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ABSTRACT

This paper presents a reconfigurable processor designed to
execute user-defined block-matching motion estimation al-
gorithms, and a toolset for the design of such algorithms
and for the configuration of the processor. The toolset en-
ables the exploration of the processor's design space in or-
der to find an optimal configuration depending on the tar-
get application. The use of the toolset to test different con-
figurations for different kinds of video sequences is illus-
trated. Experimental results show the benefits and cost of
certain optimizations in the motion estimation process, and
that fast block-matching search algorithms can outperform
full search algorithms commonly used in hardware imple-
mentations. The usefulness of the toolset in exploring the
configuration space is also shown.

1. INTRODUCTION

Video compression is an integral part of many multimedia
applications, many of which require real-time operation and
a high compression performance. New advanced coding
standards, such as VC-1, AVS and H.264 [1], make use of
advanced techniques to achieve high compression. Previous
work [2] shows that motion estimation is the most expensive
operation in the H.264 encoder, representing up to 90% of
the total complexity. This makes it desirable to have special-
ized hardware for motion estimation.

Full search motion estimation algorithms have gained
popularity in hardware implementations owing to their regu-
larities, which make it possible to implement motion estima-
tion hardware using systolic arrays [3]. Other approaches,
such as the hexagonal search algorithm [4], the unsymmetri-
cal multi-hexagonal (UMH) search algorithm [5], and many
others, do not perform the search on full point regions. The
use of these block matching algorithms can make the esti-
mation process faster by requiring less computations than a
full search. Although the full search algorithm is usually
believed to yield optimal rate distortion performance, it has

The authors gratefully acknowledge the support obtained from the UK
EPSRC under grant number EP/E062164/1.

been shown that a well-designed fast block matching algo-
rithm can provide better rate-distortion performance owing
to its ability to track real motion more accurately [6].

There are various hardware implementations of motion
estimation algorithms. Processors with instruction set ar-
chitectures (ISA) similar to the proposed work, tailored for
block-matching search algorithms, are presented in [7] and
[8]. Xilinx have a motion estimation engine [9] that com-
putes the sum of absolute differences (SAD) for a set of 120
search locations within a 112×128 search window in paral-
lel. None of these cores offer the possibility of matching the
hardware architecture and the search algorithm to optimize
performance as the presented work does.

The motion estimation process can be performed in var-
ious different ways, and it is up to the designer to choose the
strategy. Apart from the search strategy itself, other choices
include whether to use multiple motion vector candidates
in the search, the number of reference frames to which to
compare the macroblocks, whether the macroblocks are split
into partitions, whether to perform sub-pixel interpolation
and search, and whether to include the cost of encoding the
motion vector itself during estimation. Because of the num-
ber of design parameters and their complexity, the design
space can be very large, and exploring this design space
to find design parameters that are optimal can be complex
and ultimately application dependent. A toolset has been
developed for the optimization and generation of configura-
tion data for a high-performance motion estimation proces-
sor. The toolset makes the process of finding the optimal
hardware configuration and software parameters faster. A
cycle-accurate simulator is included, making it possible to
change the parameters and test the configuration in a short
time without requiring hardware access. There is already
similar work on configurable generic processors, like the
Xtensa configurable processor [10] from Tensilica. Design-
ers can choose configuration parameters and generate a cus-
tom processor optimized for their needs. The options in-
clude support for 16× 16-bit multiplication, a floating point
unit, a barrel shifter, and others. Tensilica also provides the
XPRES compiler, a tool for design space exploration.

The paper is organized as follows. Section 2 reviews the
hardware architecture of our configurable motion estimation
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Fig. 1. (a) Base configuration and (b) complex configuration of the motion core.

processor. Section 3 describes the integrated development
environment for the design of motion estimation algorithms.
Section 4 presents the cycle-accurate simulator and how it
can be used to analyse and optimize motion estimation al-
gorithms. Section 5 provides experimental results. Finally,
section 6 draws conclusions.

2. HARDWARE OVERVIEW

The LiquidMotion processor is a reconfigurable application-
specific instruction-set processor (ASIP) developed in our
group. It is designed to execute user-defined block-matching
motion estimation algorithms optimized for hybrid video
codecs such as MPEG-2, MPEG-4, H.264/AVC and Mi-
crosoft VC-1. The core offers scalable performance depen-
dent on the features of the chosen algorithm and the num-
ber and type of execution units implemented. Hardware
configuration can typically be achieved at compile time by
adapting the architecture to the chosen algorithm, and in a
field-programmable gate array (FPGA) implementation, it is
possible to pre-compile a range of hardware bitstreams with
different configurations from which one can be chosen to
match the current video processing requirements. The mi-
croarchitecture can be easily scaled to high definition (HD)
video even when using low cost FPGAs such as the Xilinx
Spartan-3. The ability to program the search algorithm to be
used, and the ability to reconfigure the underlying hardware

that it will execute on, combine to give an extremely flex-
ible video processing platform. A base configuration con-
sisting of a single 64-bit integer pipeline, capable of pro-
cessing a hexagonal motion estimation algorithm, such as
the one implemented in the x264 [11] video encoder, over
a search window of 112 × 128 pixels in real-time for high-
definition video, can be implemented in 2300 logic cells on
a Xilinx FPGA. In contrast, a complex configuration sup-
porting motion vector candidates, sub-blocks, motion vector
costing using Lagrangian optimization, 4 integer-pel execu-
tion units (IPEU) and 1 fractional-pel execution unit (FPEU)
plus sub-pel interpolator execution unit (SPIEU) will need
around 14, 600 logic cells. A simplified diagram compar-
ing these two configurations is shown in Fig. 1. At least 1
IPEU must always be present to generate a valid processor
configuration but the other units are optional, and are config-
ured at compile time. Each execution unit uses a 64-bit wide
word and a deep pipeline to achieve a high throughput. All
the accesses to reference and macroblock memory are done
through 64-bit wide data buses and the SAD engine also op-
erates on 64-bit data in parallel. The memory is organized in
64-bit words and typically all accesses are unaligned, since
they refer to macroblocks that start in any position inside
this word. By performing 64-bit read accesses in parallel
from two memory blocks, the desired 64 bits across the two
words can be selected inside the vector alignment unit.

The engine also supports half- and quarter-pel motion
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Table 1. Comparison of different implementations for a di-
amond search pattern.

Processor Cycles FPGA Virtex-II Memory
impl. per MB slices clock (BRAMS)

Intel P4 ∼ 3000 N/A N/A N/A
assembly
Dias et al. 4532 2052 67 MHz 4 (external
[7] reference area)
Babionitakis 660 2127 50 MHz 11 (1 ref. area,
et al. [8] 48× 48 pixels)
Proposed, 510 1231 125 MHz 21 (2 ref. areas,
1 IPEU 112× 128 pixels)
Proposed, 287 2051 125 MHz 38 (2 ref. areas,
2 IPEUs 112× 128 pixels)

estimation, owing to an SPIEU and specifically designed
FPEUs. The number of SPIEUs execution units is limited
to 1 but the number of FPEUs can be configured at compile
time. The SPIEU interpolates the 20×20 pixel area that con-
tains the 16× 16 macroblock corresponding to the winning
integer motion vector. The interpolation hardware is cycled
3 times to calculate first the horizontal pixels, then the ver-
tical pixels, and finally the diagonal pixels. The SPIEU cal-
culates the half pels through a 6-tap Wiener filter as defined
in the H.264 standard. The SPIEU has a total of 8 systolic
one-dimensional (1-D) interpolation processors with 6 pro-
cessing elements each. The objective is to balance the in-
ternal memory bandwidth with the processing power so in
each cycle, 8 valid pixels are presented to one interpolator.
Quarter-pel interpolation is done when required by reading
the data from two of the four memories containing the half
and full pel positions, and averaging according to the H.264
standard. The fractional pipeline and the integer pipeline
work at the same rate and process one search point in 33 cy-
cles. To maintain this data rate, each FPEU needs two vector
alignment units so two half or integer pel 64-bit vectors are
presented in each cycle to the quarter-pel interpolation unit.

Table 1 compares the complexity and performance of the
proposed processor core implementation to that of other im-
plementations. The IPEUs and FPEUs have been carefully
pipelined, and all the configurations can be implemented to
achieve a clock rate of 200 MHz when targeting the Virtex-4
Xilinx family. More details can be obtained in [12].

3. DESIGNING MOTION ESTIMATION
ALGORITHMS

The Estimo C language is a high-level C-like language that
is aimed at designing a broad range of block-matching al-
gorithms. The code can be developed and compiled in the
SharpeEye Studio [13], an integrated development environ-
ment (IDE) for motion estimation. The language contains
a preprocessor for macro facilities that include conditional
(if ) and loop (for, while, do) statements. The language also
has facilities directly related to the motion estimation pro-
cessor's instruction set, such as checking the SAD of a pat-

Estimo C source code
s = 8; // initial step size

check(0, 0);
check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;

do {
s = s/2;
for (i = 1 to 5 step 1) {

check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;
#if (WINID == 0)

#break;
}
} while (s > 1);

for (x = −0.5 to 0.5 step 0.25)
for (y = −0.5 to 0.5 step 0.25)

check(x, y);
update;

Program memory
00: 0 05 00 check 5 pts, offs 00
01: 0 04 05 check 4 pts, offs 05
02: 2 00 0b if WINID is 0, goto 0b
03: 0 04 05 check 4 pts, offs 05

· · ·
0b: 0 04 09 check 4 pts, offs 09
0c: 2 00 15 if WINID is 0, goto 15

· · ·
15: 0 04 0d check 4 pts, offs 0d
16: 2 00 15 if WINID is 0, goto 1f

· · ·
1f: 1 04 0d chk 25 frac pts, offs 11
↑

opcode
0 integer check pattern
1 fractional check pattern
2 conditional jump

Point memory
00: 00 00 integer (0, 0)
01: 00 08 integer (0, 8)
02: 00 f8 integer (0, −8)

· · ·
11: fe fe fractional (−0.5, −0.5)
12: fe ff fractional (−0.5, −0.25)

· · ·
29: 03 03 fractional (0.5, 0.5)

Fig. 2. The Estimo C code for a motion estimation algorithm
and excerpts of the target files generated by the compiler.

tern consisting of a set of points, and conditional branching
depending on which point from the last pattern check com-
mand had the best SAD. The compiler converts the program
to assembly and then to a program memory file containing
instructions and a point memory file containing patterns.

Fig. 2 shows an example block-matching algorithm writ-
ten in Estimo C and excerpts from the target files. The al-
gorithm is a diamond search pattern executed for up to 5
times for a radius of 8, 4, 2, and 1 pixels, followed by a
small full search at fractional pixel level. The first set of
check() and update() commands create the first search pat-
tern, which consists of 5 points. Each check() command
adds a point to the search pattern being constructed, and the
update() command completes the pattern. This pattern is
compiled into the instruction at program address 00, which
uses the 5 points available in the point memory at addresses
00–04. The preprocessor goes through the do while loop
3 times, with s taking the values 4, 2 and 1. Each time, a
4-point pattern is checked for up to 5 times. The #if (WINID
== 0) #break command ensures that if a pattern search does
not improve the motion vector estimate, it is not repeated.
The final lines create a 25-point fractional pattern search.

4. CYCLE-ACCURATE SIMULATOR

Designers may need to know how much time a particular al-
gorithm takes to determine the motion estimation vectors. It
would also be very useful to be able to choose configuration
parameters for the motion estimation processor depending
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Fig. 3. Screenshot of the SharpEye IDE used to analyse motion estimation algorithms and processor configurations.

on the particular requirements of the design.
Doing this analysis on the actual processor can be com-

plicated and time consuming. The tasks required include
synthesizing a processor with some specific configuration
and measuring the time used by the processor to perform
the motion estimation. A cycle-accurate simulator of the
processor can speed up the development cycle significantly
by reducing the number of tasks required for the analysis of
a particular configuration. Additionally, the designer does
not need access to the hardware when using the simulator.

A cycle-accurate model of the processor was developed
as part of the toolset. x264 [11], a free software library
for encoding H.264, was modified to use the cycle-accurate
model; motion estimation in x264 was modified to use the
cycle-accurate model instead of its own block searching al-
gorithms when searching for the motion vectors. The cycle-
accurate simulator can be used directly from the SharpEye
IDE described in Section 3. The designer can design a mo-
tion estimation algorithm and test it using different proces-
sor configuration parameters. Fig. 3 shows a sample session.

The simulator takes several parameters as inputs. The
inputs which determine the processor configuration are: the
program and point memories generated by the Estimo com-
piler, the number of IPEUs and FPEUs, the minimum size
for block partitioning, whether to use motion vector cost op-

timization, and whether to use multiple motion vector candi-
dates. The simulator takes other options which do not affect
the processor configuration itself, which are: the video file to
process and its resolution, the maximum number of frames
to process, and the quantization parameter (QP).

The simulator will then process the video file using the
selected search algorithm and processor configuration, and
give the following outputs: the bit rate of the compressed
video, the peak signal-to-noise ration (PSNR), the number
of frames processed per second (fps) assuming a clock rate
of 200 MHz, the number of clock cycles required per mac-
roblock, and the energy requirements per macroblock.

The designer can simulate and analyse various config-
urations by using the simple controls in the configuration
window, and then generate plots or view the results in a ta-
ble. When he is satisfied with a particular configuration, he
can generate a VHDL file which can be used together with
the rest of the core hardware register transfer level (RTL)
library to synthesize the motion estimation processor.

5. ANALYSIS OF MOTION ESTIMATION
ALGORITHMS

For analysis, a number of test video sequences from [14]
were used. Each sequence has a frame rate of 25 fps. The
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Fig. 4. Graph of fps against bit rate for the station, pedes-
trian area and tractor sequences, with (a) 1 IPEU and no
sub-pel estimation, and (b) 2 IPEUs and 1 FPEU.

analysis was performed with a QP of 26.
Three 1920 × 1080 sequences, pedestrian area, station

and tractor, were processed and the fps required was plot-
ted against the bit rate. Fig. 4 shows the results. Each of the
files was processed twice, (a) without sub-pel estimation and
(b) with sub-pel estimation. In each case, Langrangian op-
timization and multiple motion vector candidate optimiza-
tion were used. With no sub-pel estimation, the files can
be processed at a rate larger than 30 fps with only 1 IPEU,
requiring only 2900 logic cells. In order to have a similar
frame rate when sub-pel estimation is used, 2 IPEUs and 1
FPEU were used, raising the number of required logic cells
to 11, 000. The bit rate is reduced by 6% for pedestrian area,
31% for station, and 16% for tractor, showing the benefits
of sub-pel motion estimation. The area of the plot points is
proportional to the number of logic cells.

The processor supports operating the IPEUs and FPEUs
in parallel. In case (a), since no sub-pel estimation was used,
this does not affect the results. In case (b), the fps plotted
is for the case of using this parallelization. The advantage
of parallel operation is that for the same fps rate, less logic
cells are required than in the case of sequential operation.
For example, if the integer-pel and sub-pel execution units
operate sequentially instead of in parallel, we will have to
use 3 IPEUs and 2 FPEUs for similar frame rates, further
raising the number of required logic cells to 14, 600.

Another experiment explored the effect of using more
than 1 reference frame and different partition sizes. The ex-
periment was performed on the three 720 × 576 sequences
park run, shields and stockholm using 1 IPEU and 1 FPEU.
Using 2 reference frames reduced the bit rate by 2.9% for
park run, 5.0% for shields, and 3.9% for stockholm, while
using 3 reference frames reduced the bit rate by 4.2%, 6.4%
and 5.4% respectively. The bit rate is reduced at the cost of
a reduction in processing speed. However, since the frame
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Fig. 5. Different configurations for the pedestrian area se-
quence. The labels contain a list of optimizations used: (8)
8 × 8 partitioning, (s) sub-pixel estimation, (l) Lagrangian
optimization, (c) multiple motion vector candidates. The
point area is proportional to the number of logic cells.

rate is still high enough for real-time processing, no extra ex-
ecution units are required. Using a minimum partition size
of 8× 8 reduced the bit rate by 1.8% for park run, 4.2% for
shields, and 2.1% for stockholm, while a minimum partition
size of 4 × 4 reduced the bit rate by 1.9%, 4.4%, and 2.1%
respectively. As can be seen, using a minimum partition size
of 4×4 instead of 8×8 has virtually no effect on the bit rate,
which means that nothing is gained for the extra complexity.

Fig. 5 shows the effect of different configurations when
processing the 1920× 1080 sequence pedestrian area. The
area of the points in the figure is proportional to the num-
ber of logic cells required. Some configurations had an fps
smaller than 25, which is the minimum for real-time pro-
cessing, so the number of execution units was increased.
This can be seen by their larger area requirements. The point
labelled none supports none of the optimizations.

When the multiple motion vector candidate optimization
is used (points having c in the label), the bit rate is reduced,
and the processing speed changes. When 8×8 partition sizes
are used (8) with no Lagrangian optimization (points having
no l in the label), the bit rate is actually worse than when no
sub-block partitions are used, indicating that Lagrangian op-
timization is essential when using sub-block partitions. La-
grangian optimization has the advantage of both reducing
the bit rate and increasing the processing speed in all the
cases. The processing speed is increased because the num-
ber of search points is reduced owing to faster convergence.

The hexagonal-search algorithm was compared to the
full-search algorithm in another experiment. The hexago-
nal search used consists of up to 8 iterations, with a hexagon
radius of 2 pixels; it can select points up to 16 pixels in each
direction from the initial point. The full search used can
span the same range, 16 pixels in each direction from the
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Table 2. Bit rate obtained by using hexagonal and full
searches, with and without sub-pel motion estimation.

Sequence No sub-pel Sub-pel
Hex Full Hex Full

(kbit/s) (kbit/s) (kbit/s) (kbit/s)
pedestrian area 6048 5980 5671 5532
station 4064 4047 2800 2579
tractor 10187 10140 8584 8739
park run 10963 10947 8611 9284
shields 5854 5812 3612 4252
stockholm 4440 4422 2188 2917

initial point. The full search was performed by replacing
the integer-pel search in the cycle-accurate simulator with a
full search while leaving everything else unchanged. Table
2 shows the bit rates produced when processing sequences
using these two searches both with and without sub-pel re-
finement. The resolution of the sequences is 1920 × 1080
for the first three rows and 720× 576 for the last three.

With no sub-pel refinement, the full search produces a
marginally better bit rate. With sub-pel refinement, the bit
rates are very similar for the 1920×1080 sequences, but the
hexagonal search performs better in the 720×576 sequences
by 8% for park run, 18% for shields, and 33% for stock-
holm. This can be because the hexagonal search is a more
logical search which has a higher chance of corresponding
to the real object motion in the video sequence, while the
full search is much more likely to select a point which does
not correspond to the real object motion; the motion vectors
given by the full search are more susceptible to noise. This
result confirms that a well-designed fast block matching al-
gorithm can provide better rate-distortion performance than
the full search algorithm as shown by [6].

6. CONCLUSION

The paper has presented the LiquidMotion reconfigurable
motion estimation processor and the SharpEye integrated
development environment for the design of algorithms and
for the exploration of the processor's design space. The ex-
periments conducted with the toolset have shown the bene-
fits of the Lagrangian optimization which improves both the
obtainable bit rate and the processing speed, as well as the
benefits of having multiple motion vector candidates. On
the other hand, the use of a 4 × 4 minimum partition size
offers virtually no improvement over an 8 × 8 minimum
partition size. Experimental data also shows that even sim-
ple block-matching search algorithms, such as hexagonal
search, can match or improve on the bit rate obtained by full
search. The paper demonstrates how the toolset is useful in
producing a processor configuration and program efficiently
without needing knowledge of the underlying microarchi-
tecture or of the instruction set of the resulting processor.
The presented toolset is available at the download section of

http://sharpeye.borelspace.com/. The cycle-
accurate simulator and full source code are also available.
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