198 research outputs found

    Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model

    Full text link
    Recently brain networks have been widely adopted to study brain dynamics, brain development and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. Firstly, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes predictions. Moreover, few of current graph learning model is interpretable, which may not be capable to provide biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using the data from HCP and OASIS. Our results from extensive experiments demonstrate the superiority of the proposed model compared to several state-of-the-art techniques. Additionally, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Motion-Invariant Variational Auto-Encoding of Brain Structural Connectomes

    Full text link
    Mapping of human brain structural connectomes via diffusion MRI offers a unique opportunity to understand brain structural connectivity and relate it to various human traits, such as cognition. However, motion artifacts from head movement during image acquisition can impact the connectome reconstructions, rendering the subsequent inference results unreliable. We aim to develop a generative model to learn low-dimensional representations of structural connectomes that are invariant to motion artifacts, so that we can link brain networks and human traits more accurately, and generate motion-adjusted connectomes. We applied the proposed model to data from the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP) to investigate how our motion-invariant connectomes facilitate understanding of the brain network and its relationship with cognition. Empirical results demonstrate that the proposed motion-invariant variational auto-encoder (inv-VAE) outperforms its competitors on various aspects. In particular, motion-adjusted structural connectomes are more strongly associated with a wide array of cognition-related traits than other approaches without motion adjustment

    Decoding Task-Based fMRI Data Using Graph Neural Networks, Considering Individual Differences

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a non-invasive technology that provides high spatial resolution in determining the human brain\u27s responses and measures regional brain activity through metabolic changes in blood oxygen consumption associated with neural activity. Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific task performance. Over the past several years, a variety of computational methods have been proposed to decode task fMRI data that can identify brain regions associated with different task stimulations. Despite the advances made by these methods, several limitations exist due to graph representations and graph embeddings transferred from task fMRI signals. In the present study, we proposed an end-to-end graph convolutional network by combining the convolutional neural network with graph representation, with three convolutional layers to classify task fMRI data from the Human Connectome Project (302 participants, 22–35 years of age). One goal of this dissertation was to improve classification performance. We applied four of the most widely used node embedding algorithms—NetMF, RandNE, Node2Vec, and Walklets—to automatically extract the structural properties of the nodes in the brain functional graph, then evaluated the performance of the classification model. The empirical results indicated that the proposed GCN framework accurately identified the brain\u27s state in task fMRI data and achieved comparable macro F1 scores of 0.978 and 0.976 with the NetMF and RandNE embedding methods, respectively. Another goal of the dissertation was to assess the effects of individual differences (i.e., gender and fluid intelligence) on classification performance. We tested the proposed GCN framework on sub-datasets divided according to gender and fluid intelligence. Experimental results indicated significant differences in the classification predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated the superior ability of our GCN in modeling task fMRI data

    Predicting the Outcome of Cognitive Training in Parkinson’s Disease using Magnetic Resonance Imaging

    Get PDF
    Motivation: Cognitive impairment is an important symptom of Parkinson’s Disease (PD), usually having a substantial negative impact on the quality of life of patients, families, and caregivers. Cognitive Training (CT) have been proven effective in halting the process of cognitive decline in PD. However, the efficacy of CT is unpredictable from subject to subject. Objective: Investigate the possibility of predicting the outcome of CT in PD patients with Mild Cognitive Impairment using structural and functional Magnetic Resonance Imaging (MRI) data. Methods: Before CT, a sample of 42 PD patients underwent structural and functional MRI. Graph measures were then extracted from their structural and functional con nectomes and used as features for random forest (RFo) and decision tree (DT) machine learning (ML) regression algorithms with and without prior latent component analysis (LCA). CT response was evaluated by assessing the outcomes of the Tower of London task pre- and post-treatment. Finally, the 4 ML models were used to predict CT response and their performances were assessed. Post hoc analyses were conducted to investigate whether these algorithms could predict age using connectomic measures on a sample of 80 PD patients. Results: The performances of the aforementioned algorithms did not differ signifi cantly from the baseline performance predicting the subject-specific CT outcome. The performance of the RFo without LCA differed significantly from the baseline performance in the age prediction task for the sample of 80 patients. Conclusion: Notwithstanding the lack of statistical significance in predicting our xicognitive outcomes, the relative success of the age prediction task points towards the potential of this approach. We hypothesise that bigger sample sizes are needed in order to predict the outcome of CT using ML
    • …
    corecore