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Some Undecidability Resultsrelated to the Star Problemin Trace Monoids�Daniel KirstenDepartment of Computer ScienceDresden University of TechnologyD-01062 Dresden, GermanyDaniel.Kirsten@inf.tu-dresden.dehttp://www.inf.tu-dresden.de/�dk11May 29, 1998AbstractThis paper deals with decision problems related to the star problem in trace monoids, whichmeans to determine whether the iteration of a recognizable trace language is recognizable. Due toa theorem by Richomme from 1994 [30, 31], we know that the Star Problem is decidable in tracemonoids which do not contain a C4-submonoid. The C4 is (isomorphic to) the Cartesian Productof two free monoids over doubleton alphabets. It is not known, whether the Star Problem isdecidable in C4 or in trace monoids containing a C4. In this paper, we show undecidability ofsome related problems: Assume a trace monoid which contains a C4. Then, it is undecidablewhether for two given recognizable languages K and L, we have K � L�, although we candecide K� � L. Further, we can not decide recognizability of K \L� as well as universality andrecognizability of K [ L�.
�This work has been supported by the postgraduate program \Speci�cation of discrete processes and systems ofprocesses by operational models and logics" of the German Research Community (Deutsche Forschungsgemeinschaft).





1 IntroductionFree partially commutative monoids, also called trace monoids, were introduced by Cartier andFoata in 1969 [4]. In 1977, Mazurkiewicz proposed trace monoids as a potential model forconcurrent processes [21], which marks the beginning of a systematic study of trace monoids bymathematicians and theoretical computer scientists, see e.g., [7, 8, 9]. A part of the research intrace theory deals with examinations of well-known classic results for free monoids in the frameworkof traces.One main stream in trace theory is the study of recognizable trace languages, which can beconsidered as an extension of the well studied concept of regular languages in free monoids. A majorstep in this research is Ochma�nsky's PhD thesis from 1984 [28]. Some of the results concerningregular languages in free monoids can be generalized to recognizable languages in trace monoids.However, there is one major di�erence: The iteration of a recognizable trace language does notnecessarily yield a recognizable language. This fact raises the so called star problem: Given arecognizable language L, is L� recognizable? In general, it is not known whether the star problemis decidable. The main result after a stream of publications dealing with this problem is a theoremstated by Richomme in 1994, saying that the star problem is decidable in trace monoids which donot contain a particular submonoid called C4 [30, 31]. It is not known whether the star problem isdecidable in trace monoids with a C4-submonoid. It is even unknown for �nite trace languages.In this paper, we consider some decision problems for recognizable trace languages which arerelated to the star problem. If we have two recognizable languages K and L in a trace monoid witha C4-submonoid, then it is undecidable whether K is a subset of L� and whether K [L� yields thecomplete monoid. Further, recognizability of K [ L� and K \ L� is undecidable.The paper is organized as follows. After this introduction, I explain some concepts from algebraand formal language theory. In the �rst subsection, we get familiar with some basic notions fromalgebra, formal language theory and trace theory. In the subsequent ones, we deal with recognizablesets, rational sets and relations between them. Then, we discuss some decision problems concerningrecognizable and rational trace languages and their solutions as far as known.In Section 3, we establish a method to de�ne two recognizable trace languages from a giveninstance of Post's Correspondence Proplem. We examine properties of these languages and pro-perties of the iteration of one of these languages. In Section 4, we use these properties to developthe main results. In Section 5 we show some additional results which may become important infuture papers. In Section 6, we compare the new results to known results and discuss their possiblerelations to the star problem.2 Formal De�nitions2.1 Monoids, Languages and TracesI briey introduce the basic notions from algebra and trace theory. Unless I do not state precisesources, I consider the concepts and notions as well-known.By IN, we denote the set of natural numbers including zero, i.e., IN = f0; 1; 2; : : :g.A monoid (IM;�) is an algebraic structure consisting of a set IM, and a binary operation �ful�lling the following two axioms: Firstly, the operation � is associative, i.e., for every elementsk; l;m in IM, we have (k� l)�m = k� (l�m). Secondly, IM contains an element �IM, such that forevery m in IM, we have �IM�m = m��IM = m. IM is called the underlying set, the operation � iscalled the monoid operation or monoid product, and the element �IM is called the neutral element.We drop the symbol � and denote the monoid product by juxtaposition. We drop the index atthe neutral element �IM as long as no confusion arises. We use the symbol IM to denote both themonoid and its underlying set. A monoid is called �nite i� IM is a �nite set.1



2 2. FORMAL DEFINITIONSFor every natural number n, we de�ne the n-fold monoid product as follows: For every m in IM,m0 yields the neutral element �IM, and further, for every natural number n, mn+1 denotes mnm.We extend the monoid product to subsets of IM. If K and L are two subsets of IM, the set KLcontains all elements kl for some k in K and l in L. We extend the n-fold monoid product to sets.We de�ne L0 := f�IMg, and for every natural number n, Ln+1 := LnL. We call a subset L of IMclosed under monoid product i� LL is a subset of L.For a subset L of a monoid IM, we de�ne the non-empty iteration L+ as the union of the setsL1, L2, L3,: : : Hence, L+ is the least subset of IM which contains L and is closed under monoidproduct. We denote the iteration of L by L� and de�ne it by L� := L+ [ f�IMg.We call a subset of G of IM a set of generators of IM i� �rstly, it holds G� = IM, and secondly,there is no proper subset K of G with K� = IM. We call a monoid IM �nitely generated i� IM hasa �nite set of generators.Assume two monoids IM and IM0. Their Cartesian Product is the monoid denoted by � IMIM0� andde�ned in the following way: The underlying set is the Cartesian Product of the underlying sets ofIM and IM0. The monoid operation is de�ned componentwise, i.e., for every pair of elements �m1m01�and �m2m02�, their product yields �m1m2m01m02�. The products m1m2 and m01m02 are the monoid products inIM and IM0, respectively. The neutral element of the Cartesian Product of IM and IM0 is ��IM�IM0�.Again, assume two monoids IM and IM0. We call a function h : IM ! IM0 a homomorphism i�h preserves the monoid product, i.e., for every two elements k and l in the monoid IM, we haveh(k)h(l) = h(kl). A homomorphism h is called a monoid homomorphism i� h preserves the neutralelement, i.e., h(�IM) = �IM0 . There are homomorphisms which do not preserve the neutral element.We follow the ususal terminology in the literature. Whenever we use the term homomorphism,we really mean monoid homomorphism. We call the homomorphism h a non-erasing homomorphismi� for every element m in IM, we have h(m) = �IM0 only if m is the neutral element of IM.We extend the homomorphism h. If L is a subset of IM, we de�ne h(L) as the set of allk in IM0 such that for some m in L, we have h(m) = k. We denote the inverse of h by h�1.We de�ne it on subsets of IM0, if K is a subset of IM0, h�1(K) yields the set of all m in IM, suchthat h(m) belongs to K. We call h an isomorphism i� for every element k of IM0, the set h�1(fkg)is a singleton. Then, we can regard h�1 as a homomorphism from IM0 to IM. I� an isomorphismbetween IM and IM0 exists, we call the monoids isomorphic.Assume a set G of generators of IM, and assume two homomorphisms h1 and h2. If h1 and h2coincide on G, then h1 and h2 coincide on the whole monoid IM, i.e., if for every m in G, we haveh1(m) = h2(m), then for every m in IM, we have h1(m) = h2(m), too.Assume two monoids IM and IM0, once more. We say that IM is a submonoid of IM0 i� IM is asubset of IM0 and the identity function from IM to IM0 is a monoid homomorphism, i.e., the monoidproduct of IM is the monoid product of IM0 restricted to elements of IM.By an alphabet, we mean a �nite set of symbols. Its elements are called letters. Assume analphabet �. We denote the free monoid over � by ��. Its underlying set is the set of all words(strings) consisting of letters of �, the monoid product is the concatenation, and the neutral elementis the empty string. Obviously, � is the set of generators of ��. For every word w in ��, we callthe number of letters of w the length of w, and denote it by jwj. For every letter a in � and everyword w in ��, we denote the number of occurrences of a in w by jwja.Cartier and Foata introduced the concept of the free partially commutative monoids in1969 [4]. In 1977 Mazurkiewicz considered this concept as a potential model for concurrentsystems [21]. Since then, free partially commutative monoids are examined by both mathematiciansand theoretical computer scientists. For a general overview, I recommend the surveys [7, 8, 9].Assume an alphabet �. We call a binary relation I over � an independence relation i� I isirreexive and symmetric. For every pair of letters a and b with aIb, we say that a and b areindependent, otherwise a and b are dependent. We call the pair (�; I) an independence alphabet.



2.2 Rational Sets 3We call two words w1; w2 in �� equivalent i� we can transform w1 into w2 by �nitely many ex-changes of independent adjacent letters which we denote by w1 �I w2. For instance, if a and c areindependent letters, baacbac, bacabac and bcaabca are mutually equivalent words.The relation �I is an equivalence relation. For every word w in ��, we denote by [w]I theequivalence class of w. Moreover, �I is a congruence relation. This means, for every wordsw1; w01; w2; w02 in �� with w1 �I w2 and w01 �I w02, we have w1w01 = w2w02. Therefore, we cande�ne a monoid with the sets [w]I as elements. For any words w1 and w2, we de�ne the product of[w1]I and [w2]I by [w1w2]I . We denote this monoid by IM(�; I) and call it the trace monoid over� and I . Its elements, i.e., the equivalence classes [w]I , are called traces and its subsets are calledtrace languages or shortly languages. The function [ ]I is a homomorphism from the free monoid�� to IM(�; I). As long as no confusion arises, we omit the index I at [ ]I .If I is the empty relation over �, the trace monoid IM(�; I) is the free monoid. If I is thebiggest irreexive relation over �, i.e., two letters a and b are independent i� a and b are di�erent,then the trace monoid IM(�; I) is the free commutative monoid over �. Opposed to this very briefintroduction, we formally de�ne P3 and C4.Lemma 2.1 Assume two disjoint alphabets �1 and �2, and assume the independence relationI := �1��2 [ �2��1. The trace monoid IM(�1[�2 ; I) is isomorphic to the monoid ���1��2�.An isomorphism maps every letter a of �1 to �a��, and every letter b of �2 to ��b�. 2This lemma is an application of a method byMazurkiewicz to transform arbitrary trace monoidsinto (sub)monoids of Cartesian Products of free monoids [20, 21]. I� one of the alphabets �1 and�2 is a doubleton, and the other one is a singleton, we denote by P3 both the monoid ���1��2� and theindependence alphabet (�1 [ �2 ; I) with I from Lemma 2.1. I� both alphabets are doubletons,we accordingly use the notion C4. The notions P3 and C4 abbreviate path of 3 letters and cycleof 4 letters, respectively. Whenever we deal with P3 or C4, we regard the homomorphism [ ] as ahomomorphism from (�1 [ �2)� to ���1��2�.Assume two independence alphabets (�1; I1) and (�2; I2). We say that (�1; I1) is a subalphabetof (�2; I2) i� �1 is a subset of �2, and I1 is the restriction of I2 to the letters of �1, i.e., we haveI1 = I2 \ (�1 � �1). Then, the monoid IM(�1; I1) is a submonoid of IM(�2; I2). For instance,P3 is a subalphabet and a submonoid of C4.Assume an independence alphabet (�; I). A trace t in IM(�; I) is called connected i� for everynon-empty traces t1 and t2 with t = t1t2, there is a letter a occurring in t1 and there is a letter boccurring in t2, such that a and b are dependent. A trace language L is called connected i� everytrace in L is connected. A trace �uv� in P3 or C4 is connected i� u or v is the empty word �.2.2 Rational SetsRational expressions and rational sets were introduced by Kleene in 1956 [19]. I give a briefde�nition, I appreciate, e.g., [2, 10] for deeper understanding.De�nition 2.2 Assume a monoid IM. The set of rational expressions over IM, denoted by REX(IM),is the least set which contains the symbol 
, every element a of IM, and for every r; r1; r2 2 REX(IM),REX(IM) also contains (r�), (r1 [ r2) and (r1r2). 2Rational expressions de�ne rational languages.De�nition 2.3 Assume a monoid IM. Every rational expression r over IM de�nes a languageL(r) � IM in the following way� L(
) := ;, and for every a 2 IM, L(a) := fag,



4 2. FORMAL DEFINITIONS� L(r1 [ r2) := L(r1) [ L(r2), and L(r1r2) := L(r1)L(r2),� L(r�) := L(r)�.A language L � IM is called a rational language i� there is a rational expression r such thatL(r) = L. RAT(IM) denotes the class of all rational languages over IM. 2We omit parentheses by assuming that the star has the highest priority, followed by the monoidoperation. We further omit outermost parentheses, and parentheses superuous by associativityof set union and monoid operation, e.g., we denote (r [ (r1 [ (r2(r�3)))) by r [ r1 [ r2r�3. We usesome usual convenient abbreviations, where n is any natural number: We use r+ to abbreviate rr�,r0 to denote �IM and rn+1 to abbreviate rnr. Further, we write r�n to denote rnr�, and r>n todenote rn+1r�. Accordingly, we use r�n and r<n+1 to abbreviate r0[r1[ : : :[rn. For convenience,we allow to write r<0 by treating it as the rational expression 
.If S = fs1; : : : ; sng is a �nite subset of IM, we use S to denote the rational expression s1[: : :[sn.Hence, if � is an alphabet, then we regard � as a rational expression, its language consists of theletters in �.Obviously, for every monoid IM, the class RAT(IM) contains the empty set and every �nitesubset of IM, and it is closed under union, monoid operation and iteration. For every �nitelygenerated monoid IM, e.g., for every trace monoid, RAT(IM) contains IM itself. Now, we show thatrational languages are closed under homomorphisms.Lemma 2.4 Assume two monoids IM and IM0 and a homomorphism h : IM ! IM0. For everylanguage L 2 RAT(IM), we have h(L) 2 RAT(IM0). Moreover, if h is computable, then there isan algorithm which transforms every rational expression r 2 REX(IM) into a rational expressionr0 2 REX(IM), such that h(L(r)) = L(r0). 2Proof: We show the construction of r0, such that h(L(r)) = L(r0). We extend h to a functionh0 : REX(IM) ! REX(IM0) to construct r0 \top down". For every monoid element m, we seth0(m) := h(m), and we set h0(
) := 
. For every rational expressions r1, r2 and r, we de�neh0(r1 [ r2) := h0(r1) [ h0(r2), h0(r1r2) := h0(r1)h0(r2) and h0(r�) := h0(r)�. We can proceed theveri�cation h(L(r)) = L(h0(r)) inductively by using the fact that h is a homomorphism. 2Generally, RAT(IM) is not closed under inverse homomorphisms, i.e., using the terminologyabove, for some r0 in REX(IM0), the set h�1(L(r0)) does not necessarily yield a rational language.We will establish a suitable example in the next subsection. We show one helpful lemma concerningrational expressions in �nite monoids.Lemma 2.5 Assume a �nitemonoid IM. There is an algorithm which for every rational expressionr 2 REX(IM) computes the set L(r). 2Proof: We sketch a recursive algorithm. We can obviously compute the language of rationalexpressions which are just monoids elements or 
. The algorithm evaluates expressions r1r2, r1[r2or r� recursively by �rstly computing L(r1) and L(r2), resp. L(r), and computing their product,union or iteration, respectively. If IM is a �nite monoid, there are algorithms computing product,union and iteration of subsets of IM. 22.3 Recognizable SetsAs long as computers are �nite devices, but there are possibly arbitrary big data, we have theproblem to process data of arbitrary size by �nite devices. The concept of recognizability describesa formal method how to use �nite machines to deal with in�nite objects. It originates from Mezeiand Wright from 1967 [26]. There are numerous equivalent de�nitions. I introduce it as far as weuse it in this paper, for a more general overview I recommend [2, 10]. I took most of the contentsof this section from there.



2.3 Recognizable Sets 5De�nition 2.6 Assume a monoid IM. An IM-automaton is a triple A = [Q; h; F ], where Q is a�nite monoid, h is a homomorphism h : IM ! Q and F is a subset of Q. The language of anIM-automaton A is de�ned by L(A) = h�1(F ). 2We call Q the underlying monoid of A, and the elements of Q the states of A. We further call hthe homomorphism of A, and F the set of accepting states of A. If L(A) = L, then we say that Ade�nes L or A is an IM-automaton for L. The IM-automata de�ne recognizable languages over IM.We call a subset L of M a recognizable language over IM i� there is an IM-automaton A, such thatL = L(A). We denote the class of all recognizable languages over IM by REC(IM).De�nition 2.6 shows a common way to de�ne recognizability in arbitrary monoids. FollowingCourcelle [6], we call the triple [Q; h; F ] an IM-automaton. The following theorem is a classicone, you �nd the proof, e.g., in [2, 10].Theorem 2.7 Assume a monoid IM. The class REC(IM) contains the empty set ;, IM itself andit is closed under union, intersection, complement and inverse homomorphisms. Moreover, wecan construct IM-automata for the empty set and IM, and there are algorithms which constructfor every two IM-automata A1 and A2 IM-automata for the sets L(A1) [ L(A2), L(A1) \ L(A2)and IM n L(A1). 2There are monoids, having �nite subsets which are not recognizable. There are further monoids,in which the product of two recognizable subsets is not always a recognizable set. And further,the iteration of a recognizable set is not always recognizable. But, we have the following theoremfor trace monoids:Theorem 2.8 Assume a trace monoid IM(�; I). The class REC(IM(�; I)) contains all �nite subsetsof IM(�; I), and it is closed under monoid product and under iteration of connected trace languages.2Recognizability of �nite trace languages is obvious. The proof of the closure under monoid pro-duct originates from Fliess [12]. Closure under iteration of connected trace languages is due toOchma�nsky [28], Clerbout and Latteux [5], andM�etivier [23]. In [27], you �nd a recent sur-vey on recognizable trace languages, it contains neat little proofs of the assertions in Theorem 2.8.The following theorem allows us to generalize some undecidability results.Theorem 2.9 Assume an independence alphabet (�2; I2) with a subalphabet (�1; I1). For everylanguage L in IM(�1; I1), L is a recognizable language over IM(�1; I1) i� L is a recognizable languageover IM(�2; I2). Moreover, there is an algorithm which computes for every IM(�1; I1)-automatonan IM(�2; I2)-automaton for the same language. Further, there is an algorithm which computes forevery IM(�2; I2)-automaton for some language L in IM(�1; I1) an IM(�1; I1)-automaton for L. 2Proof: We observe that IM(�1; I1) is a submonoid of IM(�2; I2).We �rstly assume an IM(�2; I2)-automaton A = [Q; h; F ] for some language L over IM(�1; I1).We de�ne an IM(�1; I1)-automaton A0 for L. The underlying monoid and the set of acceptingstates of A0 are Q and F from A. We de�ne the homomorphism h0 of A0 as the restriction of thehomomorphism h of A to the traces in IM(�1; I1). It is straightforward to verify that A0 is anIM(�1; I1)-automaton for L.For the other direction, we assume an IM(�1; I1)-automaton A = [Q; h; F ] for L, and we de�nean IM(�2; I2)-automaton A0 for L. The monoid IM(�2; I2) is an extension of the monoid IM(�1; I1).Consequently, we extend A to obtain A0. We perform this by adding a garbage state q0 to theunderlying monoid of A and adjusting the homomorphism of A.We de�ne the underlying monoid Q0 of A0 by Q0 := Q [ fq0g, such that q0 does not alreadybelong to Q. We extend the monoid product in Q to de�ne the monoid product in Q0. For every



6 2. FORMAL DEFINITIONSpair of elements k; l in Q0, the product kl in Q0 yields the same result as the product in Q, as longas neither k nor l is the new element q0. Otherwise, the monoid product yields q0.We extend the homomorphism h of A to the homomorphism h0 : IM(�2; I2) ! Q0 of A0.For every trace t in IM(�2; I2) we de�ne h0(t) in the following way. If t contains a letter which doesnot belong to �1, the trace t is a trace in IM(�2; I2)n IM(�1; I1), and we set h0(t) := q0. If t consistsof letters from �1, it is a trace in IM(�1; I1), and we set h0(t) = h(t).We use the set F of accepting states of A as set of accepting states of A0. We have to verifythat A0 = [Q0; h0; F ] is an IM(�2; I2)-automaton for L. We have to show that Q0 is a �nite monoid,that h0 is a homomorphism and that L(A0) really yields L. These assertions are straightforward.2We need a theorem by Mezei concerning recognizable sets in Cartesian Products. It is notpublished by the author himself, but, it is widely known as Mezei's Theorem, you �nd it in,e.g., [2, 10].Theorem 2.10 Assume two monoids IM and IM0. A set L is recognizable in � IMIM0� i� there is anatural number n, and further, there are recognizable sets L1; : : : ; Ln � IM and recognizable setsL01; : : : ; L0n � IM0, such that: L =  L1L01 ! [ : : :[  LnL0n !Moreover, there is an algorithm which computes for every � IMIM0�-automaton the number n, IM-automata for L1; : : : ; Ln and IM0-automata for L01; : : : ; L0n, and vice versa. 22.4 Relations between Recognizable Sets and Rational SetsThe following theorem is due to Kleene [19].Theorem 2.11 Assume a �nite alphabet �. A language L � �� is rational i� L is recognizable,i.e., RAT(��) = REC(��). Moreover, there are algorithms which construct for every rationalexpression r a ��-automaton for L(r), and vice versa. 2Kleene stated his theorem using the term regular instead of recognizable. We better avoid thisterm. You �nd the proof in teaching books concerning formal language theory, e.g., [17, 35].We trivially conclude that the class of rational languages of a free monoid over a �nite alphabet isclosed under intersection and complement. We must not generalize it to arbitrary monoids, but in�nitely generated monoids, we have one direction due to McKnight [22, 2, 10].Theorem 2.12 Assume a monoid IM. It holds REC(IM) � RAT(IM) i� IM is �nitely generated.Moreover, there is an algorithm which constructs for every IM-automaton A a rational expressionr with L(r) = L(A). 2Example 2.13 We consider the alphabets � = fa; b; cg, �1 = fa; cg, �2 = fbg and the monoids�� and P3 = ���1��2�. We de�ne the language L in �� by the rational expression r = (ab)�. Hence,L is rational and recognizable. We apply the homomorphism [ ] on L, we get [L] = n�anbn����n 2 INo.We show in two ways that [L] is not recognizable. If [Q;F; h] is a P3-automaton for [L], there aretwo di�erent natural numbers i and j, such that h�ai�� = h�aj� �. So, we have h�ai� �h��bi� = h�aj� �h��bi�,i.e., h�aibi� = h�ajbi �. Hence, either both or none of �aibi� and �ajbi� belong to [L], which is a contradiction.Another way to show that [L] is not recognizable is to use the closure properties of recognizable sets.By applying the inverse homomorphism [ ]�1 om [L], we get [[L]]�1 = fw j jwja = jwjb ; jwjc = 0g.This language is not recognizable. If we assume that [[L]]�1 is recognizable, its intersection withthe recognizable language de�ned by a�b� would also be recognizable. But, this intersection yieldsfanbn jn 2 INg, which is not recognizable.



2.4 Relations between Recognizable Sets and Rational Sets 7However, [L] is rational. We can use Lemma 2.4 to show that [L] = L(�ab��). On the otherhand, [[L]]�1 is not recognizable as shown, and by Theorem 2.11, [[L]]�1 is not rational.To sum up, L and the application of [ ] show that the class of recognizable languages is notclosed under homomorphisms, [L] and the application of [ ]�1 show that the rational languages arenot closed under inverse homomorphisms. Furthermore, [L] is an example for a rational languagein P3, which is not recognizable. The singleton f�ab�g is an example for a recognizable languagewith a non-recognizable iteration.Now, we show that rational languages in P3 are not closed under intersection. We de�neL1 = �ab���c��� and L2 = �a����cb��. We call their intersection L0 = n�ancnbn � ��� n 2 INo. We assume L0is rational. We apply a homomorphism hac : P3! ��1 to L0. It simply erases the letter b. We gethac(L0) = fancn jn 2 INg, which is also rational, because homomorphisms preserve rationality.This is a contradiction, hence L0 is not rational.Consequently, the class of rational languages of P3 is not closed under complement. At leastone of the languages L1, L2 or (P3 n L1) [ (P3 n L2) is a rational language with a non-rationalcomplement, while the reader is invited to �gure out which of them. 2The preceding examples are widely used in the literature. The divergence between recognizabiltyand rationality yields some technical problems. Firstly, the term regular is imprecise in this area, itis used as a synonym for two di�erent concepts. Secondly, we cannot simply use rational expressionsas a convenient method to de�ne recognizable languages. Later, we use Mezei's Theorem as acrucial tool to de�ne recognizable languages. We state the following decidability result.Theorem 2.14 Assume some monoid IM. There is an algorithm which decides for every rationalexpression r and every automaton A whether it holds L(r) � L(A). 2Proof: Let A = [Q; h; F ]. For every element m of IM, we have m 2 L(A) i� h(m) 2 F . Hence,for every subset K of IM, we have K � L(A), i� h(K) � F . Consequently, L(r) � L(A) holds,i� h(L(r)) � F . Thus, by Lemma 2.4 we can construct a rational expression r0 over Q, such thath(L(r)) = L(r0). Therefore, we can decide h(L(r)) � F by deciding L(r0) � F . We can computethe �nite set L(r0) by Lemma 2.5, such that L(r0) � F is decidable. Finally, L(r) � L(A) isdecidable. 2I have not seen this result in the literature in this form, but the proof is natural and straight-forward, that it is surely already published. We could see this theorem as a corollary to resultsfrom Mezei and Wright, because rational sets are special cases of equational sets de�ned in [26].Now, we extend Theorem 2.9. The extended version allows us to boil down some undecidabilityresults to C4.De�nition 2.15 Assume two natural numbers k, l with k>0 and l>0, and assume two alphabets�1 = fa1; : : : ; akg and �2 = fb1; : : : ; blg. Assume further two alphabets �1 = fa; cg and �2 = fb; dg.The canonical homomorphisms g1 : ��1 ! ��1 and g2 : ��2 ! ��2 are de�ned in the following way:For every letter ai in �1, we set g1(ai) = aci, and for every letter bi in �2, we set g2(bi) = bdi.The canonical homomorphism h : ���1��2� ! C4 is de�ned componentwise from g1 and g2, i.e.,for every trace �uv� in ���1��2�, we have h�uv� = �g1(u)g2(v)�. 2The method to code free monoids over arbitrary �nite alphabets into free monoids over dou-bletons is widely used in the literature. The extension to Cartesian Products of free monoids isfrom [13]. The canonical codes g1 and g2 are not unique, e.g., we could de�ne for every ai 2 �1,g1(ai) := cai. Hence, h is not unique.The homomorphisms g1 and g2 are injective. Consequently, h is an injective morphism. Justassume two traces �u1u2� and �v1v2� in ���1��2�. If we have h�u1u2� = h�v1v2�, we conclude that g1(u1) = g1(v1)



8 2. FORMAL DEFINITIONSand g2(u2) = g2(v2), i.e., u1 = v1 and u2 = v2 such that we have �u1u2� = �v1v2�. The homomorphismh further preserves recognizability.Theorem 2.16 Assume two alphabets �1 and �2 and further a canonical homomorphism h :���1��2�! C4. A language L � ���1��2� is recognizable i� h(L) is a recognizable language in C4. Moreover,there is an algorithm which computes for every ���1��2�-automaton A a C4-automaton for h(L(A)). 2Proof: We �rstly show that recognizability of h(L) implies recognizability of L. The canonicalhomomorphism h is injective. Hence, we have L = h�1(h(L)). Inverse homomorphisms preserverecognizability due to Theorem 2.7 such that h�1(h(L)) is recognizable.To prove the other direction, we take over the notions �1, �2, g1 and g2 from De�nition 2.15.We assume a ���1��2�-automaton A for L. We use Theorem 2.10 to decompose L. We obtain a naturalnumber n and automata for languages L1; : : : ; Ln and L01; : : : ; L0n in ��1 and ��2, respectively. Then,we can write h(L) as h(L) =  g1(L1)g2(L01) ! [ : : :[  g1(Ln)g2(L0n) !For every i with 1 � i � n, we construct a ��1-automaton for g1(Li) as follows. Outgoing froman automaton for Li, we use Theorem 2.11 to construct a rational expression for Li. Then, weuse Theorem 2.4 to obtain a rational expression for g1(Li). And by Theorem 2.11 again, we get a��1-automaton for g1(Li). By the same way, we construct for every i with 1 � i � n a ��2-automatonfor g2(L0i).From these automata, we can construct a C4-automaton for h(L) using Theorem 2.10. 22.5 Some Decidability Problems for Trace LanguagesThe following questions concerning the gap between the classes of recognizable and rational lan-guages in trace monoids arise:Complement Problem: Can we decide whether the complement of the language of a rationalexpression is a rational language?Recognizability Problem: Can we decide whether the language of a rational expression is arecognizable language?Star Problem: Can we decide whether the iteration of a recognizable language yields a recogniz-able language?Finite Power Property Problem: Can we decide whether a recognizable language has the �nitepower property, i.e., is there a natural number n, such that L� = L�n?By FPPP, we abbreviate the �nite power property problem. By asking \can we decide", weask for easy characterizations of these trace monoids where the four above questions are decidable.Sakarovitch answered the �rst two questions in 1987 and 1992.Theorem 2.17 Assume a trace monoid IM(�; I).The following three assertions are equivalent:� (�; I) does not contain an P3-subalphabet.� The rational languages of IM form an (e�ective) Boolean algebra.� We can decide whether the language of a rational expression yields a recognizable language. 2The equivalence of the �rst two assertions is proved in [3, 1, 32], the third assertion is addedin [33]. IM(�; I) does not contain an P3-submonoid i� for every three di�erent letters a; b; c of �,aIb and bIc imply aIc. If the class of the rational languages of a monoid IM is closed undercomplement, it is also closed under intersection. Then, RAT(IM) is a Boolean algebra.



9The star problem and the FPPP are open, today. During the recent 14 years, many papers havedealt with these two questions. However, only partial results have been achieved, in general, bothproblems have remained unsolved. I give just a brief survey about their history. The star problemin the free monoid is trivial due to Kleene, and it is decidable in free commutative monoids due toGinsburg and Spanier [14, 15]. Brzozowski raised the FPPP in the free monoid in 1966, and ittook more than ten years till Simon andHashiguchi independently showed its decidability [34, 16].In 1984, Ochma�nsky examined recognizable trace languages in his PhD thesis and stated the starproblem. During the eighties, Ochma�nsky [28], Clerbout and Latteux [5] and M�etivier[23] independently proved that the iteration of a connected recognizable trace language yieldsa recognizable trace language. In 1992, Sakarovitch found the solution of the recognizabilityproblem shown in Theorem 2.17. This solution trivially implies the decidability of the star problemin trace monoids which do not contain a P3-submonoid. The attempt to extend Sakarovitch'scharacterization to the star problem failed, just in the same year, Gastin, Ochma�nsky, Petitand Rozoy showed the decidability of the star problem in P3 [13].During the subsequent years, M�etivier and Richomme developed these ideas. They showeddecidability of the FPPP of connected trace languages and decidability of the star problem fortrace languages containing at most four traces as well as for �nite sets containing at most twoconnected traces [24, 25]. They further proved that decidability of the star problem in any tracemonoid implies decidability of the FPPP in any trace monoid [24, 25]. Finally, Richomme provedthe following theorem.Theorem 2.18 Assume a trace monoid IM(�; I). If the monoid IM(�; I) does not contain a C4-submonoid, then the star problem and the FPPP are decidable. 2The main ideas of the proof are in [31], the complete proof is in [30]. Please note that the if in thetheorem has just one f.These are just the main partial solutions. Really, there are much more details, study of examples,research on su�cient and necessary conditions: : :We make the following informal observations byexamining this history: Obviously, concerning the iteration of languages, non-connected languagesseem to be more complicated than connected ones. The free monoids, monoids without a P3-submonoid, the monoid P3 and the C4 seem to form a list of monoids with increasing di�culty.Further, rational languages are more complicated than recognizable languages, e.g., in P3 it isundecidable whether the complement of a rational language is rational. Consequently, we have atwo dimensional hierarchy of di�culties! Now, we should cut this discussion and work on the goalsof this paper. In Section 6, we will continue by comparing the above results to the new ones.3 A Tricky LanguageDuring this section, we show a method to derive two recognizable trace languages from a giveninstance of Posts Correspondence Problem (PCP). We examine how properties of the iteration ofone of the de�ned languages are inuenced by the existence or non-existence of a solution of theunderlying PCP instance.I briey introduce the PCP. An instance of the PCP consists of two non-empty �nite alphabets� and �, and two homomorphisms �; � : �� ! ��. We call the letters of � indices, and the wordsof �� index sequences. A solution of such an instance is a non-empty index sequence w of �+,such that �(w) = �(w). The PCP means to decide, whether a given instance of a PCP has asolution or not. It is well known that the PCP is undecidable unless we restrict � to singletons.The proof of the following theorem originates from Post in 1946 [29], you �nd it in teaching booksconcerning theoretical computer science, e.g., [17].Theorem 3.1 There is no algorithm which decides whether an instance of the PCP has a solutionor not. 2



10 3. A TRICKY LANGUAGEIf the word w is a solution, for every natural number n � 1, the word wn is also a solution.Hence, an instance of the PCP has either not any solution or in�nitely many solutions. We canfreely assume, that � and � are non-erasing homomorphisms. This restriction of the PCP isalso undecidable. For instance, the proof of Theorem 3.1 above in [17] implies that the PCP isundecidable if both morphisms are non-erasing.3.1 De�nition of IR and IPNow, we formally de�ne the languages IR and IP. During this subsection, we assume an instanceof the PCP, i.e., we assume two non-empty �nite alphabets � and � and two homomorphisms�; � : �� ! ��. As mentioned, we assume that for every index i in �, both �(i) and �(i) yieldnon-empty words. We denote the number of letters of � by k, such that we can treat � asfi1; : : : ; ikg. We call this instance the underlying PCP instance.We enrich the alphabet � by nine new letters, we set � := fi1; : : : ; ik; a1; : : : ; a9g, while weassume that the letters a1; : : : ; a9 do not belong to �. For every natural numbers m and n with1�m<n�9, we abbreviate the word anan+1 : : :am by an��m, e.g., we write a3��5 instead of a3a4a5.Later, we will need a function  : �� ! �� to \code" index sequences. We set (�) := a1��9and for every w 2 �� and every i 2 �, we set (wi) := (w) i a1��9. For instance, we have(i6i2) = a1��9 i6 a1��9 i2 a1��9. Obviously,  is not a homomorphism.We de�ne a language IR in the trace monoid ������. The homomorphisms � and � do not inuencethis language, but the alphabets � and � are important.De�nition 3.2The language IR � ������ is de�ned by IR :=  (�+)�� !. 2Soon, we will prove that IR is a recognizable language. We denote the complement of IR by IR,i.e., IR := ������ n IR. Consequently, IR yields the language ���n(�+)�� �. We de�ne a language IP.The de�nition is more complex, the morphisms � and � play a crucial role. I recommend to readthe de�nition just briey, now, and to study the details when we apply the de�nition.De�nition 3.3 The language IP � ������ is de�ned as the union of the following sets:IP1;1 := [i2�( a1��9 i a1�<j�(i)j !) IP1;2 := [i2�( a2��9 i a1��j�(i)j !) IP1;3 := ( a2��9� !)IP2;1 := ( a1��2� !) IP2;2 := [i2�( a3��9 i a1��2�j�(i)j !) IP2;5 := ( a4��9� !)IP2;3 := [i2�( a3��9 i a1��3�j�(i)j n f�(i)g !) IP2;4 := [i2�( a4��9 i a1��3�j�(i)j !)IP3;1 := [i2�( a1��9 i a1��4�>j�(i)j !) IP3;2 := [i2�( a5��9 i a1��4�j�(i)j !) IP3;3 := ( a5��9� !)IP4;1 := [i2�( a1��9 i a1��5�<j�(i)j !) IP4;2 := [i2�( a6��9 i a1��5��j�(i)j !) IP4;3 := ( a6��9� !)



3.2 Properties of IR, IP and IP� 11IP5;1 := ( a1��6� !) IP5;2 := [i2�( a7��9 i a1��6�j�(i)j !) IP5;5 := ( a8��9� !)IP5;3 := [i2�( a7��9 i a1��7�j�(i)j n f�(i)g !) IP5;4 := [i2�( a8��9 i a1��7�j�(i)j !)IP6;1 := [i2�( a1��9 i a1��8�>j�(i)j !) IP6;2 := [i2�( a9 i a1��8�j�(i)j !) IP6;3 := ( a9� !) 2This is a neat little rip. We call the sets IP1;1; : : : ; IP6;3 the parts of IP. As the very �rstobservation, we remark that the parts of IP are mutually disjoint by examining the �rst componentsof the traces.3.2 Properties of IR, IP and IP�The �rst important property of IR, IR and IP is recognizability. We further need e�ective construc-tions of automata for IR, IR and IP based on the underlying PCP instance.Lemma 3.4 The languages IR, IR and IP are recognizable. Moreover, there are algorithms whichconstruct for every instance of the PCP three ������-automata for IR, IR and IP, respectively. 2Proof: We start with the automaton for IR. The language (�+) in the free monoid �� is de�nedby the rational expression (a1��9�)+a1��9. By Theorem 2.11, we can construct a ��-automaton for(�+). We can also construct a ��-automaton for ��. By Theorem 2.10, we can use these automatato construct a ������-automaton for IR. Based on this automaton for IR, we obtain a ������-automatonfor IR by Theorem 2.7.Now, we show the construction of an ������-automaton for IP. Due to the closure under union(Theorem 2.7), we only need to show constructions of ������-automata for each part of IP. We proceedit for IP3;1. This set is the union of k Cartesian Products. We use Theorem 2.10, we only needto construct for each index i in � a ��-automaton for the singleton language fa1��9ia1��4g and a��-automaton for �>j�(i)j. We regard a1��9ia1��4 and �>j�(i)j as two rational expressions over thefree monoids �� resp. ��, and by Theorem 2.11, we can construct automata for fa1��9ia1��4g and�>j�(i)j. After we constructed these automata for every index i in �, we use Theorem 2.10 toconstruct a ������-automaton for IP3;1. The construction of automata for the other parts of IP issimilar but simpler. Based on automata for the parts of IP, we use Theorem 2.7 to construct anautomaton for IP. 2Now, we can go over to examine the iteration of IP. We are mainly interested in traces in IP�whose �rst compound is a word from (�+).Lemma 3.5 For every w in �+, we have the following assertions (1) and (2). If w is not a solutionof the underlying PCP instance, we further have assertion (3).(1)  (w)�� n f�(w)g ! � IP� (2)  (w)�� n f�(w)g ! � IP� (3)  (w)�� ! � IP� 2



12 3. A TRICKY LANGUAGEAt this point, we somehow �rmly feel that something very unpleasant will happen in the case thatw is a solution of the underlying PCP instance.Proof: At �rst, we prove assertion (1). We assume a non-empty word w of indices from �, and weassume further a word u from ��, such that u 6= �(w). We have to show that �(w)u � belongs to IP�.We will branch into three cases, depending on whether juj< j�(w)j, juj= j�(w)j or juj> j�(w)j.We denote by n the length of jwj, such that we can treat w as j1 : : : jn for some indices j1; : : : ; jn 2 �.Consequently, �(w) equals the composite �(j1) : : :�(jn).� Case 1: juj < j�(w)jWe defactorize u into n words u1; : : : ; un. Because u is shorter than �(w), we can choosethe words u1; : : : ; un in a way that ju1j< j�(j1)j, and for every l with 2 � l � n, we havejulj�j�(jl)j. At this point, we need the assumption that �(j1) does not yield the empty wordto ensure the existence of a properly shorter word u1. We show traces t1; : : : ; tn+1 2 IP suchthat t1 : : : tn+1 = �(w)u �. We de�ne t1, tn+1 and for every l with 2 � l � n the trace tl in thefollowing way:t1 :=  a1��9 j1 a1u1 ! tl :=  a2��9 jl a1ul ! tn+1 :=  a2��9� !We see that t1; : : : ; tn+1 belong to IP, namely to IP1;1, IP1;2 and IP1;3. It is a straightforwardveri�cation that t1 : : : tn+1 yields the required �(w)u �.� Case 2: juj = j�(w)jWe still remember the assumption u 6= �(w) from the beginning of the proof. Because u hasthe same length as �(w), we can defactorize u into words u1; : : : ; un such that for every l with1 � l � n, we have julj = j�(jl)j. Because u 6= �(w), we know there is some z with 1 � z � n,such that uz 6= �(jz). Until this case is �nished, we assume l and m as all-quanti�ed numberswith 0 < l < z < m < (n+ 1). We show traces t0; : : : ; tn+1 2 IP, such that t0 : : : tn+1 = �(w)u �:t0 := a1��2� ! tl := a3��9 jl a1��2ul ! tz := a3��9 jz a1��3uz ! tm := a4��9 jm a1��3um ! tn+1 := a4��9� !We see that t0; : : : ; tn+1 belong to IP, namely to IP2;1; : : : ; IP2;5. As in the previous case, weeasily it verify that t0 : : : tn+1 really yields �(w)u �.� Case 3: juj > j�(w)jWe perform this as we performed the previous two cases. We defactorize u into n wordsu1; : : : ; un, such that u1 is properly longer than �(j1), and we further have for every l with2 � l � n, a word ul with the same length as �(jl). As we did in the previous two cases, wechoose suitable traces t1; : : : ; tn+1, but this time, we choose them from IP3;1, IP3;2 and IP3;3.Now, we have completed the proof of assertion (1). We can prove assertion (2) in the same wayusing the parts IP4;1; : : : ; IP6;3 of IP. However, I think it is not necessary to proceed it. If w is not asolution of the underlying PCP instance, we know that �(w) 6= �(w), and consequently, assertion(1) and (2) together imply assertion (3). 2We state the following corollary as an obvious conclusion from Lemma 3.5.Corollary 3.6 If the underlying PCP instance has no solution, we have IR � IP�. 2



3.2 Properties of IR, IP and IP� 13Well, we made half of the way. We need some kind of opposite to Lemma 3.5 and Corollary 3.6.We show that some traces in IR do not belong to IP� if the underlying PCP has a solution. Togetherwith Corollary 3.6, we obtain a strong tool, which will allow us to proceed straightforward proofsof the main goals of this paper.Lemma 3.7 Assume any word w in �+.If w is a solution of the underlying PCP instance, we have  (w)�(w) ! 62 IP� . 2You should recognize that we can replace �(w) by �(w).Proof: We perform an indirect proof. We assume a word w from �+ such that �(w) = �(w).We assume that the trace �(w)�(w)� belongs to IP�, and show a contradiction. If �(w)�(w)� belongs to IP�,then there are a natural number n and traces t1; : : : ; tn in IP such that t1 : : : tn yields �(w)�(w)�. Becausew is non-empty, we know that n � 1. Because there is not any trace in IP whose �rst compoundis (w), we see that n � 2. For every natural number l with 1 � l � n, we denote the componentsof tl by vl and ul, i.e., tl = �vlul�.For every l with 1 � l � n, the word vl contains at most one index from � (cf. Def. 3.3).By jl, we denote the restriction of vl to indices from �, i.e., we get jl by removing all lettersa1; : : : ; a9 from vl. Obviously, for every l with 1 � l � n, the word jl is the empty word or a singleletter. We further see that the composite j1 : : : jl yields w.For every l with 1 � l � n, we have vl 6= � (cf. Def. 3.3). We further have v1 : : : vn = (w).Hence, the �rst letter of the word v1 is the letter a1. Thus, the trace t1 belongs to exactly one ofthe sets IP1;1, IP2;1, IP3;1, IP4;1, IP5;1 or IP6;1. We branch into these six cases.� Case 1: t1 2 IP1;1We examine the traces t2; : : : ; tn. The trace tn cannot belong to IP1;2, because vn has to endwith the letter a9. Hence, there is at least one trace among t2; : : : ; tn, which does not belongto IP1;2. We see that there is a natural number z with 1 < z � n such that �rstly tz 62 IP1;2,and further, for every l with 1 < l < z we have tl 2 IP1;2.We examine the trace tz . Its predecessor, the trace tz�1 is the trace t1 or a trace from IP1;2.Hence, the last letter of vz�1 is the letter a1, and consequently, vz has to start with theletter a2. This implies that tz has to belong to IP1;2 or IP1;3, but we have chosen z in a waythat tz does not belong to IP1;2. Therefore, tz belongs to IP1;3, i.e., tz is the trace �a2��9� �.The trace tz must be the last trace in the factorization, because vz ends with the letter a9,such that a subsequent trace tz+1 had to have a �rst compound vz+1 starting with an indexfrom �, and such traces do not belong to any part of IP. Consequently, we have z = n.To sum up, the factorization t1; : : : ; tn starts with a trace t1 from IP1;1, it ends with thetrace tn = �a2��9� � and the traces t2; : : : ; tn�1 belong to IP1;2. We examine the words j1; : : : ; jn:Except jn which is empty, these words are single indices, such that w is the compositej1 : : : jn�1. Now, we compare �(w) to the composite of the second components of t1; : : : ; tn,i.e., we compare �(j1) : : :�(jn�1) to u1 : : : un. We de�ned IP1;1 and IP1;2 in a such a waythat u1 is properly shorter than �(j1), and for every l with 1<l<n, we have julj � j�(jl)j.Further, un is the empty word �. Consequently, the composite u1 : : :un is properly shorterthan �(j1) : : :�(jn�1), i.e., u1 : : : un is properly shorter than �(w).To sum up this case, we have shown that if t1; : : : ; tn is a sequence of traces from IP, the tracet1 belongs to IP1;1, and the composite of their �rst components v1 : : : vn yields (w), thenthe composite t1 : : : tn cannot yield the trace �(w)�(w)�, because the composite of the secondcomponents u1 : : : un is properly shorter than �(w).



14 3. A TRICKY LANGUAGE� Case 2: t1 2 IP2;1Our beginning is quite similar to Case 1. IP2;1 is a singleton such that t1 is the trace �a1��2� �.We examine the traces t2; : : : ; tn. The trace tn cannot belong to IP2;2, because vn has to endwith the letter a9. Hence, there is at least one trace among t2; : : : ; tn, which does not belongto IP2;2. We see, there is a natural number z with 1<z�n, such that �rstly tz 62 IP2;2, andsecondly, for every l with 1<l<z, we have tl 2 IP2;2.We examine the trace tz . The last letter of vz�1 is the letter a2. Then, the �rst compoundof tz has to start with a3, but, tz does not belong to IP2;2. Consequently, tz belongs to IP2;3.We also see that tz is not the last trace in the factorization, i.e., z is properly smaller than n.We examine the traces tz+1 ; : : : ; tn. The trace tn cannot belong to IP2;4. Hence, there is anumber x, such that tx is the leftmost trace in tz+1 ; : : : ; tn, which does not belong to IP2;4.We see that tx has to belong to IP2;5, which implies that tx is the trace �a4��9� �. Then, tx hasto be the last trace in the factorization t1; : : : ; tn, i.e., x = n.To sum up, there is a z with 1<z <n, such that the factorization t1; : : : ; tn consists of thetrace �a1��2� �, some traces t2; : : : ; tz�1 from IP2;2, a trace tz from IP2;3, some traces tz+1; : : : ; tn�1from IP2;4 and the trace �a4��9� � at the end. We examine the words j1; : : : ; jn: Except j1 and jnwhich are empty, these words are single indices, such that w is the composite j2 : : : jn�1. Now,we compare �(w) to the composite of the second components of t1; : : : ; tn, i.e., we compare�(j2 : : : jn�1) to u2 : : :un�1. We de�ned IP2;2, IP2;3 and IP2;4 in a such a way that for each lwith 1 < l < n, the words �(jl) and ul have the same length. Further, we de�ned IP2;3 suchthat we have �(jz) 6= uz . Consequently, the composite u1 : : :un is not the word �(w).To sum up this case, we have shown that if t1; : : : ; tn is a sequence of traces from IP, the tracet1 belongs to IP2;1, and the composite of their �rst components v1 : : : vn yields (w), thenthe composite t1 : : : tn cannot yield the trace �(w)�(w)�, because the composite of the secondcomponents u1 : : : un is di�erent from �(w).� Case 3: t1 2 IP3;1We can show the contradiction exactly as we dealt Case 1. We obtain that the compositeu1 : : : un is properly longer than �(w).� Case 4, 5 and 6:The contradictions are straightforward adaptations of the methods we used to show contra-dictions in the �rst three cases. In every case we �nd out that the composite u1 : : :un isdi�erent from �(w). Because we assumed w as a solution of the underlying PCP, we have�(w) = �(w), such that u1 : : : un is di�erent from �(w).Finally, each case yields a contradiction such that traces t1; : : : ; tn from IP whose composition yields�(w)�(w)� do not exist. Consequently, this trace does not belong to IP�. 2Now, we have a method to de�ne languages IR and IP from a PCP instance. Further, we knowby Corollary 3.6 and Lemma 3.7 two strong assertions about the connections of properties ofIP� and the existence of solutions of the underlying PCP instance. Unfortunately, we do not haveconnections between recognizability of IP� and the existence of a solution of the underlying instanceof the PCP.



154 Main ResultsNow, we are able to prove the following theorem.Theorem 4.1 The following �ve assertions are equivalent(1) The underlying PCP instance has no solution.(2) IR � IP�(3) IR [ IP� = ������(4) IR [ IP� is recognizable.(5) IR \ IP� is recognizable. 2Proof: This is mainly a summary of results from the previous section.� (1)!(2) This is just Corollary 3.6.� (2)!(1) If the underlying PCP instance has a solution w, then �(w)�(w)� does not belong to IP�by Lemma 3.7, but it belongs to IR by De�nition 3.2.� (2)$(3) holds obviously.� (3)!(4) holds obviously, because ������ is recognizable.� (2)!(5) IR \ IP� yields IR, which is recognizable due to Lemma 3.4.� (4)!(1) Assume the underlying PCP instance has a solution w, but the language IR [ IP�is recognizable, i.e., there is a ������-automaton A = [Q; h; F ] for IR [ IP�. For every n � 1,the words wn are mutually di�erent solutions of the underlying PCP instance. We examinethe values of the homomorphism h on the traces �(wn)� �. Because Q is �nite, there are twodi�erent natural numbers m�1 and n�1, such that h�(wn)� � = h�(wm)� �. We get the valuesof h on �(wn)�(wn)� and �(wm)�(wn)� by defactorizations: We see that h�(wn)�(wn)� = h�(wn)� �h� ��(wn)� andh�(wm)�(wn)� = h�(wm)� �h� ��(wn)�, which yields the same. Hence, either both or none of the traces�(wn)�(wn)� and �(wm)�(wn)� belong to IR [ IP�. But, on one hand, �(wn)�(wn)� does not belong to IR andit does not belong to IP� by Lemma 3.7. On the other hand, we have �(wn) 6= �(wm), suchthat assertion (1) of Lemma 3.5 implies that �(wm)�(wn)� belongs to IP�.� (5)!(1) Now, assume again the underlying PCP instance has a solution w, but, IR \ IP� isrecognizable. As in the previous point, we show that there are two di�erent natural numbersm� 1 and n� 1, such that either both or none of the traces �(wn)�(wn)� and �(wm)�(wn)� belong toIR \ IP�. But, �(wn)�(wn)� does not belong IP� (Lemma 3.7), while �(wm)�(wn)� belongs to both IR andIP� because of De�nition 3.2 and assertion (1) of Lemma 3.5, respectively. 2We generalize these results to trace monoids which contain a C4-submonoid. We perform this intwo steps.



16 4. MAIN RESULTSCorollary 4.2 There is no algorithm, whose input are two alphabets �1 and �2, and further two���1��2�-automata for languages K and L of ���1��2� which decides one of the following properties:(1) K � L�(2) K [ L� = ���1��2�(3) K [ L� 2 REC���1��2�(4) K \ L� 2 REC���1��2� 2Proof: This is a straightforward conclusion from Theorem 4.1 and the undecidability of the PCP.Provided an algorithm which decides one of the properties, we could construct an algorithm decidingthe PCP. For instance, assume an algorithm to decide universality (2). Then, we have the followingalgorithm to decide the PCP: It has two alphabets and two morphisms as input, it constructsautomata for IR and IP as described in the proof of Lemma 3.4. After that, it uses the assumedalgorithm to decide universality. By Theorem 4.1, it deduces whether the PCP instance has asolution or not. 2It is not really satisfying, because the alphabets �1 and �2 are not restricted to doubletons.We should boil down Corollary 4.2 to C4 and generalize it to all trace monoids with a C4-submonoid.Theorem 4.3 Assume an independence alphabet (�; I) which contains a C4-subalphabet. Thereis no algorithm, whose input are two IM(�; I)-automata for languages K and L of IM(�; I) whichdecides one of the following properties:(1) K � L�(2) K [ L� = IM(�; I)(3) K [ L� 2 RECIM(�; I)(4) K \ L� 2 RECIM(�; I) 2Proof: We assume a monoid IM(�; I) with a C4-submonoid. We show that an algorithm whichdecides one of the properties in IM(�; I) can be used to decide the same property in CartesianProducts of free monoids over arbitrary alphabets, which contradicts Corollary 4.2. We deal withsome preliminaries before we prove the assertions. Assume two alphabets �1 and �2. We can �xa canonical code h : ���1��2� ! C4 as in De�nition 2.15. Let g be the identity from C4 to IM(�; I).Consequently, the composition g(h( )) is an injective homomorphism from ���1��2� to IM(�; I). Due toTheorem 2.9 and 2.16, some language T in ���1��2� is recognizable i� h(T ) is recognizable in IM(�; I).Moreover, given a ���1��2�-automaton for T , we can construct an IM(�; I)-automaton for h(T ).� (1) Assume there is an algorithm deciding this property in IM(�; I). Then, we can decideproperty (1) in ���1��2� as follows: We have two alphabets �1 and �2 and two ���1��2�-automatafor languages K and L. We �x a canonical morphism h and construct IM(�; I)-automata forh(K) and h(L). We have K � L� i� h(K) � h(L)�. We can decide the latter condition bythe assumed algorithm.



17� (3) The language K [ L� is a recognizable language in ���1��2� i� h(K [ L�) it is a recognizablelanguage in IM(�; I). We have h(K [ L�) = h(K) [ h(L)�.Therefore, we can use an algorithm to decide (3) in IM(�; I) to decide (3) in ���1��2� as follows.Outgoing from ���1��2�-automata for K and L, we construct IM(�; I)-automata for h(K) andh(L). Then, we use the assumed algorithm to decide (3) to decide whether h(K) [ h(L)� isrecognizable in IM(�; I). The set h(K) [ h(L)� is recognizable i� K [ L� is recognizable.� (4) We proceed this exactly as (3).� (2)We haveK � L� i� ( IM(�; I)nK )[L� yields the complete monoid IM(�; I). Consequently,decidability of (2) would imply decidability of (1). 25 Additional ResultsFor the reason of lucidity, I have split the results into two sections. For now, the following resultsseem to be less important. But, I surely need them in future papers. Based on results fromSection 3, we can proceed short and easy proofs. However, proving the results in this section in aseperate paper would cause much more expenditure.Assume two alphabets �1 and �2. A language T in ���1��2� is a Cartesian Product i� there arelanguages L and R in ��1 and ��2, resp., such that T = �LR�. Consequently, T is a Cartesian Producti� for every two traces �u1v1� and �u2v2� in T , the trace �u1v2� belongs to T .In the rest of this section we use the notions from Section 3.Theorem 5.1 The following three assertions are equivalent(1) The underlying PCP instance has no solution.(2) IR [ IP� is a Cartesian Product.(3) IR \ IP� is a Cartesian Product. 2Proof: This is very similar to the proof of Theorem 4.1.� (1)!(2) Due to Theorem 4.1, IR [ IP� yields ������ which is a Cartesian Product.� (1)!(3) Due to Theorem 4.1 again, IR is a subset of IP� such that IR \ IP� yields IR which isa Cartesian Product because of De�nition 3.2.� (2)!(1) Assume that the underlying PCP instance has a solution w, and assume that IR[ IP�is a Cartesian Product. The word w2 is also a solution of the underlying PCP instance.We see that �(w) 6= �(w2). Hence, assertion (1) of Lemma 3.5 shows that � (w)�(w2)� and �(w2)�(w) �belong to IP�, and thus to IR [ IP�. Because IR [ IP� is a Cartesian Product, �(w)�(w)� belongsalso to IR [ IP�. However, due to De�nition 3.2 and Lemma 3.7, this trace does not belongto IR [ IP�.� (3)!(1) This is similar to the previous point. Again, assume a solution w of the underlyingPCP instance, and assume that IR\ IP� is a Cartesian Product. The traces � (w)�(w2)� and �(w2)�(w) �belong to IP� by Lemma 3.5 and to IR by De�nition 3.2, i.e., they belong to IR\ IP�. BecauseIR\ IP� is a Cartesian Product, �(w)�(w)� belongs also to IR \ IP�, and thus to IP�. However, dueto Lemma 3.7, this trace does not belong to IR \ IP�. 2



18 6. CONCLUSIONS AND FUTURE GOALSWe proceed similar to the previous section.Corollary 5.2 There is no algorithm, whose input are two alphabets �1 and �2, and further two���1��2�-automata for languages K and L of ���1��2� which decides one of the following properties:(1) K [ L� is a Cartesian Product.(2) K \ L� is a Cartesian Product. 2Proof: As in the proof of Corollary 4.2, an algorithm which decides one of the properties can beused to decide the PCP. 2We generalize this Corollary to �xed Cartesian Products over free monoids over alphabets withat least two letters.Theorem 5.3 Assume two alphabets �1 and �2, such that each of the alphabets contains at leasttwo letters. There is no algorithm, whose input are two ���1��2�-automata for languages K and L of���1��2� which decides one of the following properties:(1) K [ L� is a Cartesian Product.(2) K \ L� is a Cartesian Product. 2Proof: At �rst, we show assertion (1). We assume there are two alphabets �1 and �2 which are atleast doubletons and an algorithm which decides (1) in ���1��2�. Then, we can construct an algorithmwhich decides (1) in Corollary 5.2, which is a contradiction.The algorithm to decide (1) in Corollary 5.2 has two alphabets �1 and �2, and further two���1��2�-automata for languages K and L as input. We \code" the problem to ���1��2�. This monoid hasa C4-submonoid. Hence, we �x a canonical code h from ���1��2� to C4 as in De�nition 2.15. We canregard h as a morphism from ���1��2� to ���1��2�. The morphism h is injective. Hence, a language T in ���1��2�is a Cartesian Product i� h(T ) is a Cartesian Product. Consequently, K[L� is a Cartesian Producti� h(K [ L�) is a Cartesian Product. Because h is injective, we have h(K [ L�) = h(K) [ h(L)�.Then, we can decide whether K [ L� is a Cartesian Product by constructing ���1��2�-automatafor h(K) and h(L) (Theorem 2.16 and 2.9) and using the assumed algorithm to decide whetherh(K)[ h(L)� is a Cartesian Product. The language h(K)[h(L)� is a Cartesian Product i� K[L�is a Cartesian Product.We can show undecidability of (2) in exactly the same way. 26 Conclusions and Future GoalsNow, we continue the discussion we have cut at the end of subsection 2.5. Let us discuss aboutTheorem 4.3. Opposed to the undecidability of property (1), we can decide whether it holdsK� � L.Given automata for K and L, we can construct a rational expression k for K by Theorem 2.12,and then, we check whether we have L(k�) � L by Theorem 2.14.I consider the undecidability of universality of K [ L� as the most strange assertion of Theo-rem 4.3. Given an automaton for some language L in some trace monoid IM(�; I), we can triviallydecide whether L� yields the complete trace monoid: we have simply to check whether every letterof � occurs as a one letter trace in L. But, given two automata for languages K and L in a tracemonoid IM(�; I) which contains a C4, we cannot decide whether K[L� yields the complete monoidIM(�; I), i.e., we cannot decide whether the traces missing in L� are covered by K.



19Let us review assertion (3) of Theorem 4.3. The problem to decide whetherK[L� is recognizableis somehow between the recognizability problem and the star problem. Firstly, we can regardassertion (3) as a special case of the recognizability problem. Given two rational expressions k andl, can we decide whether the language of the rational expression k [ l� is recognizable if we canpresume recognizability of L(k) and L(l)? Secondly, we can regard the star problem as a specialcase of the problem to decide whether K [ L� is recognizable, namely if K is the empty set.However, we should not regard the problem to decide recognizability of K[L� just as a slightlymodi�ed star problem. From assertion (2) of Theorem 4.3 we conclude the following statement:If we have three automata for languages K, L and M , we cannot decide whether K [L� equals Mif the underlying trace monoid contains a C4-submonoid. Opposed to this statement, we have thefollowing assertion for every trace monoid [8]: If we have two automata for languages L and M ,we can decide whether L� equals M . Consequently, we should regard the problem to deciderecognizability of K [ L� as a more di�cult problem than the star problem.Are the properties (1) to (4) in Theorem 4.3 decidable in trace monoids which do not containa C4-submonoid? In free monoids, (3) and (4) are always true, while (1) and (2) are decidable dueto classical results in automata theory. The properties (1) to (4) remain decidable in trace monoidswithout a P3-submonoid. Remember, we have Theorem 2.17 for these monoids. Assume a monoidIM(�; I) without a P3-submonoid. Given two automata for languages K and L, we can constructrational expressions k and l for K and L by Theorem 2.12. We can decide (1) in the following way:we construct an automaton for IM(�; I) nK by Theorem 2.7, and we construct from l a rationalexpression for IM(�; I) n L� by Theorem 2.17. Then, we can decide K � L� by deciding whetherthe complement of L� is a subset of the complement of K by Theorem 2.14.We can decide whether K [L� yields the complete monoid IM(�; I) by constructing a rationalexpression r for the complement ofK[L� and checking whether L(r) yields the empty set. We checkthis by checking L(r) � ; using Theorem 2.14.We can decide properties (3) and (4) by constructing two rational expressions for K [ L�and K \ L�, resp., and using Theorem 2.17 to decide whether these rational expressions de�nerecognizable languages.I do not see straightforward proofs to determine decidability or undecidability of the properties(1) to (4) in P3. However, it should be possible to determine it by using techniques from [13].We sum up the results in the following table:L(r) � L L� 2 REC(IM) K � L�(K [ L�) = IM(K [ L�) 2 REC(IM)(K \ L�) 2 REC(IM) L(r) = IML(r) 2 REC(IM)�� D Kleene [19] D Kleene [19] D Kleene [19] D Kleene [19]no P3-sub. D Mezei Wright [26] D Sakarovitch [33] D Sakarovitch [32, 33] D Sakarovitch [32, 33]P3 D Mezei Wright [26] D Gastin and al [13] ? U Ibarra [18, 33]no C4-sub. D Mezei Wright [26] D Richomme [30, 31] ? U Ibarra [18, 33]C4 D Mezei Wright [26] ? U present paper U Fischer Rosenberg [11, 2]The �rst line contains some decisions problems, while we substitute IM by the monoids in theleft column. The letters D and U abbreviate decidable and undecidable, respectively. K andL are recognizable languages for which we assume automata, while r is a rational expression.The decidability of L(r) � L is due to Theorem 2.14. I tend to credit this toMezei and Wright.We see the already mentioned two dimensional hierarchy of di�culties. The decision problemsbecome harder from the left to the right. The monoids become more di�cult from the �rst linedown to the last line.
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