11,537 research outputs found

    Near-Field Microwave Microscopy of Materials Properties

    Full text link
    Near-field microwave microscopy has created the opportunity for a new class of electrodynamics experiments of materials. Freed from the constraints of traditional microwave optics, experiments can be carried out at high spatial resolution over a broad frequency range. In addition, the measurements can be done quantitatively so that images of microwave materials properties can be created. We review the five major types of near-field microwave microscopes and discuss our own form of microscopy in detail. Quantitative images of microwave sheet resistance, dielectric constant, and dielectric tunability are presented and discussed. Future prospects for near-field measurements of microwave electrodynamic properties are also presented.Comment: 31 pages, 9 figures, lecture given at the 1999 NATO ASI on Microwave Superconductivity Changes suggested by editor, including full reference

    Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities

    Full text link
    We analyze microwave cavity perturbation methods, and show that the technique is an excellent, precision method to study the dynamic magnetic and dielectric response in the GHzGHz frequency range. Using superconducting cavities, we obtain exceptionally high precision and sensitivity for measurements of relative changes. A dynamic electromagnetic susceptibility ζ~(T)=ζ+iζ\tilde{\zeta}(T)=\zeta ^{\prime}+i\zeta ^{\prime \prime} is introduced, which is obtained from the measured parameters: the shift of cavity resonant frequency δf\delta f and quality factor QQ. We focus on the case of a spherical sample placed at the center of a cylindrical cavity resonant in the TE011TE_{011} mode. Depending on the sample characteristics, the magnetic permeability μ~\tilde{\mu}, the dielectric permittivity ϵ~\tilde{\epsilon} and the complex conductivity σ~\tilde{\sigma} can be extracted from ζ~H\tilde{\zeta}_{H}. A full spherical wave analysis of the cavity perturbation is given. This analysis has led to the observation of new phenomena in novel low dimensional materials.Comment: 16 pages, 5 figure

    Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties

    Full text link
    We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field component normal to the slab interface is enhanced near the effective pseudo-Brewster angle, where the effective \epsilon-near-zero condition triggers a non-resonant, impedance-matching phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes that are mediated by the compensation of damping. The presence of these leaky modes then induces further spectral and angular conditions where the local fields are enhanced, thus opening new windows of opportunity for the enhancement of nonlinear optical processes

    Experimental investigation of open-ended microwave oven assisted encapsulation process

    Get PDF
    An open ended microwave oven is presented with improved uniform heating, heating rates and power conversion efficiency. This next generation oven produces more uniform EM fields in the evanescent region forming part of the heating area of the oven. These fields are vital for the rapid and uniform heating of various electromagnetically lossy materials. A fibre optic temperature sensor and an IR pyrometer are used to measure in situ and in real-time the temperature of the curing materials. An automatic computer controlled closed feedback loop measures the temperature in the curing material and drives the microwave components to obtain predetermined curing temperature cycles for efficient curing. Uniform curing of the lossy encapsulants is achieved with this oven with typical cure cycle of 270 seconds with a ramp rate of 1oC/s and a hold period of 2 minutes. Differential scanning calorimeter based measurement for the pulsed microwave based curing of the polymer dielectric indicates a ~ 100% degree of cure

    THz Metamaterial Characterization Using THz-TDS

    Get PDF
    The purpose of this chapter is to familiarize the reader with metamaterials and describe terahertz (THz) spectroscopy within metamaterials research. The introduction provides key background information on metamaterials, describes their history and their unique properties. These properties include negative refraction, backwards phase propagation, and the reversed Doppler Effect. The history and theory of metamaterials are discussed, starting with Veselago’s negative index materials work and Pendry’s publications on physical realization of metamaterials. The next sections cover measurement and analyses of THz metamaterials. THz Time-domain spectroscopy (THz-TDS) will be the key measurement tool used to describe the THz metamaterial measurement process. Sample transmission data from a metamaterial THz-TDS measurement is analyzed to give a better understanding of the different frequency characteristics of metamaterials. The measurement and analysis sections are followed by a section on the fabrication process of metamaterials. After familiarizing the reader with THz metamaterial measurement and fabrication techniques, the final section will provide a review of various methods by which metamaterials are made active and/or tunable. Several novel concepts were demonstrated in recent years to achieve such metamaterials, including photoconductivity, high electron mobility transistor (HEMT), microelectromechanical systems (MEMS), and phase change material (PCM)-based metamaterial structures

    THz Metamaterial Characterization Using THz-TDS

    Get PDF
    The purpose of this chapter is to familiarize the reader with metamaterials and describe terahertz (THz) spectroscopy within metamaterials research. The introduction provides key background information on metamaterials, describes their history and their unique properties. These properties include negative refraction, backwards phase propagation, and the reversed Doppler Effect. The history and theory of metamaterials are discussed, starting with Veselago’s negative index materials work and Pendry’s publications on physical realization of metamaterials. The next sections cover measurement and analyses of THz metamaterials. THz Time-domain spectroscopy (THz-TDS) will be the key measurement tool used to describe the THz metamaterial measurement process. Sample transmission data from a metamaterial THz-TDS measurement is analyzed to give a better understanding of the different frequency characteristics of metamaterials. The measurement and analysis sections are followed by a section on the fabrication process of metamaterials. After familiarizing the reader with THz metamaterial measurement and fabrication techniques, the final section will provide a review of various methods by which metamaterials are made active and/or tunable. Several novel concepts were demonstrated in recent years to achieve such metamaterials, including photoconductivity, high electron mobility transistor (HEMT), microelectromechanical systems (MEMS), and phase change material (PCM)-based metamaterial structures

    Plasmonic Metamaterials: Physical Background and Some Technological Applications

    Get PDF
    New technological frontiers appear every year, and few are as intriguing as the field of plasmonic metamaterials (PMMs). These uniquely designed materials use coherent electron oscillations to accomplish an astonishing array of tasks, and they present diverse opportunities in many scientific fields. This paper consists of an explanation of the scientific background of PMMs and some technological applications of these fascinating materials. The physics section addresses the foundational concepts necessary to understand the operation of PMMs, while the technology section addresses various applications, like precise biological and chemical sensors, cloaking devices for several frequency ranges, nanoscale photovoltaics, experimental optical computing components, and superlenses that can surpass the diffraction limit of conventional optics
    corecore