274 research outputs found

    User study on 3D multitouch interaction (3DMi) and gaze on surface computing

    Get PDF
    On a multitouch table, user’s interactions with 3D virtual representations of real objects should be influenced by task and their perceived physical characteristics. This article explores the development and user study of an interactive 3D application that allows users to explore virtual heritage objects on a surface device. To-date, most multitouch has focused on 2D or 2.5D systems. A user-study is reported where we analyse their multimodal behaviour – specifically how they interact on a surface device with objects that have similar properties to physical versions and the users’ associated gaze patterns with touch. The study reveals that gaze characteristics are different according to their interaction intention in terms of position and duration of visual attention. We discovered that virtual objects afford the perception of haptic attributes ascribed to their equivalent physical objects, and that differences in the summary statistics of gaze showed consistent characteristics between people and differences between natural and task based activities. An awareness of user behaviours using natural gestures can inform the design of interactive 3D applications which complements the user’s model of past experience with physical objects and with GUI interaction

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Cyber-Archaeology: Notes on the simulation of the past

    Full text link
    [EN] Thirteen years after the book “Virtual Archaeology” (Forte, 1996, 97) it is time to re-discuss the definition, the key concepts and some new trends and applications. The paper discusses the introduction of the term “cyber-archaeology” in relation with the simulation process deriving from the inter-connected and multivocal feedback between users/actors and virtual ecosystems. In this new context of cyber worlds, it is more appropriate to talk about simulation of the past rather than reconstruction of the past. The multivocality of the simulation opens new perspectives in the interpretation process, not imposing the final reconstruction, but suggesting, evocating, simulating multiple output, not “the past” but a potential past. New epistemological models of cyber archaeology have to be investigated: what happens in a immersive environment of virtual archaeology where every user is “embodied” in the cyber space? The ontology of archaeological information, or the cybernetics of archaeology, refers to all the interconnective relationships which the datum produces, the code of transmission, and its transmittability. Because it depends on interrelationships, by its very nature information cannot be neutral with respect to how it is processed and perceived. It follows that the process of knowledge and communication have to be unified and represented by a single vector. 3D information is regarded as the core of the knowledge process, because it creates feedback, then cybernetic difference, among the interactor, the scientist and the ecosystem. It is argued that Virtual Reality (both offline and online) represents a possible ecosystem, which is able to host top-down and bottom-up processes of knowledge and communication. In these terms, the past is generated and coded by “a simulation process”. Thus, from the first phases of data acquisition in the field, the technical methodologies and technologies that we use, influence in a decisive way all the subsequent phases of interpretation and communication. In the light of these considerations, what is the relationship between information and representation? How much information does a digital model contain? What sorts of and how many ontologies ought to be chosen to permit an acceptable transmittability? Indeed, our Archaeological communication ought to be understood as a process of validation of the entire cognitive process of understanding and not as a simple addendum to research, or as a dispensable compendium of data.[ES] Trece años después de la publicación del libro "Arqueología virtual" (Forte, 1996, 97) es el momento de volver a discutir sobre la definición, los conceptos clave y algunas nuevas tendencias y aplicaciones de la arqueología virtual. El presente documento analiza la introducción del término "cyber-arqueología" en relación con el proceso de simulación derivado de la interconexión y la retroalimentación multivocal y entre los usuarios / actores y ecosistemas virtuales. En este nuevo contexto de mundos cibernéticos, es más adecuado hablar de simulación del pasado que de reconstrucción del pasado. La multivocalidad de la simulación abre nuevas perspectivas en el proceso de interpretación, no imponiendo la última reconstrucción, sino sugiriendo, evocando, simulando múltiples resultados, y no "el pasado", sino un potencial pasado. Nuevos modelos epistemológicos de la arqueología cibernética deben ser investigados: Que ocurre en un entorno inmersivo de arqueología virtual cuando cada usuario es "materializado" en el espacio cibernético? La ontología de la información arqueológica, o la cibernética de la arqueología, se refiere a la interconectividad de todas las relaciones que produce el dato, el código de envío, y su transmisibilidad. Porque depende de las interrelaciones, por su propia naturaleza, la información no puede ser neutral con respecto a la forma en que se procesa y percibe. De ello se deduce que el proceso de conocimiento y la comunicación han de ser unificadas y representadas por un único vector. La información 3D se considera como el núcleo del proceso de conocimiento, porque propicia la retroalimentación, entre el usuario, el científico y el ecosistema. Se argumenta que la Realidad Virtual (tanto fuera de línea como en línea) representa un posible ecosistema, que es capaz de ser anfitrión de los procesos de conocimiento y comunicación tanto de arriba a abajo como de abajo a arriba. En estos términos, el pasado se genera y codifica por "un proceso de simulación". Así, desde las primeras fases de adquisición de datos sobre el terreno, las metodologías técnicas así como las tecnologías que usamos, influyen de manera decisiva en todas las fases de interpretación y comunicación. A la luz de estas consideraciones, ¿cuál es la relación entre la información y la representación? ¿Cuánta información quedará incluida en el modelo digital? ¿Qué clase y cuántas ontologías deberían ser elegidas para permitir una transmisibilidad aceptable? De hecho, la comunicación arqueológica debe ser entendida como una fase de validación de todo el proceso cognitivo de comprensión del conocimiento, y no como una simple adición a la investigación, o como un compendio de los datos prescindible.The Virtual Museum of the Ancient Via Flaminia was supported by Arcus spa and managed by CNR-ITABC (scientific direction) and National Roman Museum in RomeForte, M. (2011). Cyber-Archaeology: Notes on the simulation of the past. Virtual Archaeology Review. 2(4):7-18. https://doi.org/10.4995/var.2011.4543OJS71824ANTINUCCI, A., 2004, Comunicare il museo, Laterza, Roma, 2004.BAUDRILLARD J.. 1994, Simulacra and Simulation, Ann Arbor: University of Michigan Press, 1994.BATESON, 1967, "Cybernetic explanation", in SEM, 410.BATESON, 1972, Steps to an Ecology of Mind , San Francisco, Chandler Press.BATESON G., 1979, Mind and Nature. A Necessary Unit, Dutton, New York.BIOCCA F. 1997, The cyborg's dilemma: Progressive embodiment in virtual environments, Journal of Computer-Mediated Communication, vol. 3, n. 2, 1997. http://dx.doi.org/10.1111/j.1083-6101.1997.tb00070.x http://dx.doi.org/10.1109/ct.1997.617676DELEUZE G., GUATTARI, F., 1987, A Thousand Plateaus: Capitalism and Schizophrenia, University of Minnesota Press, 1987FORTE, M. 1997, (ed. by) Virtual Archaeology, (forward by Colin Renfrew) Thames & Hudson Ltd, 1997 (1st edition 1996, Milan).FORTE, M., 2000, About virtual archaeology: disorders, cognitive interactions and virtuality, in Barcelo J., Forte M., Sanders D., 2000 (eds.), Virtual reality in archaeology, Oxford, ArcheoPress (BAR International Series S 843), 247-263.FORTE M., 2003, Mindscape: ecological thinking, cyber-anthropology, and virtual archaeological landscapes, in "The reconstruction of Archaeological Landscapes through Digital Technologies" (eds. M.Forte, P.R.Williams), Proceedings of the 1st Italy-United States Workshop, Boston, Massachussets, USA, November 1-3, 2001, BAR International Series 1151, Oxford, 2002, 95-108.FORTE M., 2005, A Digital "Cyber" Protocol for the Reconstruction of the Archaeological Landscape: Virtual Reality and Mindscapes in Recording, Modeling and Visualization of Cultural Heritage (eds: E.Baltsavias, A.Gruen, L.Van Gool, M.Pateraki) Published by Taylor & Francis / Balkema ISBN 0 415 39208 X, 339-351, 2005.FORTE et alii, 2006; M.Forte, S.Pescarin, E.Pietroni, C.Rufa, 2006, Multiuser interaction in an archaeological landscape: the Flaminia Project, in (M.Forte, S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006, 189-196.FORTE, M, Pescarin, S. Pietroni, E., 2006, Transparency, interaction, communication and open source in Virtual Archaeology, in (M.Forte, S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006 535-540.FORTE, M., 2007, Ecological Cybernetics, Virtual Reality and Virtual Heritage, in "Theorizing Digital Cultural Heritage. A Critical Discourse" (Edited by Fiona Cameron and Sarah Kenderdine), MIT Press, Cambridge, MA, 389-407. http://dx.doi.org/10.7551/mitpress/9780262033534.003.0020FORTE M., 2008 (ed.), La Villa di Livia. Un percorso di ricerca di archeologia virtuale, L'Herma, Rome, 2008.GALLESE, V. 2005, Embodied simulation: From Neurons to Phenomenal Experience, "Phenomenology and the cognitive sciences", 4, 23-48. http://dx.doi.org/10.1007/s11097-005-4737-zGIBSON, J. J., 1999. Un approccio ecologico alla percezione visiva (Il Mulino: Bologna).INGOLD, T., 2000, The perception of the Enviroment. Essays in livelihood, dwelling and skill, London and New York, Routledge. http://dx.doi.org/10.4324/9780203466025KORZYBSKI A., 1941, Science and Sanity, Science Press, New York, 1941.MATURANA, H, Varela, F., 1980, Autopoiesis and Cognition: the Realization of the Living, Boston Studies in the philosophy of science, Cohen, Robert S., And Marx W. Wartofsky (eds.), vol. 42, Dordecht (Holland): D. Reidel Publishing Co., 1980. http://dx.doi.org/10.1007/978-94-009-8947-4MATURANA, H, Varela, F., 1992, The Tree of Knowledge: the Biological Roots of Human Understanding, Boston: Shambhala, 1987, (Revised Edition: same publisher, 1992).MELLET-D'HUART D., 2006, A Model of (En)Action to approach Embodiment: A Cornerstone for the Design of Virtual Environments for Learning, in Win W. & Hedley N., Eds. Journal of Virtual reality, special issue on education. Springer London. Volume 10, Numbers 3-4 / December, 2006. Pp. 253-269. 2006.Morganti, F. Riva, G. 2006, Conoscenza, comunicazione e tecnologia: Aspetti Cognitivi della RV, Milano: LEDPiaget, J. (1980). Adaptation and Intelligence. London: University of Chicago Press.RICHARDSON, A. E., MONTELLO, D. & HEGARTY, M. 1999, Spatial knowledge acquisition from maps, and from navigation in real and virtual environments, in Memory & Cognition, 27, 741-750.SCHROEDER, R., 1997, Networked Worlds: Social Aspects of Multi-User Virtual Reality Technology, Sociological Research Online, vol. 2, no. 4. http://dx.doi.org/10.5153/sro.291TAYLOR, M.C. 2005, Il momento della complessità. L'emergere di una cultura in rete. Codice edizioni: Torino.VARELA et al., 1991, VARELA, F., THOMPSON, E. - ROSCH, E. The Embodied Mind. Cognitive Science and Human Experience, MIT Press, Cambridge, 1991.VARELA F.J., 1999, "Quattro linee guida per il futuro della conoscenza", in Argonauti nella Noosfera. Mente e cuore verso nuovi spazi di comunicazione, Vol. 2, strutture ambientali n.118/dicembre 1999, Atti della XXV ed. delle Giornate internazionali di studio promosse dal Centro Ricerche Pio Manzù.WATZLAWICK, P. (ed.) (1985) The invented reality. New York, Norton.WIENER, N., 1948, Cybernetics, or control and communication in the animal and the machine. Cambridge, Massachusetts: The Technology Press; New York: John Wiley & Sons, Inc., 1948

    Modelling virtual urban environments

    Get PDF
    In this paper, we explore the way in which virtual reality (VR) systems are being broadened to encompass a wide array of virtual worlds, many of which have immediate applicability to understanding urban issues through geocomputation. Wesketch distinctions between immersive, semi-immersive and remote environments in which single and multiple users interact in a variety of ways. We show how suchenvironments might be modelled in terms of ways of navigating within, processes of decision-making which link users to one another, analytic functions that users have to make sense of the environment, and functions through which users can manipulate, change, or design their world. We illustrate these ideas using four exemplars that we have under construction: a multi-user internet GIS for Londonwith extensive links to 3-d, video, text and related media, an exploration of optimal retail location using a semi-immersive visualisation in which experts can explore such problems, a virtual urban world in which remote users as avatars can manipulate urban designs, and an approach to simulating such virtual worlds through morphological modelling based on the digital record of the entire decision-making process through which such worlds are built

    I’m sensing in the rain: spatial incongruity in visual-tactile mid-air stimulation can elicit ownership in VR users

    Get PDF
    Major virtual reality (VR) companies are trying to enhance the sense of immersion in virtual environments by implementing haptic feedback in their systems (e.g., Oculus Touch). It is known that tactile stimulation adds realism to a virtual environment. In addition, when users are not limited by wearing any attachments (e.g., gloves), it is even possible to create more immersive experiences. Mid-air haptic technology provides contactless haptic feedback and offers the potential for creating such immersive VR experiences. However, one of the limitations of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap Motion) to deliver tactile feedback to the user's hand. These tracking systems are not accurate, limiting designers capability of delivering spatially precise tactile stimulation. Here, we investigated an alternative way to convey incongruent visual-tactile stimulation that can be used to create the illusion of a congruent visual-tactile experience, while participants experience the phenomenon of the rubber hand illusion in VR

    Understanding the challenges of immersive technology use in the architecture and construction industry: A systematic review

    Get PDF
    Despite the increasing scholarly attention being given to immersive technology applications in the architecture and construction industry, very few studies have explored the key challenges associated with their usage, with no aggregation of findings or knowledge. To bridge this gap and gain a better understanding of the state-of-the-art immersive technology application in the architecture and construction sector, this study reviews and synthesises the existing research evidence through a systematic review. Based on rigorous inclusion and exclusion criteria, 51 eligible articles published between 2010 and 2019 (inclusive) were selected for the final review. Predicted upon a wide range of scholarly journals, this study develops a generic taxonomy consisting of various dimensions. The results revealed nine (9) critical challenges which were further ranked in the following order: Infrastructure; Algorithm Development; Interoperability; General Health and Safety; Virtual Content Modelling; Cost; Skills Availability; Multi-Sensory Limitations; and Ethical Issues

    I'm sensing in the rain: Spatial incongruity in visual-tactile mid-air stimulation can elicit ownership in VR users

    Get PDF
    Major virtual reality (VR) companies are trying to enhance the sense of immersion in virtual environments by implementing haptic feedback in their systems (e.g., Oculus Touch). It is known that tactile stimulation adds realism to a virtual environment. In addition, when users are not limited by wearing any attachments (e.g., gloves), it is even possible to create more immersive experiences. Mid-air haptic technology provides contactless haptic feedback and offers the potential for creating such immersive VR experiences. However, one of the limitations of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap Motion) to deliver tactile feedback to the user's hand. These tracking systems are not accurate, limiting designers capability of delivering spatially precise tactile stimulation. Here, we investigated an alternative way to convey incongruent visual-tactile stimulation that can be used to create the illusion of a congruent visual-tactile experience, while participants experience the phenomenon of the rubber hand illusion in VR

    3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities

    Get PDF
    Moving from a set of independent virtual worlds to an integrated network of 3D virtual worlds or Metaverse rests on progress in four areas: immersive realism, ubiquity of access and identity, interoperability, and scalability. For each area, the current status and needed developments in order to achieve a functional Metaverse are described. Factors that support the formation of a viable Metaverse, such as institutional and popular interest and ongoing improvements in hardware performance, and factors that constrain the achievement of this goal, including limits in computational methods and unrealized collaboration among virtual world stakeholders and developers, are also considered
    corecore