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Abstract This paper uses joint optimization of both

the algorithm and architecture to enable high coding ef-

ficiency in conjunction with high processing speed and

low area cost. Specifically, it presents several optimiza-

tions that can be performed on Context Adaptive Bi-

nary Arithmetic Coding (CABAC), a form of entropy

coding used in H.264/AVC, to achieve the through-

put necessary for real-time low power high definition

video coding. The combination of syntax element parti-

tions and interleaved entropy slices, referred to as Mas-

sively Parallel CABAC, increases the number of binary

symbols that can be processing in a cycle. Subinter-

val reordering is used to reduce the cycle time required

to process each binary symbol. Under common condi-

tions using the JM12.0 software, the Massively Parallel

CABAC, increases the bins per cycle by 2.7 to 32.8x
at a cost of 0.25% to 6.84% coding loss compared with

sequential single slice H.264/AVC CABAC. It also pro-

vides a 2x reduction in area cost, and reduces memory

bandwidth. Subinterval reordering reduces critical path

by 14% to 22%, while modifications to context selection

reduces memory requirement by 67%. This work illus-

trates that accounting for implementation cost during

video coding algorithms design can enable higher pro-

cessing speed and reduce hardware cost, while still de-

livering high coding efficiency in the next generation

video coding standard.
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1 Introduction

Traditionally, the focus of video coding development

has been primarily on improving coding efficiency. How-

ever, as processing speed requirements and area cost

continue to rise due to growing resolution and frame

rate demands, it is important to address the architec-

ture implications of the video coding algorithms. In this

paper, we will show that modifications to video coding

algorithms can provide speed up and reduce area cost

with minimal coding penalty. An increase in processing

speed can also translate into reduced power consump-

tion using voltage scaling, which is important given the

number of video codecs that reside on battery oper-

ated devices. The approach of jointly optimizing both

architecture and algorithm is demonstrated on Context

Adaptive Binary Arithmetic Coding (CABAC) [8], a

form of entropy coding used in H.264/AVC, which is a

known throughput bottleneck in the video codec, par-

ticularly the decoder. These optimizations render the

algorithm non-standard compliant and thus are well

suited to be used in the next generation video coding

standard HEVC, the successor to H.264/AVC. CABAC

has been adopted into the HEVC test model [15].

Several joint algorithm and architecture optimiza-

tions of CABAC are proposed to enable parallelism for

increased throughput with minimal coding loss. Specif-

ically, three forms of parallelism will be exploited which

enable multiple arithmetic coding engines to run in par-

allel as well as enable parallel operations within the

arithmetic coding engine itself. In addition, optimiza-
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tions are also discussed that reduce hardware area and

memory requirements.

This paper is organized as follows: Section 2 pro-

vides an overview CABAC. Section 3 describes existing

approaches to addressing the CABAC bottleneck. Sec-

tion 4 describes how syntax element partitions and in-

terleaved entropy slices can enable multiple arithmetic

coding engines to run in parallel. Section 5 describes

how subinterval reordering can enable parallel opera-

tions within the arithmetic coding engine. Section 6

describes how memory requirements can be reduced.

Section 7 discusses the combined throughput impact of

all techniques described in this work. Finally, Section 8

present a summary of the benefits of the proposed op-

timizations.

2 Overview of CABAC

Entropy coding delivers lossless compression at the last

stage of video encoding (and first stage of video de-

coding), after the video has been reduced to a series

of syntax elements (e.g. motion vectors, coefficients,

etc). Arithmetic coding is a type of entropy coding that

can achieve compression close to the entropy of a se-

quence by effectively mapping the symbols (i.e. syn-

tax elements) to codewords with non-integer number of

bits. In H.264/AVC, the CABAC provides better cod-

ing efficiency than the Huffman-based Context Adap-

tive Variable Length Coding (CAVLC) [8].

CABAC involves three main functions: binarization,

context modeling and arithmetic coding. Binarization

maps syntax element to binary symbols (bins). Con-

text modeling estimates the probability of the bins and

arithmetic coding compresses the bins.

Arithmetic coding is based on recursive interval di-

vision; this recursive nature, contributes to the serial

nature of the CABAC. The size of the subintervals are

determined by multiplying the current interval by the

probability of the bin. At the encoder, a subinterval is

selected based on the value of the bin. The range and

lower bound of the interval are updated after every se-

lection. At the decoder, the value of the bin depends on

the location of the offset. The offset is a binary fraction

described by the encoded bits received at the decoder.

Context modeling is used to generate an estimate

of the bin’s probability. In order to achieve optimal

compression efficiency, an accurate probability must be

used to code each bin. Accordingly, context modeling is

highly adaptive and one of 400+ contexts (probability

models) is selected depending on the type of syntax el-

ement, binIdx, luma/chroma, neighboring information,

etc. A context switch can occur after each bin. Since
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Fig. 1: Feedback loops in the CABAC decoder.

the probabilities are non-stationary, the contexts are

updated after each bin.

These data dependencies in CABAC result in tight

feedback loops, particularly at the decoder, as shown in

Fig. 1. Since the range and contexts are updated after

every bin, the feedback loops are tied to bins; thus, the

goal is to increase the overall bin-rate (bins per second)

of the CABAC. In this work, two approaches are used

to increase the bin-rate:

1. running multiple arithmetic coding engines in oper-

ate parallel (increase bins per cycle)

2. enabling parallel operations within the arithmetic

coding engine (increase cycles per second)

2.1 Throughput Requirements

Meeting throughput (bin-rate) requirements is critical

for real-timing decoding applications such as video con-

ferencing. To achieve real-time low-delay decoding, the

processing deadline is dictated by the time required to

decode each frame to achieve a certain frames per sec-

ond (fps) performance. Table 1 shows the peak bin-

rate requirements for a frame to be decoded instanta-

neously based on the specifications of the H.264/AVC

standard [1]. The bin-rate are calculated by multiply-

ing the maximum number of bins per frame by the

frame rate for the largest frame size. For Level 5.1, the

peak bin-rate is in the Gbins/s; without concurrency,

decoding 1 bin/cycle requires multi-GHz frequencies,

which leads to high power consumption and is diffi-

cult to achieve even in an ASIC. Existing H.264/AVC

CABAC hardware implementations such as [4] only go

up to 210 MHz (in 90-nm CMOS process); the maxi-

mum frequency is limited by the critical path, and thus

parallelism is necessary to meet next generation perfor-

mance requirements.
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Table 1: Peak bin-rate requirements for real-time de-

coding of worst case frame at various high definition

levels.

Level Max Max Bins Max Peak
Frame per Bit Bin
Rate picture Rate Rate
fps Mbins Mbits/sec Mbins/sec

3.1 30 4.0 17.5 121
3.2 60 4.0 25 242
4.0 30 9.2 25 275
4.1 30 17.6 50 527
4.2 60 17.6 50 1116
5.0 72 17.6 169 1261
5.1 26.7 17.6 300 2107

3 Related Work

There are several methods of either reducing the peak

bin-rate requirement or increasing the bin-rate of CABAC;

however, they come at the cost of decreased coding effi-

ciency, increased power consumption and/or increased

latency. This section will discuss approaches that are

both standard compliant and non-compliant.

3.1 Standard compliant approaches

Workload averaging across frames can be used to re-

duce the bin-rate requirements to be within the range

of the maximum bit-rate at the cost of increased la-

tency and storage requirements. For low-delay applica-

tions such as video conferencing, an additional delay of

several frames may not be tolerated. The buffer also

has implications on the memory bandwidth.

Bin parallelism is difficult to achieve due to the

discussed data dependencies in CABAC. H.264/AVC

CABAC implementations [3,4,16,17] need to use specu-

lative computations to increase bins per cycle; however,

speculative computations result in increased computa-

tions and consequently increased power consumption.

Furthermore, the critical path delay increases with each

additional bin, since all computations cannot be done

entirely in parallel and thus the bin-rate increase that

can be achieved with speculative computations is lim-

ited.

In H.264/AVC, frames can be broken into slices that

can be encoded and decoded completely independently

for each other. Parallelism can be applied at the slice

level since CABAC parameters such as range, offset and

context states are reset every slice. Each frame has a

minimum of one slice, so at the very least parallelism

can be achieved across several frames. However, frame
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Fig. 2: Coding penalty versus slices per frame. Sequence

bigships, QP=27, under common conditions [14].

level parallelism leads to increased latency and needs

additional buffering, as inter-frame prediction prevents

several frames from being fully decoded in parallel.

The storage and delay costs can be reduced if there

are several slices per frame. However, increasing the

number of slices per frame reduces the coding efficiency

since it limits the number of macroblocks that can be

used for prediction, reduces the training period for the

probability estimation, and increases the number of slice

headers and start code prefixes. Fig. 2 shows how the

coding penalty increases with more H.264/AVC slices

per frame.

3.2 Entropy Slices (non-standard compliant)

As shown in the previous section, increasing the perfor-

mance of the CABAC is challenging when constrained

by the H.264/AVC standard. An alternative is to mod-

ify the algorithm itself. In recent years, several new

CABAC algorithms have been developed that seek to

address this critical problem [6,18,19]. These algorithms

looked at various ways of using a new approach called

entropy slices to increase parallel processing for CABAC.

Entropy slices are similar to H.264/AVC slices in that

contiguous macroblocks are allocated to different slices.

However, unlike H.264/AVC slices, which are completely

independent of one another, some dependency is al-

lowed for entropy slices. While entropy slices do not

share information for entropy (de)coding (to enable par-

allel processing), motion vector reconstruction and in-

tra prediction are allowed across entropy slices, result-

ing in better coding efficiency than H.264/AVC slices

(Fig. 2). However, entropy slices still suffer coding effi-

ciency penalty versus H.264/AVC with single slice per

frame. This penalty can be attributed to a combination
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of three key sources: no context selection across entropy

slices, start code and header for each entropy slice, and

reduced context training.

As described in Section 2, one of the features that

gives CABAC its high coding efficiency is that the con-

texts are adaptive. While encoding/decoding, the con-

texts undergo training to achieve an accurate estimate

of the syntax element probabilities. A better estimate

of the probabilities results in better coding efficiency.

A drawback of breaking up a picture into several en-

tropy slices is that there are fewer macroblocks, and

consequently fewer syntax elements, per slice. Since the

entropy engine is reset every entropy slice, the context

undergoes less training and can results in a poorer es-

timate of the probabilities.

With ordered entropy slices, macroblocks are pro-

cessed in zig-zag order within a slice to minimize mem-

ory bandwidth costs from syntax element buffering [6].

Furthermore, it allows for context selection dependen-

cies across entropy slices which improves coding effi-

ciency. However, the zig-zag order results in increased

latency and does not provide a favorable memory access

pattern necessary for effective caching.

4 Parallelism across arithmetic coding engines

In this section, we propose a parallel algorithm called

Massively Parallel CABAC (MP-CABAC) that enables

multiple arithmetic coding engines to run in parallel

with an improved tradeoff between coding efficiency

and throughput [9]. It can also be easily implemented

in hardware and with low area cost. The MP-CABAC

leverages a combination of two forms of parallelism.

First, it uses syntax element parallelism, presented in

Section 4.2, by simultaneously processing different syn-

tax element partitions, allowing the context training to

be performed across all instances of the elements, thus

improving the coding efficiency. Second, macroblock/slice

parallelism is achieved by simultaneously processing in-

terleaved entropy slices, presented in Section 4.3, with

simple synchronization and minimal impact on coding

efficiency. Note that the MP-CABAC can also be com-

bined with bin parallelism techniques previously de-

scribed in Section 3.1.

4.1 Improving Tradeoffs

The goal of this work is to increase the throughput of

the CABAC at minimal cost to coding efficiency and

area. Thus, the various parallel CABAC approaches

(H.264/AVC Slices, Entropy Slices, Ordered Entropy
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Fig. 3: Concurrency with syntax element partitioning.

Slices, MP-CABAC) are evaluated and compared across

two important metrics/tradeoffs:

– Coding Efficiency vs. Throughput

– Area Cost vs. Throughput

It should be noted that while throughput is correlated

with degree of parallelism, they are not equal. It de-

pends strongly on the workload balance between the

parallel engines. If the workload is not equally distributed,

some engines will be idle, and the throughput is reduced

(i.e. N parallel hardware blocks will not result in an Nx

throughput increase). Thus, we chose throughput as the

target objective rather than degree of parallelism.

4.2 Syntax Element Partitions (SEP)

Syntax element partitions enables syntax elements to

be processed in parallel in order to avoid reducing the

training [13]. In other words, bins are grouped based on

syntax element and placed in different partitions which

are then processed in parallel (Fig. 3). As a result, each

partition contains all the bins of a given syntax ele-

ment, and the context can then undergo the maximum

amount of training (i.e. across all occurrences of the el-

ement in the frame) to achieve the best possible prob-

ability estimate and eliminate the coding penalty from

reduced training. Table 2 shows the five different syntax

element partitions. The syntax elements were assigned

to partitions based on the bin distribution in order to

achieve a balanced workload. A start code prefix for

demarcation is required at the beginning of each parti-

tion.

4.2.1 Coding Efficiency and Throughput

The syntax element partitions approach was evaluated

using JM12.0 reference software provided by the stan-

dards body, under common conditions [14]. The cod-

ing efficiency and throughput were compared against
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Table 2: Syntax Element Partitions.

Group Syntax Element

MBINFO
mb skip flag, mb type, sub mb type,

mb field decoded flag, end of slice flag

PRED

prev intra4x4 pred mode flag,
rem intra4x4 pred mode,

prev intra8x8 pred mode flag,
rem intra8x8 pred mode,
intra chroma pred mode,

ref idx l0, ref idx l1, mvd l0, mvd l1

CBP
transform size 8x8 flag, mb qp delta,
coded block pattern, coded block flag

SIGMAP significant coeff flag, last significant coeff flag
COEFF coeff abs level minus1, coeff sign flag

Table 3: Comparison of various parallel processing tech-

niques. The coding efficiency was computed by evalu-

ating the BD-rate against H.264/AVC with single slice

per frame. The speed up was computed relative to se-

rial 1 bin/cycle decoding. The area cost was computed

based on the increased gate count relative to a serial 1

bin/cycle CABAC.

H.264/AVC Entropy Syntax Element
Slices Slices Partitions

Area Cost 3x 3x 1.7x
Prediction BD- speed BD- speed BD- speed
Structure rate up rate up rate up

Ionly 0.87 2.43 0.25 2.43 0.06 2.60
IPPP 1.44 2.42 0.55 2.44 0.32 2.72
IBBP 1.71 2.46 0.69 2.47 0.37 2.76

H.264/AVC slices and entropy slices (Table 3). The cod-

ing efficiency is measured with the Bjøntegaard∆Bitrate

(BD-rate) [2]. To account for any workload imbalance,

the partition with the largest number of bins in a frame

was used to compute the throughput. An average through-

put speed up of ∼2.7x can be achieved with negligi-

ble impact (0.06% to 0.37%) on coding efficiency [13].

To achieve similar throughput requires at least three

H.264/AVC or entropy slices per frame which have cod-

ing penalty of 0.87% to 1.71% and 0.25% to 0.69% re-

spectively. Thus, syntax element partitions provides 2

to 4x reduction in coding penalty relative to these other

approaches.

4.2.2 Area Cost

Implementations for parallel H.264/AVC slices and en-

tropy slices processing require that the entire CABAC

be replicated which can lead to significant area cost. An

important benefit to syntax element parallelism is that

the area cost is quite low since the FSM used for con-

text selection, and the context memory do not need to

be replicated. Only the arithmetic coding engine needs

to be replicated, which accounts for a small percentage

of the total area. FIFOs need to be included to synchro-

nize the partitions. Overall the SEP engine area is ap-

proximately 70% larger than the estimated H.264/AVC

CABAC area [12]. To achieve the throughput in Ta-

ble 3, H.264/AVC slices and entropy slices require a 3x

replication of the CABAC area, whereas syntax element

partitions only increase the area by 70%.

Note that the area cost for SEP may be even less

than 70% if we account for storage of the last line data.

If the last line data is stored in an on-chip cache, then it

also needs to be replicated for the H.264/AVC and en-

tropy slices approach which results in significant addi-

tional area cost. Alternatively, the last line data can be

stored off-chip but this will increase the off-chip mem-

ory bandwidth. SEP does not require this cache to be

replicated, which either reduces area cost or off-chip

memory bandwidth.

4.3 Interleaved Entropy Slices (IES)

To achieve additional throughput improvement, SEP

(as well as bin parallelism) can be combined with slice

parallelism such as entropy slices. As mentioned in Sec-

tion 3.2, entropy slices can undergo independent en-

tropy decoding in the ’front-end’ of the decoder. How-

ever, to achieve better coding efficiency than fully in-

dependent slices (i.e. H.264/AVC slices), there remains

dependencies between the entropy slices for spatial and

motion vector prediction in the ’back-end’ of the de-

coder.

In the entropy slice proposals [6, 18, 19], the spatial

location of the macroblocks allocated to each entropy

slice is the same as in H.264/AVC (Fig. 4), i.e. con-

tiguous groups of macroblocks. Due to the existing de-

pendencies between entropy slices, back-end processing

of slice 1 in Fig. 4 cannot begin until the last line of

slice 0 has been fully decoded when using regular en-

tropy slices. As a result, the decoded syntax elements of

slice 1 need to be buffered as shown in Fig. 5, which in-

creases latency and adds to memory costs - on the order

of several hundred megabytes per second for HD. In this

work, we propose the use of interleaved entropy slices

where macroblocks are allocated as shown in Fig. 6,

i.e. for two slices, even rows are assigned to one slice,

while odd rows are assigned to the other [5]. Within

each slice, the raster scan order processing is retained.

Benefits of interleaved entropy slices include cross slice

context selection, simple synchronization, reduction in



6 Vivienne Sze, Anantha P. Chandrakasan
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Fig. 4: Macroblock allocation for entropy slices [6, 18,
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memory bandwidth, low latency and improved work-

load balance.

In interleaved entropy slices, as long as the slice 0 is

one macroblock ahead of slice 1, the top-macroblock de-

pendency is retained, which enables cross slice context

selection during parallel processing (i.e. spatial corre-

lation can be utilized for better context selection) re-

sulting in improved coding efficiency [9]. This is not

possible with regular entropy slices.

Synchronization between entropy slices can easily

be implemented through the use of FIFO between the

slices (Fig. 7) [10]. Furthermore, both the front-end en-

tropy processing and the back-end prediction process-

ing can be done in this order (i.e. the entire decoder

Entropy 

Decoding 0

Entropy

Decoding 1

Backend

Decoding 0

Backend

Decoding 1

encoded 

entropy 

slice 1

encoded 

entropy 

slice 0

macroblocks 

of row 2N

macroblocks 

of row 2N+1

Fig. 7: Interleaved Entropy Slices architecture example

for 2x parallel decoding. Note that the entire decode

path can be parallelized.

path is parallelized), which allows the decoded syntax

elements to be immediately processed by the back-end.

Consequently, no buffering is required to store the de-

coded syntax elements, which reduces memory costs.

This can have benefits in terms of reducing system

power and possibly improving performance (by avoid-

ing read conflicts in shared memory). No buffering also

reduces latency which makes interleaved entropy slices

suitable for low latency applications (e.g. video confer-

encing).

The number of accesses to the large last line buffer

is reduced for interleaved entropy slices [12]. In Fig. 6,

the last line buffer (which stores an entire macroblock

row) is only accessed by slice 0. Since slice 0 is only

several macroblocks ahead of slice 1, slice 1 only needs

to access a small cache, which stores only a few mac-

roblocks, for its last line (top) data. Thus out of N slices,

N-1 will access small FIFO for the last line data, and

only one will access the large last line buffer. If the last

line buffer is stored on-chip, interleaved entropy slices

reduces area cost since it does not need to be replicated

for every slice as with H.264/AVC and entropy slices.

Alternatively, if the last line buffer is stored off-chip,

the off-chip memory bandwidth for last line access is

reduced by 1/N. Note that the depth of the FIFO af-

fects how far ahead slice 0 can be relative to slice 1. A

deeper FIFO means that slice 0 is less likely to be stalled

by slice 1 due to a full FIFO. For instance, increasing

the FIFO depth from 4 to 8 macroblocks gives a 10%

increase in throughput. However, increasing the FIFO

depth also increases the area cost. Thus the depth of the

FIFO should be selected based on both the throughput

and area requirements.

Unlike ordered entropy slices, interleaved entropy

slices retains raster scan order processing within each

entropy slice which provides a favorable memory ac-

cess pattern for caching techniques that enable fur-

ther bandwidth reduction. Finally, in interleaved en-

tropy slices the number of bins per slice tends to be

more equally balanced; consequently, a higher through-

put can be achieved for the same amount of parallelism.
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The concept of using IES to enable wavefront parallel

processing has been extended in [7].

A video sequence should be encoded with a certain

number of IES based on the coding efficiency, through-

put and area requirements. A minimum number of IES

per frame should be included as part of the level defini-

tion that determines the bin-rate throughput require-

ment in order to ensure that the requirement can be

met.

4.3.1 Coding Efficiency and Throughput

We measured the throughput of interleaved entropy

slice alone as well as in combination with syntax ele-

ment partitions, which we call the MP-CABAC. Note

that syntax element partitions can also be combined

with any of the other entropy slice approaches. Fig. 9

compares their coding efficiency and throughput against

regular and ordered entropy slices as well as H.264/AVC

slices. Table 4 shows the coding efficiency across various

sequences and prediction structures for throughput in-

crease (speed up) of around 10x over serial 1 bin/cycle

H.264/AVC CABAC. MP-CABAC offers an overall av-

erage 1.2x, 3.0x, and 4.1x coding penalty (BD-rate) re-

duction compared with ordered entropy slices, entropy

slices, and H.264/AVC respectively [9]. Data was ob-

tained across different degrees of parallelism and plot-

ted in Fig. 9. The throughput provided in Fig. 9 is aver-

aged across five sequences, prediction structures (Ionly,

IPPP, IBBP) and QP (22, 27, 32, 37). The sequences

were also coded in CAVLC for comparison purposes;

the coding penalty should not exceed 16% since there

would not longer be any coding advantage of CABAC

over CAVLC.

To account for any workload imbalance, the slice

with the largest number of bins in a frame was used

to compute the throughput. The BD-rates for entropy

slices and ordered entropy slices are taken directly from

[6]. Since the macroblock allocation for these proposals

are the same, the workload imbalance should also be the

same. The workload imbalance was measured based on

simulations with JM12.0. The number of bins for each

macroblock and consequently each entropy slice was de-

termined and the throughput was calculated from the

entropy slice in each frame with the greatest number of

bins. Total number of bins processed by MP-CABAC,

interleaved entropy slices, entropy slices and ordered en-

tropy slices are the same; however, the number of bins

for the H.264/AVC slices increases since the prediction

modes and consequently syntax elements are different;

this impact is included in the throughput calculations.

It should be noted that the coding efficiency for en-

tropy slices and ordered entropy slices was obtained

from implementations on top of the KTA2.1 software,

which includes next generation video coding tools, while

their throughput and the coding efficiency/throughput

of interleaved entropy slices and MP-CABAC were ob-

tained from implementations on top of the JM12.0 soft-

ware, which contains only H.264/AVC tools. This ac-

counts for the slight discrepancy in coding efficiency

between the ordered entropy slices and interleaved en-

tropy slices at 45x parallelism. In theory, they should

be an exact match in terms of both coding efficiency

and throughput.

For interleaved entropy slices, the slice overhead,

due to the start code bits and the slice header, accounts

for a significant portion of the BD-rate penalty. Each

interleaved entropy slice has a 32-bit start code that

enables the decoder to access the start of each slice

as well as a slice header. In Table 4, 12 interleaved

entropy slices are used per frame in order to achieve

a speed up of around 10x. Given the fixed slice over-

head, I only encoded sequences experience less BD-rate

penalty than IPPP and IBBP since the slice data bits

for I only is more than IPPP which is more than IBBP.

H.264/AVC slices, entropy slices and ordered entropy

slices have a more imbalanced workload than inter-

leaved entropy slices, and therefore require 15 slices per

frame to achieve the same 10x speed up. This increases

the fixed slice overhead per frame. Note for slice paral-

lelism techniques, the balance of bins per slices is un-

affected by the prediction structure; thus all prediction

structures experience similar speed up improvements

for a given technique.

For MP-CABAC results in Table 4, interleaved en-

tropy slices and syntax element partitions are combined

in the same bitstream as shown in Fig. 8. Five syntax

elements partitions, each with at 32-bit start code, are

embedded in each interleaved entropy slices and the

slice header information, such as slice type (I, P, B),

slice quantization, etc., is inserted at the beginning of

the MBINFO partition. Four interleaved entropy slices,

each with 5 syntax element partitions, were used per

frame in order to achieve a speed up of around 10x.

Despite having more start code bits than that other

techniques, MP-CABAC has lower BD-rate penalty due

to improved context training of syntax element parti-

tions, enabling context selection across slices, and fewer

slice headers.

4.3.2 Area Cost

As in the case of the entropy slices and ordered en-

tropy slices, the area of the entire CABAC (including

the context memory) must be replicated for IES. Thus

the total CABAC area increases linearly with paral-
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Table 4: A comparison of the coding efficiency penalty (BD-rate) versus throughput for parallel CABAC ap-

proaches. Speed up and BD-rates are measured against serial 1 bin/cycle one slice per frame H.264/AVC CABAC.

H.264/AVC Entropy Ordered IES only MP-CABAC
slices Slices Entropy (IES + syntax

Slices element
partitioning)

Video BD- Speed BD- Speed BD- Speed BD- Speed BD- Speed
Sequence rate up rate up rate up rate up rate up

Ionly bigships 3.29 8.49 1.21 8.61 0.38 8.61 1.04 10.73 0.51 9.03
city 3.02 11.89 0.63 12.12 -0.01 12.12 0.81 10.28 0.43 8.88
crew 8.47 9.29 2.05 9.48 0.24 9.48 1.80 9.32 0.97 10.24
night 4.10 9.66 0.68 9.83 -0.09 9.83 0.62 10.65 0.37 9.62

shuttle 7.55 8.80 1.97 9.17 0.84 9.17 3.34 9.58 1.81 11.42
Average 5.29 9.62 1.31 9.84 0.27 9.84 1.52 10.11 0.82 9.85

IPPP bigships 5.65 9.95 5.69 10.31 2.01 10.31 2.37 9.91 1.91 9.77
city 9.01 10.67 4.86 11.69 1.27 11.69 2.19 9.93 1.99 9.73
crew 10.00 10.01 12.96 10.63 8.49 10.63 2.34 9.91 1.90 10.07
night 4.87 8.27 2.14 8.50 0.56 8.50 1.67 10.02 1.30 10.44

shuttle 1.95 8.47 9.63 8.84 2.93 8.84 5.06 9.96 3.99 10.70
Average 8.09 9.48 7.06 9.99 3.05 9.99 2.72 9.95 2.22 10.14

IBBP bigships 7.50 10.32 2.88 10.59 3.30 10.59 2.76 9.89 2.15 9.79
city 11.31 11.53 5.69 12.20 1.67 12.20 2.73 10.16 2.40 9.83
crew 11.01 10.28 4.86 10.79 6.00 10.79 2.58 10.13 1.99 10.49
night 5.50 8.51 12.96 8.72 1.91 8.72 2.27 10.13 1.61 11.14

shuttle 13.36 8.99 13.41 9.23 5.94 9.23 5.68 10.09 4.68 10.39
Average 9.73 9.93 8.75 10.30 3.76 10.30 3.21 10.08 2.57 10.33

Table 5: A comparison of features of parallel CABAC approaches

H.264/AVC Entropy Ordered IES only MP-CABAC
slices Slices Entropy (IES + syntax

Slices element
partitioning)

Reference Anchor [19] [6] [9] [9]
Software JM12.0 KTA2.1 KTA2.1 JM12.0 JM12.0

Average BD-rate 7.7% 5.71% 2.36% 2.48% 1.87%
Area Cost 15x 15x 15x 12x 6x

Context Selection No No Yes Yes Yes
across Entropy Slices

Syntax Element Buffering No Yes No No No

lelism as shown in Fig. 10. In Fig. 10 coding efficiency

and throughput are averaged across prediction struc-

tures, sequences and quantization. Note that the area

cost versus throughput tradeoff for the entropy slices

and ordered entropy slices are the same since they have

the same throughput. For the same throughput, inter-

leaved entropy slices require less area increase since it

needs fewer parallel engines due to its better work-

load balance. Table 5 shows that for a 10x through-

put increase over serial 1 bin/cycle CABAC, interleaved

entropy slices reduced area cost by 20%, while MP-

CABAC reduces area cost by 60%. Furthermore, no

buffering is required to store syntax elements and easy

synchronization can be performed with FIFO between

the interleaved entropy slices. The simplicity of this

approach allows the whole decoder to be parallelized.

Note that a significant area cost reduction is achieved

for MP-CABAC, when interleaved entropy slices are

combined with syntax element partitions. As mentioned

earlier, if the last line buffer is stored on-chip, IES pro-

vides additional area savings since the buffer does not

need to be replicated for every slice [10,12].

5 Parallelism within arithmetic coding engines

In this section, we propose an optimization that in-

creases parallel operations within the arithmetic cod-

ing engine to reduce the critical path delay, increas-

ing the cycles per second that can be achieved by the

CABAC [11]. In the arithmetic decoder of H.264/AVC

CABAC, the interval is divided into two subintervals

based on the probabilities of the least probable symbol
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Fig. 8: MP-CABAC data structure. In this example,

there are four IES per frame and five SEP per IES.
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Fig. 9: Tradeoff between coding efficiency and through-

put for various parallel CABAC approaches.

(LPS) and most probable symbol (MPS). The range of

MPS (rMPS) is compared to the offset to determine

whether the bin is MPS or LPS. rMPS is computed by

first obtaining range of LPS (rLPS) from a 64x4 LUT

(using bits [7:6] of the current 9-bit range and the 6-bit

probability state from the context) and then subtract-

ing it from the current range. Depending on whether

an LPS or MPS is decoded, the range is updated with

their respective subintervals. To summarize, the inter-

val division steps in the arithmetic decoder are

1. obtain rLPS from the 64x4 LUT

2. compute rMPS by subtracting rLPS from current

range

3. compare rMPS with offset for bin decoding decision

4. update range based on bin decision.
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Fig. 10: Area cost versus throughput tradeoff for the

various parallel CABAC approaches.

If the offset was compared to rLPS rather than rMPS,

then the comparison and subtraction to compute rMPS

can occur in parallel. Furthermore, the updated offset is

computed by subtracting rLPS from offset rather than

rMPS. Since rLPS is available before rMPS, this sub-

traction can also be done in parallel with range-offset

comparison. Fig. 11 shows the difference between the

subinterval order of H.264/AVC CABAC and subin-

terval reordering. The two orderings of the subinter-

vals are mathematically equivalent in arithmetic cod-

ing; thus changing the order has no impact on coding ef-

ficiency. This was verified with simulations of the mod-

ified JM12.0 under common conditions. An arithmetic

decoder was also implemented in RTL for each subinter-

val ordering and synthesized to obtain their area-delay

trade-off in a 45-nm CMOS process. For the same area,

subinterval reordering reduces the critical path delay

by 14 to 22%.

Subinterval reordering has similar benefits for the

arithmetic encoder of H.264/AVC CABAC. Rather than

comparing offset to rLPS or rMPS, the bin to be en-

coded is compared to MPS. Depending on whether the

bin equals MPS, the range is updated accordingly. Re-

versing the order of subintervals allows the bin-MPS

comparison to occur in parallel with the rMPS sub-

traction in the CABAC encoder as shown in Fig. 12.

The lower bound can also be updated earlier since it

depends on rLPS rather than rMPS.

6 Reduction in Memory Requirement

To leverage spatial correlation of neighboring data, con-

text selection can depend on the values of the top and

left blocks as shown in Fig. 13. The top dependency

requires a line buffer in the CABAC engine to store
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rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

range = rLPS

offset = offset-rMPS
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offset = offset
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subinterval 

order

rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

offset = offset - rLPS
No Yes

offset ≥ rLPS

range = rLPS

offset = offset
range = rMPS

range range 

Fig. 11: Impact of subinterval reordering for CABAC decoding.
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Fig. 12: Impact of subinterval reordering for CABAC encoding.

information pertaining to the previously decoded row.

The depth of this buffer depends on the width of the

frame being decoded which can be quite large for high

resolution sequences. The bit-width of the buffer de-

pends on the type of information that needs to be stored

per block or macroblock in the previous row. Table 6

shows the bits requires to be stored in the line buffer

for context selection when processing a 4096 pixel wide

video sequence. We propose reducing the bit-width of

this data to reduce the overall line buffer size of the

CABAC.

Majority of the data stored in the line buffer is for

the context selection of mvd. mvd is used to reduce

the number of bits required to represent motion infor-

mation. Rather than transmitting the motion vector,

the motion vector is predicted from its neighboring 4x4

blocks and only the difference between motion vector

prediction (mvp) and motion vector (mv), referred to

as mvd, is transmitted.

mvd = mv - mvp

A separate mvd is transmitted for the vertical and hor-

izontal components. The context selection of mvd de-

pends on neighbors A and B as shown in Fig. 13.

In H.264/AVC, neighboring information is incorpo-

rated into the context selection by adding a context

index increment (between 0 to 2 for mvd) to the cal-

culation of the context index. The mvd context index

A

B

X

Fig. 13: For position X, context selection is dependent

on A and B (4x4 blocks for mvd); a line buffer is re-

quired to store the previous row of decoded data.

increment, χmvd, is computed in two steps [8]:

Step 1: Sum the absolute value of neighboring mvd

e(A,B,cmp)=|mvd(A,cmp)|+|mvd(B,cmp)|

where A and B represent the left and top neighbor and

cmp indicates whether it is a vertical or horizontal com-

ponent.

Step 2: Compare e(A,B,cmp) to thresholds of 3 and 32

χmvd(cmp) =


0, if e(A,B,cmp)<3

1, if 3≤e(A,B,cmp)≤32

2, if e(A,B,cmp)>32

Since the upper threshold is 32, a minimum of 6-

bits of the mvd has to be stored per component per 4x4

block in the line buffer. For 4kx2k, there are (4096/4) =1024

4x4 blocks per row, which implies 6×2×2×1024 =24,576

bits are required for mvd storage.
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Table 6: Context selection line buffer storage requirements for a 4096 pixel wide video sequence.

Syntax Element (SE) Frequency SE/ Bits/ Bits for Bits/ Bits for
of macroblock SE 4kx2k SE 4kx2k

signaling (H.264/AVC) (H.264/AVC) (proposed) (proposed)
mb type per MB 1 1 256 1 256

mb skip flag per MB 1 1 256 1 256
refIdx l0 per 8x8 2 1 512 1 512
refIdx l1 per 8x8 2 1 512 1 512

mvd l0 (vertical) per 4x4 4 6 6144 1 1024
mvd l0 (horizontal) per 4x4 4 6 6144 1 1024

mvd l1 (vertical) per 4x4 4 6 6144 1 1024
mvd l1 (horizontal) per 4x4 4 6 6144 1 1024

intra chroma pred mode per MB 1 1 256 1 256
intra 16x16 per MB 1 1 256 1 256

coded block flag (luma DC) per MB 1 1 256 1 256
coded block flag (luma) per 4x4 4 1 1024 1 1024

coded block flag (chroma DC) per 8x8 2 1 512 1 512
coded block flag (chroma) per 4x4 4 1 1024 1 1024

coded block pattern (luma) per 8x8 2 1 512 1 512
coded block pattern (chroma) per 8x8 2 1 512 1 512

transform 8x8 mode flag per MB 1 1 256 1 256

Total 30720 10240

To reduce the memory size, we propose performing

comparisons for each component before summing their

results. In other words,

Step 1: Compare components of mvd to a threshold

threshA(cmp)=|mvd(A,cmp)| >16

threshB(cmp)=|mvd(B,cmp)| >16

Step 2: Sum results threshA and threshB from Step 1

χmvd(cmp)=threshA(cmp)+threshB(cmp)

With this change, only single bit is required to be

stored per component per 4x4 block; the size of the line

buffer for mvd is reduced to 1 × 2 × 2 × 1024 =4,096

bits. In H.264/AVC, the overall line buffer size of the

CABAC required for all syntax elements is 30,720 bits.

The modified mvd context selection reduces the mem-

ory size by 67%, from 30,720 bits to 10,240 bits as shown

in Table 6. The average coding penalty of this approach,

was verified across common conditions to be ≤0.02%.

7 Overall Impact

Three forms of parallelism have been presented in this

work. First, syntax element partitions which enables

processing different syntax elements in parallel. Sec-

ond, interleaved entropy slices which enables processing

macroblocks in parallel. Finally, subinterval reordering

enables parallel operations within the arithmetic coding

engine. Fig. 14 shows how all techniques are integrated

ADADAD ADAD

ADADAD ADAD

ADADAD ADAD

ADADAD ADAD

IES FIFOs

IES FIFOs

IES FIFOs

Last 

Line 

FIFOs

Slice 

Engine 0

Slice 

Engine 1

Slice 

Engine 2

Slice 

Engine 3

Fig. 14: Overall architecture to support multiple forms

of parallelism presented in this work.

together. The slices engines are connected using FIFOs

to process IES in parallel. Each slice engine contains

five arithmetic decoder (AD) to process the five SEP in

parallel. Note that IES FIFOs are only need to connect

AD for MBINFO, PRED and CBP since only syntax

elements in those partitions use top macroblock infor-

mation for context selection. The last line buffer can be

viewed as a large FIFO that connects slice engine 0 and

3. This can be stored on-chip (increases area cost) or

off-chip (increases memory bandwidth). Within these

AD, subinterval reordering has been applied to enable

parallel operations that speed up the overall through-

put.
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Both syntax element partitions and interleaved en-

tropy slices increase the number of bins processed per

cycle. Their impact on throughput varies depending on

the properties of a video sequence which affect the bal-

ance of bins across slices. For instance, with two inter-

leaved entropy slices per frame, the BigShips sequence,

encoded using a QP=32 with IBBP achieves a 5.94x

throughput increase with a bit-rate increase of 1.3%;

the ShuttleLaunch sequence, encoded using a QP=32

with IBBP achieves 5.02x throughput increase with a

bit-rate increase of 2.3%.

In contrast, subinterval reordering reduces the crit-

ical path of arithmetic coding engine which provides

throughput increase across all video sequences. For ex-

ample, a given area cost in a 45-nm CMOS process,

a H.264/AVC CABAC arithmetic coding engine can

run at 270 MHz, whereas using subinterval reordering,

the arithmetic coding engine can run at 313 MHz. This

16% increase in frequency translates to an increase in

throughput for all sequences.

The overall throughput is calculated as follows:

bin-rate = bins/cycle x cycles/second

Thus, subinterval reordering has an added throughput

impact on top of the IES and SEP approaches. As-

suming a initial serial H.264/AVC CABAC of one bin

per cycle, which has a throughput of 270 Mbins/s, the

techniques presented in this paper could increase the

throughput to process BigShips by 5.94 x (313/270) =

6.9x for a bin-rate of 1859 Mbins/s. Similarly, through-

put to process ShuttleLaunch is increased by 5.02 x

(313/270) = 5.8x for a bin-rate of 1571 Mbins/s. Since

subinterval reordering has negligible impact on coding

efficiency, the coding loss would remain as 1.3% and

2.3% respectively, as described earlier.

8 Summary and Conclusions

In this work, several joint algorithm and architecture

optimizations were proposed for CABAC for increased

throughput with minimal coding efficiency cost. Par-

allelism is achieved across multiple arithmetic coding

engines to increase bins per cycle as well as within the

arithmetic coding engine to increase cycles per second

for an overall increase in bin-rate (bins per second).

Across arithmetic coding engines, MP-CABAC, which

is a combination syntax element and slice parallelism,

can be used. MP-CABAC involved reorganizing the data

(syntax elements) in an encoded bitstream such that

the bins (workload) can be distributed across different

parallel processors and multiple bins can be decoded

simultaneously without significant increase in coding

penalty and implementation cost.

Benefits of the MP-CABAC include

1. high throughput

2. low area cost

3. good coding efficiency

4. reduced memory bandwidth

5. simple synchronization and implementation

6. low latency

7. enables full decoder parallelism

For a 2.7x increase in throughput, syntax element

partitions were shown to provide between 2 to 4x re-

duction in coding penalty when compared to slice par-

allel approaches, and close to 2x reduction in area cost.

When combined with interleaved entropy slices to form

the MP-CABAC, additional throughput improvement

can be achieved with low coding penalty and area cost.

For a 10x increase in throughput, the coding penalty

was reduced by 1.2x, 3x and 4x relative to ordered en-

tropy, entropy and H.264/AVC slices respectively. Over

a 2x reduction in area cost was achieved.

Additional optimizations within the arithmetic cod-

ing engine using subinterval reordering increases pro-

cessing speed by 14 to 22% with no coding penalty.

Finally, to address memory requirement, the context

selection can be modified to reduce memory size by

50% with negligible coding efficiency impact (≤0.02%).

Details on an implementation of the MP-CABAC with

these optimizations can be found in [10,12].

This work demonstrates the benefits of accounting

for implementation cost when designing video coding

algorithms. We recommend that this approach be ex-

tended to the rest of the video codec to maximize pro-

cessing speed and minimize area cost, while delivering

high coding efficiency in the next generation video cod-

ing standard.
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