64 research outputs found

    Telemonitoring systems interoperability challenge: an updated review of the applicability of ISO/IEEE 11073 standards for Interoperability in telemonitoring

    Get PDF
    Proceeding of: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS 2007, Lyon, France, 22-26 August, 2007.Advances in Information and Communication Technologies, ICT, are bringing new opportunities and use cases in the field of systems and Personal Health Devices used for the telemonitoring of citizens in Home or Mobile scenarios. At a time of such challenges, this review arises from the need to identify robust technical telemonitoring solutions that are both open and interoperable. These systems demand standardized solutions to be cost effective and to take advantage of standardized operation and interoperability. Thus, the fundamental challenge is to design plug-&-play devices that, either as individual elements or as components, can be incorporated in a simple way into different Telecare systems, perhaps configuring a personal user network. Moreover, there is an increasing market pressure from companies not traditionally involved in medical markets, asking for a standard for Personal Health Devices, which foresee a vast demand for telemonitoring, wellness, Ambient Assisted Living (AAL) and ehealth applications. However, the newly emerging situations imply very strict requirements for the protocols involved in the communication. The ISO/IEEE 11073 family of standards is adapting and moving in order to face the challenge and might appear the best positioned international standards to reach this goal. This work presents an updated survey of these standards, trying to track the changes that are being fulfilled, and tries to serve as a starting-point for those who want to familiarize themselves with them.This research work has been partially supported by projects TSI2005-07068-C02-01 and TSI2004-04940-C02-01 from Ministerio de Educación y Ciencia (Spanish Government), and a personal grant to M. Galarraga from Navarre Regional Government

    Exploring a new security framework for remote patient monitoring devices

    Get PDF
    Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM) devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framewor

    Exploring a new security framework for remote patient monitoring devices

    Get PDF
    Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM) devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framewor

    Medical Device Interoperability With Provable Safety Properties

    Get PDF
    Applications that can communicate with and control multiple medical devices have the potential to radically improve patient safety and the effectiveness of medical treatment. Medical device interoperability requires devices to have an open, standards-based interface that allows communication with any other device that implements the same interface. This will enable applications and functionality that can improve patient safety and outcomes. To build interoperable systems, we need to match up the capabilities of the medical devices with the needs of the application. An application that requires heart rate as an input and provides a control signal to an infusion pump requires a source of heart rate and a pump that will accept the control signal. We present means for devices to describe their capabilities and a methodology for automatically checking an application’s device requirements against the device capabilities. If such applications are going to be used for patient care, there needs to be convincing proof of their safety. The safety of a medical device is closely tied to its intended use and use environment. Medical device manufacturers create a hazard analysis of their device, where they explore the hazards associated with its intended use. We describe hazard analysis for interoperable devices and how to create system safety properties from these hazard analyses. The use environment of the application includes the application, connected devices, patient, and clinical workflow. The patient model is specific to each application and represents the patient’s response to treatment. We introduce Clinical Application Modeling Language (CAML), based on Extended Finite State Machines, and use model checking to test safety properties from the hazard analysis against the parallel composition of the application, patient model, clinical workflow, and the device models of connected devices

    Implementation of Local Transport Protocol Library (LTPlib) into Real-time Operating System (RTOS)

    Get PDF
    Healthcare is getting more expensive overtime. Personal telehealth systems, including remote patient monitoring and management, can facilitate caregiver to effectively deliver high-quality healthcare service at lower cost. The recent developments in information and communication technologies have increased the degree of connectivity between people using smart devices. To further enhance these developments, implementation of the Local Transport Protocol library is ported to a micro real-time operating system to achieve a low cost yet highly efficient embedded system.The selected hardware and software provide easy interface for data transfer from a monitoring and measuring device to remote locations. Targeting the Continua Health Alliance compliancy as the future task of this research and development work can be a significant contribution to the future of healthcare monitoring system

    Zuverlässige und herstellerübergreifende Medizingeräteinteroperabilität: Beiträge zur IEEE 11073 SDC-Normenfamilie

    Get PDF
    Medizingeräte im Krankenhaus sind heute fast ausschließlich isolierte Insellösungen. Sie stellen nach außen keine Informationen und Interaktionsmöglichkeiten bereit - oder nur innerhalb ihres geschlossenen Ökosystems. Daher führt diese Arbeit in die neue IEEE 11073 Service-oriented Device Connectivity (SDC)-Normenfamilie ein, die eine herstellerübergreifende Interoperabilität ermöglicht. Es werden drei Anwendungsbereiche betrachtet: zuverlässige Fernauslösung von Gerätefunktionalitäten, dynamische Assoziierung von Fernsteuerungselementen und -operationen und verteilte Alarmierungssysteme.Medical devices in today's hospitals are almost always isolated systems, which do not transmit information to or interact with external devices. At the most, this is possible within closed company ecosystems. Thus, this work introduces the new IEEE 11073 Service-oriented Device Connectivity (SDC) family of standards, which provides manufacturer-independent interoperability. Three fields of application are considered: safe activation of a device's functionality, dynamic association of a random number of remote-control elements and remote-controllable operations, and distributed alarm systems

    Design and Implementation of Continua Compliant Wireless Medical Gateway

    Get PDF
    Collecting data from various medical devices associated with a patient at one location and sending it to a caregiver at another location in an integrated format is a challenge in telehealth systems. This challenge comes from following factors. First, these medical devices are not equipped with long range communication technologies. Second, medical devices from different manufacturers lack interoperability. Third, communication time is inconsistent. In order to address above challenges, a Continua compliant Wireless Medical Gateway (WMG) is designed and implemented in this research using various hardware components such as BeagleBone Black, Stollmann adapter and Unison Real-Time OS (RTOS). Being complaint to Continua enables interoperability between medical devices from different manufacturers. The selected hardware and software provide easy interface for data transfer over long range. The prototype has been tested extensively using various scenarios to calculate the total communication time, delay consistency and data accuracy. The results show the consistent deviation in communication time for WMG

    Rationale and Architecture Principles for Medical Application Platforms

    Get PDF
    The concept of “system of systems” architecture is increasingly prevalent in many critical domains. Such systems allow information to be pulled from a variety of sources, analyzed to discover correlations and trends, stored to enable realtime and post-hoc assessment, mined to better inform decisionmaking, and leveraged to automate control of system units. In contrast, medical devices typically have been developed as monolithic stand-alone units. However, a vision is emerging of a notion of a medical application platform (MAP) that would provide device and health information systems (HIS) interoperability, safety critical network middleware, and an execution environment for clinical applications (“apps”) that offer numerous advantages for safety and effectiveness in health care delivery. In this paper, we present the clinical safety/effectiveness and economic motivations for MAPs, and describe key characteristics of MAPs that are guiding the search for appropriate technology, regulatory, and ecosystem solutions. We give an overview of the Integrated Clinical Environment (ICE) – one particular achitecture for MAPs, and the Medical Device Coordination Framework – a prototype implementation of the ICE architecture

    Personal Health Records: Is Rapid Adpoption Hindering Interoperability?

    Get PDF
    The establishment of Meaningful Use criteria has created a critical need for robust interoperability. A universal definition for a Personal Health Records (PHRs) has not been agreed upon. Standardized code sets have been built for specific entities but integration between them has not been supported. The purpose of this research study was to explore the hindrance and promotion of interoperability standards in relationship to PHRs to describe interoperability progress in this area. The methodology for this study was conducted following the basic principles of a systematic review, with 61 articles used for this research study. Lagging interoperability has been stemmed from slow adoption by patients, creation of disparate systems due to rapid development for Meaningful Use stages, and rapid early development of PHRs prior to the mandate for integration among multiple systems. Findings of this study suggest that deadlines for implementation to capture Meaningful Use incentive payments are supporting the creation of PHR data silos; thereby, hindering the goal of high-level interoperability

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications
    corecore