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“We want things we cannot have. We seek to reclaim a certain

moment, sound, sensation. I want to hear my mother’s voice. I

want to see my children as children. Hands small, feet swift.

Everything changes. Boy grown, father dead, daughter taller

than me, weeping for a bad dream. Please stay forever, I say to

the things I know. Don’t go. Don’t grow.”

- Patti Smith, M Train





Abstract

Motivation: Cognitive impairment is an important symptom of Parkinson’s Disease (PD),

usually having a substantial negative impact on the quality of life of patients, families,

and caregivers. Cognitive Training (CT) have been proven effective in halting the process

of cognitive decline in PD. However, the efficacy of CT is unpredictable from subject to

subject.

Objective: Investigate the possibility of predicting the outcome of CT in PD patients

with Mild Cognitive Impairment using structural and functional Magnetic Resonance

Imaging (MRI) data.

Methods: Before CT, a sample of 42 PD patients underwent structural and functional

MRI. Graph measures were then extracted from their structural and functional con-

nectomes and used as features for random forest (RFo) and decision tree (DT) machine

learning (ML) regression algorithms with and without prior latent component analysis

(LCA). CT response was evaluated by assessing the outcomes of the Tower of London

task pre- and post-treatment. Finally, the 4 ML models were used to predict CT response

and their performances were assessed. Post hoc analyses were conducted to investigate

whether these algorithms could predict age using connectomic measures on a sample of

80 PD patients.

Results: The performances of the aforementioned algorithms did not differ signifi-

cantly from the baseline performance predicting the subject-specific CT outcome. The

performance of the RFo without LCA differed significantly from the baseline performance

in the age prediction task for the sample of 80 patients.

Conclusion: Notwithstanding the lack of statistical significance in predicting our
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cognitive outcomes, the relative success of the age prediction task points towards the

potential of this approach. We hypothesise that bigger sample sizes are needed in order

to predict the outcome of CT using ML.

Keywords: Parkinson’s Disease; Cognitive Training; Connectomics; Machine Learning.
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Resumo

Motivação: O défice cognitivo é um sintoma comum da Doença de Parkinson (DP), tendo

frequentemente um impacto negativo substancial na qualidade de vida dos pacientes,

das famílias e dos cuidadores. O Treino Cognitivo (TC) tem mostrado promessas na

retardação no défice cognitivo nos doentes com DP (dDP). No entanto, a eficácia do TC é

imprevisível de sujeito para sujeito.

Objetivo: Investigar a possibilidade de previsão da eficácia do TC em dDP com um

défice cognitivo ligeiro, intrumentalizando técnicas de imagem funcional e estrutural por

ressonância magnética (IRM).

Métodos: Uma amostra de 42 dDP foi sujeita a estudos imagiológicos com IRM antes

do TC. Foram extraídas medidas dos grafos definidos pelos conectomas estruturais e fun-

cionais dos dDP para serem usadas como características para algoritmos de aprendizagem

automática. Quatro algoritmos de regressão diferentes foram implementados: árvores de

decisão e random forest (RFo) com e sem análise de componentes latentes (ACL) prévia

das características. A resposta ao TC foi analisada através do desempenho no Teste da

Torre de Londres (TTL) antes e após o TC. Por fim, os 4 modelos de AA foram utilizados

para prever a melhoria no desempenho do TTL. Foram realizadas análises post hoc para

avaliar a capacidade de previsão de idade dos dDP.

Resultados: Os algoritmos não apresentaram um erro significativamente menor que o

utilizado como linha de base para prever a diferença do desempenho dos doentes no TTL

antes e após o TC. O algortimo RFo com ACL teve um desempenho significativamente

diferente da linha de base a prever a idade dos pacientes no grupo com 80 dDP.

Conclusão: Não foi possível prever as medidas de desempenho cognitivo. No entanto,
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o sucesso na previsão da idade dos dDP sugere que esta técnica tem potencial para obten-

ção de resultados positivos se for utilizada uma maior amostra de estudo.

Palavras-chave: Doença de Parkinson; Treino Cognitivo; Conectómica cerebral; Apren-

dendizagem Automática.
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Glossary

Angle of Precession The angle between the axis of rotation and the axis of Precession

[1]

Bias-Variance Trade-off The bias-variance trade-off refers to the a trade-off between the

complexity of the model and the amount of variance explained. If

the model is too complex, it will fit the data used to construct the

model very well but generalize poorly to unseen data. In other

words, if the model is too complex, it is prone to Overfitting. Con-

versely, if the complexity is too low the model will be too simple to

explain the variability of the data leading to underfitting [2]

Complex Network Analysis The description of the proprieties of a system through the calcula-

tion of topological measures of its network representation [3]

Configuration The set of necessary and sufficient Hyperparameters to completely

define an algorithm [4]

Connectome A complete description of the anatomical connections between all

elements of a nervous system. This description can be detailed at

different resolution scales, from the level of individual neurons and

synapses to macroscopic connectivity between large-scale brain

regions. The term connectome is also often used to describe the

organization of functional connectivity networks [5]
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GLOSSARY

Dementia Acquired cognitive impairment has become severe enough to com-

promise social and/or occupational functioning. This diagnostic

requires substantial impairment to be present in one or (usually)

more cognitive domains. The impairment must be sufficient to

interfere with independence in everyday activities. According to

the DSM-5 nomenclature, dementia is now referred to as Major

Neurocognitive Disorder [6]

Diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied

magnetic field creates an induced magnetic field in them in the

opposite direction, causing a repulsive force [7]

Effective connectivity The causal influence that one neuronal system exerts over an-

other. Typically inferred from a model of the neuronal interactions

that cause fluctuations in measured neurophysiological signals. A

model of effective connectivity results in a directed graph [5]

Functional connectivity A statistical dependence between neurophysiological signals. Note:

Functional connectivity between a pair of nodes does not necessar-

ily imply that one node is causing activity in the other, or that the

nodes share a direct anatomical connection [5]

Hyperparameter In machine learning, a hyperparameter is a parameter that is set

before the learning process begins, as opposed to what is simply

defined to as a Parameter. Hyperparameters affect the sensitivity

of the algorithms to detecting patterns, the Bias-Variance Trade-off,

the trade-off between model complexity and fitting of the data, or

may trade-off computational complexity for optimality of fitting.

[4]

Lewy Bodies Abnormal aggregates or clusters of the protein α-synuclein which

can be present in the brain in a range of neurologic diseases [8]
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GLOSSARY

Neuroplasticity The ability of the brain to undergo structural and functional alter-

ations by altering neurotransmission, synaptogenesis and neuroge-

nesis from birth to old age [9, 10]

Nutation A forced displacement of the axis of a spinning body away from

the simple cone-shaped figure, which would be traced by the axis

during Precession [1]

Overfitting A model overfits the training data when it describes features that

arise from noise or variance in the data, rather than the underlying

distribution from which the data were drawn. Overfitting usually

leads to loss of accuracy on out-of-sample data [11]

Paramagnetic Paramagnetic materials are weakly attracted by an externally ap-

plied magnetic field, and form internal, induced magnetic fields in

the direction of the applied magnetic field [7]

Parameter In machine learning, a model parameter is a configuration variable

that is internal to the model and whose value can be estimated from

the given data, as opposed to what is referred to as a Hyperparam-

eter.They are required by the model when making predictions and

their values define the skill of the model on your problem.[4]

Parkinsonian Disorders Medical conditions of which Parkinsonism is a prominent clinical

feature [12]

Parkinsonism Clinical syndrome characterized by bradykinesia, tremor, rigidity

and postural instability [12]

Perfusion In the context of MRI, perfusion refers to the capillary blood supply

to a tissue, measured in ml min−1 g−1 [13]

Precession Compound motion of a rotating object about an axis other than its

axis of rotation. [1]

Radiomics High-throughput mining of quantitative features from radio-

graphic images [14]
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GLOSSARY

Structural connectivity The anatomical connections between neural elements. Equivalent

to individual axons and synaptic contacts at the micro scale. At

coarser scales, structural connectivity refers to the axonal tracts or

white matter fiber bundles between different brain regions [5]
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1
Introduction

P arkinson’s Disease is a progressive neurodegenerative disease characterised by

a plethora of symptoms. It’s a complex and heterogeneous disease that is infamous

for its typical motor symptoms, i.e. tremor at rest, rigidity, bradykinesia and postural

instability. Furthermore, Parkinson’s Disease (PD) also comprises a wide range of non-

motor symptoms which include but are not limited to autonomic dysfunction, sensory

and sleep abnormalities, and cognitive impairment. [15]

Cognitive impairment is an important symptom of PD, usually having a substantial

negative impact on the quality of life of patients, families, and caregivers [16]. The

cognitive dysfunctions in PD range from mild cognitive impairment to dementia and

include visuospatial impairment, attentional set-shifting difficulties, working memory

impairment, decline of attention ability, inflexibility in thinking, and difficulty planning

[17]. Parkinson’s Disease Related Mild Cognitive Impairment (PD-MCI) is an umbrella

term referring to an abnormal decline in multiple cognitive abilities which is either

reported by the patient (or informant) or observed by the caregiver or clinician, and is not

caused by other diseases [18, 19]. Studies have reported that 84% of all PD patients suffer

from cognitive impairments [15] and 25% show signs of significant cognitive impairments

at diagnosis [6, 18]. Moreover, PD-MCI has been described (and often is considered) as a

degree of cognitive impairment that is not normal for age and a potential prodromal state

to Parkinson’s Disease Related Dementia (PD-D) [20]. In this way, PD-MCI is thought

1



CHAPTER 1. INTRODUCTION

of as an intermediate state between normal cognition and dementia in PD [16]. In fact,

PD-D is estimated to affect 50% of PD patients (with varying times of onset and severity).

[18, 21] The risk of developing dementia has been shown to be six times higher in PD

patients than in the general elderly population [22]. Therefore, the study of treatment

for cognitive impairment in PD may provide means to alleviate the current burden of

PD-MCI and PD-D.

Several approaches have been explored to relieve symptoms and halt cognitive de-

cline. In particular, non-pharmacological interventions such as Cognitive Training (CT)

have been proven effective in halting the process of cognitive decline in PD [23] as well

in other diseases such as Alzheimer’s disease [24]. CT is thought to have beneficial effects

on cognition due to the activation of neuroplastic mechanisms [16]. Some studies have

suggested that PD patients benefit from tailored short-term training of executive func-

tions (e.g. attention, planning) [17] and that CT improves memory and overall cognition

in PD patients [25]. Despite the promises of efficacy of CT in PD, no large Randomised

Controlled Trial (RCT)s have been conducted hitherto [25]. Two large RCT protocols were

published. However, these were directed to patients that have already developed PD-MCI

[16] (n = 111, on intervention group and, n = 111, control group) or PD-D (n = 15 on

cognitive rehabilitation therapy group, n = 15 on relaxation therapy group, n = 15 on the

control group) [25].

This dissertation will follow from the COGTIPS study, which is the largest (n = 140)

RCT conducted on PD patients to date and to our knowledge. COGTIPS aims to provide

evidence for the efficacy of an easily-accessible, home-based online cognitive training pro-

tocol, to investigate the potential long-term effects of computerised CT and to shed light

on the underlying cognitive mechanisms of PD. Neuroimaging data will be instrumental

to reach this goal [26].

Neuroimaging data provides a non-invasive method of investigation of the human

brain connectivity on both functional and structural levels [5]. In particular, this data

allows the study of several important proprieties of the brain through its representation

as a complex network. Furthermore, it is possible to infer quantifiable measures related

to the flux of information of an individual’s brain (viz. integration, segregation, motif,

centrality, and resilience) from these networks. [3]. There is growing body of literature

2



about differences in neural network connectivity (connectomic) on PD when compared

against healthy subjects. Studies [27–31] suggest that lower measures of integration and

segregation of the brain’s connectivity system are related to cognitive decline (when

compared with healthy controls).

Currently, the effect of a given treatment is heterogeneous and unpredictable from

subject to subject [25]. However, some previous studies suggest that complex network

analysis of neuroimaging data can be a powerful tool in treatment outcome prediction

[32–36]. Adding to the evidence of network changes after CT [10, 37–39], this dissertation

aims to establish whether connectomic measures can be used to predict subject-specific

treatment outcome in patients with Parkinson’s Disease. In order to reach our goal, we

will apply latent factor analysis and machine learning tree-based regression models to

data extracted from structural and functional Magnetic Resonance Imaging (MRI) scans

to predict cognitive performance after training in a sample of 42 PD patients.
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Theoretical concepts

2.1 Parkinson’s Disease

P arkinson’s Disease is a neurological neurodegenerative disease. It is the most

common form of Parkinsonism. A person diagnosed with PD should display id-

iopathic parkinsonism, which must not suspected to be secondary to any other causes

[40]. Patients with PD experience significant comorbidities, including increased rates of

infections, cardiac and gastrointestinal disorders, and fall-related injuries, in addition to

(other) motor and non-motor symptoms [41].

The motor clinical findings in parkinsonian patients as described in [40] are: tremor,

rigidity, hypokinesia, abnormal gait and posture. See figure 2.1 for visual cues. The

parkinsonian tremor is present at rest, increases with emotional stress and decreases

with activity. The tremor frequency usually falls in the interval of [4, 6] Hz and it can be

on one limb, on both limbs of one side or on all four limbs. It is usually associated with a

hand movement called “pill-rolling” (cf. figure 2.1). Rigidity, or hypertonia, affects both

agonist and antagonist muscles around a particular joint. This increase in the resistance of

passive movement causes the infamous flexed posture as well as cogwheel-like movement

(severe interruptions in the flow of the movement). Hypokinesia, bradykinesia or aki-

nesia, is the a slowness of voluntary movement and a reduction in automatic movement.

This symptom manifests itself in many observable features such as in general abnormal

5



CHAPTER 2. THEORETICAL CONCEPTS

Curved Posture

Pill-Rolling
Movement

Tremor at rest

Shuffling Steps

Masked face

Back Rigidity

Figure 2.1 – Parkinson’s motor symptoms. See text and legend in image for more in-depth
description.

slowness of movement, infrequent blinking, soft voice, immovable expression (mask face)

and small handwriting, among others. The parkinsonian gait is characterised by a flexed

posture, slow starts, small and shuffling steps, little arm swing, difficulty to stop and

turn. In advanced disease stages, the posture may be so altered that there is involuntary

acceleration in order to prevent falls (festination). Typically the motor symptoms have

an asymmetric onset.

The non-motor symptoms of PD include but are not limited to autonomic dysfunction,

mood disorders (namely depression and anxiety), sleep disorders (typically Rapid Eye

Movement (REM) sleep disorders), sensory abnormalities and neuro-cognitive dysfunc-

tions [15]. The latter will be discussed on section 2.1.3. Close monitoring of signs and

symptoms like hyposmia, constipation, anxiety, depression, and REM sleep behaviour
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2.1. PARKINSON’S DISEASE

disorder is fundamental. These signs may be noticeable in a preclinical stage spanning

several years before the onset of symptoms of motor dysfunction [40].

2.1.1 Neuropathology

The pathology of PD is complex and still not fully understood. Idiopathic parkinsonism,

or Parkinson’s disease, is considered a proteinopathy. This syndrome is characterised by

the misfolding and aggregation of α-synuclein thus being also referred to as a synucle-

inopathy [40].

α-Synuclein is a one-hundred-and-forty-aminoacid-long protein that seems to be

involved in intercellular communication and mitochondrial function, among other func-

tions. It is a natively unfolded protein found in presynaptic terminals. Abnormal cytolog-

ical locations of this protein (i.e. outside presynaptic terminals) are thought to influence

its conformation, making it more likely to form neurotoxic aggregates [42], called Lewy

Bodies.

Lewy Bodies (LB) are the most common neuropathological finding in PD. These are re-

ported to be present in around 80% of patients [12]. An (initially small) abnormal protein

folding can spread from neuron to neuron in something referred to as a prion-like spread.

However, LB disease is not unique to PD it is also a common clinical finding in other

Parkinsonian Disorders [12]. Similarly, Lewy Neurites (LN) are abnormal projections in

diseased neurons. They contain granular material and abnormal α-synuclein filaments

similar to those found in LB. In early-stage PD, the LB pathology is considered to be

relatively limited to the brainstem and limbic regions. With disease progression and with

the development of PD-D, the LB and LN also spread to the neocortex [6].

One of the most well-known models for the pathophysiology of the motor manifes-

tations of PD connects these symptoms to dopamine depletion effects. In general lines,

this model describes the motor symptoms as a consequence of decreased availability of

dopamine in regions and pathways of the cortico-basal ganglia-thalamocor-tical motor

circuit [43]1. With the LB and LN propagation throughout the neocortex, the non-motor

1This a gross simplification of the pathophysiology of PD and pathways. For more detailed information
on the direct and indirect pathways, cf. [43], section 2.2.
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symptoms become more notorious. In fact, studies present evidence for the motor symp-

toms onset when the loss is 30% of substantia nigra dopamine neurons or 50 to 70% of

nigrostriatal dopaminergic axonal terminals in the striatum [43]. Conversely, the non-

motor symptoms can already be present in a preclinical stage thus being of paramount

importance in the early-onset detection of PD [40].

2.1.2 Epidemiology and Burden

PD is about 1.4 times more frequent in men than in women and the prevalence increases

with age [44] (See figure 2.2). The global prevalence is conservatively estimated to be

around 0.3% and it increases sharply with age to more than 3% in those older than 80

years [42]. The incidence of Parkinson’s disease seems to be highly variant globally [44].

In particular seems to vary in subgroups defined by race, location, ethnicity, genotype or

environment [42]. Parkinson’s disease is the neurological disease with the fastest growing

burden [45], which has more than doubled over 26 years, from 2.5 million patients in

1990 to 6.1 million patients in 2016 [44, 46]. Moreover, the increase in mortality is bigger

than the increase in prevalence [44]. There is a multitude of factors that can account for

this increase. To name a few, better study methods and greater general awareness for the

disease lead to better estimates of the prevalence. Also, increasing life expectancy (also of

PD patients) leads to a higher prevalence. Finally, the increase of environmental factors

tied to the growing industrialisation of the world greatly influences incidence rates [44].

Figure 2.2 – Incidence and prevalence of Parkinson disease. a | Prevalence of Parkinson
disease in men and women per 100,000 individuals. b | Incidence rate of Parkinson
disease per 100,000 person-years. Image from [42].
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2.1. PARKINSON’S DISEASE

There is no doubt that a prevalent neurodegenerative disorder with significant impact

on Quality of Life (QoL) of patients and relevant comorbidies would entail a huge eco-

nomical burden. PD is associated with substantial excess costs in direct medical costs,

indirect productivity losses, non-medical costs, and disability income. Yang et al. [41]

estimated that in 2017 in the US the total economic burden was of $51.9B (≈e43.9B) with

$25.4B (≈e21.4B) from direct medical care costs and $26.5B (≈e22.4B) from indirect

(non-medical) costs.2 The European Parkinson’s disease Association estimated [47] the

economic burden of PD to be of almost e14B in 2011.

2.1.3 Cognitive decline in Parkinson’s Disease

The rate, severity and time of onset of cognitive impairment is an important factor for

differential diagnosis of different Parkinsonian Disorders [6]. Studies have reported that

PD patients have a six-fold increase in the probability of developing Dementia when

compared with the general population [22]. Seventy eight percent of PD patients are ex-

pected to develop dementia in the first eight years after the onset of the motor symptoms

and this percentage goes up to 84% if we consider the first twenty years after onset [20].

Adding to that, one out of four PD patients suffers from significant cognitive impairment

at the time of diagnosis [18, 21] and that 25% to 50% of non-demented PD patients suffer

from some cognitive impairment in the course of their disease [20]. Henceforth a cogni-

tive impairment on non-demented PD patients not secondary to any other cause we will

referred to as PD-MCI.

Dementia is an acquired, generalised, and usually progressive impairment of cognitive

functions with preserved level of consciousness (unlike in coma and confusional states)

[40]. PD-D and PD-MCI are closely related. PD-MCI represents a degree of cognitive

impairment that is not normal for age [20]. It is a potential prodromal state to PD-D

being often considered an intermediate state between normal cognition and dementia in

PD [20].

Definition of the clinical phenotype specific to PD-MCI is complex because this is

a highly heterogeneous syndrome. Suboptimal performance of cognitive domains such

as executive function, psychomotor speed, visuospatial abilities, language, and memory

has been noted in non-demented PD as well as dysfunction in executive function. The

2B stands for billion
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clinical features of PD-MCI are heterogeneous with and single and multiple-domain

impairment and with amnestic or non-amnestic characteristics. Non-amnestic single

domain cognitive impairment predominates in PD-MCI. Moreover, PD-MCI is usually

associated with older than average age at screening and onset of motor symptoms, male

sex, depression, and more severe motor symptoms [20].

Notwithstanding the heterogeneity of clinical features, the Movement Disorder So-

ciety task force on PD-MCI has defined an operative definition for this condition to

standardise research and clinical practice. The formal diagnosis of PD-MCI is based on

the accomplishment of four key features [48]3:

• diagnosis of Parkinson’s disease;

• evidence of a gradual cognitive decline reported by the patient, relative, or clinician;

• validation of this decline through PD-validated scales of global cognitive perfor-

mance and/or comprehensive neuropsychological assessment;

• the cognitive decline is not severe enough as to significantly interfere with func-

tional independence.

2.2 Magnetic Resonance Imaging

U ndoubtedly, the development of non-invasive neuroimaging techniques is one

of the major factors contributing to the understanding of some of the inner dy-

namics of the human brain. Namely, the complex brain network representation and the

mapping of brain connectivity (at increasingly smaller scales) are allowing new and ex-

citing advances in neurosciences [49]. In particular, the developments in MRI have made

possible structural and functional imaging and data acquisition with increasing spatial

and temporal resolutions [3]. MRI will be the imaging modality instrumentalised in this

dissertation work. However, other techniques have been successfully used to extract

connectomes. Two popular examples are Electroencephalography (EEG) and Magnetoen-

cephalography (MEG).

3Only inclusion criteria listed here. See [48] for exclusion criteria.

10



2.2. MAGNETIC RESONANCE IMAGING

This section is based on chapters 3 and 8 of [13] and chapters 23 and 24 of [50].

References to more detailed content follow as footnotes where relevant information was

omitted because it was considered out of scope for this dissertation work.

2.2.1 Nuclear Magnetic Resonance

Nucleons (protons and neutrons) have an intrinsic magnetic momentum, also called spin.

This property finds no adequate classical parallel but it can be thought of as analogous

to the angular momentum of a spinning sphere. To simplify this discussion, we will

henceforth consider a single proton; i.e. H+.4

Regarding the nature of the atomic magnetic interaction, it is important to state that

a non-zero angular momentum is always associated with a non-zero magnetic dipole

moment, #»µ , through the following relation:

#»µ = γ
#»
J = γ~ #»

I (2.1)

where γ is a proportionality constant called gyromagnetic ratio, ~ is the reduced Planck

constant (~ = 1.054 · 10−34 J·s), and
#»
I and

#»
J are the nuclear intrinsic and total angular

momenta, respectively. This means that a charged particle (i.e. a proton), which has a

non-zero nuclear intrinsic angular momentum
#»
I , can be conceptualised behaving like a

tiny rotating magnet.

Let
# »
M be the net/macroscopic magnetisation defined by the theoretical vectorial sum

of #»µ for all the particles in a given sample (see figure 2.4). In the vast majority of biologi-

cal tissues, the directions of the microscopic dipole moments of particles are randomly

distributed. Therefore,
# »
M is usually zero. With the application of a static magnetic

field,
# »
B0, the individual magnetic moments of the particles align with this magnetic field,

creating a non-zero
# »
M. However, due to the quantisation of the angular moment, the

proton
(
|| #»I || = ±1

2

)
can’t perfectly align with

# »
B0. Classically, provided that #»µ and

# »
B0 do

not have the same direction, the torque exerted by
# »
B0 is non-zero, provoking a change in

the angular moment
#»
J . Thus, #»µ exhibits a Precession movement. This precession occurs

with a frequency ω0, called the Larmor frequency and described by the Larmor equation

4This simplification is not naive taking into account that the MRI signal is mostly due to hydrogen atoms
(which nuclei are a single proton). Hydrogen is abundant in the human body, which is 70% to 80% H2O,
and produces a relatively strong signal when compared against other atoms.
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Figure 2.3 – a | Classical representation of the proton as a vector defined by its magnetic
dipole moment, #»µ . The angle between the axis of rotation and #»µ is defined as θ, the
angle of precession. b | Classical representation of the precession movement caused by
the interaction of the static uniform magnetic field

# »
B0 with the proton’s dipolar magnetic

moment.

(B0 is the magnitude of
# »
B0). 5

ω0 = γ
# »
B0 (2.2)

Additionally, quantum mechanic theory postulates that the interaction between #»µ and
# »
B0 is stable when aligned with the latter both in parallel and anti-parallel orientations6

(See figure 2.3). For a large number of protons, the population of both of these energy

states (i.e. the number of protons that are oriented parallel and anti-parallel to
# »
B0) is

given by the Boltzmann ratio, derived from the Boltzmann distribution:

Nup

Ndown
= exp

(
∆ε
kB T

)
(2.3)

where Nup and Ndown represent the number of protons oriented parallel and anti-parallel

to
# »
B0, respectively, ∆ε is the difference of energy between the two states, T is temperature

and kB7 is the Boltzmann constant.

5For more detailed derivation of the Larmor equation, cf. [13] pp. 137-139.
6Discussions of the Zeeman effect are considered out of scope for the purposes of this thesis. For more

detailed information, cf. [50] pp. 207.
7kB = 1.39 · 10−23 J·K−1
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a) b) c)

Figure 2.4 – Visual representation of the net magnetisation vector. a |A classical approach
to the precession of the magnetic dipolar moments of the different atoms in a sample in a
static magnetic field. In green the magnetic moments that are oriented parallel to the field
and in pink anti-parallel. b | A simplification of representation of the different magnetic
dipoles as the magnetisation vectors. The different magnetisation vectors for both energy
states a vector with the direction of the field and magnitude given by the summation
of the dot product between every individual dipole moment and the magnetic field. c |
Because there are more atoms in the lower energy state (represented by green) at the body
temperature (as described by equation 2.3), the net magnetisation is a non-null vector.

Using equation 2.3 to calculate the Boltzmann ratio for protons at body temperature

(e.g. T = 310K) on a uniform magnetic field of 1 T, we have a surplus of ≈ 3 ppm of atoms

in the lower energy state. For this reason, as the atoms align according to a preferential

direction, their dipoles sum constructively. This effect accounts for a small but potentially

measurable macroscopic net magnetisation to which we call
#   »
M0 (see figure 2.4).

The precession phase of #»µ from the different nuclei in the sample under the influence

of field
# »
B0 is random. Therefore, the only non-null component of the net magnetisation

vector
#   »
M0 is along the direction of the magnetic field. See figure 2.4 b). We define the

direction of the uniform static magnetic field
# »
B0 as the z-axis and the component of

#   »
M0 along that direction as

#   »
Mz. Likewise, the two orthogonal components of this vector

(that define the precession plane xOy) are defined as
#   »
Mx and

#   »
My . We will now proceed

our analysis using a classical interpretation of the net magnetisation,
#   »
M0, as described

before. Henceforth, we will consider the vector representation without the arrow as the
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magnitude of such vector, e.g. Mz ≡ ||
#   »
Mz||.

2.2.1.1 Interaction with a Radiofrequency Pulse

Let us consider what would happen to this system if we apply a Radio-frequency (RF)

pulse with frequency ω0. This external magnetic field will be referred to as B1. This

pulse induces Nutation - the change of the precession angle θ. In particular, we will

focus on the situation of θ equals 90°. B0 is usually in the order of magnitude of 100

T while M0 can be roughly estimated around 10−5 T for the human head8. This would

make the detection of
#   »
M0 impossible in the direction of

# »
B0. To bypass this,

#   »
M0 is detected

by magnetic induction on a coil perpendicular to B0, where B0 has no influence and the

signal from M0 is maximum if we would tilt it to θ = 90°. So, we arrive to the conclusion

that a signal induced in a coil perpendicular to
# »
B0 is dependent on θ. Furthermore,

the signal will be dependent on B0 by the means of ω0 (equation 2.2) because a higher

precession frequency would mean a bigger variation in the magnetic flux thus inducing a

stronger voltage according to Lenz’s Law:

ε = −
∂φB
∂t

(2.4)

on which ε is the electromotive force (measured in V) and φB is the magnetic flux.

Interacting with the spins using ω0 also leads to the synchronisation of their preces-

sion movements. However, the nuclei experience the magnetic fields of their neighbours

and lose coherence over time. So, Mx and My are non-null immediately after the in-

teraction with B1 but tend to zero over time. In this way, their magnitude is related

to the precession movement and evolves over time as described by the Bloch equations

(equations 2.5, 2.6 and 2.7).

Mx(t) =M0 sin(ω0t) · exp
(
−t
T2

)
(2.5)

My(t) =M0 cos(ω0t) · exp
(
−t
T2

)
(2.6)

where T2 is a constant referred to as transverse relaxation time. Moreover, as mentioned

B1 causes Nutation. However, the magnetisation vector will tend to its position of equi-

librium in alignment with B0:

Mz(t) =M0

[
1− exp

(
−t
T1

)]
(2.7)

8Cf. [13] pp. 140.

14



2.2. MAGNETIC RESONANCE IMAGING

where T1 is the longitudinal relaxation time.

We now have a notion of how to generate a measurable signal using Nuclear Magnetic

Resonance (NMR). In the next subsection we will discuss briefly how this signal translates

into a picture.

2.2.2 From Proton to Picture

As discussed previously, it is possible to interact with atoms (with non-null nuclear spin)

using non-stationary magnetic fields, i.e. B1. The simplest possible sequence is a single

pulse. If applied with the correct duration, this field can provoke a 90-degree nutation of

M0. To the magnetisation signal produced after a 90-degree pulse we call Free Induction

Decay (FID) (figure 2.5). It is characteristically the product of a sinusoid and an exponen-

time

si
gn

al
 in

te
ns

ity

Figure 2.5 – Representation of FID plot. Axes in arbitrary units.

tial curve parametrised by T2. However,
# »
B0 is not completely homogeneous. Magnetic

field inhomogeneities across the sample (e.g. presence of ions, polar molecules, etc) in-

troduce local variations in the frequency of precession within the sample volume which

cause an artificial reduction of the transverse relaxation time. While T2 represents what

we will henceforth referred to as ideal transverse relaxation time, to this new constant we

call T ∗2 , the real transverse relaxation time.

T2 describes the dephasing of spins due to spin-spin interaction with their neighbours

and T ∗2 accounts also for the dephasing produced by inhomogeneities of the static mag-

netic field within a sample. However, using only a FID pulse, there is no way to identify

the extent of alteration introduced by field inhomogeneities since the field is distorted
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by those two effects simultaneously. Adding to that, technical limitations regarding the

MRI equipment make it impossible to collect the FID reliably.9 In order to circumvent

this problem, we use another sequence called Spin-Echo (SE).

As we discussed, with time the amplitude of the magnetic resonance signal is reduced

because of interactions among spins and magnetic field inhomogeneities. The 90-degree

pulse first tips these spins into the transverse plane. After the 90-degree pulse, a 180-

degree pulse is applied. The 180-degree pulse allows refocusing of spins (of stationary nu-

clei) whose phases have been scattered by constant field distortions and inhomogeneities.

At time TE, the spins are synchronised. See figure 2.6 for reference and more colloquial

explanation.

The time between two different iterations of the whole SE sequence10 is TR (repetition

time). This value is also an important scan parameter because it controls the “initial angle”

of
#   »
M0 and thus its status after nutation.

As made evident by the previous explanations, the signal is highly influenced by the

sequence of RF pulses applied to the sample as well as its T1, T2 and T ∗2 , and by the

chosen acquisition times (i.e. TE, TR). Provided that different body tissues have different

relaxation times, it is possible to construct images with enhancement of different tissues.

This is done by the choice of TE and TR when compared against the relaxation times of

the tissues we wish to highlight. The strength intensity of the MRI signal during a SE

sequence is given by the following expression:

S =NH ·
[
1− 2 · exp

(
−TR− 0.5 ·TE

T1

)
+ exp

(
−TR
T1

)]
· exp

(
−TE
T2

)
(2.8)

where the NH is a scale factor representing the proton/spin density of the tissue, i.e. the

number of spins. The relation between the different parameters and the outcome image

is summarised in figure 2.7.

Discussions of spatial encoding are considered out of the scope of this dissertation

and not essential to understand the content. Suffice it to say that the spatial encoding

of the signal and subsequent transform to an image is done by using a third magnetic

field: the gradient field. This field gets its name from the fact that its strength is variable
9Cf. [1] pp. 369.

10Not only in between the SE sequence, but in between iteration of any sequence that was chosen for the
scan.
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Figure 2.6 – Spin-Echo Sequence Representation. In the spin-echo pulse sequence the 90-
degree pulse (A) causes nutation of the bulk magnetisation about the x-axis. Dephasing
then occurs (B) as slower components of the magnetisation lag and faster components
advance. A 180-degree rephasing pulse (C) causes nutation about the y-axis and reverses
the order of fast and slow components. The components then merge (D) to produce the
maximum signal. Diagrams A to D are shown in the rotating frame of reference. The
faster spins initially rotate toward the viewer and the slower spins rotate away. Image
from [1].

through space. Therefore it has a unique value in different points in space, influencing

the spins differently. This differentiation makes it possible to identify “where the signal

comes from”11.

11For a more detailed discussion of the gradient field and of the spatial encoding techniques cf. [50] pp.
368-373.
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Figure 2.7 – Relationship between time to echo (TE), repetition time (TR) and contrast of
the MRI. With short values for TR and TE we get a T1-weighted image (top left). Long
TR and short TE, a proton-density-weighted image is generated (top right). Long TE
and short TR produces images with very low contrast-to-noise ratio thus being useless.
Finally, long TR and short TE, allows the scan of a T2-weighted image (bottom right). In
this context, “long” and “short” TR and TE are defined in relation to the T1 and T2 of the
tissue we wish to image, respectively. Images adapted from [52].

2.2.3 Diffusion MRI

Diffusion Magnetic Resonance Imaging (dMRI) is a family of techniques that use informa-

tion derived from the diffusion of water molecules in the brain to measure the integrity of

white matter fibre bundles and with that the strength of connections between brain areas.

In particular, dMRI measures the net displacement of water molecules in a given (short)

amount of time. Diffusion Tensor Imaging (DTI) is a model based on the quantification

of the anisotropy of the water displacement [51]. In practice, this technique comprises

the calculation of the diffusion tensor of each voxel (equation 2.9). The inference of

the diffusion tensor is based on the measurement of the changes of the MRI signal in
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various directions over a period of time and subsequent comparison with a non-diffusion-

weighted MRI image. Then, it is possible to estimate the principal direction of diffusion

by calculating of eigenvalues and eigenvectors of the diffusion tensor. These principal

directions on each voxel provide the means to perform fibre tracking (or tractography)

on the brain, yielding information about cerebral tissue microstructure [52, 53].

Pure water is said to diffuse freely, i.e. water molecules have equal probability of

wandering off in any direction at any point in time. Hence, free diffusion leads to a zero-

mean Gaussian distribution of particle displacements. However, in the brain, diffusion of

water molecules is hindered by structures such as white matter fibres and neurons. The

diffusion restricted by cylindrical fibres results in the existence of a preferential direction

for diffusion: along the fibres [13, 51, 53].
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Figure 2.8 – Comparison between free and restricted diffusion. Top row
∣∣∣ Representa-

tion of the diffusion trajectory performed by a particle in the three following situations:
Isotropic Free Diffusion (left), Isotropic Restricted Diffusion (middle) and Anisotropic
Restricted Diffusion (right). In the middle representation, the purple bodies represent
randomly scattered impermeable objects. On the right, the blue rectangles represent
regular impermeable barriers (e.g. axonal fibres). Bottom row

∣∣∣ The ellipsoids associated
with the trajectory in the same column.

When diffusion is anisotropic, it is insufficient to refer to the diffusion as a scalar.
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Therefore, we use a second order symmetric tensor, the diffusion tensor.

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.9)

The diffusion tensor can be easily derived from diffusion-weighed measurements per-

formed along different directions. The more measurements in different direction, the

more accurate the estimation of D. The three diagonal elements represent diffusion coef-

ficients measured along each of the principal laboratory axes. The six off-diagonal terms

reflect the correlation of random motions between each pair of principal directions. If

the diffusion is isotropic, the tensor is a scalar matrix12. We obtain a natural visual repre-

sentation of the diffusion tensor by plotting an ellipsoid with the length of principal axes

described by the tensor eigenvalues, which we will refer to as λ1 for the principal axis

and λ2 and λ3 for the secondary axes [54]. See figure 2.8 for the relationship between the

type of diffusion and the shape of the correspondent diffusion ellipsoid.

It is also important to quantify directional anisotropy. The Fractional Anisotropy (FA)

is a normalised measure for how much the eigenvalues of the diffusion tensor differ.

FA =

√
3
2
·

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 +λ2

2 +λ3
1

(2.10)

where λ̄ is the average of the three eigenvalues. Note from the equation above that an

FA value of zero corresponds to perfectly isotropic diffusion and a value of one diffusion

only along the principal axis. By multiplying the FA values from different voxels in the

dMRI scans and a directional (colour) encoded map, we can obtain a visual representa-

tion of the directions of brain tracts (figure 2.9). One voxel can yield millions of fibres;

therefore, this method is highly prone to trace spurious tracts (i.e. false positives). It is

possible to mitigate some of these false positive connections if the anisotropy of diffusion

is accounted for. Weighing the image with the FA map allows us not to trace fibres on

voxels showing near-to-isotropic diffusion, which probably correspond to false positive

white mater tracts. The resulting map we call Directionally Colour Encoded Fractional

Anisotropy (DEC FA) maps. [55]

One of the most common methods for weighing images on diffusion uses the Pulsed

Gradient Spin Echo (PGSE) sequence. First, the excitation pulse (figure 2.10a) rotates
12By scalar matrix it is meant that D = αI,α ∈ R.

20



2.2. MAGNETIC RESONANCE IMAGING

Figure 2.9 – Left
∣∣∣ FA map. Right

∣∣∣ DEC FA map. The colours represent the orientation of
the (normalised) eigenvectors. As the eigenvector itself is specified relative to the original
(Ox, Oy and Oz) axes, the meaning of the colours is: pure red the Ox axis direction, pure
green green is Oy, and blue is Oz. Any colour in between is a combination of x, y and z
in the adequate proportions. Image adapted from [55].

aa b c d e

TE/2 TE/2

δ δ

∆

Figure 2.10 – PGSE schematic. a
∣∣∣ Excitation Pulse. b

∣∣∣ Gradient Pulse. c
∣∣∣ Refocusing

Pulse. d
∣∣∣ Rephasing Gradient Pulse. e

∣∣∣ Acquisition.

# »
M onto the transverse plane. Next, the first pulsed gradient (figure 2.10b) dephases the

spin magnetisation due to the variation of the frequency of precession along the gradient.

Then, the refocusing pulse (figure 2.10c) rotates the magnetisation about the yy axis.

Finally, the second pulsed gradient (figure 2.10d) rephases magnetisation differently for

molecules that have changed position during the diffusion time. On the one hand, the net

magnetisation of static molecules will be completely rephased. On the other, the spins

of moving molecules have experienced a varying field due to the gradient, thus having
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different frequencies of precession. Therefore, their signal will be attenuated because

the pulse won’t completely rephase the spins. The signal attenuation by this effect is

described by the Stejskal-Tanner equation:

S
S0

= exp
[
− γ2G2δ2

(
∆− δ

3

)
D
]

(2.11)

where γ is the gyromagnetic ratio, G is the gradient strength, δ is the gradient duration,

∆ is the time between the start of the first and second gradients, D, S is the signal, S0

is the signal without diffusion weighting gradients. It is common to define a quantity

b = γ2G2δ2
(
∆− δ3

)
[mm2/s] [51]. The bigger the b-value, the greater the signal attenuation

due to diffusion. By the comparison of the attenuated image with a non-attenuated one

(called the b = 0 or zero b-value image) we can calculate how much voxel-wise diffusion

has occurred in time TE thus having the possibility of generating an image with contrast

dependent on the amount of diffusion [55].

In the context of this work, DTI refers to the model used to characterise the diffusion.

Diffusion Weighted Imaging (DWI) refers to the final image resultant from from the

application of DTI model to (multi-shell) dMRI data.

2.2.4 Functional MRI

Using Functional Magnetic Resonance Imaging (fMRI) it is possible to explore the varia-

tions in local Blood Oxygenation Level Dependent (BOLD) response. Imaging the BOLD

response exploits the different magnetic proprieties of oxygenated and non-oxygenated

haemoglobin caused by localised changes in Perfusion. Oxyhaemoglobin is Diamagnetic

while deoxyhaemoglobin is Paramagnetic. Therefore, deoxyhaemoglobin has a shorter

T ∗2 than oxyhaemoglobin. Furthermore, the local variation of the ratio between the con-

centrations of oxyhaemoglobin and deoxyhaemoglobin allows to create an image modu-

lated by the blood’s oxygenation level. However, as we are measuring changes in blood

flow, the fMRI signal (or, in layman’s terms, brain activation) is a deconvolution of the

haemodynamic response function from the BOLD signal [13]. See figure 2.11 for visual

representation.

The fMRI image is of great interest after subjecting the brain to specific stimuli (i.e.

block/event-related design) as it enables the inference of function through measures of

brain activity. To clarify, the distinct patterns of signal strength variation after a specific
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Figure 2.11 – Blood Oxygenation Level Dependent Response and the Haemodynamic
Response Function Mock Example. The BOLD signal can be represented mathematically
as a convolution between the stimulus and the haemodynamic response. Therefore, by
deconvolution of the haemodynamic response function and the BOLD signal, we can
study localised patterns of brain activation.

stimulus are associated with haemodynamic changes which are resultant of increased lo-

cal neural activity due to said stimulus. Conversely, spontaneous correlations at rest have

also been observed leading to the development of default (task-negative) networks. [52]

2.3 Connectomics

T he conceptualisation of the brain as a network of connected (specialised) units has

deep historical roots in neuroscience. Naturally, several attempts have been made

to abstract the fundamental proprieties of structure and function of this network into a

mathematical object. These efforts aim to build a Connectome: complete description of

the connections between all elements of a nervous system [56].

The efforts to map human connectome started on the micro-scale (cell level). Ramon

y Cajal’s [57] microscopic studies of neurons (1955) theorised them to be individual units

in close communication instead of a big continuous syncytial connection in between all

of the cells as proposed previously by Golgi. The model of a body cell with axonal pro-

jections in close communication with similar neighbouring structures is well suited to

be represented as a graph thus providing one of the earliest conceptual precedent for

connectomics. Some attempts to map the macro-scale (i.e. systems of brain areas) connec-

tions between brain structure and pathology were happening in parallel. One notorious

endeavour by Wernicke (1906) suggested an associative theory of brain function upon

investigating the connection between brain damage and aphasia. It was proposed that
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higher-order cognitive abilities (and their respective disorders) emerged from the inte-

gration (or pathological lack thereof) of anatomically distributed yet connected cortical

areas [5].

The first attempts to represent a connectome were based on the neuronal studies

of Caenorhabditis elegans, an invertebrate with 302 neurons and around 5000 synaptic

connections between them. This system was completely mapped in 1986 by expert visual

inspection of serial electron micrographs. Later (1998), Watts and Strogatz modelled

the connectome of C. elegans as a binary graph, where the cell bodies of the neurons

were represented as nodes and synapses as edges [58]. See figure 2.12 for a more recent

illustration of the connectome of C. elegans. This work (among others) in the early days of

the field of connectomics served as a proof of concept of the power of this technique for

analyses on suitably simplified nervous systems. Circa 2001, graph theory was already

being used to produce mesoscale connectomes from tract-tracing data of the macaque.

Later, circa 2005, the first connectomes of humans started being drawn from MEG, EEG

and MRI data [5].

Figure 2.12 – Connectome of the adult male Caenorhabditis elegans. The worm diagrams
show the locations of the cell nuclei represented in the connectome below. (left side and
centre nuclei only, the right-side homologues of left/right pairs are not shown). Black
edges represent synaptic junctions between neurons and red edges represent gap junc-
tions. The colour and shape of the edges is related to the function/structure of the indi-
vidual neurons (explanation out of scope for this thesis). Image adapted from [59].
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Complex Network Analysis (CNA) is the description of the proprieties of a system

through the calculation of topological measures of its network/graph representation.

Simply put, a network is a set of connected mathematical objects (to which we refer

to as nodes or vertices). In particular, the concept of brain connectivity finds its most

natural mathematic representation as a network on which the nodes represent different

brain regions and the edges the structural and/or functional connections between them

[60]. Connectomes may differ in many ways. However, we will focus and define two key

characteristics of a Connectome: the nature of the edges and the scale (or nature of the

vertices).

Edges from networks derived from in vivo neuroimaging can be representative of

three different, albeit deeply connected, types of connectivity: Structural connectivity,

Functional connectivity and Effective connectivity. Firstly, structural connectivity is the

description of a finite, albeit extensive, set of anatomical links between neural elements of

the human brain organised on multiple (nested) spatial scales. [61] Secondly, functional

connectivity describes undirected statistical dependencies (for example via correlation or

coherence measures) between areas of the brain which may not be directly structurally

connected [49]. Finally, effective connections correspond to directed causal relationships

between two areas of the brain. These connectivity links describe the trade-off between

invariant structural connectivity and context-sensitive functional connectivity using a

priori knowledge [62] .

The abstraction of the connection between multiple areas of the brain as a network

allows us to study many mathematical properties that have meaningful physiological

interpretations. Rubinov and Sporns [3] outline several important proprieties of com-

plex networks (viz. integration, segregation, motif, centrality, and resilience) and graph

measurements that allow their quantification. Several CNA approaches to the brain’s

structural and functional connectivity data suggest that functional connectivity is deeply

constrained by brain structure. There is evidence suggesting that the physical structure of

the brain connectivity networks enables the efficient processing of information and allows

the performance of complex brain functions. Furthermore, the structural organisation of

the brain seems to be modular and hierarchical. In other words, the whole-brain network

consists of a set of subnetworks, which themselves comprise multiple sub-modules.
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Figure 2.13 – Overview of the process of extraction of brain networks from empirical
data. 1

∣∣∣ Parcellation of brain regions. 2
∣∣∣ Feature extraction based on Structural Magnetic

Resonance Imaging (sMRI)/dMRI (left) or estimation functional activation based on time
series data. 3

∣∣∣ Construction of structural (left) and functional (right) adjacency matrices
based on empirical data. 4

∣∣∣ Network analysis. Image from [61]. Note: functional data is
represented using electro/magneto-encephalography data, yielding information similar
in nature to fMRI (but at a higher temporal resolution), which is the main focus of this
work.

On the whole, CNA describes high cognitive functions as a global integration of

information processed on a multitude local integrators [62]. Functional segregation is the

ability of the brain to delegate specific tasks to specialised and densely interconnected

groups of brain regions. Measures of segregation comprise clustering coefficients, local

efficiency and modularity, among others. Functional integration represents the brain’s

ability to rapidly combine information from several different areas/networks. To quantify

functional integration, characteristic path length and global efficiency are among the most
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Figure 2.14 – Measures of network topology. Measures of centrality and resilience could
be represented from degree-related measures (red) as well as other nodal measures (black).
Segregation is deeply related with highly connected nodes (blue) while integration con-
cerns the quantification of each node’s connectivity length (green). Motifs (yellow) de-
scribe specific patterns of activation and are a key element of effective connectivity. Image
from [3].

used graph measures. Centrality and resilience are also deeply connected. Measures of

centrality (e.g. eigenvalue or betweenness centrality) describe a node’s importance in

the overall network architecture. The notion of node centrality plays a big role in the

description of the network’s resilience to insult. In this way, measures of resilience (e.g.

degree centrality) quantify the vulnerability to insult. Motifs describe specific patters

of activation, i.e. a subgraph of a structural or functional network with a particular

topological configuration [3, 5, 60]. See figure 2.14 for a visual representation of some

graph measurements. The complete list of all of the measures and respective definitions

used in this work follows in Annex I.

2.4 Tree-Based Regression Models

L earning is essential in unknown environments. With the growing amount and

complexity of available data for analysis, it may be impossible to predict all the

possible outcomes of a given problem or changes over time in a reasonable timeframe.

Machine Learning (ML) allows us to let a learning agent to learn information from the

world of data we feed them in order to draw conclusions about situations it has not

been exposed to before. If it improves its performance on future tasks after making

observations about the world, we say the agent learnt. [63]
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First, let us define some working nomenclature. This theoretical framework will

describe the prediction of a single continuous real variable Y using a set of N contin-

uous real variables (referred to as features in the context of ML), X := {xn, n = 1, ...,N }.

Analogous logic can be drawn for prediction of a multitude of continuous real variables,

discreet variables or even categorical variables (the latter is referred to as a classification

problem.)

A dataset D is a set such as D := {(X,Y )} = {(xn, yn), n = 1, ...,N }. The hypothesis

space, H, is the set of all the possible values for a data point (i.e. the set of all hypotheses

that might possibly be returned by the ML model). Furthermore, one element of Y is

represented by yi (note that it is a scalar). Likewise, xi refers to one row of matrix X. The

boldface reiterates the fact that xi is not a scalar − it is a vector of features, to which we

call an observation. To refer to the value of feature A in observation i we will use xA
i .

Let L∗ be a subset of Dwith L elements, L∗ := {(xn, yn), n = 1, ...,L}, where each yn was

generated by an unknown function, yi ≡ f (xi). We refer to L∗ as learning/training set.

Learning is discovering a function f̂ that approximates the true function f . The function

f̂ is called a hypothesis13. Learning is a search through the space of possible hypotheses,

H, for one that will perform well, even on new examples beyond the training set. To

measure the accuracy of a hypothesis we give it a test set of examples that are distinct

from the training set, T. [63]

There are two main types of ML problems: classification and regression. The present

thesis will only make use of the latter, thus there will be no discussion of classification

problems and formalism.

Regression analysis is a set of statistical processes for estimating the relationships

between a target variable and one or more independent variables (features). Regression

models have four main components [64]:

• The target variable vector (Y ). Y represents what we would like our model to be

able to predict.

• The observation variables matrix (X). X represents the variables that will be used

13The symbols f̂ and f will be used interchangeably provided that there is no ambiguity that we are not
considering the unknown (and likely unknowable) real function f .
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in the prediction, i.e. the observed data or the features.

• The vector of unknown parameters (β). The goal of our model is to find the β that

best fits the data we have available. The nature of β is dependent on the specific

model we are trying to fit. For instance, if our model is a simple linear regression,

yi = f (xi,β) = β0 + β1 · xi

• The error term (e). The error term is not observed directly from the data. It is rather

a residual variable produced by the incapability of our model to explain the full

variability of the data. It reflects how much the model predicts to differ from real

data before empirical analysis.

In layman’s terms, a regression problem assumes that the prediction variable(s), Y ,

can be explained by some model f that transforms the observed data X using the set of

parameters β, leaving an unexplained residual e. Or, mathematically:

∀(xi, yi) ∈ D, yi = f (xi,β) + ei (2.12)

In the following subsection, decision tree regression and random forest regression models

will be described.

2.4.1 Decision Trees

Decision Trees (DT) are among the simplest, yet powerful, algorithms in machine learning.

It is a fast and intelligible process, capable of working with categorical and continuous

variables with little specific preprocessing. DT are also invariant to monotonous data

transformations, which in turn ensure this algorithm is fairly resilient to monotonous

data transformations. These characteristics result in an algorithm capable of dealing with

data from different natures [65].

There are several algorithms to build a decision tree regressor but this work will

only focus on the CART algorithm (see [66] for more information). A decision tree is a

piecewise constant model over a set of regions R. The set of all regions R := R1,R2, ...,Rm

is called a partition scheme. In particular, for region Rm a decision tree f is defined such

as:

f (x) = cm, ∀x ∈ Rm (2.13)
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where cm is a constant determined for Rm. See figure 2.15 for a visual representation

of equation 2.13. Fitting DT refers to finding the optimal values of cm on the optimal

partition scheme14, R∗, such as the Mean Square Error (MSE) (equation 2.14) of the

predictions of the model (f (xi) = ŷi) is minimal [64, 67].

R1
R2

R3
R4

R5

R6x1

x2

x4x3

f(x1) = c6

f(x2) = c1

f(x3) = c1

f(x4) = c2

Figure 2.15 – Example of a trained DT regressor. The nomenclature is according to the
main text. For visualisation purposes, this example assumes that xn ∈ R2 and that the
model is previously trained such as the representation is the optimal partition schema R∗.
Note that x values that fall under the same region Rn have the same output cn.

MSE(ŷi, yi) =
1
n

n∑
i=1

(ŷi − yi)
2 (2.14)

If we set Rm, the optimisation of cm follows naturally: cm should be the average of the

y values (〈y〉) corresponding to x values that belong to Rm (equation 2.15).

cm = arg min MSE(ŷ, y) (2.15)

= arg min


∑

(x,y)∈D

(f (x)− yi)
2


= arg min

∑
(x,y):x∈Rm

(cm − yi)
2

= 〈y〉,∀(x, y) : x ∈ Rm

14The algorithm of the optimisation of R is out of the scope of this dissertation. Cf. [64–67] for more
information
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In spite of the ubiquitousness of this algorithm, it does not come without disadvan-

tages. DT are highly prone to Overfitting. Overfitting is likely to occur when the tree is

designed to perfectly fit all samples in the training data set. Intuitively, a perfect fitting of

the data would lead to a tree with branches defined by strict rules of sparse data. In other

words, a tree with nodes fitting single examples, noise and/or outliers. Overfitting affects

the predictive accuracy when predicting samples that are not part of the training set [65].

Luckily, there are a set of Hyperparameters related to the structure of the tree that are

used to control the extension of overfitting by limiting the complexity of the model. The

discussion of the specific hyperparameters and the reasoning behind their choice will

follow in the methods section of this dissertation (section 4.5.2).

2.4.2 Random Forest

As mentioned in the previous section, decision trees are prone to overfitting. Moreover,

this algorithm is likely to lead to suboptimal performances because it relies on a greedy

procedure to partition the hypothesis space. Bagging is a commonly used method to

mitigate these issues and to balance the Bias-Variance Trade-off. [64]

Bagging (short for bootstrap aggregating) is a statistical technique designed to im-

prove the stability and performance of ML algorithms. It is also the base building block

of the random forest algorithm. Let L∗ be a training set of size L and {L∗k , k = 1, ...,B}

is a set of B training sets each with the same size as L∗. The bootstrapping resampling

technique makes it possible to generate B imitations of L∗ (with known distribution).

We want each L∗k to approximate L∗. The bootstrapping resampling process consists of

building B training sets each by drawing with replacement L examples from L∗ [64]. We

therefore expect that an aggregation (mean) of the outcomes of the B regression models

(fk , k = 1, ...,B), trained on learning sets bootstrapped from L∗, is a better estimate of the

performance of this algorithm on unseen data than the outcome of error analysis on a

single classifier trained only on L∗ [68]15. The process is illustrated in figure 2.16.

The random forest regressor algorithm is essentially the application of the general

bagging method to tree learners. The main difference between the general process of bag-

ging and a random forest algorithm is that (contrary to the bagging process) the random

15For full demonstration of this property, cf. pp. 249-245 of [64].
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Figure 2.16 – Illustration of the bagging method. Step a
∣∣∣ Draw L samples from L∗ to

form one L∗k . Repeat this process B times. The set of the B sets is {L∗k} This corresponds
to the bootstrapping resampling method. Note the colour repetitions: the bootstrapping
method implies replacement so it is possible to draw the same sample twice. Step b

∣∣∣
Next, we train a regression model fn(x), n = 1, ...,B, on each one of the bootstrapped data
sets. Step c

∣∣∣ Finally, the result of our ensemble method is the average of the outcomes of
the B different models (Aggregation).

forest algorithm additionally only considers a random subset (without replacement) of

the features per bagged dataset [64].
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3
State-of-the-Art

T he motivation for the relevance of this thesis will be the focus of this chapter. It

will be presented by exploring related work as follows:

1. Patients with PD (and PD-MCI) respond heterogeneously to CT (section 3.1.1).

2. There is convincing evidence that CT induces changes in connectomic measures of

brain networks (section 3.1.1).

3. Connectomic measures are thought to be altered in PD (section 3.1.2).

4. ML algorithms have been successful in the prediction of treatment outcome for a

multitude of psychiatric disorders using connectomic measures (section 3.2).

5. Therefore, we hypothesise that we can use ML to reliably predict the efficacy of CT

based on connectomic measures of PD patients (section 3.3).

3.1 Rationale

3.1.1 Cognitive Training in Parkinson’s Disease

Cognitive training is a set of activities designed to make people better at reasoning, prob-

lem solving and learning, thus targeting skills like attention, working memory or exec-

utive functioning. From a systematic point-of-view, the main goal of CT is to improve
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cognition through repeated engagement of cognitive processes using one or more chal-

lenging and preferably adaptive tasks to see how the individual would adapt to untrained

situations rather than if it learned the current task. [69] CT has been a promise in reliev-

ing symptoms of cognitive dysfunction in PD patients and it has been suspected that to

have a neuro-protective effect [10].

The Neuroplasticity of the brain is thought to be involved in the process that mediates

the relationship between CT and the improvement of cognitive functions [16]. CT is

regarded as useful in preparing the brain for a better information processing [70] and

computerised CT was found to be linked to improved performances on neuropsycho-

logical tests [71] and to have an impact on cerebral activation and connectivity in PD

patients [37, 38]. Some studies (using MRI) have shown that CT induces brain structural

and functional change in PD [10]. Others reported that PD patients who have under-

gone CT present significant alterations in their patterns of brain activation which seem

to be related to cognitive function improvement [39]. In conclusion, as stated by a re-

cent meta-analysis, there is convincing evidence that CT actively alters brain activation

and connectivity patters and is thus thought to counteract dysfunctional activation and

connectivity patterns associated with ageing and neurodegenerative diseases [10].

3.1.2 Connectomics in Parkinson’s Disease

Regarding the connectomic alterations that occur due to PD pathology, in vivo brain

CNA has shown that brain structural connectivity is compromised in disease state. PD

patients have decreased whole brain global efficiency when compared to healthy elderly

controls [72]. Nigro et al. [31] detected a decrease of the nodal strength, global efficiency,

and global clustering coefficient in the intervention group relative to healthy controls.

Moreover, locally different indices were significantly reduced: local efficiency (in the left

palladium), nodal strength (in the bilateral putamen, the right amygdala and the right

lingual gyrus) and clustering (in the inferior occipital gyrus) in patients. These results

were replicated and extended by other authors, finding several local and global network

abnormalities in PD patients’ structural connectivity. [27–30].

On a sub-network level, functional connectivity has also shown to be compromised in

several some sub-networks, such as the Default Mode Network, Fronto-Parietal Network,

and Attention Networks, such as shown in [29]. These networks have lower scores on
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the global efficiency and clustering coefficient on (medication-naive) PD patients when

compared against healthy controls. The aforementioned topological differences have been

interpreted as a network-level reduced capacity for integration and segregation. Moreover,

these networks are thought to be deeply involved in executive functions and their disrup-

tion could pose as an hypothesis to explain the process of cognitive dysfunction [29].

Lastly, the imaging techniques discussed in sections 2.2.3 and 2.2.4 themselves also

have contributed to an understanding of the mechanisms of cognitive and motor dysfunc-

tion in PD. For example, DTI has shown structural abnormalities in PD patients when

compared to healthy controls, even before the patients exhibiting signs the disease. [19,

52, 73]

3.2 Related Work

T here is mounting evidence suggesting that neuroimaging data and CNA can be

tools for treatment outcome prediction for a multitude of psychiatric conditions.

Regarding the effectiveness of electroconvulsive therapy on relieving symptoms of

schizophrenia, Li et al. [74] use a support vector machine classifier to distinguish pa-

tients from healthy controls. Using group information-guided independent-component

analysis, a set of subject-specific intrinsic connectivity networks were calculated for each

resting-state fMRI. These networks were then used to build support vector machine classi-

fiers. The classification output score was found to be good predictor of electroconvulsive

therapy treatment outcome.

On a study aiming to establish a relationship in treatment response to cognitive ther-

apy and functional brain connectivity, Arnemann et al. [33] measured modularity of

several brain network of a sample of 11 patients with acquired brain injuries. The sources

of brain injury varied among patients, with 8 resulting from trauma and the remaining 3

resulting from stroke, tumour resection and chemotherapy. The results suggested that pa-

tients with higher baseline modularity scores were more likely to benefit from cognitive

training than those with lower scores, reflecting the improvement in attention/executive

functions after cognitive training.
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Other two studies correlated connectomics and treatment outcome in Major Depres-

sive Disorder (MDD). One study [34] investigates the relationship between a pharmaco-

logical treatment outcome and several graph measurements of brain networks. This study

found that patients that responded to the treatment had a significantly smaller nodal de-

gree in the right dorsolateral superior frontal gyrus than those who did not respond to

treatment. On other study, Avissar et al. [35] investigated a sample of 27 MDD patients

to determine whether baseline functional connectivity of distinct frontostriatal circuits

predicted reliably response to a joint administration of transcranial magnetic stimulation

(TMS) over the left dorsolateral prefrontal cortex (DLPFC) and medication. When using

a linear model to correlate treatment outcome and functional connectivity between sev-

eral areas of the brain, the results point towards higher baseline functional connectivity

between the left DLPFC region and striatum translating into better treatment outcome.

Göttlich et al. [36] explored the relationship between connectivity data and clinical

outcome of cognitive behavioral therapy in obsessive compulsive disorder (OCD). This

investigation stems from the hypotheses that the amygdala plays an important role in

the pathophysiology of OCD and that degree centrality is a predictor of OCD symptom

severity. A statistically significant relationship was found between patients exhibiting a

mean degree on the basolateral nuclei group of the amygdala within the range (mean ±

one standard deviation) of healthy controls showed a better response to treatment than

patients with a lower degree.

Schmitgen et al. [32] conducted a study to establish whether multimodal data could

be used for dialectical behavioural therapy (DBT) outcomes on a population of 31 females

with borderline personality disorder (BPD). Demographic and clinical, fMRI, and sMRI

data were used to build Random Forrest (RFo) classifiers. This study concluded that

the best prediction model could be built using fMRI and sMRI data, further proving the

predictive power of neuroimgaing data. Accuracy analysis on the classifier outcomes

showed that predicted responders were 3.54 times more likely respond to DBT than

predicted non-responders. Conversely, predicted non-responders were 3.45 times more

likely to not respond to DBT when compared to predicted responders.
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3.3 Our strategy

T he previous section established the value of connectomic alterations as prognos-

tic biomarkers for the effectiveness of cognitive training on PD patients. Despite

the growing body of literature, there are not to date any studies establishing a model

of prediction of non-demented PD patients cognitive training response and using neu-

roimaging data. The COGTIPS study [26] data is a large corpus of neuroimaging data

on a big sample of non-demented PD patients (n = 140) which will hopefully allow to

extract statistically significant conclusions about the prognostic value of neuroimaging

data.

As we established before, ML algorithms have been successfully used to estimate treat-

ment outcome. Along the lines of those studies, we aim to build functional and structural

connectomes using resting-state fMRI, T1-weighted MRI and DWI data. Then, extract

relevant graph measures that are hypothesised to be related to cognitive dysfunction and

to PD-MCI. These will be used to predict measures of the Tower of London (ToL) task

(description follows in chapter 4.5.1). In this way, having graph measures from all pa-

tients, we will build a regression algorithm that reliably estimates the improvement on

the mean reaction time and percentage correct trials on loads S4 and S5 of the ToL to

CT based on classical regression algorithms (DT and RFo). Finally, we will proceed to an

interpretation and analysis of the statistical and clinical significance of the results.
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4
Methods

4.1 Experimental design

This section is a summary of the methods paper of the COGTIPS study. For more detailed

information see van Balkom et al. [26].

The COGTIPS study is a double-blinded RCT including one hundred and forty pa-

tients diagnosed with idiopathic PD that experience significant subjective cognitive com-

plaints. The exclusion and inclusion criteria are detailed in the methods paper [26]. From

the pool of included patients, 85 of them have undergone neuroimaging scans in the

conditions described in section 4.2.

These patients were randomly allocated to a control or intervention group (1:1 ratio).

The forty-two patients assigned to the intervention group have performed an individually

online home-based intervention for eight weeks, three times a week during 45 minutes.

The active control group performed a sequence of games with a total duration of 45 min

that are hypothesised not to train specific cognitive functions.

The CT administered to the intervention group consists of thirteen different games

that are sequentially performed. Nonetheless, the games are substantially different from

the neuropsychological tasks used to access cognitive performance. The difficulty of the

training is adaptive to the participants’ performance. In this way, the difficulty of the
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games will increase or decrease depending on individual performance thus challenging

the subjects to continuously perform at their maximal ability.

The patients cognitive skills are assessed at five different time-points: pre-intervention

(τ0), post-intervention (τ1), six-, twelve-, and twenty-four-month follow-up. The patient

flow is presented on figure 4.1. For the purposes of this dissertation, τ0 scans will be
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Figure 4.1 – Overview the patient flow on the COGTIPS trial. Brain scans were only
acquired in the time point immediately before and after the intervention period. Cogni-
tive performance assessment was performed on the five represented time points. Image
reproduced with permission from [26].

used as well as the (change in) cognitive performance from τ0 and τ1. The definition of

outcome measures will be detailed in section 4.5.1.

4.2 Image Acquisition

The present dissertation work did not directly comprise the MRI acquisition. However,

image acquisition methods will be included in this section for completeness because MRI

data is the cornerstone of this dissertation. MRI scans were acquired from 85 patients

on a GE 3.0 T Discovery MR750 (General Electronics, Milwaukee, US) equipped with a

32-channel head coil at the Amsterdam UMC, location VUmc. DWI was acquired with a

multi-shell single-SE echo-planar imaging sequence:

• TR = 7350 ms; TE = 81 ms;

• 2.5 mm by 2.5 mm in-plane resolution with 56 slices of 2.5 mm (no gap);
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• 73 interleaved diffusion weighted directions (25 images with diffusion constant

b = 1000 s/mm2, 24 with b = 2000 s/mm2 and 24 with b = 3000 s/mm2) and 7

non-diffusion weighted volumes (b = 0 s/mm2).

A 3D T1-weighted (T1-W) sMRI was also acquired Magnetisation-Prepared Rapid

Acquisition Gradient-Echo (MPRAGE) with scan parameters according to the ADNI-3

protocol [75]:

• TR = 6.9 ms; TI = 900 ms; TE = 3.0 ms;

• Matrix size of 256 x 256;

• isotropic voxels of 1 mm3.

Resting-state fMRI with eyes closed was acquired for 10 minutes with T∗2-weighted

echo-planar images:

• TR = 2200 ms; TE = 28 ms; Flip angle = 80°.

• 3.3 mm by 3.3 mm in plane resolution; 42 sequentially ascending slices of 3 mm

with 0.3 mm gap were acquired.

• A total of 272 volumes were acquired.

For both DWI and fMRI, scans with opposite phase-encoding directions were acquired

to correct for the susceptibility induced distortions. Patients followed the same protocol

at both time points (τ0 and τ1).

4.3 Preprocessing

From an operational point-of-view, the preprocessing pipeline is the set of processes

that transformed PD patients’ neuroimaging data into four adjacency matrices (per pa-

tient). These matrices are four different representations of the structural and functional

subject-specific connectomes. In the following sections we will go over the steps to ob-

tain a structural connectome from DWI (section 4.3.1), a functional connectome from

41



CHAPTER 4. METHODS

resting state fMRI (section 4.3.2) and some additional preprocessing considerations on

the connectomes themselves (section 4.3.3).

4.3.1 Structural Imaging Preprocessing

First, diffusion images were denoised to improve the generally low signal-to-noise ratio in

DWI using the dwidenoise tool in MRtrix3 [76]. Images were subsequently processed

using the EDDY tool [77] from FMRIB Software Library (FSL), version 6.0.1 [78].

We estimated the susceptibility-induced off-resonance field using FSL topup [79] from

pairs of images with opposite phase-encoded directions and fed this field image into FSL

EDDY. This tool corrected for susceptibility-induced distortions, eddy-current induced

distortions and signal drop-out caused by movement during the diffusion encoding. Fi-

nally, within-volume and volume-to-volume motion correction was performed.

Next, Anatomically-Constrained (probabilistic) Tractography (ACT) was performed

in MRtrix3 to construct the structural connectome [76]. ACT integrates tissue informa-

tion derived from a segmented structural T1-W image to inform the propagation and

termination of the streamlines during tractography (see figure 4.2 for overview of the pro-

cess). The tissue response function was estimated from the preprocessed and bias-field-

corrected multi-shell DWI data (dwi2response with msm_5tt algorithm). Multi-Shell

Multi-Tissue Constrained spherical Deconvolution was performed to determine the fiber

orientation distribution in each voxel, which was the basis for the performance of ACT

by randomly seeding 100 million fibres within the white matter. Finally, the mapping of

the streamlines (i.e. tractogram) was converted to a structural connectivity matrix where

each edge represents the normalise count of streamlines between any two brain areas.

SFA was calculated by extracting the mean FA of the tracts as an alternative measure for

edge weight.

We created one subject-specific parcellation of the brain for both timepoints by cre-

ating a robust template of the two T1-W images (one at each point in time). The robust

template was individually parcellated into 224 brain areas: 210 cortical and 14 subcor-

tical areas, using FreeSurfer (v6.0.1) software implemented in the fmriprep (v1.4.0)

preprocessing pipeline for fMRI [80]. The cortical brain areas were derived from regis-

tering the BNA to FreeSurfer space. We visually inspected the brain surfaces for any

defects. The 14 subcortical areas were individually segmented by FreeSurfer.

42



4.3. PREPROCESSING

dMRI + sMRI atlas connectometract-tracing

Figure 4.2 – Overview of preprocessing pipeline for extraction of a structural connectome.
First, sMRI is parcellated according to the Brainnetome Atlas (BNA). Then, a tract-tracing
algorithm uses the structural information to trace streamlines in between different brain
areas. The number and orientation of streamlines is determined using the diffusion
data. To obtain the SS connectome, the strength of connection between two areas is
a normalised count (normalised by the volume of the node) of how many streamlines
connect those two regions. SFA was calculated by extracting the mean FA of the tracts as
an alternative measure for edge weight.

4.3.2 Functional Imaging Preprocessing

We corrected for susceptibility induced distortions in the functional image by acquiring

scans with a reversed phase-encoding direction and applying topup [79] from FSL [78].

Anatomical and functional images were subsequently preprocessed using fmriprep [80]

(v1.4.0; the full fmriprep boilerplate will be described in currently under review publi-

cation from our group). The definition of the brain areas was done by creating a robust

template and using FreeSurfer (v6.0.1) as described in the previous section. fMRI

images from both time points were, skull-stripped, realigned and slice-time corrected

and co-registered to the robust template.

Functional time-series were extracted. Additionally, noise-regressors were extracted

per subject for further denoising. Noise-regressors included global signals within the

ventricles (i.e. cerebrospinal fluid signal) and white matter, frame-wise displacement and

automatically identified motion-related components based on their high-frequency con-

tent and correlation with motion parameters using automatic removal of motion artefacts

using independent component analysis (ICA-AROMA, [81]).

We removed the first three non-steady-state volumes from the fMRI in T1-W space

and spatially smoothed the images with a 6 mm full-width half-maximum isotropic gaus-

sian kernel. Simultaneous nuisance regression and temporal filtering ([0.009;0.13] Hz)
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was performed using Denoiser1. Following the benchmark test from [82], all motion-

related components identified by ICA-AROMA and eight tissue-averaged physiological

regressors were regressed out: averaged signal in the white matter and cerebrospinal

fluid, along with their temporal derivatives, squares and derivatives squared. No global

signal regression was applied.

fMRI time series connectomewavelet coherence

Figure 4.3 – Overview of preprocessing pipeline for extraction of function connectomes.
First, resting-state fMRI are collected, parcellated according to the BNA and preprocessed.
Then, time-series data is derived from the average voxel intensity of the voxels within
a certain brain region. Next, wavelet coherence is calculated in between all of the time-
series of different brain regions for two different bandpass frequency filters ν1 and ν2.
Finally, the edge weight in between two nodes is defined as the wavelet coherence values
for the ν1 frequency band, originating the connectome F1. This definition is analogous
for F2.

We define the edge strength between nodes i and j as the wavelet coherence value

between time-series of the activation these nodes. Calculation of wavelet coherence was

done on MATLAB 2017b using a modified version of the wct algorithm [83], version

1.0.0.0. A continuous wavelet transform using Morlet wavelets with 12 voices per octave

was used. This wavelet has been widely used in the context of wavelet coherence. It’s

smooth and has well-developed analytical smoothing operators that effectively reduce

edge effects. [84, 85].

The choice of using wavelet-based methods for definition of the connectivity between

brain areas is motivated by a prospective facilitation of the examination of neurocognitive

processes at different temporal scales without the edge effects in frequency space that

accompany traditional bandpass filters. Wavelet-methods preserve the signal shape and

are capable to denoise signal content, unlike classical correlation methods like the Pear-

son’s coefficient [85, 86]. In turn, the calculation of the wavelet coherence between two

1github.com/arielletambini/denoiser
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time-series is performed using Continuous Wavelet Transform (CWT) of the time series

instead of (modular) discreet transforms. It is useful to think of the wavelet coherence as

a localised correlation coefficient in time-frequency space. In general, CWT compares a

signal with shifted and scaled (“stretched or shrunk”) copies of a mother wavelet. CWT

has some benefits over discreet wavelet transforms, particularly in enabling an assess-

ment of frequency bands that are not necessarily different by powers of 2. In this way,

CWT provides greater resolution while not being excessively computationally expensive.

Also it has been used with success in other neuroimaging studies [85]. Discussion of

analytical details of the adopted definitions regarding wavelet analysis follow in Annex

II.

We derived connectomes from wavelet coherence of time-series in the following fre-

quency bands:

• ν1 = [0.06,0.12] Hz

• ν2 = [0.01,0.06[ Hz.

Let F1 and F2 be the connectomes derived from extraction of functional connectivity by

the calculation of wavelet coherence on frequency bands ν1 and ν2, respectively. The

ν1 frequency band has been suggested to be a reliable and robust range that is associ-

ated with cognitive performance [86]. Achard et al. [87] demonstrated that functional

networks obtained at rest displayed significant small-world structure in their data from

frequency bands covering a range from 0.007 Hz to 0.45 Hz. Moreover, networks de-

rived from higher-frequency bandpasses show greater heritability of graph statistics than

those of lower-frequency bandpasses, suggesting that the latter may offer non-redundant

information, which motivates our choice of ν2 [85, 87].

4.3.3 Connectome Preprocessing

Because not every subject’s DWI scan fully covered the cerebellum, the respective node

was removed from all patients. Nodes 117 and 118 were excluded in all patients because

there were missing streamlines in the DWI scans from these regions in over 10 subjects.

Adding to those, nodes corresponding to regions with less than four voxels on the fMRI

scans were excluded on the basis of being insufficient/unreliable data thus leading to the
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exclusion of nodes 115 and 116 in all patients. Therefore, the CNA was performed on

graphs with 220 nodes.

We constructed the two adjacency matrices from functional connectivity data, F1 and

F2, and two adjacency matrices from structural connectivity data, SS and SFA, as outlined

in sections 4.3.1 and 4.3.2, respectively.

Moreover, owing to the noisy and indirect measurement of brain structure based

on water diffusion combined with the probabilistic nature of tract-tracing techniques,

structural brain networks are known to contain many false-positive connections. Thresh-

olding is a denoising technique to remove the weakest connections from a connectome as

a method of mitigating spurious connections. It consists of setting all of the connections

below a certain threshold to zero thus eliminating false-positive connections. [88]. There

are several methods to threshold differing on the definition of the threshold value.

It is known that graph properties can rapidly change with respect to small changes in

network wiring [89]. Additionally, it is not known to which extent the weaker connections

are due to noise in the data, i.e. there is no ground-truth [90]. Therefore, it is not safe to

say which percentage of the weaker connections could be considered false-positives. We

cannot pinpoint the extent of the error that would be originated by the method of infer-

ence of the connectome [88]. So, we opted to not threshold F1 and F2 because removing

true positives could seriously impact the calculation of the subsequent graph measures

and these are our features for prediction.

Finally, to improve the accuracy of the reconstructed fibres and reduce false-positive

connections, we performed Spherical-deconvolution Informed FilTering (SIFT) of trac-

tograms (SIFT2 in MRtrix3) prior to the extraction of the structural connectivity matri-

ces SS and SFA. This thresholding method has been shown to provide a quantitative and

biologically meaningful estimation of the structural connectome by applying a weight

factor to individual streamlines [91] and does not warrant further thresholding of the

connectivity matrix [92].
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4.4 Feature Engineering

In this section we will discuss the steps necessary to extract the features to be input in the

ML algorithms. The first step was the extraction of a well-defined set of graph measures

from the four different modalities of connectomes (F1, F2, SS and SFA). Then, data was

inspected for ill-defined graph measures, missing values and outliers. The measures that

have an ill-defined entry for one or more patients were removed. This quality control

was done by visual inspection of raincloud plots [93] for each measure. Finally, Latent

Component Analysis (LCA) was applied in order to reduce the dimensionality of the data

to a small number of intelligible factors.

graph measures factor solutiondata cleaningconnectome

Figure 4.4 – Overview of feature engineering pipeline. First the connectomes were con-
structed in order to extract different graph measures. Then, the distribution of the values
for the different measures and their correlations were inspected. Finally, data was pro-
cessed using LCA in order to perform feature dimensionality reduction resulting in a
number of factors explaining the covariance of the features.

4.4.1 Graph Measures of the Connectome

Graph measures are heavily influenced by the density of the network [89], not only in

absolute value but also in their meaning/interpretation [94]. Because of our choice to use

unthresholded matrices (cf. section 4.3), the functional connectivity matrices F1 and F2

are maximally dense; i.e. network density equals 1. Therefore, graph measures that had

degenerate values (e.g. ±∞) or that had a heavy conceptual dependence (e.g. assortativity,

degree centrality, eccentricity, etc.) on graph density were excluded from subsequent

analyses.

The graph measures were extracted from the adjacency matrices using the Brain
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Connectivity Toolbox2, version 2019-03-03 [3]. Subnetworks were defined accord-

ing to the 7-network parcellation of Yeo et al. [95]. The subnetworks considered were

the Default Mode Network, the Fronto-Parietal Network, the SomatoMotor Network, the

Dorsal Attention Network, the Ventral Attention Network, the Limbic Network, and the

Visual Network.

We extracted whole-brain measures (graph measures using the entire set of 220 nodes)

and subnetwork measures (graph measures on sub-graphs) on the four connectomes: SS ,

SFA, F1 and F2. The extracted whole-brain measures were: transitivity, efficiency, char-

acteristic path length, mean global routing efficiency, modularity, small-worldness and

average clustering coefficient. The subnetwork measures were: transitivity, global effi-

ciency, characteristic path length, average clustering coefficient, average participation

coefficient, average betweenness centrality, and average eigenvalue centrality. Addition-

ally between-network connectivity was calculated for all the seven subnetworks. The

definitions of the graph-derived measures follow in Annex I.

4.4.2 Latent Component Analysis

The graph features define a high-dimensional feature space where the number of features

highly exceeds the number of observations. In our case, per patient we extracted: 9

whole brain measures, 9 subnetwork measures for each one of the 7 subnetworks, and

(7 − 1)2 between subnetwork measures. We performed this for 4 representations of the

connectome, resulting in to 432 variables for each of the 80 patients.

Not only are Radiomics datasets often high-dimensional, they also tend to have a

heavy multicollinearity burden. Many graph-derived measurements reflect similar phe-

nomena. In our case, this redundancy is especially notorious as we extract the same

measures in four connectomes from the same subject. The high-dimensionality and the

linear dependence of the data result in a singular, ill-conditioned feature space leading

downstream analyses to have unstable results [14]. In order to deal with this, Latent

Component Analysis (LCA) was performed on the full set of graph measures. This was

done using the FMradio version 1.1.1 [96]3. FMradio was imported to Python (version

2Using MATLAB 2017b.
3We use R in version 3.6.0.
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3.6.8) using the package rpy24 (v3.3.3).

FMradio implements a pipeline for exploratory factor analysis optimised for ra-

diomics data. The goal is to project the radiomic feature space onto a lower-dimensional

and near-orthogonal space that retains most of the information contained in the full data

set and is well-behaved. This approach differs conceptually from other common methods

such as Principal Component Analysis because it seeks to explain the observed covari-

ance of the features through a small number of explanatory latent features instead of the

observed variance [14].

The theoretical framework of LCA is detailed by Peeters et al. [14]. See Algorithm 1

for a pseudocode illustration of the process. The process comprises four steps:

1. Redundancy filtering for features that have Pearson’s correlations above a threshold,

tc(that is a hyperparameter and will be subject to optimisation).

2. Find the optimal penalised maximum likelihood representation of the correlation

matrix. In other words, we want to obtain a well-behaved (i.e. invertible and well-

conditioned) regularised estimator of the filtered correlation matrix.

3. Perform factor-analytic data compression on the regular estimator. That is, the

original feature-space is projected onto a (much) lower-dimensional latent feature-

space (using the covariance structure model).

4. Calculate subject-specific latent factor-scores.

The first three steps fit the model, that is, given the data, find the optimal factor solutions.

This construction allows us to use a previously fitted factor solution on new data using

the loadings vector, Λ, and the uniqueness vector, Ξ. Keeping track of Λ and Ξ is be

fundamental in order not to peak into the test set on the model validation . This process

will be further explained in section 4.5.3. The last step is the data transformation step

that applies the learnt factor representation to our data.

4Reference to rpy2 website: https://pypi.org/project/rpy2/
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Algorithm 1 Latent Component Analysis

Input:
Xtrain, a subset of the features X.
Ytrain, a subset of the target variable Y.
tc, the correlation filtering threshold.
n∗, the number of factor we wish to use on our factor compression.

Output:
XT, the factor scores of X
Λ, loadings vector of the factor solution.
Ξ, the uniqueness vector of the factor solution

R← corr(X) . correlation matrix of the features
RT← redundancyFilter(R, tc)
R∗T← regularCorrelation(RT)
Λ, Ξ← factorAnalysis(R∗T)
XT← factorScore(X, Λ, Ξ)

return XT, Λ, Ξ

4.5 Machine Learning Model Development

Our selected regression ML models were DecisionTreeRegressor and RandomForest-

Regressor from scikit-learn [97]. A custom estimator was designed to integrate

the LCA and the ML algorithms into a single object. We will refer to the custom estimator

as the treeEstimator if it uses DT regression, forestEstimator if it uses RFo regres-

sion and treeModelEstimator as a generic term when it is not relevant what regression

type was used. This was necessary in order to not peak into the test set in the cross-

validation steps. Had LCA and the algorithm been fitted separate and sequentially, the

factors input to fit the ML model would have peeked into the test set. This was archived

through the creation of a new class that inherits from sklearn.base.BaseEstimator

and subsequent definition of custom fit and predict methods for our ensemble algorithms.

See algorithm 2 and algorithm 3 respectively for the pseudocode of the fit and predict

methods.

In this work, we evaluated the performance of four different algorithms in the predic-

tion of four different cognitive outcomes, listed below. See figure 4.5 for an overview of

the full pipeline for the methods section of this thesis. These will henceforth be referred

to as prototype algorithms.
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• Decision Tree Algorithm with Factors as Features (DF-F): implementation of the

previously described treeEstimator.

• Random Forest Algorithm with Factors as Features (RF-F): implementation of the

previously described forestEstimator.

• Decision Tree Algorithm with Graph Measures as features (DT-N): simple decision

tree for regression.

• Random Forest Algorithm with Graph Measures as features (RF-N): simple random

forest for regression.

Algorithm 2 Fit Method of treeModelEstimator

Input:
Xtrain, a subset of the features X.
Ytrain, a subset of the target variable Y.
tc, the correlation filtering threshold.
n∗, the number of factors.
θ, a configuration for the random forest algorithm.

Output:
Λ, loadings vector of the factor solution.
Ξ, the uniqueness vector of the factor solution

XT, Λ, Ξ← latentComponentAnalysis(Xtrain, n
∗, τ) . see algorithm 1

treeModel← treeModelConstructor(θ)
treeModel.fit(XT, Ytrain)

return Λ, Ξ

Algorithm 3 Predict Method of treeEstimator

Input:
x, an observation.
treeModel, the tree model (RFo or DT) previously fit on train data.
Λ, loadings vector of the fitted factor solution.
Ξ, the uniqueness vector of the fitted factor solution

Output:
ŷ, the model prediction.

xT← factorScore(x, Λ, Ξ)
ŷ← treeModel.predict(xT)

return ŷ
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In the following sections, the development of the ML model will be broken down.

First, the target variables will be described in section 4.5.1. This section aims to pro-

vide an overview on the methodological process to transform the (raw) clinical outcome

measures into the target variables for our prediction model. Then, the pipeline for hy-

perparameter optimisation will be shortly discussed in section 4.5.2. Finally, in 4.5.3 the

nested Cross-Validation (CV) process used to evaluate the performance of our algorithms

will be detailed alongside with the statistical analyses carried out of the results.

RF-N

DT-N

DT-F

RF-F RCI of Percentage
Correct Change

RCI of Mean
ReactionTime

4 5

4 5

Figure 4.5 – Full Pipeline Overview for the different algorithms. Each line represents a
different pipeline for a different prototype alogorithm. In pink, data acquisition process
(sMRI, dMRI and fMRI). In green, connectome extraction process. In the two top lines
in blue, factor compression (i.e. LCA) process. In lavender, a schematic representation
of the DT (single tree) or RFo (multiple trees) regression algorithms. Finally, in brown,
variables to be predicted by one of our four prototype algorithms.

4.5.1 Outcome Measures

The primary outcome of the COGTIPS study is the efficacy of CT on executive functions

measured through ToL task outcome measures. The ToL paradigm is based on a modified

version of the Tower of Hanoi problem. In the COGTIPS study, a computerised version of

this trial is used as described by Trujillo et al. [98], on which the patients execute a total
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of 90 trials per session5. This task has been successfully used to show that PD patients

exhibit a faster rate of cognitive decline with age than matched healthy subjects [99].

The ToL task requires participants to mentally manipulate a configuration of beads

stacked on pegs of varying lengths. In this paradigm patients are expect to reach an

end-goal configuration while respecting several constraints [98]:

1. Only one piece may be moved at a time.

2. Each piece may be moved only from peg to peg.

3. Only a specified number of pieces may be left on each peg at every point in time.

Instructions are given to plan the whole sequence of moves that must be carried out

mentally, before executing the sequence. There are five planning conditions that range

in difficulty, with possible solutions ranging from one to five steps [100]. The difficulty

of each planning condition is referred to as task-load − the shortest solution length is S1

and the longest S5 [26]. See figure 4.6 for a simplified visual representation of the task.

Initial Position Goal Position
(Load S2)

Goal Position
(Load S4)

Goal Position
(Load S5)

Figure 4.6 – Representation of the ToL task. The image will be described sequentially
from the left. first initial position. Second: Goal position with solution minimum length
of 2 moves (i.e. task-load S2) from the initial position. Third: same as second with
minimum length of 4 moves from the initial position. Forth: same as previous two with
solution minimum length of 5 moves.

Several cognitive perfomance measures can be extracted from the performance of

this task. We will focus on the percentage of correctly answered trials and on the mean

5This version of the task that includes an extra level, S0, which accounts for 36 additional “counting
trials” (see [98] for more information).
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reaction time. The Percentage of Correctly Answered Trials (PCAT) on load Sx is defined

as the proportion of correctly answered trials on load Sx; i.e. the goal-state was reached

without violating any of the constraints in less than 45 s. The Mean Reaction Time

(MRT) on load Sx is the mean reaction time for the correctly answered trials on load Sx.

Concretely, we used the PCAT and the MRT of the ToL task-loads S4 and S5 as our main

cognitive outcome measures.

For the purposes of this work, we ascribe different meanings to the terms (cognitive)

outcome measures and target variables. While the former refers to the aforementioned

cognitive performance outcomes of the ToL task, the latter denotes the variables to be

predicted by the regression ML model. Specifically, the four different (cognitive) target

variables are the RCI of our outcome measures (i.e. PCAT and MRT for task-loads S4 and

S5) between time points τ0 and τ1. This index is said to be resilient to practice effects

characteristic of the cognitive measures and accounts for the score variability both in time

points τ0 and τ1 [101].

The RCI for each cognitive outcome for each patient is calculated using the Iverson

Standard Error of the Difference
(
SEDIverson

)
calculation as described in [101]:

RCIIverson =
(
S (τ0)−S (τ1)

)
−

µ1 −µ0

SEDIverson
(4.1)

where S (τx) is the score of the outcome measure on time τx, µx is the control group mean

of the outcome measure on time τx and SEDIverson is defined as:

SEDIverson =

√[
S (τ0) ·

√
1− r0,1

]2
+
[
S (τ1) ·

√
1− r0,1

]2
(4.2)

with rx,y being the Pearson correlation coefficient between the scores of the outcome

measures on times τx and τy .

4.5.2 Hyperparameter Optimisation

The hyperparamenter optimisation process is a necessary step in order to fine-tune the

performance of the regression model. ML models often have a wide range of Hyperpa-

rameters, which cannot be learned through the learning fitting process. Therefore, it is

necessary to perform a search into the hypothesis space of all possible Configurations
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so the model can reach peak performance on our dataset, D. This defines a new rein-

forcement learning problem: we want to minimise the error of our model by choosing an

appropriate Configuration.

The hyperparameter optimisation was performed using the Tree-structured Parzen

Estimator (TPE) approach in the hyperopt package [102] (version 0.2.3). TPE is one

of the Bayesian Optimisation Methods (BOM) for hyperparameter search. This family of

methods aim to build a probabilistic model of the objective function and use it to select

the most promising hyperparameters to evaluate in the true objective function. In this

context the objective function takes the hyperparameters as inputs and outputs the Root

Mean Square Error (RMSE) of our estimator (equation 4.3).

RMSE
(
ŷi, yi

)
=

√√√√√
1
n

n∑
i=1

(ŷi − yi)
2 (4.3)

The main advantages of BOM over other common methods (such as Grid Search and

Random Search) is that the former perform searches informed by the past decisions on a

continuous space defined by probability density functions while the latter do a memory-

less search on a discreet static space [102]. This means that not only is the efficiency

of BOM superior, but also these tend to be less severely sub-optimal than blind search

methods. BOM work by approximating the probability distribution function of the score

(e.g. the RMSE) given the hyperparameters. In other words, BOM maximise the expected

improvement from one iteration to the next as measured through the loss. Then, the

set of hyperparameters predicted to have the least error (by the probabilistic model of

the objective function) is input into the objective function and evaluated. Finally, the

probabilistic model is updated with the results from the real function. The literature

stated the lower limit for the number of iterations is 200. [102, 103]. In our research we

opted to conservatively iterate over this process 500 times.

The search domain for the hyperparameter optimisation of RF-F is the space defined

by the following probability distributions:

• max_depth = U
[
2,15,1

]
• min_samples_leaf = U

(
0.1,0.5

)
• max_samples = U

(
0.1,0.5

)
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• max_features = U
(
0.1,0.9

)
• n_estimators = U

[
100,3000,50

]
• redundancy-threshold = U

[
0.9,0.95,0.01

]
• number_of_factors = U

[
2,36,1

]
where U

(
a,b

)
is the uniform distribution of minimum value a and maximum value b

and U
[
a,b, s

]
is the discreet uniform distribution with step s. The first 5 hyperparame-

ters have names and definitions consistent with the original scikit-learn definitions

[97]. The last two are hyperparameters relate to LCA (see section 4.4.2). redundancy-

threshold refers to tc and number_of_factors to n∗ as described in algorithms 1

and 2. The search domain for optimisation for tc is defined as suggested by the authors

of the package [14]. The probability function of the number of factors is defined by the

minimum value possible (i.e. 2 factors) until the first Guttman bound (upper bound sug-

gested by the authors [14]). All of the remaining hyperparameters of scikit-learn’s

RandomForestRegressor and DecisionTreeRegressor were not optimised and

the default values were used. The optimisation domain for DF-F is the same as above

with the exception of max_samples and n_estimators that are specific to the RFo

algorithm and thus not included. For RF-N and DT-N, the domains are the same as

for for RF-F and DF-F respectively, with exception of redundancy-threshold and

number_of_factors, which are specific to the LCA.

4.5.3 Performance Evaluation

The performance of the prototype algorithms is evaluated through a k-h-nested-CV pro-

cess, where k = 10 and h = 5 are the number of folds in the outer and inner loops of

validation, respectively. The outer-loop refers to the optimisation of the hyperparameters

(i.e. tuning). A train-test split of 80% of the data allocated to a tuning set, L, and 20% to

a test set, T. L and Tare disjoint subsets of D. These will henceforth be referred to as

surrogate sets.

L is further split in the inner-loop. The split is again of 80% for the learning set used

to fit the candidate, L∗, and 20% for the validation set used to the performance of the

candidate, T∗. By candidate we mean a prototype algorithm with a completely defined
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configuration. However, the inner-loop performance estimation on T∗ is inherently biased

because the candidate was chosen by minimising the RMSE (as described in section 4.5.2)

[4], hence the need for the outer-loop. Therefore, we estimate the generalisation error not

on T∗ but on T, which has not been seen by the algorithm. The whole tuning process is

repeated ten times with different subsets of data points allocated to L and T to quantify

how reliable the error estimation is. The nested-CV process is summarised in figure 4.7.

The 10-5-nested-CV process was repeated a total of 16 times for the cognitive target

variables (i.e. one time per target variable (4) per prototype algorithm (4)). All of the algo-

rithms are tuned and tested on the same 10 surrogate L and Tsets so their performances

can be compared.

The process of CV implies the following assumption: the generalisation error of the

final model with the optimal configuration trained on D tends to the average of the error

of the 10-fold cross-validated models trained on their respective L and evaluated on an

unseen hold-out set, T[4]. The process of choosing 10 different surrogate datasets can

be seen as introducing small perturbations on L [4]. Taking this into account, we expect

a stable fit for each one of the algorithms predicting each of the target variables. By

stable fit we mean that all the 10 different iterations of the hyperparameter optimisation

reached the same optimal configuration. If the fit is not stable, the model is likely highly

susceptible to vibration effects: small changes in L lead to big changes in performance

[104].

4.5.3.1 Statistical Analyses

Each one of the ten iterations of the 10-5-nested-CV results on an estimation of the RMSE

on a different surrogate tuning and test sets. At the end of the process we have 10 different

error estimations, which were averaged together. 95% Confidence Interval (CI) for the

mean of the RMSE were calculated with one-sample t-tests. To use this parametric test

we assumed normality of the distribution of the RMSE. This assumption is corroborated

by the absolute values of kurtosis and skewness not being larger than 2, see Appendix A.

The algorithms must be compared to a baseline regressor to have some measure of ef-

fectiveness. From equation array 2.15, it follows that in this context the baseline regressor

should be defined as a constant function. To recapitulate, the DT regression algorithm
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works by iteratively attributing the average value of all examples that fall within a certain

region for an optimal partition scheme. In this way, a suitable simplification of this pro-

cess would be to not consider any partition scheme and just attribute the mean value of all

of the previously seen examples. Therefore, we opted for a baseline regressor that always

predicts new examples to be equal to the average of all of the labels (i.e. reliable change

index of mean reaction time/percentage correct on loads S4 and S5) on the training set;

i.e. L.

Independent t-tests were performed on each of the 16 different runs of the 10-5-nested-

CV to compare the algorithm performances with the performance of the baseline. These

tests compared the 10-5-nested-CV estimations of the RMSE of the 4 different algorithms

predicting the 4 different targets. As the independent t-test is fairly resilient to small

variations in the group variances, the groups were all assumed to have equal variances6

on the grounds of the ratio of the variances of the groups not being larger than 3. See

Appendix A for the variance of the estimations.

4.5.3.2 Post hoc Analyses

We conducted post hoc analyses to evaluate the prototype algorithms’ performances pre-

dicting age to understand the impact of the size of our sample in our main outcome

prediction. Age prediction was carried out on two different sample sizes. Firstly, we run

10-5-nested-CV on the four algorithms with the intervention group data (n = 42, same set

as for the prediction of the cognitive outcomes). Then, we repeated this process with the

control and intervention group data (n = 80). These analyses are meant to evaluate the

effect of the target variable and sample size on the performance of the four prototype al-

gorithms. Similar statistical significance tests were conducted for algorithm performance

evaluation. The uncertainty of the mean value of the RMSE is calculated as described

before for the cognitive target variables. Normality and equal variances were assumed on

the same grounds as before. See Appendix A for variance, skewness and kurtosis values

of the error estimation for age prediction.

6For more information on this approximation, see [105], pp. 112, 113.
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80% 20%

64% 16%
Training Set Validation Set

Tuning Set Test Set

Repeat 5 times

Repeat 500 times

Repeat 10 times

Outcome: Good estimation of the generalisation error of the 
optimised model

Outcome: Good estimation of the candidateʼs RMSE

Outcome: Best Candidate

Find the candidate with the least error by maximising
expected improvement of subsequent candidates 

Compute the average CV RMSE

Repeat the whole process using different tuning/test set
partitions

Figure 4.7 – 10-5-Nested CV. This process is repeated 500 times for all of the iterations
of the TPE algorithm, represented by the blue loop. The middle (blue) loop is repeated
500 in order to find the configuration that leads to the lowest RMSE. The RMSE of any
candidate is estimated using a 5-fold CV process on the tuning set, further dividing
it into training set (used to fit the candidate) and validation set (used to evaluate the
candidate). This process is represented by the inner (green) loop. Finally, because the
choice of the best candidate is highly dependent on the initial partition of the dataset
into tuning and test sets, this process is repeated 10 times. This process is represented by
the outer (purple) loop. Therefore, tuning can be considered part of the learning process
and the overall estimation of the generalisation error of the best candidate is a 10-fold
CV calculation of the RMSE of the best candidate on a held-out (test) set.
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5
Results

5.1 Descriptive Statistics

The group characteristics are described in a paper currently under review from our re-

search group. On figure 5.1, the distribution of the cognitive target variables is graphed.

We can visually understand that all of the outcome measures have similar distributions.

On figure 5.2, the distribution of the age on both the intervention (n = 42) and on the con-

trol+intervention group (n = 80) is graphed1. We can see both groups have very similar

age distributions.

5.2 Cognitive Outcomes Prediction

We estimated the performance of four different algorithms predicting four different cog-

nitive target variables. These target variables are the RCI of four cognitive performance

outcome measures of the ToL task: MRT on ToL task-load S4, MRT on ToL task-load

S5, PCAT on ToL task-load S4, and PCAT on ToL task-load S5. The performance of our

prototype algorithms was assessed using the RMSE between the predictions of our algo-

rithm and the real values. Lower values of RMSE indicate a better fit; i.e. the algorithm

predicts correctly our test examples. We averaged 10 different estimations of this error on

1For the purposes of this section n represents the amount of elements in a given set used to carry out
specific analyses.
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Distribution of Cognitive Target Variables

Mean Reaction
Time (Load S4)

Mean Reaction
Time (Load S5)

Percentage
Correct (Load S4)

Percentage
Correct (Load S5)

Figure 5.1 – Distribution of the Cognitive Target Variables. The diamonds represent
outliers from the distribution. The target variables are represented through the Iverson
reliable change index of different cognitive outcomes of the ToL task. In blue and orange,
the MRT of loads S4 and S5 respectively. In green and red, the PCAT of loads S4 and S5
respectively.

different partitions of D in order to have a better estimation of the generalisation RMSE

(i.e. the error on an unseen set when the different algorithms are trained with 100% of

the available data).

Table 5.1 and figure 5.3 summarise the mean RMSE ± half of the range of the 95%

CI for our 4 different prototype algorithms (i.e. DF-F, DT-N, RF-F and RF-N) predicting

the four cognitive targets (i.e. MRT and PCAT on loads S4 and S5). The average error

of the prototype different algorithms and the baseline is similar across the four different

target variables. The prediction of the RCI MRT (Load S5) yields the least average of error

for all the four algorithms. Moreover, this is the only target that accounts for an average

value of the RMSE of one of the prototype algorithms (i.e. RF-N) lower than the baseline.

However, the 95% CI of the mean values of the RMSE of RF-N (RMSE = 0.7 ± 0.1) and of

the baseline (RMSE = 0.8 ± 0.1) overlap. There are no evident differences in the average

generalisation error of any of our prototype algorithms. This seems to indicate that no

algorithm performs better than the baseline in the prediction of cognitive target variables.
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Figure 5.2 – Distribution of the Age on Control+Intervention (n = 80) and Intervention
(n = 42) Groups. The Oy axis is measured in years. In blue, the distribution of ages on
the intervention group. In orange, the distribution of ages on the intervention+control
groups.

Two-tailed independent t-tests were conducted to ensure whether the performance of

our algorithms differs significantly from the baseline algorithm. In layman’s terms, the

baseline performance is roughly equivalent to “the simplest regression model possible”.

We found no statistically significant difference between the baseline performance and the

performances of any of our four algorithms. This is true for all four different algorithms

predicting all four different cognitive target variables. The t-student statistic values and

respective p-values (for α = 0.05) of the performance of the four prototype algorithms are

summarised in table 5.2. These results further stress that our four prototype algorithms

algorithms (trained on different subsets of D) are not better than the baseline at predicting

our cognitive target variables. Therefore, we are compelled to conclude that the added

complexity of our models does not imply a higher predictive accuracy of the targets with

respect to the baseline.
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Table 5.1 – Mean 10-5-nested-CV RMSE of the different algorithms predicting the RCI
of different Cognitive Target Variables. Each column represents a different outcome. The
values are presented as Mean ± half of the range of the 95% CI (for the 10 estimations of
the RMSE). All values are adimensional.

RMSE of RCI of
MRT (Load S4)

RMSE of RCI of
MRT (Load S5)

RMSE of RCI of
PCAT (Load S4)

RMSE of RCI of
PCAT (Load S5)

DF-F 1.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 1.4 ± 0.3
DT-N 1.0 ± 0.2 0.8 ± 0.1 0.90 ± 0.08 1.3 ± 0.3
RF-F 1.0 ± 0.2 0.8 ± 0.1 0.9 ± 0.1 1.2 ± 0.3
RF-N 1.0 ± 0.2 0.7 ± 0.1 0.9 ± 0.1 1.2 ± 0.2
Baseline 1.0 ± 0.2 0.8 ± 0.1 0.9 ± 0.1 1.2 ± 0.3

Table 5.2 – Two-tailed Independent t-tests to compare the performance of the algorithms
with the baseline performance to predict cognitive targets (one per column). Results in
the form t(degrees of freedom) = t-statistic, p = p-value. Significance level, α = 0.05.

RCI of MRT
(Load S4)

RCI of MRT
(Load S5)

RCI of PCAT
(Load S4)

RCI of PCAT
(Load S5)

DF-F t(18) = 0.869, p = .397 t(18) = 1.793, p = .092 t(18) = 1.127, p = .276 t(18) = 0.899, p = .382
DT-N t(18) = 0.154, p = .880 t(18) = 1.127, p = .276 t(18) = -0.501, p = .623 t(18) = 0.383, p = .707
RF-F t(18) = -0.043, p = .966 t(18) = 0.662, p = .518 t(18) = 0.027, p = .978 t(18) = 0.097, p = .924
RF-N t(18) = 0.016, p = .988 t(18) = 0.209, p = .837 t(18) = 0.128, p = .900 t(18) = 0.118, p = .907

5.3 Age Prediction

We predicted the average 10-5-nested-CV RMSE on the intervention group (n = 42) and

on a set comprising both the intervention (n = 42) and the control (n = 38) groups to

compare the results of the prediction of this variable versus the results of the cognitive

outcomes. The four algorithms and the baseline have an average RMSE of 9 ± 1 years

for n = 42. For n = 80, all of the prototype algorithms have a lower average RMSE than

the baseline. Concretely, RF-N has the best performance (RMSE = 6.1 ± 0.6 years) with

respect to the baseline (RMSE = 7.1 ± 0.8 years). Notwithstanding the lower average

RMSE of the prototype algorithms, all of their 95% CI overlap with the baseline 95%

CI. The mean performances of the algorithms (± half of the range of the 95% CI) are

represented on table 5.3 and figure 5.4.

Furthermore, two-tailed independent t-tests were conducted to investigate whether

the performance of any of our algorithms is significantly different from the baseline. The

performance of RF-N showed a significant difference from the baseline
(
t(18) = -2.222,

p < 0.05
)
. This shows that the mean value of the 10-5-nested-CV RMSE of the RF-N

differs significantly from the mean value of the 10-5-nested-CV RMSE of the baseline
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Mean Reaction
Time (Load S5)
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Correct (Load S4)

Percentage
Correct (Load 5)

Outcome Measure
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RMSE of the different algorithms and outcome measures

Figure 5.3 – Mean 10-5-nested-CV RMSE of the different algorithms predicting different
cognitive target variables. Different set of bars represent outcomes. Each bar is the average
10-5-nested-CV performance of the algorithm on the subscribed measure. The error bars
are the 95% CI of the mean value. The baseline performance is in orange.

algorithm. This result seems to indicate that RF-N on average performs better than the

baseline on the task of age prediction on the dataset of 80 PD patients. We found no

other significant differences between the performances of the baseline algorithm and our

prototype algorithms on the 10 surrogate datasets (i.e. 10-5-nested-CV RMSE). The t-

student statistic values and respective p-values (for α = 0.05) of the independent t-tests

are summarised in table 5.4.

In light of our results, we are compelled to conclude that (in this prediction task) dif-

ferent sample sizes yield differences in performance. The average RMSE of the prototype

algorithms is lower for the eighty-samples set than for the subset with 42 samples. More-

over, the independent t-tests indicate that the performance of the RF-N is significantly

better than the baseline performance for the larger sample. Therefore, the results seem

to show that it is possible to predict age with RF-N for the group with eighty patients.
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Intervention
(n = 42)

Intervention + Control
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Figure 5.4 – Mean 10-5-nested-CV RMSE of different algorithms for age prediction. Dif-
ferent set of bars represent training sets with different sizes (i.e. n = {40, 80}). Each bar
is the average 10-5-nested-CV performance of the algorithm on the subscribed measure.
The error bars are the 95% CI of the mean value. The baseline performance is in orange.

Table 5.3 – Mean 10-5-nested-CV RMSE of the different algorithms predicting age. Each
column represents a different outcome. The values are presented as Mean ± half of the
range of the 95% CI (for the 10 estimations of the RMSE). RMSE units is years.

RMSE of Age (n = 42) RMSE of Age (n = 80)

DF-F 9 ± 1 years 6.7 ± 0.8 years
DT-N 9 ± 1 years 6.6 ± 0.8 years
RF-F 9 ± 1 years 6.5 ± 0.8 years
RF-N 9 ± 1 years 6.1 ± 0.6 years
Baseline 9 ± 1 years 7.1 ± 0.8 years
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Table 5.4 – Two-tailed Independent t-tests to compare the performance of the algorithms
with the baseline performance to predict age. Each column represents a different sample
size. Results in the form t(degrees of freedom) = t-statistic, p = p-value. Significance level,
α = 0.05.

Age (n = 42) Age (n = 80)

DF-F t(18) = -0.869, p = .398 t(18) = -0.759, p = .457
DT-N t(18) = -0.868, p = .398 t(18) = -1.058, p = .303
RF-F t(18) = -0.626, p = .548 t(18) = -1.268, p = .218
RF-N t(18) = -0.937, p = .362 t(18) = -2.222, p = .037
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6
Discussion

In this dissertation work, we investigated whether it is possible to predict the outcome

of CT in PD patients using solely connectomic measures derived from structural and

functional MRI as predictive features. Four different regression models were used. We

compared the performance of simple random forest and decision tree regression algo-

rithms with (RF-F/DF-F) and without (RF-N/DT-N) prior latent component analysis.

Four hundred and thirty-two graph measures derived from functional and structural con-

nectomes were used as features and cognitive performance indices were used as target

variables for prediction. The target variables are four different Iverson Reliable Change

Indices of ToL outcomes: MRT and PCAT on ToL task-loads S4 and S5. None of the

performances of our four prototype algorithms significantly differed from the baseline

performance in the prediction of any of the four main outcomes.

We conducted additional post hoc analyses to further investigate the effect of the sam-

ple size on predictive accuracy. For this reason, age prediction was carried out in two

groups with different sizes: 42 and 80 samples. The results on the group with 80 pa-

tients showed a lower average RMSE. In fact, the difference in the mean performances

of RF-N and of the baseline reached statistical significance on the age prediction task on

the data set with the biggest cardinality. Therefore, we hypothesise the lack of statistical

significance in our main results as a product of three distinct study design features syn-

ergistically interacting - a small sample size and a small effect size and a conservative
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error estimation method.

The sample/dataset size is of paramount importance to the performance of ML algo-

rithms. Probabilistically, a small sample is unlikely to represent accurately the entire spec-

trum of characteristics of a population thus not meeting the fundamental Independent

and Identically Distributed (i.i.d.) assumption.1 This may lead to a potential limitation of

the generalisability of the predicted results to other independent sample sets (e.g. the test

set). In a 2018 study Cui and Gong [106] have shown the dramatic effect of sample size

on individualised behavioural prediction in studies that used functional-connectivity-

derived features. They found that the most common ML regression algorithms reach

acceptable performances on the aforementioned task given a sufficiently large2 data set.

This need is in part motivated by the increased likelihood of violation of the i.i.d. assump-

tion for smaller sample sizes. This work dealt with a total of 42 PD patients to carry

out the main analyses, which is far removed from the benchmarks set by Cui and Gong

[106]. Notwithstanding such remarks, our reduced sample size is not uncommon as most

neuroimaging studies have samples of typically less of 100 subjects and are strife with

confounding effects3 [107].

Furthermore, the hyperparameter optimisation process was unstable. See Appendix

B for the several optimal configurations with different partitions of the training and test

sets for the RF-F algorithm. This instability seems to be an ad hoc manifestation of

the susceptibility of our pipelines to vibration effects. Vibration effects describe the

drastic impact some methodological choices (e.g. the hyperparameters) have a on the

error of some unstable pipelines [104]. In this way, we interpret the instability of the

hyperparameter optimisation process in two different but compatible ways:

1. The surrogate sets are not representative of the whole dataset; i.e. they are not i.i.d.

subsets of D. This can either be due to a small sample size, the intrinsically large

1In ML theory, examples are often considered to be i.i.d.. This implies that all samples stem from the
same generative process and that the generative process is assumed to have no memory of past generated
samples. Furthermore, i.i.d. datasets allows us to make the stationary assumption: there is a probability
distribution over examples that remains stationary over time. These two assumptions together connect the
past (learnt examples) to the future (new unseen examples) thus allowing predictions to be possible [63].

2Even though it is not directly stated in the paper, it is visually identifiable that by large sample sizes it
is meant a sample larger than 200 different subjects. See figure 2 of [106] for more detailed information.

3For instance, in our case, we can point out that the temporal structure of the trial (i.e. a longitudinal
study) diminishes power by any possible carry-over effects; i.e. the cognitive outcome measures in τ0 and τ1
are not strictly independent.
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sampling noise in neuroimaging studies (for instance, due to highly heterogeneous

groups), or because the features are not meaningfully related to the outcomes.

2. The prediction model does not adequately fit the data. This can be due to an inap-

propriate model choice (cf. Bias-Variance Trade-off) or for the same reasons as the

previous remark.

Adding to the above, the results of the post hoc age prediction analyses further corroborate

the hypothesis of lack of data. Functional connectivity (graph) measures are thought to

be significantly related to age [108]. In particular, Khosla et al. [109] have archived a

minimal RMSE of 2.1 years predicting age with state-of-the-art connectome-based ensem-

ble learning. The prediction of age has a well-established proof-of-concept and should

therefore be possible. In our work, not only has the RF-N algorithm reached significance

levels with the bigger dataset (n = 80) but also the average RMSE of all algorithms is

lower when compared to the smaller dataset (n = 42).4 A direct comparison to our results

(average RMSE of RF-N of 6.1± 0.6 years) is not possible taking into account that Khosla

et al. had a wildly bigger sample (polling data collected from over 1000 individuals) and

used state-of-the-art dedicated pipelines for functional data collection (ensemble of tai-

lored convolutional neural networks). In this way, the significance of results of RF-N age

prediction on PD patients leads us to infer that the methods presented on this paper hold

promise, even if these result in errors that are far removed from the peak-performance

found in literature.

Sample size has also a subtle effect on predictive modelling approaches when com-

pared to standard statistical methods. Varoquaux [107] analyses the influence of some

common methodological choices on the generalisation error estimation of neuroimaging

studies in a 2018 paper. One important finding of this study reports that the effect of

having a small sample size is especially dismal in the specific case of testing predictive

models. Therefore, studies based on predictive modelling require larger sample sizes

4From a theoretical standpoint, the No Free Lunch Theorem should not be forgotten in these considerations.
This theorem postulates that “if an algorithm performs well on a certain class of problems then it necessarily
pays for that with degraded performance on the set of all remaining problems” [110]. We tried to mitigate
this effect by not considering a single estimation RMSE but rather averaging the RMSE over a group of
10 different but closely related training sets. However, this assumption is still constrained directly by our
sample and indirectly by the universe defined by the generalisation of our sample. This epistemological
uncertainty works both ways. On the one hand, it supports our motivation for a negative result not implying
an incorrect methodology. On the other, it introduces some epistemic ambiguity on our significant outcome.
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than standard statistical approaches. From the seven treatment outcome prediction stud-

ies in section 3.2, four [33–36] of them use standard statistical approaches (e.g. Pierson

correlations, among others) which can partially motivate their success with relatively

smaller sample sizes.

As made clear in section 3.2, there is mounting evidence suggesting that neuroimaging

data and CNA can be used to predict treatment outcome in a multitude of psychiatric

conditions. Nonetheless, regression ML models using graph measures as features are

not (yet) a common approach to the problem of prediction of treatment outcome in

neuropsychiatry. We described several related works which were exclusively classification

problems thus hindering any direct comparison with the findings of this dissertation. A

2016 systematic review on the use of ML on Human Connectome Data from MRI [111]

analysed seventy-seven different studies on this topic. From those, only four [112–115]

included regression analysis, none of which was conducted using graph-derived features.

To the best of our knowledge, the lack of publications on regression-based predictive

models in neuropsychiatry is still egregious to the present day. Moreover, these studies

that report positive results have bigger sample sizes than the work carried out on this

dissertation, ranging from 60 [112] to 115 subjects [113, 114].

Despite the sparsity of publications concerning regression-based predictive models, a

recently published study by Sun et al. [116] has shown that it is possible discern between

remitters and non-remitters of electroconvulsive therapy for major depressive disorder

using a regression model based on whole-brain functional connectivity. However, not

only did they have a bigger sample size (122 patients), there is also compelling evidence

that electroconvulsive therapy has a larger effect size than CT. A 2019 meta-analysis

[117] has described the effect size of CT on several cognitive in terms of the Hedges’ g.

These were described as small to moderate positive treatment effects (compared with con-

trol interventions) in four domains (global cognitive function, memory, working memory

and executive function). Conversely, the effects of electroconvulsive therapy for Major

Depressive Disorder are reported as to have large and very large effect sizes in the mental

health component score (also characterised through the Hedges’ g) [118]. The disparity

of effect sizes seems to indicate that CT may have a smaller effect size than electrocon-

vulsive therapy in the domain of their respective relevant outcome measures. Attention

must be drawn to the fact that small sample sizes and small effect sizes combined have
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an especially destructive effect on statistical power in neuroscience. Not only does the

small sample size reduce the chance of detecting a true positive effect, it also reduces the

likelihood that a statistically significant result reflects a true positive effect [119]. There-

fore, we may not have enough power to make predictions as sample and effect sizes are

two key elements for statistical power.

Additionally, none of the previously mentioned ML-regression-based use k-h-nested-

CV (or equivalent techniques such as unbiased bootstrapping based methods [4]) to esti-

mate the generalisation error of their respective models. We believe this has a non-trivial

effect on the statistical significance of our results because it leads to a conservative estima-

tion of the average error and the respective uncertainty of our prototype algorithms [107].

Conservative error estimations reduce the power of our study thus further stressing the

need for bigger sample sizes.

Finally, the choice of the amount of structural and functional measures we used as

features may also be a factor leading to negative results. This data-driven approach

created a high-dimension problem, where the number of features (432) is vastly larger

than the number of observations (42). Overfitting is the hallmark of high-dimension

problems. In order to bypass it, highly regularised approaches often become the methods

of choice [64]. In our case, we used Latent Component Analysis as described in section

4.4.2 and 4.5. The LCA did not bring any significant improvement to the versions of the

prototype algorithms that did not use it. We hypothesise that the lack of effectiveness of

LCA is due to the regularisation strategies inherent to the RFo algorithm (i.e. bagging

of features and of samples). To sum up, the fact that the RFo uses different subsets of

features and samples iteratively in the training process might have undermined the effect

of LCA, which is used for roughly the same end.

6.1 Future Work and Recommendations

The previous discussion points provide grounds for recommendations with respect to

future work on regression analysis using ML in neuropsychiatry. What constitutes a fair

interpretation of new discoveries is unavoidably subjective. However, critical discussion

of limitations, caveats, and a reserved stance against one’s findings is fundamental for

scientific progress.
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Firstly, future work is needed with respect to the understanding of LCA of multi-

modal graph measures. A data-driven approach was adopted for the purposes of this

work. In other words, all the four hundred and thirty-two features were input into an

unsupervised dimensionality reduction method and then into a ML algorithm, without

any further manual feature selection. However, as mentioned before, radiomics data are

often high-dimensional and strife with a significant multicolinarity burden. To sum up,

comprehensive analysis of the features that are eliminated in redundancy filtering may

shed some light onto the nature of connectomic measures. Moreover, a more informed

choice of features might ultimately improve the performance of the prediction algorithms

by not burdening the process with a lot of meaningless variables for the specific problem.

Regarding the performance estimation of ML models, a general recommendation

should be issued for the mainstream use of more unbiased validation processes such as

h-k-nested-CV (or equivalent). There is a growing need for accurate error analysis in

neuropsychiatry as the corpus of studies using ML in this field grows. Tsamardinos et

al. [4] described several common processes in to estimate the generalisation error of

ML algorithms. It was described that unbiased techniques for error estimation − such as

nested-CV or bootstrap bias-corrected CV − often lead to less outstanding and potentially

non-significant results. Thereby, an accurate and unbiased estimation of the generalisa-

tion error is of the utmost importance as more and more ML-based softwares are deployed

in clinical practice. If deployment of such algorithms is the end goal, more work is also

needed in making systems resilient to dataset shifts and adversarial attacks, as described

by Kelly et al. [120]. Nonetheless, the publication of studies showing non-significant re-

sults is fundamental for the construction of scientific knowledge. Underpowered studies

are a staple of the scientific method and even these may lead to significant results down

the line in aggregative studies such as prospective meta-analyses [104].

Lastly, the potential impact of the reduced size of our sample was extensively dis-

cussed in this chapter. Therefore, suffice to say that the sample size should exceed the

hundred, should it be possible.
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6.2 Conclusion

In this work we aimed to predict several cognitive outcome measures using data derived

from functional and structural MRI. We used custom models based on the Random

Forest and Decision Trees regression algorithms to reach our goal. The performance of

our algorithms did not have a significant level of improvement relatively to the baseline.

Notwithstanding the failure to predict our main outcomes, we hypothesise that the main

setback of this work was the small size sample of our sample.
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Normality

In this section the kurtosis, skewness and variance values for the set of 10 optimal RMSE

estimated via the 10-5-nested-CV process will be presented.

Table A.1 – DF-F Performance Estimation Descriptive Statistics

Kurtosis Skewness Variance
Age
(n = 42)

0.29 -0.45 3.21

Age
(n = 80)

0.37 0.69 1.05

Mean Reaction
Time Load S4

-1.95 -0.45 0.04

Mean Reaction
Time Load S5

1.21 -0.25 0.02

Percentage Correct
Load S4

-1.23 0.44 0.02

Percentage Correct
Load S5

-0.96 -0.43 0.14
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APPENDIX A. NORMALITY

Table A.2 – DT-N Performance Estimation Descriptive Statistics

Kurtosis Skewness Variance
Age
(n = 42)

1.74 -1.08 2.23

Age
(n = 80)

-0.87 -0.27 1.68

Mean Reaction
Time Load S4

0.56 -1.08 0.05

Mean Reaction
Time Load S5

0.36 0.44 0.02

Percentage Correct
Load S4

1.56 -0.45 0.02

Percentage Correct
Load S5

0.00 -0.97 0.12

Table A.3 – RF-F Performance Estimation Descriptive Statistics

Kurtosis Skewness Variance
Age
(n = 42)

-1.11 0.14 1.72

Age
(n = 80)

-0.74 -0.27 1.00

Mean Reaction
Time Load S4

-1.97 0.14 0.05

Mean Reaction
Time Load S5

-0.48 0.12 0.02

Percentage Correct
Load S4

0.28 0.13 0.02

Percentage Correct
Load S5

-0.21 -0.73 0.12

Table A.4 – RF-N Performance Estimation Descriptive Statistics

Kurtosis Skewness Variance
Age
(n = 42)

0.18 0.88 2.34

Age
(n = 80)

-0.10 -0.27 0.78

Mean Reaction
Time Load S4

-1.20 0.88 0.06

Mean Reaction
Time Load S5

-1.46 0.13 0.02

Percentage Correct
Load S4

1.17 0.97 0.02

Percentage Correct
Load S5

-0.20 -1.07 0.10
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Table A.5 – BaselinePerformance Estimation Descriptive Statistics

Kurtosis Skewness Variance
Age
(n = 42)

-0.68 0.44 1.87

Age
(n = 80)

0.21 -0.58 1.61

Mean Reaction
Time Load S4

-1.99 0.44 0.06

Mean Reaction
Time Load S5

-0.71 0.10 0.02

Percentage Correct
Load S4

1.07 0.72 0.02

Percentage Correct
Load S5

0.60 -1.30 0.13
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B
Optimal Training Logs for RF-F

In this section the optimal configurations from the 10 different iterations of the TPE

for the RF-F will be presented. Each line on the tables below represent an optimal

configuration determined by different run of the TPE algorithm in the 10-5-nested-CV

process.

The main goal of this section is to illustrate the instability of the tuning process (i.e.

vibration effects). The training logs from RF-F were chosen because this is the algorithm

that needs optimisation over the biggest number of hyperparameters to be fully closed.

The 10 optimal configurations determined by the 10 separate runs of the tuning process

for the other three algorithms are equally unstable in their respective search domains.

As we can see from the table below, no two iterations of the tuning process of RF-F

reached the exact same optimal configuration either in the prediction of the cognitive

target variables or in age prediction.
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Table B.1 – Optimal parameter at the end of optimisation for prediction of RCI of the
Mean Reaction Time on Load S4

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

2 0.19 0.11 0.39 150 23 0.90
3 0.89 0.49 0.11 1200 24 0.93
4 0.46 0.18 0.29 150 28 0.91
8 0.83 0.48 0.12 500 31 0.92
2 0.38 0.11 0.39 150 20 0.90
11 0.75 0.46 0.12 2400 10 0.91
8 0.75 0.47 0.15 750 17 0.93
14 0.78 0.48 0.10 2700 4 0.92
2 0.41 0.46 0.11 2100 20 0.93
4 0.42 0.43 0.11 850 12 0.95

Table B.2 – Optimal parameter at the end of optimisation for prediction of the RCI of the
Mean Reaction Time on Load S5

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

12 0.737 0.491 0.107 1800 9 0.95
13 0.446 0.484 0.145 1100 17 0.91
9 0.621 0.479 0.105 800 2 0.91
13 0.588 0.458 0.101 2100 13 0.95
3 0.887 0.492 0.106 1100 24 0.93
11 0.562 0.399 0.100 1350 36 0.90
2 0.753 0.495 0.112 1400 12 0.90
10 0.765 0.464 0.112 2450 17 0.94
4 0.525 0.466 0.100 1450 17 0.94
2 0.680 0.426 0.100 750 12 0.92

Table B.3 – Optimal parameter at the end of optimisation for prediction of the RCI of the
Percentage of Correctly Answered Trials on Load S4

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

12 0.664 0.489 0.103 2700 13 0.94
2 0.799 0.479 0.132 1100 18 0.93
13 0.852 0.448 0.104 200 31 0.94
4 0.633 0.420 0.100 400 17 0.92
3 0.827 0.448 0.102 200 26 0.94
11 0.720 0.463 0.115 1100 26 0.91
8 0.814 0.476 0.122 2250 9 0.93
3 0.664 0.500 0.109 600 27 0.92
2 0.179 0.104 0.397 100 9 0.90
4 0.709 0.500 0.136 2400 20 0.90

Table B.4 – Optimal parameter at the end of optimisation for prediction of the RCI of the
Percentage of Correctly Answered Trials on Load S5

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

12 0.714 0.492 0.100 2100 10 0.90
13 0.532 0.487 0.108 950 36 0.92
12 0.328 0.144 0.369 100 14 0.92
7 0.842 0.386 0.114 2150 18 0.93
13 0.300 0.482 0.107 2000 30 0.94
10 0.369 0.411 0.100 400 15 0.92
12 0.315 0.161 0.438 100 27 0.95
11 0.856 0.489 0.111 1900 16 0.95
6 0.468 0.126 0.390 100 19 0.95
8 0.205 0.127 0.374 100 33 0.92
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Table B.5 – Optimal parameter at the end of optimisation for prediction of Age on Inter-
vention+Control Groups (n = 80)

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

7 0.705 0.453 0.149 900 13 0.93
2 0.825 0.478 0.100 1550 21 0.93
12 0.432 0.464 0.102 1450 19 0.93
6 0.716 0.485 0.196 350 18 0.92
3 0.824 0.472 0.103 2000 22 0.94
11 0.862 0.472 0.100 400 25 0.95
14 0.630 0.461 0.176 2050 21 0.95
8 0.843 0.484 0.156 1450 23 0.95
9 0.842 0.329 0.111 650 9 0.92
8 0.701 0.438 0.168 1050 35 0.91

Table B.6 – Optimal parameter at the end of optimisation for prediction of Age on Inter-
vention Group (n = 42)

max_depth max_features max_samples min_samples_leaf n_estimators number_of_factors redundancy_threshold

14 0.352 0.418 0.144 2650 34 0.92
12 0.492 0.482 0.151 1650 8 0.91
9 0.552 0.396 0.147 1850 5 0.94
9 0.693 0.403 0.110 1950 31 0.95
12 0.288 0.492 0.127 100 25 0.95
6 0.566 0.485 0.119 2700 27 0.93
4 0.721 0.437 0.115 2750 5 0.92
5 0.434 0.448 0.100 850 28 0.91
15 0.724 0.438 0.147 2150 22 0.91
14 0.352 0.418 0.144 2650 34 0.92
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Graph Measures

All of the definitions below only report to measures on weighted undirected graphs. For

the analogous definitions on binary and/or directed graphs, cf. [3]. All of these measures

are defined according to [5] with small changes in notation.

For the purposes of this section, N refers to the set of nodes of a given network and n

to the number of nodes of a network, i.e. the cardinality of N . Moreover, wij refers to the

weight of the edge between nodes i and j.

I.1 Base Measures

Degree

The binary degree of node i
(
ki

)
quantifies how many nodes are directly connected to

node i. To calculate the binary degree we need to first transform the weighted graph into

a binary graph. For illustration purposes let’s consider the ideal thresholding function, f ,

that maps weighted edges wij into binary edges aij:

aij = f (wij) =

 1, if wij , 0

0, if wij = 0
(I.1)

Thus, upon the mapping of network edges (equation I.1), the degree of a node can be
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calculated by:

ki =

∑
j∈N

aij (I.2)

The weighted degree of a node
(
si
)

is the sum of the weights of the edges connected

to that node. This measure is referred to as the strength of the node.

si =

∑
j∈N

wij (I.3)

Triangles

Another important measure of a network is in how many triangles does node i partake (ti).

For a undirected weighted definition, we have to account for edge weights. Therefore, we

use the geometric mean of the weights. Note that if wix = 0, there is no triangle between

node i and node x.

ti =
1
2

∑
j,k∈N

3
√
wij ·wik ·wjk (I.4)

I.2 Measures of segregation

(Average) Clustering coefficient

In informal language, the clustering coefficient of node i
(
Ci

)
is the the proportion of the

nodes that are connected to node i (neighbours) that are connected to each other. See

figure I.1 for an illustration of this principle. Equivalently, it refers to the number of

triangles that contain node i as a vertex. Or, simply put, how many of the neighbours

of node i are neighbours of each other. Therefore, the clustering coefficient provides us

important information related to segregation of the network. The clustering coefficient

of a network
(
C
)

is the average of the clustering coefficients of all its nodes .

C =
1
n

∑
i∈N

Ci =
1
n

∑
i∈N

2ti
ki (ki − 1)

(I.5)

where ki and ti have the meaning of equations I.2 and I.4, respectively

Transitivity

Transitivity is related to clustering in a nuanced way. Transitivity estimates the proba-

bility that any two nodes connected to a third are also connected to each other, whereas
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a) b) c)

Ci =1 Ci = 0.5 Ci =0

i i i

Figure I.1 – Illustration of the clustering coefficient a small network. a | All of the neigh-
bours of node i are interconnected. In this way node i has the highest clustering coefficient
possible. b | Intermediate situation. c |None of the neighbour of node i is connected. Node
i has the lowest clustering coefficient possible.

the clustering coefficient estimates the proportion of closed triangles attached to a node,

separately for each node.

T =

∑
i∈N

2ti∑
i∈N

ki (ki − 1)
(I.6)

I.3 Measures of integration

Characteristic Path Length

A walk is a set of edges in an undirected graph that is ordered to form a sequence in which

any pair of successive edges shares a common node. A path is a walk where in which all

edges and nodes are unique. The path length refers to the sum of the edge weights in

the path. The shortest path length
(
lij
)

between nodes i and j refers to an ordered set of

edges linking two nodes in a network for which the sum of the weights of its constituent

edges is minimal (found through Dijkstra’s Algorithm). The characteristic path length(
λ
)

of a network is the average shortest path length between all possible pairs of nodes in

a network (equation I.7).

Λ =
1

n(n− 1)

∑
i,j

lij (I.7)

Global efficiency

Efficiency is closely related to the shortest path. The characteristic path length is an

ill-defined concept in fragmented networks, i.e. if there is no path between node i and
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node j. The concept of global efficiency is dependent on the efficiency of information

transfer on a system where the information would from from any node to any other node

in parallel only via the shortest paths. It’s thus related to the reciprocal of the shortest

path length.

E =
1

n(n− 1)

∑
i,j∈N

i,j

1
lij

(I.8)

Modularity

A module in a network can be defined a set of nodes that are strongly connected with

each other and their degree is higher than what would be expected in a random graph.

The formalisation of these properties into a measure is the so-called modularity index Q.

See figure 2.14 for a more detailed illustration of this measure.

Q =
1

2W

∑
i,j∈N

(
wij − eij

)
δ(i, j) (I.9)

In the equation above, W =
∑

i,j∈N wij, is the total weight of unique edges of the network,

eij =
sisj
2W is the total connectivity between nodes i and j that is expected by chance (si and

sj following the definition of equation I.3) and δ(i, j) is the Kronecker’s Delta.

a) b)

Figure I.2 – Visual comparison of modularity. a| An example of a network with relatively
high modularity. In yellow green and gray we see three different modules: sub-graphs
densely connected with higher degree than what would be expected by chance. The pur-
ple node has a higher participation coefficient than any other node in the network because
it belongs to all three different modules. b| An example network with low modularity. All
of the nodes are equally connected to each other, there is no optimal partition.
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I.4 Small-worldness

Small-world is a class of networks defined by having properties that are neither com-

pletely random or regular. These networks show high clustering coefficients (like lattices)

and relatively short shortest path lengths like random graphs. See figure I.3 for illustra-

tion.

The definition of small-worldness is relative to a random network. The clustering

coefficient has to be relatively higher and the average path length relatively shorter than

in a than in a random network. In order to compare these measures so we define the

normalised clustering coefficient, γ , and the normalised characteristic path lengths, λ, as

the ratio between the measures in our network and in an artificially generated random

network. A new random graph with preserved weight, degree and strength distributions

should be generated so that the coefficients are comparable.

In this way, the small-worldness, σ , of a network is the ratio between γ and λ, such

as:

σ =
γ

λ
=
Λrand ·C
Crand ·Λ

(I.10)

where C and Λ have the meaning of equations I.5 and I.7, respectively, and the subscript

“rand” refers to the measures in the null-model random network.

The interpretation of the measure follows naturally from its definition. As we dis-

cussed, a network shows small-world properties if λ ≈ 1 and γ > 1. As such, values of σ

that are greater than one are often used as a simple indicator of small-world organisation.

a)a) b) c)

i

Figure I.3 – Visual comparison between lattice, small-world and random networks. a|
Regular lattice. b| Small-world network. c| Random network.
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I.5 Subnetwork Measures

Between-network Connectivity

Our subnetworks are disjoint sets of nodes. That is to say, given two different networks

α and β, there is no node belonging to α that also belongs to β. The between network

connectivity of sub-networks α (composed by n nodes) and β (comprising m nodes) was

calculated using the following expression:

BNα,β =
1

n ·m

∑
i∈α

∑
j∈β

wij (I.11)

I.5.1 Measures of centrality

The extracted centrality measures are nodal, meaning that there is a uniquely defined

value for each node taking into account its neighbourhood. However, they were extracted

from subnetworks. We defined the betweenness/eigenvalue centrality of a subnetwork as

the average centrality of all its nodes. Likewise for the participation coefficient.

Betweenness Centrality

Betweenness centrality is a measure of how much “a node is in between other two nodes”.

Alternatively it can be seen as the probability of a node being in a shortest path in between

any other two nodes in the network. It measures the proportion of shortest paths between

all node pairs in the network that pass through a given index node. The normalised

betweenness centrality of node i is

CB(i) =
1

(N − 1)(N − 2)

∑
i,j,k

ρjk(i)

ρjk
(I.12)

where ρjk(i) is the number of shortest paths between nodes j and k and ρjk(i) is the number

of shortest paths between j and k that include node i.

Participation Coefficient

The participation coefficient is a measure of how much a node’s connections are dis-

tributed among different modules. For node i,

P (i) = 1−

M∑
m=1

(
si(m)
si

)2

(I.13)
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where M is the number of modules in the subnetwork, si is the strength of node i and

si(m) is the strength of node i considering a subnetwork defined by the nodes that belong

to module m.

Eigenvalue Centrality

Eigenvalue centrality is a nodal measure that accounts for the quantity and quality of

connections a specific node in a network. It considers the degree of the node and the

degree of its neighbours. This estimation is done using the eigenvectors and eigenvalues

of the adjacency matrix of the network.

CE(i) =
1
λ1

N∑
j=1

Aijxj (I.14)

where A is the adjacency matrix of the graph, λ1 is the largest eigenvector of A and x is

its corresponding eigenvalue. xj represents the j-th entry of eigenvector x.
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II
Concepts of Wavelet Analysis

This appendix is based on the 2004 paper by Grinsted et al [84], and on the work of Mallat

[121].

II.1 Wavelets and Wavelet transform

Although the time-frequency resolution trade-off is an unavoidable fact of physics and

exist regardless of the transform used, it is possible to analyse any signal by using an

alternative approach called the multiresolution analysis. Even though these methods do

not essentially resolved the Heisenberg uncertainty principle, they provide more efficient

tools to work around it by extracting maximal information from the signal at different

scales. One method of multi-resolution analysis is the wavelet transform.

First, let us define a wavelet. A wavelet is a a square integrable function ψ ∈ L2(R)

with zero mean: ∫ +∞

−∞
ψ(t)dt = 0 (II.1)

and norm one: ∫ +∞

−∞
|ψ(t)|2dt = 1 (II.2)

To ψ(t) we call the mother wavelet. The mother wavelet can be scaled by a ∈ R+ and
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shifted by b ∈ R to originate the children wavelets:

ψa,b(t) =
1
√
a
ψ

(
t − b
a

)
(II.3)

We use Morlet wavelets in this work. The Morlet wavelet is a complex exponential

with a gaussian envelop:

ψM(t) = eiω0te−
t2

2σ2 (II.4)

where i is the imaginary unit, σ is a measure of support (roughly equivalent spread of the

gaussian curve envelop) and ω0 is the frequency. The Morlet family is thus defined by:

ψM(t)
∣∣∣
a,b

= exp
[
iω0

(
t − b
a

)]
exp

[
t − b
√

2aσ

]2

(II.5)

The formal definition of the continuous wavelet transform of f (t) is:

Ψf (a,b) =
1
√
a

∫ +∞

−∞
f (t) ψ∗

(
t − b
a

)
dt (II.6)

However, in the context of this work, we want to calculate the CWT of a time-series

(discrete signal). In order to do so, we must discretise the wavelet respecting the Nyquist

Theorem (to be able to reconstruct the signal). More accurately, we discretise the scale

parameter according to the Nyquist theorem and the time parameter is then discretised

with respect to the scale parameter, i.e. a different sampling rate is used for every scale.

The main difference in between discrete and continuous wavelet transforms of time-series

is how the scale parameter is discretised. In CWT, we are not forced to discretise the scale

parameter as series of powers of two. It is thus common to define a parameter ν, the

number of voices per octave or, in other words, the number of intermediate values of the

scale parameter in between every doubling of the dilation of the scale. The expression of

the CWT becomes defined by the discretised version of the scale parameter. Therefore

we can only determine the wavelet coefficients at scales s = 2−j/ν , where j ∈ N and ν is the

number of voices per octave.1

1The minimum and maximum scales are defined by the energy spread of the wavelet. Check [122] for
more information.
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II .2. WAVELET COHERENCE

II.2 Wavelet Coherence

Wavelet coherence is a measure of the correlation in between two signals. The wavelet

coherence in between time-series x and y is:

R2 =

∣∣∣∣S (
Ψx(a,b)Ψ ∗y (a,b)

)∣∣∣∣2
S
(
|Ψx(a,b)|2

)
S
(∣∣∣Ψy(a,b)

∣∣∣2) (II.7)

where the superscript ∗ is the complex conjugate and S is a smoothing operator in time

and scale for the specific wavelet we are considering 2 For real-valued time series, the

wavelet coherence is real-valued if you use a real-valued analysing wavelet, and complex-

valued if you use a complex-valued analysing wavelet.

2This operator is analytically well-defined for the Morlet wavelet. Cf. [84]
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