-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Technische Universitat Dresden: Qucosa

TECHNISCHE UNIVERSITAT
DRESDEN

Fakultat Informatik

TUD/ FI 98/ 07 - Mai 1998

_ _ Daniel Kirsten
Technische Berichte .
Grundlagen der Programmierung

Tech n | cal Repo rts Institut fur Softwaretechnik |

Some Undecidability Results
related to the Star Problem
in Trace Monoids

ISSN 1430-211X

id

e L TN

Technische Universitat Dresden
Fakultat Informatik

D-01062 Dresden

Germany

URL: http://www.inf.tu-dresden.de/

https://core.ac.uk/display/236367834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Some Undecidability Results
related to the Star Problem
in Trace Monoids*

Daniel Kirsten
Department of Computer Science
Dresden University of Technology

D-01062 Dresden, Germany

Daniel . Kirsten@inf.tu-dresden.de
http://www.inf.tu-dresden.de/~dk11

May 29, 1998

Abstract

This paper deals with decision problems related to the star problem in trace monoids, which
means to determine whether the iteration of a recognizable trace language is recognizable. Due to
a theorem by RicHOMME from 1994 [30, 31], we know that the Star Problem is decidable in trace
monoids which do not contain a C4-submonoid. The C4 is (isomorphic to) the Cartesian Product
of two free monoids over doubleton alphabets. It is not known, whether the Star Problem is
decidable in C4 or in trace monoids containing a C4. In this paper, we show undecidability of
some related problems: Assume a trace monoid which contains a C4. Then, it is undecidable
whether for two given recognizable languages K and L, we have K C L*, although we can
decide K* C L. Further, we can not decide recognizability of K N L* as well as universality and
recognizability of K U L*.

*This work has been supported by the postgraduate program “Specification of discrete processes and systems of
processes by operational models and logics” of the German Research Community (Deutsche Forschungsgemeinschaft).

1 Introduction

Free partially commutative monoids, also called trace monoids, were introduced by CARTIER and
Foata in 1969 [4]. In 1977, MAZURKIEWICZ proposed trace monoids as a potential model for
concurrent processes [21], which marks the beginning of a systematic study of trace monoids by
mathematicians and theoretical computer scientists, see e.g., [7, 8, 9]. A part of the research in
trace theory deals with examinations of well-known classic results for free monoids in the framework
of traces.

One main stream in trace theory is the study of recognizable trace languages, which can be
considered as an extension of the well studied concept of regular languages in free monoids. A major
step in this research is OCHMANSKY’s PhD thesis from 1984 [28]. Some of the results concerning
regular languages in free monoids can be generalized to recognizable languages in trace monoids.
However, there is one major difference: The iteration of a recognizable trace language does not
necessarily yield a recognizable language. This fact raises the so called star problem: Given a
recognizable language L, is L™ recognizable? In general, it is not known whether the star problem
is decidable. The main result after a stream of publications dealing with this problem is a theorem
stated by RICHOMME in 1994, saying that the star problem is decidable in trace monoids which do
not contain a particular submonoid called C4 [30, 31]. It is not known whether the star problem is
decidable in trace monoids with a C4-submonoid. It is even unknown for finite trace languages.

In this paper, we consider some decision problems for recognizable trace languages which are
related to the star problem. If we have two recognizable languages K and L in a trace monoid with
a C4-submonoid, then it is undecidable whether K is a subset of L™ and whether K U L* yields the
complete monoid. Further, recognizability of K U L* and K N L* is undecidable.

The paper is organized as follows. After this introduction, I explain some concepts from algebra
and formal language theory. In the first subsection, we get familiar with some basic notions from
algebra, formal language theory and trace theory. In the subsequent ones, we deal with recognizable
sets, rational sets and relations between them. Then, we discuss some decision problems concerning
recognizable and rational trace languages and their solutions as far as known.

In Section 3, we establish a method to define two recognizable trace languages from a given
instance of PosT’s Correspondence Proplem. We examine properties of these languages and pro-
perties of the iteration of one of these languages. In Section 4, we use these properties to develop
the main results. In Section 5 we show some additional results which may become important in
future papers. In Section 6, we compare the new results to known results and discuss their possible
relations to the star problem.

2 Formal Definitions

2.1 Monoids, Languages and Traces

I briefly introduce the basic notions from algebra and trace theory. Unless I do not state precise
sources, I consider the concepts and notions as well-known.

By IN, we denote the set of natural numbers including zero, i.e., N = {0, 1,2,...}.

A monoid (IM, @) is an algebraic structure consisting of a set IM, and a binary operation &
fulfilling the following two axioms: Firstly, the operation @ is associative, i.e., for every elements
k,l,min IM, we have (k&)@ m = k@ (& m). Secondly, IM contains an element Apg, such that for
every m in IM, we have Apg @ m = m @ A = m. M is called the underlying set, the operation & is
called the monoid operation or monoid product, and the element Ay is called the neutral element.
We drop the symbol ¢ and denote the monoid product by juxtaposition. We drop the index at
the neutral element Apg as long as no confusion arises. We use the symbol IM to denote both the
monoid and its underlying set. A monoid is called finite iff IM is a finite set.

2 2. FORMAL DEFINITIONS

For every natural number n, we define the n-fold monoid product as follows: For every m in IM,
mY vyields the neutral element Apg, and further, for every natural number n, m™*! denotes m™m.

We extend the monoid product to subsets of IM. If K and L are two subsets of IM, the set KL
contains all elements kl for some k in K and [in L. We extend the n-fold monoid product to sets.
We define L° := {Ap}, and for every natural number n, L™t := L"L. We call a subset L of IM
closed under monoid product iff LL is a subset of L.

For a subset L of a monoid IM, we define the non-empty iteration Lt as the union of the sets
L', L?, I3,... Hence, LT is the least subset of IM which contains L and is closed under monoid
product. We denote the iteration of I by L* and define it by L* := LT U {A\p}.

We call a subset of G of IM a set of generators of IM iff firstly, it holds G* = IM, and secondly,
there is no proper subset K of G’ with K* = IM. We call a monoid IM finitely generated iff IM has
a finite set of generators.

Assume two monoids IM and IM’. Their Cartesian Product is the monoid denoted by (]1]1\\/[/[,) and
defined in the following way: The underlying set is the Cartesian Product of the underlying sets of
IM and IM’. The monoid operation is defined componentwise, i.e., for every pair of elements (Zi)

and (:2), their product yields (Zi:z) The products mymg and m)m/, are the monoid products in
IM and IM’, respectively. The neutral element of the Cartesian Product of IM and IM’ is @]1]3\/[/[/)

Again, assume two monoids IM and IM’. We call a function & : M — IM’ a homomorphism iff
h preserves the monoid product, i.e., for every two elements k£ and [in the monoid IM, we have
h(k)h(l) = h(kl). A homomorphism h is called a monoid homomorphism iff h preserves the neutral
element, i.e., h(Ap) = App. There are homomorphisms which do not preserve the neutral element.
We follow the ususal terminology in the literature. Whenever we use the term homomorphism,
we really mean monoid homomorphism. We call the homomorphism h a non-erasing homomorphism
iff for every element m in IM, we have h(m) = App only if m is the neutral element of IM.

We extend the homomorphism h. If L is a subset of IM, we define h(L) as the set of all
k in M’ such that for some m in L, we have h(m) = k. We denote the inverse of h by h~'.
We define it on subsets of IM’, if K is a subset of IM’, h™1(K) yields the set of all m in IM, such
that h(m) belongs to K. We call h an isomorphism iff for every element k of IM’, the set A= *({k})
is a singleton. Then, we can regard h~! as a homomorphism from IM’ to IM. Iff an isomorphism
between IM and IM’ exists, we call the monoids isomorphic.

Assume a set GG of generators of IM, and assume two homomorphisms hy and hy. If by and he
coincide on G, then hy and hy coincide on the whole monoid M, i.e., if for every m in G, we have
hi(m) = ha(m), then for every m in IM, we have hi(m) = ha(m), too.

Assume two monoids IM and IM’, once more. We say that IM is a submonoid of IM’ iff IM is a
subset of IM’ and the identity function from IM to IM’ is a monoid homomorphism, i.e., the monoid
product of IM is the monoid product of IM’ restricted to elements of IM.

By an alphabet, we mean a finite set of symbols. Its elements are called letters. Assume an
alphabet 3. We denote the free monoid over X by X*. Its underlying set is the set of all words
(strings) consisting of letters of X, the monoid product is the concatenation, and the neutral element
is the empty string. Obviously, Y is the set of generators of ¥*. For every word w in ¥*, we call
the number of letters of w the length of w, and denote it by |w|. For every letter @ in ¥ and every
word w in ¥*, we denote the number of occurrences of @ in w by |w|,.

CARTIER and FoATA introduced the concept of the free partially commutative monoids in
1969 [4]. In 1977 MAzURKIEWICZ considered this concept as a potential model for concurrent
systems [21]. Since then, free partially commutative monoids are examined by both mathematicians
and theoretical computer scientists. For a general overview, I recommend the surveys [7, 8, 9].

Assume an alphabet Y. We call a binary relation I over Y an independence relation iff I is
irreflexive and symmetric. For every pair of letters a and b with alb, we say that ¢ and b are
independent, otherwise ¢ and b are dependent. We call the pair (X,1) an independence alphabet.

2.2 Rational Sets 3

We call two words w1y, ws in X* equivalent iff we can transform wy into ws by finitely many ex-
changes of independent adjacent letters which we denote by wy ~j wy. For instance, if @ and ¢ are
independent letters, baacbac, bacabac and beaabea are mutually equivalent words.

The relation ~j is an equivalence relation. For every word w in ¥*, we denote by [w]; the
equivalence class of w. Moreover, ~j is a congruence relation. This means, for every words
wy, wh, we, wh in N* with wy ~j wy and w] ~; wh, we have wyw] = wowh. Therefore, we can
define a monoid with the sets [w]; as elements. For any words wy and ws, we define the product of
[w1]r and [wz]; by [wiwz]r. We denote this monoid by IM(X, I) and call it the trace monoid over
Y and I. Its elements, i.e., the equivalence classes [w];, are called traces and its subsets are called
trace languages or shortly languages. The function []7 is a homomorphism from the free monoid
¥* to IM(X, 7). As long as no confusion arises, we omit the index I at [].

If I is the empty relation over ¥, the trace monoid IM(X,) is the free monoid. If I is the
biggest irreflexive relation over 3, i.e., two letters ¢ and b are independent iff @ and b are different,
then the trace monoid IM(X, I') is the free commutative monoid over ¥. Opposed to this very brief
introduction, we formally define P3 and C4.

Lemma 2.1 Assume two disjoint alphabets 3; and X5, and assume the independence relation
I := Y1 xY¥3 U Yyx3Y;. The trace monoid IM(X1 UX5,) is isomorphic to the monoid @}t)
2
An isomorphism maps every letter a of ¥y to (i), and every letter b of X9 to (2) a
This lemma is an application of a method by MAZURKIEWICZ to transform arbitrary trace monoids
into (sub)monoids of Cartesian Products of free monoids [20, 21]. Iff one of the alphabets ¥; and
Y5 is a doubleton, and the other one is a singleton, we denote by P3 both the monoid @;) and the
2
independence alphabet (X7 U ¥q, I') with [from Lemma 2.1. Iff both alphabets are doubletons,
we accordingly use the notion C4. The notions P3 and C4 abbreviate path of 3 letters and cycle
of 4 letters, respectively. Whenever we deal with P3 or C4, we regard the homomorphism [] as a

homomorphism from (X; U X2)* to @i;)

Assume two independence alphabets (X1, [1) and (Xg, I3). We say that (X1, [1) is a subalphabet
of (¥, I3) iff ¥q is a subset of ¥g, and [y is the restriction of I3 to the letters of ¥4, i.e., we have
I = I N (X1 X ¥1). Then, the monoid IM(¥4,[1) is a submonoid of IM(X, I). For instance,
P3 is a subalphabet and a submonoid of CA4.

Assume an independence alphabet (X,). A trace t in IM(X,]) is called connected iff for every
non-empty traces t; and {5 with ¢ = #1t5, there is a letter ¢ occurring in ¢y and there is a letter b
occurring in t5, such that ¢ and b are dependent. A trace language L is called connected iff every

trace in L is connected. A trace (¥) in P3 or C4 is connected iff u or v is the empty word A.

2.2 Rational Sets

Rational expressions and rational sets were introduced by KLEENE in 1956 [19]. I give a brief
definition, I appreciate, e.g., [2, 10] for deeper understanding.

Definition 2.2 Assume a monoid IM. The set of rational expressions over M, denoted by REX(IM),
is the least set which contains the symbol 2, every element a of IM, and for every r, r1, 73 € REX(IM),
REX(IM) also contains (r*), (rq U r2) and (rq172). a

Rational expressions define rational languages.

Definition 2.3 Assume a monoid IM. Every rational expression r over IM defines a language
L(r) C M in the following way

o L(Q):=10, and for every « € M, L(a) := {a},

4 2. FORMAL DEFINITIONS

o L(rqUry):= L(r1)U L(ry), and L(rire) := L(r1)L(rs),

o L(r7) = L(r)".
A language I C M is called a rational language iff there is a rational expression r such that
L(r)= L. RAT(IM) denotes the class of all rational languages over IM. a

We omit parentheses by assuming that the star has the highest priority, followed by the monoid
operation. We further omit outermost parentheses, and parentheses superfluous by associativity
of set union and monoid operation, e.g., we denote (rU (r1 U (rg(r3)))) by 7 Ury Urgri. We use
some usual convenient abbreviations, where n is any natural number: We use r+ to abbreviate rr*,
7% to denote Apg and 7"t! to abbreviate 7"r. Further, we write 2" to denote #"r*, and r>" to
ntlpx - Accordingly, we use r=" and r<"*! to abbreviate r°Ur!U...Ur". For convenience,
we allow to write <0 by treating it as the rational expression .

If S ={sy,...,s,}is a finite subset of IM, we use S to denote the rational expression s;U...Us,.
Hence, if 3 is an alphabet, then we regard ¥ as a rational expression, its language consists of the
letters in 3.

Obviously, for every monoid M, the class RAT(IM) contains the empty set and every finite
subset of IM, and it is closed under union, monoid operation and iteration. For every finitely
generated monoid M, e.g., for every trace monoid, RAT(IM) contains IM itself. Now, we show that
rational languages are closed under homomorphisms.

denote r

Lemma 2.4 Assume two monoids IM and IM’ and a homomorphism ~ : M — IM’. For every
language L € RAT(IM), we have h(L) € RAT(IM’). Moreover, if h is computable, then there is
an algorithm which transforms every rational expression » € REX(IM) into a rational expression

r" € REX(IM), such that A(L(r)) = L(r'). 0

Proof: We show the construction of »/, such that A(L(r)) = L(r'). We extend h to a function
h' : REX(IM) — REX(IM') to construct »’ “top down”. For every monoid element m, we set

h'(m) := h(m), and we set /() := Q. For every rational expressions 7y, ry and r, we define
W (rq Urg) = hW(ry) UK (rg), B (rir2) := K (r)R/(r2) and A'(r*) := A'(r)*. We can proceed the
verification h(L(r)) = L(h'(r)) inductively by using the fact that & is a homomorphism. 0

Generally, RAT(IM) is not closed under inverse homomorphisms, i.e., using the terminology
above, for some 7' in REX(IM'), the set A=!(L(r')) does not necessarily yield a rational language.
We will establish a suitable example in the next subsection. We show one helpful lemma concerning
rational expressions in finite monoids.

Lemma 2.5 Assume a finite monoid IM. There is an algorithm which for every rational expression
r € REX(IM) computes the set L(r). 0

Proof: We sketch a recursive algorithm. We can obviously compute the language of rational
expressions which are just monoids elements or {). The algorithm evaluates expressions rirq, r1Ury
or r* recursively by firstly computing L(r1) and L(ry), resp. L(r), and computing their product,
union or iteration, respectively. If IM is a finite monoid, there are algorithms computing product,
union and iteration of subsets of IM. a

2.3 Recognizable Sets

As long as computers are finite devices, but there are possibly arbitrary big data, we have the
problem to process data of arbitrary size by finite devices. The concept of recognizability describes
a formal method how to use finite machines to deal with infinite objects. It originates from MEZzEI
and WRIGHT from 1967 [26]. There are numerous equivalent definitions. I introduce it as far as we
use it in this paper, for a more general overview I recommend [2, 10]. T took most of the contents
of this section from there.

2.3 Recognizable Sets 5

Definition 2.6 Assume a monoid IM. An IM-automaton is a triple A = [@,h, F], where @ is a
finite monoid, h is a homomorphism A : IM — () and F is a subset of Q. The language of an

IM-automaton A is defined by L(A) = h™'(F). 0

We call @ the underlying monoid of A, and the elements of @) the states of A. We further call A
the homomorphism of A, and F' the set of accepting states of A. If L(.A) = L, then we say that A
defines L or A is an IM-automaton for L. The IM-automata define recognizable languages over M.
We call a subset L of M a recognizable language over IM iff there is an IM-automaton A, such that
L = L(A). We denote the class of all recognizable languages over IM by REC(IM).

Definition 2.6 shows a common way to define recognizability in arbitrary monoids. Following
COURCELLE [6], we call the triple [@Q, h, F] an IM-automaton. The following theorem is a classic
one, you find the proof, e.g., in [2, 10].

Theorem 2.7 Assume a monoid IM. The class REC(IM) contains the empty set (), IM itself and
it is closed under union, intersection, complement and inverse homomorphisms. Moreover, we
can construct IM-automata for the empty set and IM, and there are algorithms which construct
for every two IM-automata A; and A; IM-automata for the sets L(A;) U L(A;3), L(A1) N L(A3)
and IM \ L(A;). O

There are monoids, having finite subsets which are not recognizable. There are further monoids,
in which the product of two recognizable subsets is not always a recognizable set. And further,
the iteration of a recognizable set is not always recognizable. But, we have the following theorem
for trace monoids:

Theorem 2.8 Assume a trace monoid IM(X, I). The class REC(IM(X, I)) contains all finite subsets
of M(X, 1), and it is closed under monoid product and under iteration of connected trace languages.
O

Recognizability of finite trace languages is obvious. The proof of the closure under monoid pro-
duct originates from Friess [12]. Closure under iteration of connected trace languages is due to
OcHMANSKY [28], CLERBOUT and LATTEUX [5], and METIVIER [23]. In [27], you find a recent sur-
vey on recognizable trace languages, it contains neat little proofs of the assertions in Theorem 2.8.
The following theorem allows us to generalize some undecidability results.

Theorem 2.9 Assume an independence alphabet (Xg, I3) with a subalphabet (X4, 7). For every
language L in IM(Xq, I1), L is a recognizable language over IM(X4, 1) iff L is a recognizable language
over IM(Xg, I3). Moreover, there is an algorithm which computes for every IM(X4, [;)-automaton
an IM(Xg, I3)-automaton for the same language. Further, there is an algorithm which computes for
every IM (X3, Iz)-automaton for some language L in IM(Xq, [1) an IM (X4, [1)-automaton for L. O

Proof: We observe that IM(X4, [1) is a submonoid of IM(X;, I3).

We firstly assume an IM(Xg, I3)-automaton A = [Q, h, F] for some language L over IM(X4, I1).
We define an IM(Xy, I1)-automaton A" for L. The underlying monoid and the set of accepting
states of A’ are () and F' from A. We define the homomorphism A’ of A’ as the restriction of the
homomorphism h of A to the traces in IM(Xq, [1). It is straightforward to verify that A’ is an
IM(X4, I1)-automaton for L.

For the other direction, we assume an IM(Xq, I1)-automaton A = [@, h, F] for L, and we define
an IM(X,, I3)-automaton A’ for L. The monoid IM(X,, I3) is an extension of the monoid IM (X4, I1).
Consequently, we extend A to obtain .A’. We perform this by adding a garbage state ¢’ to the
underlying monoid of A and adjusting the homomorphism of A.

We define the underlying monoid @’ of A" by Q' := @ U {¢'}, such that ¢’ does not already
belong to). We extend the monoid product in ¢ to define the monoid product in @’. For every

6 2. FORMAL DEFINITIONS

pair of elements %,/ in @', the product k/ in @)’ yields the same result as the product in @, as long
as neither &k nor [is the new element ¢’. Otherwise, the monoid product yields ¢'.

We extend the homomorphism h of A to the homomorphism A’ : M(Xq, [2) — Q" of A’
For every trace ¢t in IM(Xs, [3) we define A/(¢) in the following way. If ¢ contains a letter which does
not belong to X, the trace t is a trace in IM(Xq, I) \IM(X4, I1), and we set h'(t) := ¢'. If t consists
of letters from Y1, it is a trace in IM(X4, [1), and we set h/(t) = h(t).

We use the set F' of accepting states of A as set of accepting states of A’. We have to verify
that A" = [Q', ', F] is an IM(X3, I3)-automaton for L. We have to show that Q' is a finite monoid,
that A’ is a homomorphism and that L(A’) really yields L. These assertions are straightforward.

O

We need a theorem by MEZEI concerning recognizable sets in Cartesian Products. It is not
published by the author himself, but, it is widely known as MEzEI’s Theorem, you find it in,
e.g., [2, 10].

Theorem 2.10 Assume two monoids IM and IM’. A set L is recognizable in (ﬂﬂ\\/[/[,) iff there is a
natural number n, and further, there are recognizable sets Ly,..., L, € IM and recognizable sets

Ly,..., L, C M, such that:
Ly L,
L= U...u
Ly L,

Moreover, there is an algorithm which computes for every (%,)—automaton the number n, IM-
automata for Ly,..., L, and IM'-automata for L},..., L/, and vice versa. a

2.4 Relations between Recognizable Sets and Rational Sets
The following theorem is due to KLEENE [19].

Theorem 2.11 Assume a finite alphabet ¥. A language L C Y* is rational iff L is recognizable,
ie., RAT(Y*) = REC(X*). Moreover, there are algorithms which construct for every rational
expression r a Y*-automaton for L(r), and vice versa. O

KLEENE stated his theorem using the term regular instead of recognizable. We better avoid this
term. You find the proof in teaching books concerning formal language theory, e.g., [17, 35].
We trivially conclude that the class of rational languages of a free monoid over a finite alphabet is
closed under intersection and complement. We must not generalize it to arbitrary monoids, but in
finitely generated monoids, we have one direction due to McKNIGHT [22, 2, 10].

Theorem 2.12 Assume a monoid IM. It holds REC(IM) C RAT(IM) iff IM is finitely generated.
Moreover, there is an algorithm which constructs for every IM-automaton A a rational expression

r with L(r) = L(A). O

Example 2.13 We consider the alphabets ¥ = {a,b,¢}, ¥ = {a,c}, ¥3 = {b} and the monoids
¥* and P3 = (g}t) We define the language L in ¥* by the rational expression r = (ab)*. Hence,
2

n €]N}.
We show in two ways that [L] is not recognizable. If [@), I, h] is a P3-automaton for [L], there are
two different natural numbers 7 and j, such that h(a;) = h(a;) S0, we have h(c‘;)h(;) = h(a;)h(;),
i.e., h(35) = h(3)). Hence, either both or none of (§;) and (5;) belong to [L], which is a contradiction.
Another way to show that [L] is not recognizable is to use the closure properties of recognizable sets.
By applying the inverse homomorphism []=1 om [L], we get [[L]]7! = {w | |w|, = |w]s, |w]. = 0}.
This language is not recognizable. If we assume that [[L]]~! is recognizable, its intersection with

the recognizable language defined by a*b* would also be recognizable. But, this intersection yields
{a"b™ | n € IN}, which is not recognizable.

L is rational and recognizable. We apply the homomorphism [] on L, we get [L] = { (Z:)

2.4 Relations between Recognizable Sets and Rational Sets 7

However, [L] is rational. We can use Lemma 2.4 to show that [L] = L((})”). On the other
hand, [[L]]7! is not recognizable as shown, and by Theorem 2.11, [[L]]~! is not rational.

To sum up, L and the application of [] show that the class of recognizable languages is not
closed under homomorphisms, [L] and the application of []~! show that the rational languages are
not closed under inverse homomorphisms. Furthermore, [L] is an example for a rational language
in P3, which is not recognizable. The singleton {(})} is an example for a recognizable language
with a non-recognizable iteration.

Now, we show that rational languages in P3 are not closed under intersection. We define
Ly = (9)7()" and Ly = (9)7(;)". We call their intersection L' = {(az,fn) n €]N}. We assume L'
is rational. We apply a homomorphism h,. : P3 — X7 to L’. It simply erases the letter b. We get
hae(L') = {a™¢™|n € IN}, which is also rational, because homomorphisms preserve rationality.
This is a contradiction, hence L’ is not rational.

Consequently, the class of rational languages of P3 is not closed under complement. At least
one of the languages Ly, Ly or (P3\ L1) U (P3\ Ly) is a rational language with a non-rational
complement, while the reader is invited to figure out which of them. a

The preceding examples are widely used in the literature. The divergence between recognizabilty
and rationality yields some technical problems. Firstly, the term regular is imprecise in this area, it
is used as a synonym for two different concepts. Secondly, we cannot simply use rational expressions
as a convenient method to define recognizable languages. Later, we use MEZEI’s Theorem as a
crucial tool to define recognizable languages. We state the following decidability result.

Theorem 2.14 Assume some monoid IM. There is an algorithm which decides for every rational
expression r and every automaton A whether it holds L(r) C L(A).]

Proof: Let A = [Q,h, F]. For every element m of IM, we have m € L(A) iff h(m) € F. Hence,
for every subset K" of IM, we have K C L(A), iff h(K) C F. Consequently, L(r) C L(A) holds,
iff A(L(r)) C F. Thus, by Lemma 2.4 we can construct a rational expression ' over), such that
h(L(r)) = L(r'"). Therefore, we can decide h(L(r)) C F by deciding L(r") C F. We can compute
the finite set L(r') by Lemma 2.5, such that L(r') C F is decidable. Finally, L(r) C L(A) is
decidable. O

I have not seen this result in the literature in this form, but the proof is natural and straight-
forward, that it is surely already published. We could see this theorem as a corollary to results
from MEZEI and WRIGHT, because rational sets are special cases of equational sets defined in [26].

Now, we extend Theorem 2.9. The extended version allows us to boil down some undecidability
results to C4.

Definition 2.15 Assume two natural numbers &k, [with £ >0 and {>0, and assume two alphabets
I'y ={ay,...,ap}and 'y = {by,...,b;}. Assume further two alphabets ¥y = {a, ¢} and ¥, = {b, d}.
The canonical homomorphisms g1 : I'] — X7 and g2 : ['; — X5 are defined in the following way:
For every letter a; in I'y, we set g;(a;) = ac’, and for every letter b; in 'y, we set go(b;) = bd".

The canonical homomorphism h : (Ei) — (€4 is defined componentwise from ¢ and g3, i.e.,
2

for every trace (%) in (g), we have h(}) = (:Z;EZ;) 0
The method to code free monoids over arbitrary finite alphabets into free monoids over dou-
bletons is widely used in the literature. The extension to Cartesian Products of free monoids is
from [13]. The canonical codes g; and go are not unique, e.g., we could define for every a; € I'y,
g1(a;) := ca'. Hence, h is not unique.
The homomorphisms g; and g, are injective. Consequently, k is an injective morphism. Just

1), If we have h(y) = h(;}), we conclude that gi(u1) = gi(v1)

assume two traces (Z;) and (z;) in (F*
2

8 2. FORMAL DEFINITIONS

V1

U2) . The homomorphism

and ga(uz) = g2(v2), i.e., ug = vy and uy = vy such that we have (Z;) =(
h further preserves recognizability.

Theorem 2.16 Assume two alphabets I'y and I's and further a canonical homomorphism A :
(E;) — C4. A language L C (11:1) is recognizable iff h(L) is a recognizable language in C4. Moreover,
2 2

there is an algorithm which computes for every (ll:i;)—automaton A a C4-automaton for h(L(A)). O
2

Proof: We firstly show that recognizability of h(L) implies recognizability of L. The canonical
homomorphism £ is injective. Hence, we have L = h=!(h(L)). Inverse homomorphisms preserve
recognizability due to Theorem 2.7 such that A~*(h(L)) is recognizable.

To prove the other direction, we take over the notions ¥y, Y3, g1 and gy from Definition 2.15.
We assume a (ll:g)—automaton A for L. We use Theorem 2.10 to decompose L. We obtain a natural

number n and automata for languages Lq,..., L, and L,..., L} in I'] and I'}, respectively. Then,
we can write h(L) as

ML) = (gl(Ll)) U...u (gl(L”))
92(1L7) 92(L7,)

For every ¢ with 1 <7 < n, we construct a ¥j-automaton for g;(L;) as follows. Outgoing from
an automaton for L;, we use Theorem 2.11 to construct a rational expression for L;. Then, we
use Theorem 2.4 to obtain a rational expression for g;(L;). And by Theorem 2.11 again, we get a
Y3i-automaton for g1(L;). By the same way, we construct for every ¢ with 1 < < n a X3-automaton
for g2(L).

From these automata, we can construct a C4-automaton for h(L) using Theorem 2.10. O

2.5 Some Decidability Problems for Trace Languages

The following questions concerning the gap between the classes of recognizable and rational lan-
guages in trace monoids arise:
Complement Problem: Can we decide whether the complement of the language of a rational
expression is a rational language?
Recognizability Problem: Can we decide whether the language of a rational expression is a
recognizable language?
Star Problem: Can we decide whether the iteration of a recognizable language yields a recogniz-
able language?
Finite Power Property Problem: Can we decide whether a recognizable language has the finite
power property, i.e., is there a natural number n, such that L* = L<"?

By FPPP, we abbreviate the finite power property problem. By asking “can we decide”, we
ask for easy characterizations of these trace monoids where the four above questions are decidable.
SAKAROVITCH answered the first two questions in 1987 and 1992.

Theorem 2.17 Assume a trace monoid IM(X, I).
The following three assertions are equivalent:

o (X, 1) does not contain an P3-subalphabet.
e The rational languages of IM form an (effective) Boolean algebra.
o We can decide whether the language of a rational expression yields a recognizable language. O

The equivalence of the first two assertions is proved in [3, 1, 32], the third assertion is added
in [33]. IM(X,) does not contain an P3-submonoid iff for every three different letters a, b, ¢ of X,
alb and blc imply ale. If the class of the rational languages of a monoid IM is closed under
complement, it is also closed under intersection. Then, RAT(IM) is a Boolean algebra.

The star problem and the FPPP are open, today. During the recent 14 years, many papers have
dealt with these two questions. However, only partial results have been achieved, in general, both
problems have remained unsolved. I give just a brief survey about their history. The star problem
in the free monoid is trivial due to KLEENE, and it is decidable in free commutative monoids due to
GINSBURG and SPANIER [14, 15]. BRzozowsKI raised the FPPP in the free monoid in 1966, and it
took more than ten years till SiMoON and HasuicucHI independently showed its decidability [34, 16].
In 1984, OCHMANSKY examined recognizable trace languages in his PhD thesis and stated the star
problem. During the eighties, OcaMANSKY [28], CLERBOUT and LATTEUX [5] and METIVIER
[23] independently proved that the iteration of a connected recognizable trace language yields
a recognizable trace language. In 1992, SAKAROVITCH found the solution of the recognizability
problem shown in Theorem 2.17. This solution trivially implies the decidability of the star problem
in trace monoids which do not contain a P3-submonoid. The attempt to extend SAKAROVITCH’s
characterization to the star problem failed, just in the same year, GASTIN, OCHMANSKY, PETIT
and Rozoy showed the decidability of the star problem in P3 [13].

During the subsequent years, METIVIER and RicHOMME developed these ideas. They showed
decidability of the FPPP of connected trace languages and decidability of the star problem for
trace languages containing at most four traces as well as for finite sets containing at most two
connected traces [24, 25]. They further proved that decidability of the star problem in any trace
monoid implies decidability of the FPPP in any trace monoid [24, 25]. Finally, RicHOMME proved
the following theorem.

Theorem 2.18 Assume a trace monoid IM(X,). If the monoid IM(X, I) does not contain a C4-
submonoid, then the star problem and the FPPP are decidable. a

The main ideas of the proof are in [31], the complete proof is in [30]. Please note that the ifin the
theorem has just one f.

These are just the main partial solutions. Really, there are much more details, study of examples,
research on sufficient and necessary conditions. .. We make the following informal observations by
examining this history: Obviously, concerning the iteration of languages, non-connected languages
seem to be more complicated than connected ones. The free monoids, monoids without a P3-
submonoid, the monoid P3 and the C4 seem to form a list of monoids with increasing difficulty.

Further, rational languages are more complicated than recognizable languages, e.g., in P3 it is
undecidable whether the complement of a rational language is rational. Consequently, we have a
two dimensional hierarchy of difficulties! Now, we should cut this discussion and work on the goals
of this paper. In Section 6, we will continue by comparing the above results to the new ones.

3 A Tricky Language

During this section, we show a method to derive two recognizable trace languages from a given
instance of PosTs Correspondence Problem (PCP). We examine how properties of the iteration of
one of the defined languages are influenced by the existence or non-existence of a solution of the
underlying PCP instance.

I briefly introduce the PCP. An instance of the PCP consists of two non-empty finite alphabets
T and X, and two homomorphisms «, 5 : T* — X*. We call the letters of T indices, and the words
of T* index sequences. A solution of such an instance is a non-empty index sequence w of TT,
such that a(w) = p(w). The PCP means to decide, whether a given instance of a PCP has a
solution or not. It is well known that the PCP is undecidable unless we restrict ¥ to singletons.
The proof of the following theorem originates from PosT in 1946 [29], you find it in teaching books
concerning theoretical computer science, e.g., [17].

Theorem 3.1 There is no algorithm which decides whether an instance of the PCP has a solution
or not. a

10 3. A TRICKY LANGUAGE

If the word w is a solution, for every natural number n > 1, the word w”™ is also a solution.
Hence, an instance of the PCP has either not any solution or infinitely many solutions. We can
freely assume, that o and § are non-erasing homomorphisms. This restriction of the PCP is
also undecidable. For instance, the proof of Theorem 3.1 above in [17] implies that the PCP is
undecidable if both morphisms are non-erasing.

3.1 Definition of IR and IP

Now, we formally define the languages IR and IP. During this subsection, we assume an instance
of the PCP, i.e., we assume two non-empty finite alphabets T and ¥ and two homomorphisms
a,f: T — ¥*. As mentioned, we assume that for every index ¢ in T, both a(¢) and 5(¢) yield
non-empty words. We denote the number of letters of T by k, such that we can treat T as
{i1,...,ig}. We call this instance the underlying PCP instance.

We enrich the alphabet T by nine new letters, we set I' := {iy,...,ix,a1,...,2a9}, while we
assume that the letters aq,...,a9 do not belong to 3. For every natural numbers m and n with
1<m<n<9, we abbreviate the word a,a,41...2, by a,.,m, €.8., We write ag.5 instead of agaas.

Later, we will need a function v : T* — I to “code” index sequences. We set y(\) := aj.g
and for every w € T* and every ¢ € T, we set y(wi) := y(w)ias.g. For instance, we have
v(ielz) = a1.g9ie a1.9iz a1.9. Obviously, v is not a homomorphism.

We define a language IR in the trace monoid (g:) The homomorphisms a and 3 do not influence
this language, but the alphabets I' and > are important.

Definition 3.2 ¥(T+)
The language IR C (g*) is defined by IR := (o=) .

Soon, we will prove that IR is a recognizable language. We denote the complement of IR by IR,
ie, R := (g:) \ IR. Consequently, IR yields the language (F*\%(*Yﬂ). We define a language IP.
The definition is more complex, the morphisms « and 8 play a crucial role. I recommend to read
the definition just briefly, now, and to study the details when we apply the definition.

Definition 3.3 The language P C (*) is defined as the union of the following sets:

=)t e UfGES)) e {()
e {0)) i) e ()

as.9) al.3 4.9) al.3
gl)
ZLEJT 2@ {a(i)} zg IEIO]
al.9 1 al.4 P . as.9 1 al.4 P o as.9
s>]a (i) S pea yila(@)] 33 A
al.9 1 al.5 P . ag..9 1 al.5 P o ag..9
T<IB()] 42 pea 0] 43 A

3.2 Properties of R, IP and IP* 11

w5 g} e {(0)

ar7.9) al.7 ag..9) al.7
Pw:ig{(zWM\wu»)} P“:Zg{(SIE0])}

al.9) al.8 ag) al.8 ag
ro L)) =GR e ()
LGJY 5> [6()] LEJT $15()] A

This is a neat little rip. We call the sets IPy,...,IPs3 the parts of IP. As the very first
observation, we remark that the parts of IP are mutually disjoint by examining the first components

a

of the traces.

3.2 Properties of IR, IP and P~

The first important property of IR, IR and IP is recognizability. We further need effective construc-
tions of automata for IR, IR and IP based on the underlying PCP instance.

Lemma 3.4 The languages IR, IR and IP are recognizable. Moreover, there are algorithms which
construct for every instance of the PCP three (g*)—automata for R, R and IP, respectively. a

Proof: We start with the automaton for IR. The language v(YT) in the free monoid I'* is defined
by the rational expression (aj.9Y)Taj.g. By Theorem 2.11, we can construct a ['*-automaton for
v(TT). We can also construct a X*-automaton for X*. By Theorem 2.10, we can use these automata
to construct a (gi)—automaton for IR. Based on this automaton for IR, we obtain a (g:)—automaton
for IR by Theorem 2.7.

Now, we show the construction of an (gi)—automaton for IP. Due to the closure under union

(Theorem 2.7), we only need to show constructions of (g:)—automata for each part of IP. We proceed
it for IP3 ;. This set is the union of & Cartesian Products. We use Theorem 2.10, we only need
to construct for each index 7 in T a I™-automaton for the singleton language {aj.giaj.4} and a
Y* automaton for 2>12GI We regard aj.gtaj.q and Y>35 two rational expressions over the
free monoids I'* resp. ¥*, and by Theorem 2.11, we can construct automata for {a;.gia;.4} and
2>1e@l After we constructed these automata for every index i in T, we use Theorem 2.10 to
construct a (gi)—automaton for IP3 ;. The construction of automata for the other parts of IP is
similar but simpler. Based on automata for the parts of IP, we use Theorem 2.7 to construct an
automaton for IP. a

Now, we can go over to examine the iteration of IP. We are mainly interested in traces in IP*
whose first compound is a word from (Y 7).

Lemma 3.5 For every w in T1, we have the following assertions (1) and (2). If w is not a solution
of the underlying PCP instance, we further have assertion (3).

w (gl e e (Gl e o () er :
2 {a(w) S (o) o

12 3. A TRICKY LANGUAGE

At this point, we somehow firmly feel that something very unpleasant will happen in the case that
w is a solution of the underlying PCP instance.

Proof: At first, we prove assertion (1). We assume a non-empty word w of indices from T, and we
assume further a word w from ¥*, such that u # a(w). We have to show that (7(;“”)) belongs to IP™.
We will branch into three cases, depending on whether |u| < |a(w)|, |u| = |a(w)| or |u| > |a(w)].
We denote by n the length of |w|, such that we can treat w as j; ... J, for someindices jy,...,j, € T.
Consequently, a(w) equals the composite a(j1)...a(j,).

o Case 1: |u| < |a(w)]
We defactorize w into n words uq,...,u,. Because u is shorter than a(w), we can choose
the words uq,...,u, in a way that |uq| <|a(j1)|, and for every [with 2 <1 < n, we have
|ur| <|e(71)]. At this point, we need the assumption that a(j1) does not yield the empty word
to ensure the existence of a properly shorter word uy. We show traces #41,...,%¢,41 € IP such
that ¢y ...1,41 = (7(;“”)). We define t1, t,,41 and for every [with 2 <[< n the trace ¢; in the
following way:

ai.9 J1 a1 ag.g Jray a2.9
11 := i = tht1 =
U1 Uy A

We see that #q,...,%,41 belong to IP, namely to IPy 1, IP; 5 and IP; 3. It is a straightforward
verification that ty ...t, 4 yields the required (7(;“”)).

o Case 2: |u| = |a(w)]
We still remember the assumption v # a(w) from the beginning of the proof. Because u has
the same length as a(w), we can defactorize u into words uq, ..., u, such that for every [with
1 <1< n, wehave |u;| = |a(j;)|. Because u # a(w), we know there is some z with 1 < z < n,
such that u. # a(j,). Until this case is finished, we assume [and m as all-quantified numbers
with0 <l < z<m < (n+41). Weshow traces ty, ..., 41 € IP,such that tg...t,41 = (7(7“”)):

U

al.2 as.9 j[al.2 as.9]z al.3 4.9]m al.3 4.9
to:= t = t,:= L 1= tht1:=

We see that tg,...,1,41 belong to IP, namely to IPy;,...,IP2 5. As in the previous case, we

easily it verify that ¢g...1,11 really yields (7(;“”)).

o Case 3: |u| > |a(w)]
We perform this as we performed the previous two cases. We defactorize u into n words
U, ..., Uy, such that uy is properly longer than a(j1), and we further have for every [with
2 <1< n,aword u; with the same length as a(j;). As we did in the previous two cases, we
choose suitable traces t1,...,%,41, but this time, we choose them from IP3;, IP3, and IP3 3.

Now, we have completed the proof of assertion (1). We can prove assertion (2) in the same way
using the parts IP41,...,IPg3 of IP. However, I think it is not necessary to proceed it. If w is not a
solution of the underlying PCP instance, we know that a(w) # B(w), and consequently, assertion
(1) and (2) together imply assertion (3).]

We state the following corollary as an obvious conclusion from Lemma 3.5.

Corollary 3.6 If the underlying PCP instance has no solution, we have IR C IP*. a

3.2 Properties of R, IP and IP* 13

Well, we made half of the way. We need some kind of opposite to Lemma 3.5 and Corollary 3.6.
We show that some traces in IR do not belong to IP* if the underlying PCP has a solution. Together
with Corollary 3.6, we obtain a strong tool, which will allow us to proceed straightforward proofs
of the main goals of this paper.

Lemma 3.7 Assume any word w in TT.
If w is a solution of the underlying PCP instance, we have (

V(w;) ¢ P,]

alw

You should recognize that we can replace a(w) by f(w).
Proof: We perform an indirect proof. We assume a word w from T% such that a(w) = S(w).

We assume that the trace Qy((qi;))) belongs to IP*, and show a contradiction. If Qy((qi;))) belongs to IP*,

then there are a natural number n and traces t,...,t, in IP such that ¢, ...t, yields Qy((qi;))) Because
w is non-empty, we know that n > 1. Because there is not any trace in IP whose first compound
is v(w), we see that n > 2. For every natural number [with 1 <[< n, we denote the components
of t; by v; and uy, i.e., t; = ().

uy

For every [with 1 < [< n, the word »; contains at most one index from T (cf. Def. 3.3).
By ji, we denote the restriction of v; to indices from T, i.e., we get j; by removing all letters
ag,...,ag from v;. Obviously, for every [with 1 <[< n, the word j; is the empty word or a single
letter. We further see that the composite j; ...j; yields w.

For every [with 1 <[< n, we have v; # A (cf. Def. 3.3). We further have vy ...v, = y(w).
Hence, the first letter of the word vy is the letter aj. Thus, the trace t; belongs to exactly one of
the sets IPy 1, P21, P31, P45, IP5; or IPg ;. We branch into these six cases.

o Case 1: t; €IPy
We examine the traces ty,...,%,. The trace ¢, cannot belong to IP; 5, because v, has to end
with the letter ag. Hence, there is at least one trace among t5,...,t,, which does not belong
to IPy 2. We see that there is a natural number z with 1 < z < n such that firstly ¢, € IP o,
and further, for every [with 1 <! < z we have ¢; € IPy .

We examine the trace ¢.. Its predecessor, the trace ¢,_; is the trace ¢; or a trace from IP 5.
Hence, the last letter of v,_4 is the letter a;, and consequently, v, has to start with the
letter ag. This implies that ¢, has to belong to IPy 5 or IPy 3, but we have chosen z in a way
that ¢, does not belong to IP; ;. Therefore, ¢, belongs to IPy 3, i.e., Z, is the trace (aag’)

The trace t, must be the last trace in the factorization, because v, ends with the letter ag,
such that a subsequent trace ¢,41 had to have a first compound v.4q starting with an index
from T, and such traces do not belong to any part of IP. Consequently, we have z = n.

To sum up, the factorization ¢,...,%¢, starts with a trace ¢; from IP; ;, it ends with the
trace t, = (33'9) and the traces t3,...,1,—1 belong to IP; 5. We examine the words ji,..., ju:
Except j, which is empty, these words are single indices, such that w is the composite
J1---Jn—1- Now, we compare a(w) to the composite of the second components of #1,...,%,,
i.e., we compare a(ji)...a(jn-1) to uy...u,. We defined IPy; and 1Py, in a such a way
that uy is properly shorter than a(j1), and for every [with 1<l <n, we have |u;| < |a(ji)|.
Further, u,, is the empty word A. Consequently, the composite u; ...u, is properly shorter

than a(j1)...a(ju-1), i-e., U1 ...u, is properly shorter than a(w).

To sum up this case, we have shown that if ¢1,...,t, is a sequence of traces from IP, the trace
t1 belongs to 1Py 1, and the composite of their first components vy ..., yields y(w), then

the composite ty...t, cannot yield the trace (Z((Z)))v because the composite of the second

components uj . ..uy, is properly shorter than a(w).

14 3. A TRICKY LANGUAGE

o Case2: 13 € Py,
Our beginning is quite similar to Case 1. Py is a singleton such that ¢; is the trace (*\2).
We examine the traces ty,...,%,. The trace ¢, cannot belong to IP; 5, because v, has to end
with the letter ag. Hence, there is at least one trace among t5,...,t,, which does not belong
to IPy 5. We see, there is a natural number z with 1 < z<n, such that firstly ¢. ¢ IP, and
secondly, for every [with 1</<z, we have #; € 1Py .

We examine the trace t,. The last letter of v,_q is the letter as. Then, the first compound
of ¢, has to start with ag, but, ¢, does not belong to IP; 5. Consequently, ¢. belongs to IP; 3.
We also see that ¢, is not the last trace in the factorization, i.e., z is properly smaller than n.

We examine the traces ¢.41,...,t,. The trace t,, cannot belong to IP; 4. Hence, there is a
number z, such that ¢, is the leftmost trace in ¢,41,...,¢,, which does not belong to IP; 4.

We see that ¢, has to belong to IP; 5, which implies that ¢, is the trace (3‘39) Then, ¢, has

to be the last trace in the factorization t4,...,%,, i.e., x = n.

To sum up, there is a z with 1 < z < n, such that the factorization ¢1,...,t, consists of the
trace (alA"?), some traces ta,...,1,_1 from IP; o, a trace ¢, from IP; 3, some traces t,41,...,t—1
from IP; 4 and the trace (33'9) at the end. We examine the words jq,...,J,: Except j; and j,

which are empty, these words are single indices, such that w is the composite jo...7,-1. Now,
we compare a(w) to the composite of the second components of #1,...,%,, i.e., we compare
a(jo. . Jn—1) to ug...uy_1. We defined IP; 5, IPy 3 and Py 4 in a such a way that for each {
with 1 < < n, the words a(j;) and u; have the same length. Further, we defined IP; 5 such
that we have a(j,) # u.. Consequently, the composite uj ...u, is not the word a(w).

To sum up this case, we have shown that if t1,...,t, is a sequence of traces from IP, the trace
t1 belongs to P35, and the composite of their first components vy ..., yields y(w), then

the composite ty...t, cannot yield the trace (Z((Z)))v because the composite of the second

components uj . ..uy, is different from a(w).

o Case3: 1, €IP3;
We can show the contradiction exactly as we dealt Case 1. We obtain that the composite
Uy . ..Uy, is properly longer than a(w).

e Case 4,5 and 6:
The contradictions are straightforward adaptations of the methods we used to show contra-
dictions in the first three cases. In every case we find out that the composite uy...u, is
different from [(w). Because we assumed w as a solution of the underlying PCP, we have
B(w) = a(w), such that uy ...u, is different from a(w).

Finally, each case yields a contradiction such that traces tq,...,%, from IP whose composition yields
(W(w)) do not exist. Consequently, this trace does not belong to IP*. a
a(w)

Now, we have a method to define languages IR and IP from a PCP instance. Further, we know
by Corollary 3.6 and Lemma 3.7 two strong assertions about the connections of properties of
IP* and the existence of solutions of the underlying PCP instance. Unfortunately, we do not have
connections between recognizability of IP* and the existence of a solution of the underlying instance

of the PCP.

15

4 Main Results

Now, we are able to prove the following theorem.

Theorem 4.1 The following five assertions are equivalent

(1)

(2)

(3) RUIP™ = (5)
(4) R U IP* is recognizable.

(5) IR N IP* is recognizable. 0
Proof: This is mainly a summary of results from the previous section.

e (1)—(2) This is just Corollary 3.6.

(2)—(1) If the underlying PCP instance has a solution w, then QEZ;) does not belong to IP*
by Lemma 3.7, but it belongs to IR by Definition 3.2.

2)«<(3) holds obviously.
3)—(4) holds obviously, because (g:) is recognizable.
)= (5)

2)—(5) R NIP* yields IR, which is recognizable due to Lemma 3.4.

(
(
(
(

4)—(1) Assume the underlying PCP instance has a solution w, but the language IR U IP*

is recognizable, i.e., there is a (g*)—automaton A = [Q,h, F] for R UIP*. For every n > 1,
the words w™ are mutually different solutions of the underlying PCP instance. We examine

the values of the homomorphism A on the traces (7(3"”)). Because () is finite, there are two
different natural numbers m >1 and n>1, such that h(W(;"n)) = h(W(qﬁm)). We get the values

of h on (zgzzg) and (1((7“;7:))) by defactorizations: We see that h(zy((zuuzg) = h(”“;n))h(a(jun)) and

h(l(wm)) = h(W(qﬁm))h(a(in)), which yields the same. Hence, either both or none of the traces

wm)
(zy((zuuzg) and (1((7“;7:))) belong to IR U IP*. But, on one hand, (Z((Zz))) does not belong to IR and
it does not belong to IP* by Lemma 3.7. On the other hand, we have a(w") # a(w™), such

that assertion (1) of Lemma 3.5 implies that (1((?07:))) belongs to IP*.

¢ (5)—(1) Now, assume again the underlying PCP instance has a solution w, but, IR N IP* is

recognizable. As in the previous point, we show that there are two different natural numbers

m >1 and n > 1, such that either both or none of the traces (zgzzg) and (1((7“;7:))) belong to

R NIP*. But, Qy((?jz))) does not belong IP* (Lemma 3.7), while (1((7“:;:))) belongs to both IR and

IP* because of Definition 3.2 and assertion (1) of Lemma 3.5, respectively. a

We generalize these results to trace monoids which contain a C4-submonoid. We perform this in
two steps.

16 4. MAIN RESULTS

Corollary 4.2 There is no algorithm, whose input are two alphabets ¥; and Y,, and further two
o7

@}t)—automata for languages K and L of (E*) which decides one of the following properties:
2 2

(1) K C I*

e S E*
(2) KuL* = (Egﬂ)

e % E*
(3) KUL" € REC(g})
- * =y
(4) KnL* € REC(Eé) m

Proof: This is a straightforward conclusion from Theorem 4.1 and the undecidability of the PCP.
Provided an algorithm which decides one of the properties, we could construct an algorithm deciding
the PCP. For instance, assume an algorithm to decide universality (2). Then, we have the following
algorithm to decide the PCP: It has two alphabets and two morphisms as input, it constructs
automata for IR and IP as described in the proof of Lemma 3.4. After that, it uses the assumed
algorithm to decide universality. By Theorem 4.1, it deduces whether the PCP instance has a
solution or not. a

It is not really satisfying, because the alphabets ¥; and Y, are not restricted to doubletons.
We should boil down Corollary 4.2 to C4 and generalize it to all trace monoids with a C4-submonoid.

Theorem 4.3 Assume an independence alphabet (X, 1) which contains a C4-subalphabet. There
is no algorithm, whose input are two IM(X, I')-automata for languages K and L of IM(X, I) which
decides one of the following properties:

(1) KCL*

(2) KUL*=M(%,T)

(3) KUL* € RECM(X, 1)

(4) KnL* € RECIM(X,1)]

Proof: We assume a monoid IM(X, /) with a C4-submonoid. We show that an algorithm which
decides one of the properties in IM(X, I) can be used to decide the same property in Cartesian
Products of free monoids over arbitrary alphabets, which contradicts Corollary 4.2. We deal with
some preliminaries before we prove the assertions. Assume two alphabets ¥ and 5. We can fix

a canonical code h : @i) — C4 as in Definition 2.15. Let ¢ be the identity from C4 to IM(X,]).
2

Consequently, the composition g(h(-)) is an injective homomorphism from @i) to IM(X, I). Due to
2
Theorem 2.9 and 2.16, some language 7" in @i) is recognizable iff h(T') is recognizable in IM(X, I).
2
Moreover, given a (gi)—automaton for T', we can construct an IM(X, I)-automaton for (7).
2

e (1) Assume there is an algorithm deciding this property in IM(X,). Then, we can decide

property (1) in @}t) as follows: We have two alphabets ¥; and X, and two @i)—automata
2 2
for languages K and L. We fix a canonical morphism h and construct IM(X, /)-automata for

h(K) and h(L). We have K C L* iff h(K) C h(L)*. We can decide the latter condition by

the assumed algorithm.

17

¢ (3) The language K U L* is a recognizable language in @g) iff A(K U L*) it is a recognizable

language in IM(X, I). We have h(K U L*) = h(K)U h(L)*.

Therefore, we can use an algorithm to decide (3) in IM(X,) to decide (3) in (gi;) as follows.
Outgoing from @g)—automata for K and L, we construct IM(X, I)-automata for h(K') and
h(L). Then, we use the assumed algorithm to decide (3) to decide whether A(K)U h(L)* is
recognizable in IM(X, I). The set h(K) U h(L)* is recognizable iff K U L* is recognizable.

o (4) We proceed this exactly as (3).

o (2) We have K C L*iff (IM(X, 1)\ K)UL" yields the complete monoid IM(X,). Consequently,
decidability of (2) would imply decidability of (1). a

5 Additional Results

For the reason of lucidity, I have split the results into two sections. For now, the following results
seem to be less important. But, I surely need them in future papers. Based on results from
Section 3, we can proceed short and easy proofs. However, proving the results in this section in a
seperate paper would cause much more expenditure.

Assume two alphabets X7 and Y. A language T' in @}t) is a Cartesian Product iff there are
2

languages L and R in X7 and X3, resp., such that 7" = (]L%) Consequently, T is a Cartesian Product
iff for every two traces (le) and (:ﬁ;) in T, the trace (:j;) belongs to 7.

In the rest of this section we use the notions from Section 3.

Theorem 5.1 The following three assertions are equivalent
(1) The underlying PCP instance has no solution.
(2) RUIP* is a Cartesian Product.

(3) RN 1IP* is a Cartesian Product. 0

Proof: This is very similar to the proof of Theorem 4.1.

o (1)—(2) Due to Theorem 4.1, R UTP* yields (i) which is a Cartesian Product.
¢ (1)—(3) Due to Theorem 4.1 again, IR is a subset of IP* such that IR NIP* yields IR which is
a Cartesian Product because of Definition 3.2.

e (2)—(1) Assume that the underlying PCP instance has a solution w, and assume that IR UIP*
is a Cartesian Product. The word w? is also a solution of the underlying PCP instance.

2
We see that a(w) # o(w?). Hence, assertion (1) of Lemma 3.5 shows that (*(*)) and (7))

a(w?) a(w)

belong to IP*, and thus to IR U IP*. Because IR U IP* is a Cartesian Product, QE@:};) belongs

also to IR U IP*. However, due to Definition 3.2 and Lemma 3.7, this trace does not belong
to IR UIP*.

e (3)—(1) This is similar to the previous point. Again, assume a solution w of the underlying

PCP instance, and assume that IR NIP* is a Cartesian Product. The traces (J((;Uz)))) and (L(E“Uj)))

belong to IP* by Lemma 3.5 and to IR by Definition 3.2, i.e., they belong to IR N IP*. Because

IRN1IP* is a Cartesian Product, Qy((qi;))) belongs also to IR NIP*, and thus to IP*. However, due

to Lemma 3.7, this trace does not belong to IR N IP~. O

18 6. CONCLUSIONS AND FUTURE GOALS

We proceed similar to the previous section.

Corollary 5.2 There is no algorithm, whose input are two alphabets ¥1 and Y,, and further two
o7

@}t)—automata for languages K and L of (E*) which decides one of the following properties:
2 2

(1) K UL*is a Cartesian Product.

(2) K nL*is a Cartesian Product. 0

Proof: As in the proof of Corollary 4.2, an algorithm which decides one of the properties can be
used to decide the PCP. a

We generalize this Corollary to fixed Cartesian Products over free monoids over alphabets with
at least two letters.

Theorem 5.3 Assume two alphabets 3; and X5, such that each of the alphabets contains at least
two letters. There is no algorithm, whose input are two (gi)—automata for languages K and L of
2

@i) which decides one of the following properties:
2

(1) K UL*is a Cartesian Product.

(2) K nL*is a Cartesian Product. 0

Proof: At first, we show assertion (1). We assume there are two alphabets ¥; and Xy which are at
b
b

which decides (1) in Corollary 5.2, which is a contradiction.
The algorithm to decide (1) in Corollary 5.2 has two alphabets I'y and I'z, and further two

(%)—automata for languages K and L as input. We “code” the problem to @i’:) This monoid has

least doubletons and an algorithm which decides (1) in (i,:) Then, we can construct an algorithm
2

a C4-submonoid. Hence, we fix a canonical code h from (11:;,:) to C4 as in Definition 2.15. We can
2
regard h as a morphism from (ll:i,:) to @}t) The morphism A is injective. Hence, a language 7" in (ll:i,:)
2 2 2
is a Cartesian Product iff 4(7') is a Cartesian Product. Consequently, K'UL* is a Cartesian Product
iff (K U L*) is a Cartesian Product. Because h is injective, we have h(K U L*) = h(K)U h(L)*.
Then, we can decide whether K U L* is a Cartesian Product by constructing @i)—automata
2

for h(K') and h(L) (Theorem 2.16 and 2.9) and using the assumed algorithm to decide whether
h(K)U h(L)* is a Cartesian Product. The language A(K)Uh(L)* is a Cartesian Product iff KU L*
is a Cartesian Product.

We can show undecidability of (2) in exactly the same way. a

6 Conclusions and Future Goals

Now, we continue the discussion we have cut at the end of subsection 2.5. Let us discuss about
Theorem 4.3. Opposed to the undecidability of property (1), we can decide whether it holds K* C L.
Given automata for K and L, we can construct a rational expression k for K by Theorem 2.12,
and then, we check whether we have L(k*) C L by Theorem 2.14.

I consider the undecidability of universality of K U L* as the most strange assertion of Theo-
rem 4.3. Given an automaton for some language L in some trace monoid IM(X,), we can trivially
decide whether L* yields the complete trace monoid: we have simply to check whether every letter
of ¥ occurs as a one letter trace in L. But, given two automata for languages K and L in a trace
monoid IM(X, I') which contains a C4, we cannot decide whether K U L* yields the complete monoid
IM(X, 1), i.e., we cannot decide whether the traces missing in L* are covered by K.

19

Let us review assertion (3) of Theorem 4.3. The problem to decide whether K'UL* is recognizable
is somehow between the recognizability problem and the star problem. Firstly, we can regard
assertion (3) as a special case of the recognizability problem. Given two rational expressions k and
[, can we decide whether the language of the rational expression k U [* is recognizable if we can
presume recognizability of L(k) and L({)? Secondly, we can regard the star problem as a special
case of the problem to decide whether K U L* is recognizable, namely if K is the empty set.

However, we should not regard the problem to decide recognizability of K U L* just as a slightly
modified star problem. From assertion (2) of Theorem 4.3 we conclude the following statement:
If we have three automata for languages K, L and M, we cannot decide whether K U L* equals M
if the underlying trace monoid contains a C4-submonoid. Opposed to this statement, we have the
following assertion for every trace monoid [8]: If we have two automata for languages L and M,
we can decide whether L* equals M. Consequently, we should regard the problem to decide
recognizability of K U L* as a more difficult problem than the star problem.

Are the properties (1) to (4) in Theorem 4.3 decidable in trace monoids which do not contain
a C4-submonoid? In free monoids, (3) and (4) are always true, while (1) and (2) are decidable due
to classical results in automata theory. The properties (1) to (4) remain decidable in trace monoids
without a P3-submonoid. Remember, we have Theorem 2.17 for these monoids. Assume a monoid
IM(X, I) without a P3-submonoid. Given two automata for languages K and L, we can construct
rational expressions k and [for K and L by Theorem 2.12. We can decide (1) in the following way:
we construct an automaton for IM(X, /) \ K by Theorem 2.7, and we construct from [a rational
expression for IM(X,)\ L* by Theorem 2.17. Then, we can decide K" C L* by deciding whether
the complement of L* is a subset of the complement of K by Theorem 2.14.

We can decide whether K U L* yields the complete monoid IM(X, I') by constructing a rational
expression 7 for the complement of K'UL* and checking whether L(r) yields the empty set. We check
this by checking L(r) C @ using Theorem 2.14.

We can decide properties (3) and (4) by constructing two rational expressions for K U L*
and K N L*, resp., and using Theorem 2.17 to decide whether these rational expressions define
recognizable languages.

I do not see straightforward proofs to determine decidability or undecidability of the properties
(1) to (4) in P3. However, it should be possible to determine it by using techniques from [13].

We sum up the results in the following table:

Kcrr
(KuL*) =M L(r)y=IM

(KUL*) €REC(IM) | 7y ¢ REC(IM)
(KN L*) € REC(IM)

L(r)C L | L* € REC(M)

E* D KLEENE [19] D KLEENE [19] D KLEENE [19] D KLEENE [19]
no P3—sub. D Mezer Wricar [26] D saxaroviren [33] D SAKAROVITCH [32, 33] D SAKAROVITCH [32, 33]
P3 D Mezer Wricar [26] D Gustiv and a1 [13] ? U IBARRA [18, 33]
no C4—sub. D Mezer Wricar [26] D Ricromme [30, 31] ? U IBARRA [18, 33]
C4 D Mezer Wricar [26] ? U present paper U FI1scHER ROSENBERG [11, 2]

The first line contains some decisions problems, while we substitute IM by the monoids in the
left column. The letters D and U abbreviate decidable and undecidable, respectively. K and
L are recognizable languages for which we assume automata, while r is a rational expression.
The decidability of L(r) C L is due to Theorem 2.14. I tend to credit this to MEZEI and WRIGHT.
We see the already mentioned two dimensional hierarchy of difficulties. The decision problems
become harder from the left to the right. The monoids become more difficult from the first line
down to the last line.

20 REFERENCES

We should concern the following open questions: The most interesting questions are still the
star problem and the FPPP for these trace monoids which contain a C4-submonoid. If one of
the properties (3) or (4) would be decidable in C4, the star problem would obviously be decidable
in C4. However, we cannot trivially generalize undecidability of (3) and (4) to the star problem.
I think, it is less hopeful to search for an extension or adaptation of the ideas in this paper to
obtain a proof for the undecidability of the star problem in C4.

There are further some questions of minor interest. Which properties in Theorem 4.3 are
undecidable in P3, and further, in trace monoids containing a P3, but no C47?

We developed the ideas in this paper using infinite languages IR and IP. Which properties
in Theorem 4.3 become decidable if we additionally assume finiteness of K or L? For instance,
if we demand that K is finite, properties (1) and (4) are decidable. Further, I think (2) is also
decidable as long as K is finite. Property (3) with the restriction K = () is exactly the star
problem. RICHOMME remarked that property (3) restricted to finite sets K is decidable iff the star
problem is decidable, because for finite sets K, we have K U L* is recognizable iff L* is recognizable.
The examination of property (3) in the case that both K and L are finite languages leads to the
star problem for finite languages, which is open for languages containing more than four traces.

7 Acknowledgments

I acknowledge the discussions with my supervisor HEIKO VOGLER as well as with MANFRED
DrosTE and DIETRICH KUSKE from the Institute of Algebra. I thank to GWENAEL RICHOMME
for reading a preliminary version of this paper and making helpful remarks.

References

[1] I. J. Aalbersberg and E. Welzl. Trace languages defined by recognizable string languages. R.A.LR.O. - Infor-
matique Théorique et Applications, 20:103-119, 1986.

J. Berstel. Transductions and Contez-Free Languages. B. G. Teubner, Stuttgart, 1979.

— —
[)
[t R ket

A. Bertoni, G. Mauri, and N. Sabadini. Unambiguous regular trace languages. In G. Demetrovics et al., editors,
Proceedings of the Coll. on Algebra, Combinatorics and Logic tn Computer Science, volume 42 of Colloquia
Mathematica Soc. J. Bolyai, pages 113-123. North Holland, Amsterdam, 1985.

[4] P. Cartier and D. Foata. Problémes combinatoires de commutation et réarrangements, volume 85 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1969.

[5] M. Clerbout and M. Latteux. Semi-commutations. Information and Computation, 73:59-74, 1987.

[6] B. Courcelle. Basic notions of universal algebra for language theory and graph grammars. Theoretical Computer
Science, 163:1-54, 1996.

[7] V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science. Springer-Verlag, Berlin
Heidelberg New York, 1990.

[8] V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, Vol. 3, Beyond Words, pages 457-534. Springer-Verlag, Berlin Heidelberg, 1997.

9 . Diekert an . Rozenberg, editors. e Book of Traces. Wor cientific, Singapore, 1995.
V. Diek d G. R b di The Book of Ti World Scientific, Si
[10] S. Eilenberg. Automata, Languages, and Machines, Volume A. Academic Press, New York, 1974.

[11] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata. Journal of Computer and System
Sciences, 2:88-101, 1968.

[12] M. Fliess. Matrices de hankel. J. Math. Pures et Appl., 53:197-224, 1974.

[13] P. Gastin, E. Ochmanski, A. Petit, and B. Rozoy. Decidability of the star problem in A* x {b}*. Information
Processing Letters, 44:65-71, 1992.

[14] S. Ginsburg and E. Spanier. Bounded regular sets. In Proceedings of the AMS, volume 17:5, pages 1043-1049,
1966.

[15] S. Ginsburg and E. Spanier. Semigroups, presburger formulas and languages. Pacific Journal of Mathematics,
16:285-296, 1966.

REFERENCES 21

[16]

[35]

K. Hashiguchi. A decision procedure for the order of regular events. Theoretical Computer Science, 8:69-72,
1979.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Language, and Computation. Addison-
Wesley, Reading, 1979.

O. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM, 25:1:116—
133, 1978.

S. C. Kleene. Representation of events in nerve nets and finite automata. In C. Shannon and J. McCarthy,
editors, Automata Studies, Annals of Math. Studies 34, pages 3—40. Princeton, New Jersey, 1956.

A. Mazurkiewicz. Introduction to trace theory. Chapter 1 in [9], pages 3-41.

A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University,
1977.

J. D. McKnight. Kleene quotient theorem. Pacific Journal of Mathematics, 14:1343-1352, 1964.

Y. Métivier. Une condition suffisante de reconnaissabilité dans un monoide partiellement commutatif. R.A.I.R.O.
- Informatique Théorique et Applications, 20:121-127, 1986.

Y. Métivier and G. Richomme. On the star operation and the finite power property in free partially commutative
monoids. In Patrice Enjalbert et al., editors, STACS’94 Proceedings, volume 775 of Lecture Notes in Computer
Science, pages 341-352. Springer-Verlag, Berlin, 1994.

Y. Métivier and G. Richomme. New results on the star problem in trace monoids. Information and Computation,
119(2):240-251, 1995.

J. Mezei and J. B. Wright. Algebraic automata and context-free sets. Information and Control, 11:3-29, 1967.
E. Ochmarski. Recognizable trace languages. Chapter 6 in [9], pages 167-204.

E. Ochmanski. Regular Trace Languages (in Polish). PhD thesis, Warszawa, 1984.

E. Post. A variant of a recursively unsolvable problem. Bulletin of Amer. Math. Soc., 52:264-268, 1946.

G. Richomme. Some trace monoids where both the star problem and the finite power property problem are
decidable. Internal report 755-93, LaBRI - Université Bordeaux I, 1993.

G. Richomme. Some trace monoids where both the star problem and the finite power property problem are
decidable. In I. Privara et al., editors, MFCS5’94 Proceedings, volume 841 of Lecture Notes in Computer Science,
pages 577-586. Springer-Verlag, Berlin, 1994.

J. Sakarovitch. On regular trace languages. Theoretical Computer Science, 52:59-75, 1987.

J. Sakarovitch. The “last” decision problem for rational trace languages. In I. Simon, editor, Proceedings of
the 1st Latin American Symposium on Theoretical Computer Science, volume 583 of Lecture Notes in Computer
Science, pages 460-473. Springer-Verlag, Berlin Heidelberg New York, 1992.

I. Simon. Limited subsets of a free monoid. In Proceedings of the 19th IFEF Annual Symposium on Foundations
of Computer Science, pages 143—-150. North Carolina Press, 1978.

S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Vol. 1,
Word, Language, Grammar, pages 41-110. Springer-Verlag, Berlin Heidelberg, 1997.

