339 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Performance evaluation of H.264/AVC decoding and visualization using the GPU

    Get PDF
    The coding efficiency of the H.264/AVC standard makes the decoding process computationally demanding. This has limited the availability of cost-effective, high-performance solutions. Modern computers are typically equipped with powerful yet cost-effective Graphics Processing Units (GPUs) to accelerate graphics operations. These GPUs can be addressed by means of a 3-D graphics API such as Microsoft Direct3D or OpenGL, using programmable shaders as generic processing units for vector data. The new CUDA (Compute Unified Device Architecture) platform of NVIDIA provides a straightforward way to address the GPU directly, without the need for a 3-D graphics API in the middle. In CUDA, a compiler generates executable code from C code with specific modifiers that determine the execution model. This paper first presents an own-developed H.264/AVC renderer, which is capable of executing motion compensation (MC), reconstruction, and Color Space Conversion (CSC) entirely on the GPU. To steer the GPU, Direct3D combined with programmable pixel and vertex shaders is used. Next, we also present a GPU-enabled decoder utilizing the new CUDA architecture from NVIDIA. This decoder performs MC, reconstruction, and CSC on the GPU as well. Our results compare both GPU-enabled decoders, as well as a CPU-only decoder in terms of speed, complexity, and CPU requirements. Our measurements show that a significant speedup is possible, relative to a CPU-only solution. As an example, real-time playback of high-definition video (1080p) was achieved with our Direct3D and CUDA-based H.264/AVC renderers

    Joint Algorithm-Architecture Optimization of CABAC

    Get PDF
    This paper uses joint algorithm and architecture design to enable high coding efficiency in conjunction with high processing speed and low area cost. Specifically, it presents several optimizations that can be performed on Context Adaptive Binary Arithmetic Coding (CABAC), a form of entropy coding used in H.264/AVC, to achieve the throughput necessary for real-time low power high definition video coding. The combination of syntax element partitions and interleaved entropy slices, referred to as Massively Parallel CABAC, increases the number of binary symbols that can be processed in a cycle. Subinterval reordering is used to reduce the cycle time required to process each binary symbol. Under common conditions using the JM12.0 software, the Massively Parallel CABAC, increases the bins per cycle by 2.7 to 32.8× at a cost of 0.25 to 6.84% coding loss compared with sequential single slice H.264/AVC CABAC. It also provides a 2× reduction in area cost, and reduces memory bandwidth. Subinterval reordering reduces the critical path delay by 14 to 22%, while modifications to context selection reduces the memory requirement by 67%. This work demonstrates that accounting for implementation cost during video coding algorithms design can enable higher processing speed and reduce hardware cost, while still delivering high coding efficiency in the next generation video coding standard.Texas Instruments Incorporated (Graduate Women's Fellowship for Leadership in Microelectronics)Natural Sciences and Engineering Research Council of Canad

    Foveated Video Streaming for Cloud Gaming

    Full text link
    Good user experience with interactive cloud-based multimedia applications, such as cloud gaming and cloud-based VR, requires low end-to-end latency and large amounts of downstream network bandwidth at the same time. In this paper, we present a foveated video streaming system for cloud gaming. The system adapts video stream quality by adjusting the encoding parameters on the fly to match the player's gaze position. We conduct measurements with a prototype that we developed for a cloud gaming system in conjunction with eye tracker hardware. Evaluation results suggest that such foveated streaming can reduce bandwidth requirements by even more than 50% depending on parametrization of the foveated video coding and that it is feasible from the latency perspective.Comment: Submitted to: IEEE 19th International Workshop on Multimedia Signal Processin
    • 

    corecore