is also a proper left ideal. Thus,if Q ful�lls one of the assertions (B), (C), or (D), then Q cannot satisfy assertion (A). However,the assertions (B), (C), and (D) are not exclusive.Example 3.8 Consider the semigroup Q2 with the underlying set f00; 0̂; b0; b̂; c0g and the oper-ation given by the following table: 00 0̂ b0 b̂ c000 00 0̂ 00 0̂ 000̂ 00 0̂ 00 0̂ 00b0 00 0̂ b0 b̂ 00b̂ 00 0̂ b0 b̂ 00c0 00 0̂ 00 0̂ 00The operation can be understood intuitively: For n > 1 and p1; : : : ; pn 2 Q2, we can calculatethe product p1 : : : pn as follows: If a c0, 00 or 0̂ occurs among p1; : : : ; pn, the result has a 0.Otherwise, the result has a b. The index of p1 : : :pn (i.e. 0 or )̂ is the index of pn. The semigroupQ2 ful�lls the assertions (B), (C), and (D).(B) The semigroup Q2 has proper ideals such that we cannot apply Lemma 3.4. Nevertheless,we can split Q2 into two disjoint left ideals by U = f00; b0; c0g and V = f0̂; b̂g. We could alsochoose proper left ideals which are not disjoint, e.g., by U = f00; 0̂; b0; c0g and V = f00; 0̂; b̂g.(C) We simply set J = f00; 0̂; b0; b̂g.(D) Q2 satis�es this assertion by J = f00; 0̂; c0g and H = fb0; b̂g. 24 Product AutomataIn this section, we deal with a special kind of automata. We adapt the notion of automata fromDe�nition 2.3. We use ideas from the proof of Theorem 2.7 (cf. [1, 10]). In the �rst subsection,we get familiar with product automata. In the second subsection, we examine connections toideal theory.Throughout this section, we assume two disjoint independence alphabets (�1;I1) and (�2;I2).We abbreviate the trace monoids IM(�1; I1) and IM(�2; I2) by IM1 and IM2, respectively.



4.1 De�nitions 134.1 De�nitionsWe de�ne product automata.De�nition 4.1 Assume two disjoint trace monoids IM1 and IM2. A product automaton A over� IM1IM2� is a quintuple [P;R; g; h; F ], where� P and R are non-empty �nite semigroups,� g and h are surjective homomorphisms g : IM1 ! P , h : IM2 ! R,� F is a subset of �PR�. 2We can regard every product automaton [P;R; g; h; F ] as an � IM1IM2�-automaton h�PR�; �gh�; F i byDe�nition 2.3. A product automaton A de�nes a recognizable language by L(A) = �gh��1(F ).This means that a trace t 2 � IM1IM2� belongs to L(A) i� we obtain a pair in F when we apply gand h on the �rst and second compound of t, respectively.Let us assume that L(A) is closed under concatenation. Then, F is a subsemigroup of �PR�.Similarly, �1(F ) and �2(F ) are subsemigroups of P and R, respectively.We are going to use product automata to prove assertions on recognizable languages in � IM1IM2�.Therefore, we have to show that every recognizable language T in � IM1IM2� is the language of someproduct automaton.Lemma 4.2 Assume two disjoint trace monoids IM1 and IM2, and a recognizable language Tin � IM1IM2�. There is a product automaton for T . 2Proof: By Theorem 2.7, there is some n 2 IN and recognizable languages T1; : : : ; Tn � IM1 andT 01; : : : ; T 0n � IM2 such that T = �T1T 01� [ : : : [ �TnT 0n�For i = 1; : : : ; n, let [Pi; gi; Fi] (resp. [Ri; hi; F 0i ]) be an automaton for Ti (resp. T 0i ). We canfreely assume Pi = Pj , gi = gj , Ri = Rj , and hi = hj for any 1 � i � j � n. Then, T is thelanguage of the product automaton [P1; R1; g1; h1; F ] with F = �F1F 01� [ : : :[ �FnF 0n �. 24.2 Connections to Subsemigroups and IdealsWe examine connections between product automata and ideal theory. Assume a recognizablelanguage T in � IM1IM2� which is closed under concatenation. Assume further a product automatonA = [P;R; g; h; F ] for T . Let us denote �2(F ) by Q. Then, Q is a subsemigroup of R. We caneasily verify that Q = h ��2(T ) = �2 � � gh�(T ). Assume some subset W of Q. We de�ne alanguage TW by TW = f t 2 T j h ��2(t) 2 W gThe language TW is obviously a subset of T . Some trace t in � IM1IM2� belongs to TW i� wehave � gh�(t) 2 F \ � PW �.Proposition 4.3 Assume some non-empty, concatenation closed language T in � IM1IM2�. Assumea product automaton A = [P;R; g; h; F ] for T . Let Q denote the semigroup �2(F ).



14 5. PROOF OF THEOREM 2.161. For W � Q, the product automaton AW = [P;R; g; h; F \ �PW�] de�nes TW . Therefore,TW is recognizable.2. For every non-empty W � Q, the language TW is non-empty.3. For every subsemigroup H � Q, the language TH is concatenation closed.4. For every left ideal U � Q, the language TU is a left ideal of T .5. For every ideal J � Q, the language TJ is an ideal of T . 2Proof:1. We can straightforwardly verify that AW is a product automaton, because A is a productautomaton. For t 2 TW , we have � gh�(t) 2 F and � gh�(t) 2 � PW �. Thus, we have� gh�(t) 2 F \ � PW �. Hence, TW � L(AW ).Conversely, let t 2 L(AW ). Then, we have � gh�(t) 2 F and � gh�(t) 2 � PW �. Hence, t 2 Tand h ��2(t) 2W , i.e., t belongs to TW . Consequently, L(AW ) � TW .2. Because W is non-empty, we can assume some r in W . This r belongs to Q, i.e., there issome p in P such that the pair �pr� 2 F . Because the homomorphism � gh� is a surjection,the set � gh��1�pr� is non-empty. Further, we have � gh��1�pr� � TW .3. Note that TW = ��12 �h�1(W ) \ T . Since W is a subsemigroup of Q, its preimage��12 � h�1(W ) is a subsemigroup of � IM1IM2�. Then, TW is a subsemigroup because it isthe intersection of two subsemigroups.4. Let f be the restriction of h ��2 to T . Then, f is a surjective homomorphism from T toQ and TU = f�1(U). Since U is a left ideal of Q, so is its preimage TU under f .5. As the previous point. 25 Proof of Theorem 2.16In this section, we prove Theorem 2.16. We take over the notions (�1; I1), (�2; I2), IM1 and IM2from the previous section. We abbreviate IM1 n f�g and IM2 n f�g by IM+1 and IM+2 , respectively.The traces in � IM+1IM+2 � are exactly the traces in � IM1IM2 � which contain at least one letter in �1 andat least one letter in �2.Theorem 2.16 Assume two disjoint independence alphabets (�1; I1) and (�2; I2). Assumesome concatenation closed, recognizable language T in � IM+1IM+2 �.Then, the set of generators of T has the FPP. 2Theorem 2.16 is obviously true if the language T is empty. Thus, we just need to prove it fornon-empty languages T . The general structure of the proof is the following: Just assume anon-empty, concatenation closed, recognizable language T in � IM+1IM+2 �. By Lemma 4.2, there is aproduct automaton A = [P;R; g; h; F ] for T . We denote �2(F ) by Q. Because T is non-empty,Q is non-empty. We use Proposition 3.7 on Q. Consequently, the proof of Theorem 2.16 consistsof four parts. In the �rst subsection, we deal with the case that Q does not contain proper leftideals. After that, we deal with the cases that Q ful�lls one of the assertions (B), (C), or (D) inProposition 3.7. We will do this by an induction on the number of elements of Q.In the last subsection, we summarize the results to prove Theorem 2.16.



5.1 Q does not have proper left ideals 155.1 Q does not have proper left idealsIn this subsection, we prove the following special case of Theorem 2.16.Proposition 5.1 Assume a non-empty, concatenation closed language T in � IM+1IM+2 � which isrecognized by a product automaton [P;R; g; h; F ], such that the semigroup �2(F ) does not haveproper left ideals.Then, Gen(T ) has the FPP. Moreover, we have T = Gen(T )1;:::;j�2(F )j+1. 2I introduce some notions especially for the proof of this proposition. We assume a language Tas in Proposition 5.1.De�nition 5.2 Assume some traces t, t1, s1 in T . We call the pair (t1; s1) a most oblique cutof t i� t = t1s1 and for every traces t01; s01 2 T with t = t01s01 we have either� j�1(t01)j > j�1(t1)j or� j�1(t01)j = j�1(t1)j and j�2(t01)j � j�2(t1)j. 2Intuitively, we can understand the de�nition as follows. We try to factorize t in T into twotraces t1 and s1 of T . We try to do this in a way that the �rst compound of t1 is small, but,the second compound of t1 is big.If the trace t is not a generator of T , then there is at least one most oblique cut of t. A mostoblique cut cannot exist if the trace t is a generator of T .Lemma 5.3 Assume some traces t, t1, s1 in T such that (t1; s1) is a most oblique cut of t.Then, the trace t1 is a generator of T . 2Proof: We prove the lemma by contradiction. Just assume that t1 is not a generator of T .Then, there are two traces t1a and t1b in T such that t = t1at1b. We can factorize t into t1aand t1bs1. The traces t1a and t1bs1 belong to T . Further, �1(t1a) contains properly less lettersthan �1(t1), since �i(t1b) 6= �. This contradicts that (t1; s1) is a most oblique cut. 2We can factorize some trace t in T into generators by successive most oblique cuts. We factorizet into a generator t1 and a trace s1 in T . Then, we factorize s1 by a most oblique cut and so on,until a most oblique cut yields two generators. This iterative factorization terminates, because\the remaining part of t" becomes properly shorter in every most oblique cut.Proof of Proposition 5.1: Assume some trace t in T . We denote by Q the semigroup �2(F ).We show that a factorization of t by successive most oblique cuts yields a factorization of t intoat most jQj+ 1 generators of T .We factorize t into generators of T by successive most oblique cuts. We obtain a naturalnumber n and generators t1; : : : ; tn of T such that t1 : : : tn yields t. For every i in 1; : : : ; n� 1,the pair (ti; ti+1 : : : tn) is a most oblique cut of the trace ti : : : tn.We introduce two notions for lucidity. For every i in 1; : : : ; n, we de�ne ui = �1(ti) andvi = �2(ti), i.e., we have ti = �uivi �. For every i in 1; : : : ; n, we have h(vi) 2 Q, because thetraces t1; : : : ; tn belong to T .We show by a contradiction that n � jQj+ 1. Assume n > jQj+ 1.By h(vi+1 : : : vn) = h(vi+1) : : :h(vn) 2 Q for 1 � i < n and n�1 > jQj, we get the existenceof 1 � i < j < n such that h(vi+1 : : :vn) = h(vj+1 : : : vn).Then, h(vi) �Q h(vi+1 : : : vn) = h(vi : : :vn) = h(vi : : :vj) �Q h(vj+1 : : :vn). Since Q does nothave proper left ideals, we can apply Lemma 3.2 and get h(vi) = h(vi : : : vj).



16 5. PROOF OF THEOREM 2.16By ti 2 T , we have � gh��uivi � 2 F . Because of h(vi) = h(vi : : :vj), we get � gh�� uivi:::vj � 2 F ,and thus, � uivi:::vj � 2 T . Similarly, ti+1 : : : tn 2 T implies � gh��ui+1 :::unvi+1 :::vn � 2 F . By h(vi+1 : : : vn) =h(vj+1 : : : vn), we have � gh��ui+1 :::unvj+1:::vn � 2 F , and therefore, �ui+1 :::unvj+1:::vn � 2 T .Thus, � uivi:::vj � and �ui+1 :::unvj+1:::vn � are a factorization of ti : : : tn into two traces from T . Since(ti; ti+1 : : : tn) is a most oblique cut of t and �1� uivi :::vj � = �1(ti), we obtain j�2� uivi:::vj �j �j�2(ti)j. Hence, jvi : : : vj j � jvij. Because vi is a pre�x of vi : : :vj , we have jvi : : : vj j = jvij.Consequently, vi+1 : : :vj = �. This is a contradiction, because every trace in T contains at leastone letter from �2.Finally, our assumption n > jQj+ 1 lead to a contradiction. Hence, we have n � jQj+ 1. 2The method of most oblique cuts is a very suitable method to prove Theorem 2.16 in the casethat the semigroup Q does not have proper left ideals. Let us consider an example.Example 5.4 Assume the free monoids over singletons IM1 = fag� and IM2 = fbg�. Considerthe language T = n�ab�o [ n� anbm����n � 2; m � 2o in � IM+1IM+2 �. The language T ful�lls everypresumption of Theorem 2.16. However, we cannot prove that Gen(T ) has the FPP by factori-zations with most oblique cuts. For every n � 1, the application of successive most oblique cutsfactorizes the trace �anbn � into �ab� : : :�ab�, i.e., we obtain n generators. Hence, the number ofgenerators which we obtain by successive most oblique cuts is unlimited. 25.2 Q ful�lls assertion (C)We prove the remaining cases of Theorem 2.16 by an induction on the number of elements in Q.In the case that Q is a singleton, we already know by Proposition 5.1 that Theorem 2.16 is truefor T , because the singleton semigroup does not have proper left ideals.Assume some natural number n > 1. By induction, we presume that Theorem 2.16 is truefor languages T 0 if there is a product automaton [P 0; R0; g0; h0; F 0] for T 0 such that the numberof elements of �2(F 0) (i.e. Q0) is properly smaller than n. Then, we show that Theorem 2.16 istrue if Q has n elements and Q ful�lls one of the assertions (B), (C), or (D) in Proposition 3.7.We do this by a decomposition of Q and T into subsemigroups, left ideals and ideals.We perform the �rst induction step. We start with the case that Q ful�lls assertion (C) inProposition 3.7 because this is the most simple one.Proposition 5.5 Let n > 1. Assume that Theorem 2.16 holds for every non-empty, concatena-tion closed language T 0 in � IM+1IM+2 � which is recognized by a product automaton [P 0; R0; g0; h0; F 0]with j�2(F 0)j < n. Let [P;R; g; h; F ] be a product automaton for a language T such that� T is a non-empty, concatenation closed language in � IM+1IM+2 �,� j�2(F )j = n, and,� there is an r 2 �2(F ) such that r2 6= r and �2(F ) n frg is an ideal.Then, Gen(T ) has the FPP. 2Proof: For simplicity, let Q = �2(F ) and J = �2(F ) n frg. We use Proposition 4.3 to examinethe language TJ = f t 2 T j h ��2(t) 2 J g. The traces in T n TJ are exactly these traces t in Twith h ��2(t) = r.The ideal J of Q is a subsemigroup of Q, because every ideal is a subsemigroup. By assertionthree of Proposition 4.3, the language TJ is concatenation closed.



5.3 Q ful�lls assertion (D) 17By assertion one of Proposition 4.3, we know that TJ is recognizable. Moreover, the productautomaton AJ = [P;R; g; h; F \ �PJ �] de�nes TJ . We see that �2(F \ �PJ �) yields J . We havej�2(F \ �PJ�)j = jQj � 1, i.e., we have j�2(F \ �PJ �)j < n. By the inductive hypothesis, we havean lJ 2 IN such that TJ = Gen(TJ)1;:::;lJ .By assertion �ve of Proposition 4.3, we know that TJ is an ideal of T . Further, we canshow that for every t1; t2 2 T , the concatenation t1t2 belongs to TJ . If one of the traces t1and t2 belongs to TJ , then the trace t1t2 belongs to TJ because TJ is an ideal. If both t1 andt2 do not belong to TJ , then we have h ��2(t1) = h ��2(t2) = r. We have h ��2(t1t2) =h ��2(t1) �Q h ��2(t2) = r2 2 J . Hence, the trace t1t2 belongs to TJ , i.e., TT � TJ .Let l = 3lJ . We show T = Gen(T )1;:::;l. For this, let t 2 T .Case 1: The trace t does not belong to TJ .Because TT � TJ , we have t 62 TT . Hence, t is a generator of T . Thus, t 2 Gen(T )1;:::;l.Case 2: The trace t is a generator of TJ .Assume we can factorize t into more than three generators of T . Then, we can alsofactorize t into exactly four traces of T . Thus, there are traces t1; : : : ; t4 2 T such thatt1 : : : t4 = t. We have t1t2 2 TJ and t3t4 2 TJ . Consequently, t is not a generator of TJ .This contradicts the case presumption. Hence, t 2 Gen(T )1;:::;3.Case 3: The trace t belongs to TJ .Because of TJ = Gen(TJ)1;:::;lJ we have a k � lJ and t1; : : : ; tk 2 TJ such that t1 : : : tk = t.By case 2, we can factorize every trace among t1; : : : ; tk into three or less generators of T .Hence, we can factorize t into 3lJ = l or less generators of T , i.e., t 2 Gen(T )1;:::;l.We have T = Gen(T )1;:::;l, i.e., the set Gen(T ) has the FPP. 25.3 Q ful�lls assertion (D)We deal with the case that we can split Q into a proper ideal and a subsemigroup.Proposition 5.6 Let n > 1. Assume that Theorem 2.16 holds for every non-empty, concatena-tion closed language T 0 in � IM+1IM+2 � which is recognized by a product automaton [P 0; R0; g0; h0; F 0]with j�2(F 0)j < n. Let [P;R; g; h; F ] be a product automaton for a language T such that� T is a non-empty, concatenation closed language in � IM+1IM+2 �,� j�2(F )j = n, and,� there are a proper ideal J and a subsemigroup H in �2(F ) with J [ H = �2(F ) andJ \H = ;Then, Gen(T ) has the FPP. 2Proof: We denote by Q the semigroup �2(F ). We examine the languages TJ and TH . Theyare non-empty subsets of T . They are disjoint and their union yields T . Both TJ and TH arerecognizable and concatenation closed. Further, the language TJ is an ideal of T . There are twonatural numbers lJ and lH such that TJ = Gen(TJ)1;:::;lJ and TH = Gen(TH)1;:::;lH .Let l = 2lHlJ + lJ . We show T = Gen(T )1;:::;l. Assume some trace t in T .Case 1: t is a generator of TH .Assume that there are t1; t2 2 T such that t1t2 = t. If one of the traces t1 or t2 belongs tothe ideal TJ , then t belongs to TJ . Hence, both t1 and t2 belong to TH . This contradictsthat t is a generator of TH . Thus, t is a generator of T .



18 5. PROOF OF THEOREM 2.16Case 2: t is a trace of TH .We can factorize t into lH or less generators of TH . By case 1, such a factorization is afactorization of t into generators of T . Thus, t 2 Gen(T )1;:::;lH .Case 3: t is a generator of TJ .The trace t is not necessarily a generator of T . We examine factorizations of t as follows.Assume three traces t1; t2; t3 2 T [ f�g such thatt1t2t3 = t, t1 2 TH [ f�g, t2 2 TJ [ f�g, and t3 2 TH [ f�g.There are traces t1; t2; t3 which ful�ll these conditions: namely t1 = �, t2 = t, t3 = �.We choose a triple t1; t2; t3 such that the number of letters of t2 is minimal.We can apply case 2 to the traces t1 and t3. The traces t1 and t3 are either �, or theybelong to TH such that we can factorize each of t1 and t3 into lH or less generators of T .We deal with t2. Assume t2 is not the empty trace. By a contradiction, we can show thatt2 is a generator of T . Just assume t02; t002 2 T with t02t002 = t2. We distinguish four cases:� t02 2 TJ and t002 2 TJThe language TJ is an ideal of T such that t1t02; t002t3 2 TJ . Thus, t1t02 and t002t3 forma factorization of t into two traces of TJ . This contradicts that t is a generator of TJ .� t02 2 TH and t002 2 TJThen t1t02 2 TH , because TH is a subsemigroup. The trace t002 contains properly lessletters than t2. Consequently, the traces t1t02, t002, and t3 contradict the choice of t1,t2, and t3, above.� t02 2 TJ and t002 2 THSimilar to the previous case, the traces t1, t02, and t002t3 contradict the choice of thetraces t1, t2, and t3.� t02 2 TH and t002 2 THThe traces t1t02, �, and t002t3 contradict the choice of t1, t2, and t3.Thus, the trace t2 is either � or a generator of T . We can factorize t1 and t3 into lH orless generators of T . Therefore, t 2 Gen(T )1;:::;2lH+1.Case 4: t is a trace in TJ .We can factorize t into lJ or less generators of TJ . By case 3, we can factorize everygenerator of TJ into 2lH + 1 generators of T . Consequently, t 2 Gen(T )1;:::;2lHlJ+lJ .We have T = Gen(T )1;:::; 2lHlJ+lJ , i.e., the set Gen(T ) has the FPP. 25.4 Q ful�lls assertion (B)Just one case remains. The semigroup Q has two left ideals U and V such that their unionyields Q and their intersection yields some ideal of Q. This case is the most involved one.Proposition 5.7 Let n > 1. Assume that Theorem 2.16 holds for every non-empty, concatena-tion closed language T 0 in � IM+1IM+2 � which is recognized by a product automaton [P 0; R0; g0; h0; F 0]with j�2(F 0)j < n. Let [P;R; g; h; F ] be a product automaton for a language T such that� T is a non-empty, concatenation closed language in � IM+1IM+2 �,� j�2(F )j = n, and,



5.4 Q ful�lls assertion (B) 19� there are two proper left ideals U and V such that U [ V = �2(F ) and U \ V yields anideal of �2(F ).Then, Gen(T ) has the FPP. 2Proof: As in the previous proofs, we set Q = �2(F ). For lucidity, we set J = U \ V .As in the previous proofs, the languages TU and TV are non-empty, recognizable and con-catenation closed subsets of T . Further, TU and TV are left ideals of T , and TJ is an ideal of T .We have two natural numbers lU and lV such that TU = Gen(TU)1;:::;lU and TV = Gen(TV )1;:::;lV .Provided that J is non-empty, there is some natural number lJ such that TJ = Gen(TJ)1;:::;lJ .If J = ;, then TJ is also empty.We have U [V = Q and U \V = J . For every t 2 T , we have h��2(t) 2 U or h��2(t) 2 V .Thus, TU [ TV = T . Further, for every t 2 T , we have h � �2(t) 2 J i� h � �2(t) 2 U andh ��2(t) 2 V . Hence, we have TU \ TV = TJ .Let l = 3 lJ(lU lV +max(lU ; lV )) + lJ . We show T = Gen(T )1;:::;l. Assume some trace t in T .Case 1: t is a generator of TU . Further, t does not belong to TJ .Then, t cannot belong to TV . Furthermore, if we factorize t into some traces in T , not anyfactor does belong to the ideal TJ . Otherwise, t would belong to TJ . Consequently, if wefactorize t into some traces in T , the factors either belong to TU or TV , but they do notbelong to TU \ TV .The trace t is not necessarily a generator of T . In the case that t is a generator of T , we aredone. So assume that t is not a generator of T . There is a trace x 2 T and a generator yof T with xy = t.Assume y belongs to the left ideal TV . Then, xy = t also belongs to TV . This is acontradiction. Hence, y 2 TU . Assume x also belongs to TU . Then, xy = t is not agenerator of TU . Hence, we have x 2 TV and y 2 TU .We factorize the trace x into lV or less generators of TV . There are a k � lV and generatorsx1; : : : ; xk of TV such that x1 : : : xk = x.We show by a contradiction that the traces x1; : : : ; xk are generators of T . Just assumesome natural number i with 1 � i � k such that xi can be factorized into two traces x0i andx00i in T . Assume that x00i belongs to TU . Then, xi belongs to TU , which is a contradiction.Hence, x00i 2 TV . Now, assume that x0i belongs to TV . Then, xi is not a generator of TV .Thus, we have x0i 2 TU and x00i 2 TV .However, this yields a contradiction: We factorize t into the traces x1 : : :xi�1x0i andx00i xi+1 : : :xky. Both factors belong to TU , because x0i and y belong to the left ideal TU .Hence, we can factorize t into two traces from TU which is a contradiction.The assumption that some trace among x1; : : : ; xk is not a generator of T yields a contra-diction. Thus, we have by x1; : : : ; xk; y a factorization of t into generators of T . Hence,t 2 Gen(T )1;:::;lV+1.Case 2: t is a trace in TU n TJ .There are a k � lU and generators t1; : : : ; tk of TU such that t1 : : : tk = t. The generatorst1; : : : ; tk cannot belong to TJ . By case 1, we have t1; : : : ; tk 2 Gen(T )1;:::;lV+1. Becausek � lU , we have t 2 Gen(T )1;:::;lU lV +lU .Case 3: t is a trace in T n TJ .We can deal with the traces in TV n TJ as we dealt with the traces in TU n TJ . We obtain(TV n TJ) � Gen(T )1;:::;lU lV+lV .Hence, we have (T n TJ) � Gen(T )1;:::;lU lV +max(lU ;lV ).



20 6. CONCLUSIONS AND FUTURE STEPSCase 4: t is a generator of TJ .We use the triple factorization method from case 3 in the proof of Proposition 5.6. Assumethree traces t1; t2; t3 in T [ f�g such that we havet1t2t3 = t, t1; t3 2 �T n TJ�[ f�g, and t2 2 TJ [ f�g.There are traces t1; t2; t3 which ful�ll these conditions, e.g., �; t; �; respectively. We choosea triple t1; t2; t3 which ful�lls the above conditions such that the number of letters of t2 isminimal. We can apply case 3 on the traces t1 and t3 if they are not empty.We deal with t2. If t2 is the empty trace, we have t = t1t3. Then, we can factorize t into2�lU lV +max(lU ; lV )� or less generators of T . If t2 is a generator of T , then we need onemore generator to factorize t into generators of T .We deal with the case that t2 is not a generator of T . Then, we can factorize t2 into agenerator t02 of T and some trace t002 in T . Assume that t002 2 TJ . We distinguish two casesdepending on whether we have t1t02 2 TJ or not. If we have t1t02 2 TJ , then can factorizet into the traces t1t02 and t002t3 in TJ which contradicts that t is a generator of TJ . If wehave t1t02 2 T n TJ , then we have a factorization of t into t1t02, t002 and t3. This contradictsthe choice of t1; t2; t3, above. Consequently, t002 62 TJ .To sum up, we have a factorization of t into t1, t02, t002 and t3. The trace t02 is a generatorof T . We can apply case 3 on t1, t002 and t3.Thus, t 2 Gen(T )1;:::;3(lU lV+max(lU ;lV ))+1.Case 5: t is a trace in TJ .We can factorize t into lJ or less generators of TJ and apply case 4 to every generator.Consequently, t 2 Gen(T )1;:::;3lJ(lU lV+max(lU ;lV ))+lJ .We have T = Gen(T )1;:::; 3 lJ(lU lV+max(lU ;lV ))+lJ , i.e., the set Gen(T ) has the FPP. 25.5 Completion of the ProofProof of Theorem 2.16: The theorem is obviously true if T is the empty set. As a conclusionof Proposition 5.1, Theorem 2.16 holds for every non-empty, concatenation closed languageT � � IM+1IM+2 �, if there is a product automaton [P;R; g; h; F ] for T such that �2(F ) is a singleton.Assume some natural number n > 1. Assume that Theorem 2.16 is true for every concate-nation closed language T 0 � � IM+1IM+2 �, if there is a product automaton [P 0; R0; g0; h0; F 0] for T 0 withj�2(F 0)j < n.Now, let T be a concatenation closed language in � IM+1IM+2 � de�ned by a product automaton[P;R; g; h; F ] with �2(F ) = n. Then, by Proposition 3.7, the semigroup �2(F ) satis�es one ofthe assertions (A), (B), (C) or (D) such that we can apply one of the Propositions 5.1, 5.7, 5.5,or 5.6, respectively. 26 Conclusions and Future StepsBy proving Theorem 2.15, we corrected an error in [27]. Provided that this report does notcontain further errors, its main result is true, i.e., the trace monoids with a decidable starproblem are exactly the trace monoids with a decidable FPP.
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