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ABSTRACT 

Functional magnetic resonance imaging (fMRI) is a non-invasive technology that provides high 

spatial resolution in determining the human brain’s responses and measures regional brain 

activity through metabolic changes in blood oxygen consumption associated with neural activity. 

Task fMRI provides an opportunity to analyze the working mechanisms of the human brain 

during specific task performance. Over the past several years, a variety of computational 

methods have been proposed to decode task fMRI data that can identify brain regions associated 

with different task stimulations. Despite the advances made by these methods, several limitations 

exist due to graph representations and graph embeddings transferred from task fMRI signals. In 

the present study, we proposed an end-to-end graph convolutional network by combining the 

convolutional neural network with graph representation, with three convolutional layers to 

classify task fMRI data from the Human Connectome Project (302 participants, 22–35 years of 

age). One goal of this dissertation was to improve classification performance. We applied four of 

the most widely used node embedding algorithms—NetMF, RandNE, Node2Vec, and 

Walklets—to automatically extract the structural properties of the nodes in the brain functional 

graph, then evaluated the performance of the classification model. The empirical results 

indicated that the proposed GCN framework accurately identified the brain’s state in task fMRI 

data and achieved comparable macro F1 scores of 0.978 and 0.976 with the NetMF and RandNE 

embedding methods, respectively. Another goal of the dissertation was to assess the effects of 

individual differences (i.e., gender and fluid intelligence) on classification performance. We 

tested the proposed GCN framework on sub-datasets divided according to gender and fluid 

intelligence. Experimental results indicated significant differences in the classification 
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predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded 

promising results and demonstrated the superior ability of our GCN in modeling task fMRI data. 
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CHAPTER ONE: INTRODUCTION 

Human Brain Connectivity  

The human brain is a complex system containing approximately 100 billion neurons and trillions 

of synaptic connections (Pakkenberg et al., 2003; Herculano-Houzel, 2009). The brain’s 

electrical activity became a research focus in the 19th century when Richard Caton recorded 

brain signals from rabbits (Al-Kadi, Reaz and Mohd Ali, 2013; Molfese, Molfese and Kelly, 

2016). Human brain research has since increased significantly, and brain networks research is 

now the most commonly used method to understand information underlying cognition, behavior, 

and perception (Reijneveld et al., 2007; Bullmore and Sporns, 2009; He and Evans, 2010; 

Craddock et al., 2013; Park and Friston, 2013; Farahani, Karwowski and Lighthall, 2019; Saeidi 

et al., 2021). Human brain networks can be acquired from anatomical connections in neural fiber 

(Huang and Chung, 2020) or statistical relationships between successive time points (Anirudh 

and Thiagarajan, 2019; Felouat and Oukid-Khouas, 2020; Huang et al., 2020), resulting in 

structural and functional networks, respectively.  Structural connectivity generally refers to white 

matter volume changes between pairs of brain regions (Rubinov and Sporns, 2010), whereas 

functional brain connectivity refers on the basis of the temporal correlations among regional 

interactions of brain activities. Human connectome—the map of neural connections—provides a 

sense of fMRI-based studies and can be studied through computational techniques that offer new 

insights into brain functional connectivity to extract topological features from fMRI (Sporns, 

2022). Extracted information from functional connectivity networks can be fed to machine 

learning (ML) algorithms as input data to identify biomarkers of the brain networks 

(Kazeminejad and Sotero, 2019). 
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Machine Learning on Neural Connections 

ML methods have become rapidly growing areas with applications in brain imaging and 

computational neuroscience, owing to higher levels of neural data analysis efficiency and 

decoding of brain function (Huang, Xiao and Wu, 2021). In ML, various algorithms are used to 

simplify processing pipelines and improve the learning process. For instance, supervised ML 

algorithms first learn on training data. The model and learned parameters are then applied to 

unseen or new data to predict the class label of the new data (Sen, Hajra and Ghosh, 2020).  

 There are two broad categories of ML algorithms including conventional/traditional ML 

methods and Deep Learning (DL) models. Conventional ML algorithms heavily rely on 

handcrafted graph topological features that use traditional graph analytics such as centrality 

measures, connectivity, and path analysis (Xu, 2021). For example, local and global connectivity 

from brain regions as graph features can be extracted from fMRI data to classify metabolic states 

with a linear support vector machine (Al-Zubaidi et al., 2019). On the other hand, DL introduced 

the concept of end-to-end learning and is trained automatically at multiple levels of abstraction. 

Instead of using handcrafted features in Conventional ML methods, which are usually based on 

expert domain knowledge and heuristics, high-level complex features can be automatically 

extracted from the original fMRI data and helped to improve the performance of classification 

models using deep learning algorithms (Huang, Hu, Dong, et al., 2018; Huang, Hu, Zhao, et al., 

2018; Hu et al., 2019; Gui, Chen and Nie, 2020; Wang et al., 2020; Huang, Xiao and Wu, 2021). 

Convolutional neural networks (CNNs), for instance, can efficiently extract spatial features that 

are shared with the entire grid-like data (e.g., 2D and 3D images) (Azevedo, Campbell, et al., 

2020). These features are then combined and fed into the higher-level layers within the network 

architecture (Spasov et al., 2019). Recurrent neural networks (RNNs), however, are able to learn 
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the temporal feature from input sequence data (Azevedo, Campbell, et al., 2020). With the 

availability of big data in neuroscience that represents complex functions with computational 

analysis, the application of DL algorithms shows remarkable progress in neuroimaging research 

using fMRI data (Razavian et al., no date; Wang et al., no date; L. Liu et al., 2020). However, 

they cannot directly work on graph-structured input data due to considering the brain network 

features as a vector of one dimension (D. Wu et al., 2021). The human connectome represents 

the brain as a graph with interacting nodes in non-Euclidean space (Zhu et al., no date; X. Bi et 

al., 2020), and existing DL methods generally disregard the interaction and association of brain 

connectivity networks (Liégeois et al., no date; Yao et al., 2021).    

Graph Neural Networks  

One of the most effective ways to tackle the aforementioned limitations of ML and DL 

algorithms on a graph is with Graph Neural Networks (GNNs). GNN is a combination of neural 

networks with graph representation and has been successfully applied in many domains 

including social networks (Z. Wang et al., 2018), traffic networks (Guo et al., 2019), and protein 

networks (Fout et al., 2017) for solving various tasks including node classification, edge 

prediction, and graph classification (see illustration in Figure 1.1). GNNs have shown 

improvement in learning the representation of graph-structured data by creating an embedding of 

the nodes in a low-dimensional space (Xu et al., 2018). The end-to-end training allows this 

representation to be learned from the structural properties of the graph that are associated with 

the problem at hand. The representation of nodes uses an iterative procedure and passes 

information via a message-passing algorithm from the neighbors of each node (Casas et al., 

2020). Unlike neural networks, GNNs update the representations of nodes while maintaining the 
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graph topology (Z. Wu et al., 2021). However, the computational cost will be growing with the 

number of graph nodes, which is why modern implementations are focused on reducing the 

number of iterations or using sampling methods to improve the speed of the model. 

More recently, GNNs have seen a rapid increase in research activity in the field of fMRI data 

analysis (Ahmedt-Aristizabal et al., 2021) since the human connectome represents the brain as a 

graph with interacting nodes in non-Euclidean space (Zhu et al., no date; X. Bi et al., 2020). The 

study of GNNs for fMRI data analysis can be generally classified into two classes based on the 

definition of nodes: (1) the individual scale that uses graphs in which nodes represent brain 

parcels and edges represent functional connectivity (Ji, Maurits and Roerdink, 2019; Ventresca, 

2019); (2) the population scale that involves a graph in which each subject is modeled as a node 

with corresponding brain connectivity data, and the similarities based on the modalities are 

defined by the edges (Stankevičiūtė et al., 2020). In this thesis, we focus on the first category. 

We study the robustness of the model for node classification where each node represents the 

ROIs, and two nodes are connected based on their functional connectivity.  

 

Figure 1.1. Problems that can be solved by graph neural networks. Node classification (A) to predict the 

node embedding for the unlabeled nodes in a graph. Edge prediction (B) to predict the relationship 

between nodes in a graph. Graph classification (C) to classify the whole graph into various classes. 
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Figure 1.2. Illustration of graph embedding. First, each node is mapped to a low-dimensional vector 

embedding, based on the node’s position in the graph. Then, the embedding methods have been 

successfully applied to solve many different tasks.  

 

Unsupervised Representation Learning 

The traditional approach for extracting features from graph data relies on handcrafted topological 

features that use traditional graph analytics such as degree statistics, centrality measures, 

connectivity, and path analysis (Xu, 2021). In contrast, network representation learning aims to 

directly extract the features (i.e., representation learning or embeddings) from data by creating an 

embedding of the nodes in a low dimensional space such that similar nodes are close to each 

other in the Euclidian space (Xu et al., 2018). The embeddings should keep relevant structural 

information of the graph and the node features. As a result, the embedding methods have been 

successfully applied to solve many different tasks (see illustration in Figure 1.2).  Depending on 

the particular data structure of a graph, the performance of embedding methods varies in 

extracting the structural properties of graph nodes, thus the classification algorithms may 

perform differently by using various node embeddings (Goyal and Ferrara, 2018). In this thesis, 

we show the power of the learning node embeddings for extracting features. We also compare 

the performance of several embedding algorithms on our proposed classification model.    
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Research Objectives 

The primary objective of this thesis is to improve the classification performance of task fMRI 

data by proposing a classification model that can accurately identify brain regions associated 

with different task stimulation using Human Connectome Project (HCP) dataset (Van Essen et 

al., 2013). Herein, we propose an end-to-end graph convolutional network (GCN) framework to 

classify task-evoked fMRI data. We conducted a series of experiments to evaluate the model’s 

classification performance by using four well-known node embedding algorithms: NetMF, 

RandNE, Node2Vec, and Walklets. Furthermore, on the basis of prior studies indicating a close 

link between individual variability and the organization of brain function, we aimed to examine 

the effects of individual differences (i.e., gender and fluid intelligence (gF)) on the classification 

performance of the proposed GCN model. For this purpose, we performed extensive experiments 

on four sub-datasets: gender-associated sub-datasets (female and male) and gF score-associated 

sub-datasets (sub-datasets associated with individuals with gF scores lower than the median 

value, denoted LM-gF, or higher than the median value, denoted HM-gF). The main objectives 

are divided into the following segments. 

Objective 1: To develop a classification model based on GCN to accurately classify task-evoked 

fMRI data. The proposed model should achieve comparability of results with previous findings. 

Objective 2: To investigate whether the pre-processing step has an effect on the classification 

performance. If so, which node embedding methods have the most improvement on the GCN 

model.   

Objective 3: To study whether individual differences (i.e., gender and the fluid intelligence) have 

an effect on the classification performance of the proposed GCN model.  
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Thesis Organization 

The rest of this thesis is organized as follows. 

Chapter Two 

Some parts of this chapter are adapted from the systematic review paper by (Saeidi et al., 2021), 

which has been published in the Brain Science journal. This chapter introduces the concepts of 

brain connectivity and provides an overview of machine learning/deep learning approaches. We 

illustrate how limitations in these approaches to analyze fMRI data have led researchers to 

develop GNN models. In this chapter, we mainly review graph neural network models for fMRI 

data analysis through a systematic literature review. We further discuss the application of the 

graph neural network approach in three main categories: neurological and psychiatric disease, 

gender classification, and brain response cognitive stimuli. Accordingly, we provide study 

limitations in task fMRI data analysis, research gaps, and future directions.     

Chapter Three 

In this chapter, we introduce the Human Connectome Project that is a popular large-scale fMRI 

dataset including resting-state and task fMRI data. Then, we discuss node embedding method 

application to extract topological features of graph nodes on fMRI data. We further propose a 

task-evoked fMRI data analysis pipeline for classification purpose and introduce our GCN 

architecture for fMRI analysis.  

Chapter Four 

In this chapter, we summarize the results of task fMRI classification based on the various node 

embedding methods. We have tested the classification performance of our GCN framework by 
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employing different node embedding methods. Our results indicate that our GCN is effective and 

promising in task fMRI classification.   

Chapter Five 

This chapter provides discussion of results, the limitations of the work, and future directions. 

Chapter Six 

This chapter summarizes the concluding remarks as well as research contribution. 
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CHAPTER TWO: LITERATURE REVIEW 

Some parts of this chapter are taken from the published systematic review paper by (Saeidi et al., 

2021) which has been published in the Brain Sciences1 journal. 

Brain imaging technologies 

Brain imaging technologies are divided into two main categories: structural imaging and 

functional imaging that are used for studying structural brain connectivity and functional brain 

connectivity, respectively. Structural connectivity describes anatomical connections in neural 

fiber between brain regions (Huang et al., 2020), and its changes in the brain network can be 

demonstrated with different properties including gray matter and white matter volume, cortical 

thickness, and texture-based approach (Karas et al., 2004; Li et al., 2017; Liu et al., 2018). An 

example of structural brain imaging is Magnetic Resonance Imaging (MRI). Functional 

connectivity, on the other hand, is a statistical measurement that is derived from time-series 

observations, and describes patterns of regional interactions of brain activities (Anirudh and 

Thiagarajan, 2019; Felouat and Oukid-Khouas, 2020; Huang et al., 2020), and can be obtained 

using model-based (e.g., cross-correlation, spectral coherence, and statistical parametric 

mapping) and model-free (e.g., mutual information, clustering, and decomposition-based 

analysis) approaches (Rocca et al., 2014; García-Prieto, Bajo and Pereda, 2017; Farahani, 

Karwowski and Lighthall, 2019; Felouat and Oukid-Khouas, 2020; Mahmood et al., 2021). 

Electroencephalography (EEG), magnetoencephalography (MEG), Positron Emission 

Tomography (PET), and functional Magnetic Resonance Imaging (fMRI) are examples of brain 

functional imaging.  

 
1 https://www.mdpi.com/2076-3425/11/11/1525. 
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Time series data may be inferred from measuring changes in electrical activity and changes in 

magnetic fields generated by electrical activity in the brain through EEG and MEG, respectively, 

or evaluating metabolic changes through PET and changes in blood oxygenation level-dependent 

(BOLD) over time through fMRI (Crosson et al., 2010; Farahani, Karwowski and Lighthall, 

2019). Among various advanced neuroimaging techniques to directly observe brain activities, 

MRI and fMRI are non-invasive technologies that provide higher spatial resolution to determine 

the brain’s responses (Goense, Bohraus and Logothetis, 2016) and significantly reduce radiation 

exposure (Crosson et al., 2010) (see illustration in Figure 2.1).  

Functional Magnetic Resonance Imaging technology 

fMRI is a non-invasive technique for studying brain activity. In fMRI technology, we 

demonstrate the activated regions of the brain based on BOLD contrast. This method measures 

the oxygen consumption of active neurons to make the active areas observable. During an fMRI 

experiment, time series of the three-dimensional volume of the brain are acquired within a task 

block while the participant’s brain actively performs an explicit task. Therefore, changes in the 

measured signal between individual images are used to make inferences regarding task-related 

activations in the brain. In each single experiment, several hundred images are acquired, and 

each image consists of a large number (~ 100000) of voxels (i.e., the smallest distinguishable 

element of fMRI data). Each voxel corresponds to a spatial location and has a number associated 

with it that represents its intensity. Therefore, the related information can be extracted from a 

single voxel by measuring intensity changes across that voxel in its spatial location. This process 

can generate the time series of these intensities which shows how its activity changes over the 

course of scanning. This concept is presented in Figure 2.2.  
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Figure 2.1. Spatial and temporal resolution. Spatial resolution refers to our ability to distinguish changes 

in image across different spatial locations. Temporal resolution refers to our ability to separate brain 

events in time. 

 

 

Figure 2.2. Illustration of a single voxel time series. 
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Task and Resting State fMRI 

There are two primary paradigms of fMRI studies: resting-state fMRI (rs-fMRI) and task-based 

fMRI. The former records brain activity to detect synchronous BOLD changes associated with 

brain regions while participants lie in the scanner and do not perform a task or think about any 

specific thing. In contrast, in the latter paradigm, fMRI data is acquired while the participant’s 

brain is active with or without performing an explicit task. Rs-fMRI and task-based fMRI have 

gained widespread applications in neurological disorders such as Epilepsy (Bernhardt, Bonilha 

and Gross, 2015), Schizophrenia (Mastrovito, Hanson and Hanson, 2018), Autism Spectrum 

Disorder (ASD) (Ecker, Spooren and Murphy, 2012), and Attention-Deficit Hyperactivity 

Disorder (ADHD) (Cocchi et al., 2012), age and gender prediction (Gadgil et al., 2020; Kim and 

Ye, 2020), and brain responses to the cognitive stimulus by tasks (Gong et al., 2016; Markett et 

al., 2018; Kim, Ye and Kim, 2021; Zhang et al., 2021). 

Functional Brain Network 

The brain is a complex network that includes structural and functional connections. Human 

connectomes, complex maps that explain the set of functional connections in the brain, provide 

insights into fMRI-based studies and represent the brain as a graph where the regions of interest 

(ROIs) are nodes and the connections among interacting ROIs are known as edges. The whole 

brain could be divided into different regions using atlases and parcellation schemes. Functional 

connectivity that determines temporal correlation among brain ROIs, could be obtained using 

fMRI. Most conventionally, cross-correlation is computed using the Pearson correlation 

coefficient (Bishara and Hittner, 2012) which denotes the weight of the edge between two brain 
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parcels. In most cases, a pre-defined threshold value has been applied, so that if the correlation is 

higher than the threshold value, it can be considered as an edge connecting two nodes. 

Graph theoretical metrics such as clustering coefficient, geodesic path, small-worldness, and 

assortativity (Farahani, Karwowski and Lighthall, 2019) provide an effective tool to analyze the 

brain’s connectivity network and have numerous applications in understanding the neural 

correlates of neurological and psychiatric disorders, and predicting human behavioral and 

cognitive traits (Park and Friston, 2013; Bernhardt, Bonilha and Gross, 2015; Petersen and 

Sporns, 2015; Mastrovito, Hanson and Hanson, 2018). 

Introduction to Machine Learning 

Machine learning as a field of artificial intelligence, is a rapidly growing area with applications 

in computational neuroscience, owing to higher levels of neural data analysis efficiency and 

decoding of brain function (Huang, Xiao and Wu, 2021). Three main categories of ML include 

supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning 

teaches the model based on the labeled data and draws pre-classified patterns that use to classify 

new patterns. However, in unsupervised learning, we let the model work on its own to discover 

information since there are no exact target outputs associated with each input. Semi-supervised 

learning is halfway between supervised and unsupervised learning including a number of labeled 

instances and a number of unlabeled instances. 

In ML, various algorithms are used to simplify processing pipelines and improve the learning 

process. For instance, supervised machine learning algorithms first learn on training data. The 

model and learned parameters are then applied to unseen or new data to predict the class label of 

the new data (Sen, Hajra and Ghosh, 2020). Among different types of classification tasks, binary 



14 

 

and multi-label classifications are widely used in clinical studies, and in studies of cognitive 

function and brain disorders. The objective of classification is to predict the class label of the 

new data points in various tasks (Sen, Hajra and Ghosh, 2020). Classification algorithms can be 

divided into two categories: conventional classification algorithms and DL algorithms (Wang, 

Cang and Yu, 2019). Conventional classification algorithms represent a precise effort to build 

classification models by using input data and applying statistical analysis to classify output 

values. Most conventional classification algorithms use hand-crafted input features to train the 

model. This process, called feature creation, has limitations in handling input in high-

dimensional datasets (Wang, Cang and Yu, 2019). DL algorithms rely on representation learning 

(Bengio et al., 2012) and can accommodate the limitations of conventional classification 

algorithms through learning features automatically at multiple levels of abstraction (Wang, Cang 

and Yu, 2019). Table 2.1 presents a brief comparison of conventional classification and DL 

algorithms (Wang, Cang and Yu, 2019). 

Table 2.1. Brief comparison of conventional classification algorithms and deep learning algorithms. 

 
Conventional classification 

algorithms 

Deep learning algorithms 

Input features Hand-crafted Automatically based on 

representation learning 

Feature selection process Required Not Required 

Model architecture Based on statistical concepts Consists of a diverse set of 

architecture based on sample data 

Computational cost Computational cost is based on the 

conventional classification models 

but is lower than that of deep 

learning algorithms 

Computational cost is very high, 

because hyper parameters must be 

tuned 
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Conventional Classification Algorithms 

Among different conventional classification algorithms including supervised learning and 

unsupervised learning, supervised algorithms are the most well-known methods used in fMRI 

data analysis. One of the most commonly used supervised algorithms is artificial neural networks 

(ANNs). ANNs are computational models (Haykin and network, 2004) that use multilayered 

networks of neurons with weighted connections between units, typically followed by a static 

non-linearity function (e.g., Rectified Linear Unit (ReLu)). During the learning phase, the 

network can learn by modifying its weights to enhance the performance outcomes in test data 

classification (Behri, Subasi and Qaisar, 2018). Similar examples of well-performed and well-

known supervised algorithms include naive Bayes (NB), support vector machine (SVM), k-

nearest neighbor (KNN), logistic regression (LR), random forest (RF), and linear discriminant 

analysis (LDA). Each supervised model applies a learning algorithm to generate a more accurate 

model. 

NB is a probabilistic classifier that applies Bayes’ theorem to classify data on the basis of certain 

features (Hosseini et al., 2020). It is a simple and effective classifier that needs only small 

training datasets to estimate the parameters for classification. This advantage makes NB a robust 

classifier for brain signals analysis in several types of tasks. However, NB is based on the 

assumption that all attributes are independent of one another, and feature vectors have equal 

effects on the outcome (Hosseini et al., 2020).  

SVM has been demonstrated to be a useful supervised model based on a statistical learning tool 

with high generalization. The principle underlying SVM is the separation of two datasets. This 

separation can be linear or non-linear. In the case of linear separation, SVM uses a discriminant 

hyperplane to distinguish classes. However, in the case of nonlinear separation, SVM uses the 
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kernel function to identify decision boundaries. Compared with that of other supervised 

algorithms, such as ANNs and KNN, the computational complexity of SVM is low (Osowski, 

Siwek and Markiewicz, 2004; Palaniappan, Sundaraj and Sundaraj, 2014). Although the 

computational complexity of KNN decreases by increasing the k-value, its classification 

performance also decreases (Beyer et al., 1999; Palaniappan, Sundaraj and Sundaraj, 2014). 

Furthermore, with the advent of deep learning algorithms, SVM has remained widely used in 

fMRI data classification, because its computation has a solid mathematical basis. However, the 

performance of SVM is affected by the kernel function and penalty coefficient parameters; thus, 

optimizing the parameters introduced into SVM classifiers is essential (Du, Huang and Wang, 

2015). (Huang and Wang, 2006) have applied a genetic algorithm, and (Wang, Qiu and Li, 2010) 

have proposed particle swarm optimization to optimize SVM parameters. According to our 

investigation (Saeidi et al., 2021), SVM has been widely used in brain data classification because 

of its simplicity and adaptability in solving classification problems such as diagnosis of brain 

disorders.  

RF is a tree-based supervised algorithm that constructs an ensemble of decision trees. Each 

decision tree is generated during the training phase. RF makes predictions from each tree and 

selects the final decision via a voting method or averaging the results (Ramzan and Dawn, 2019) 

to identify the most commonly used class. The main idea underlying this, and related ensemble 

methods is that a group of weak classifiers can collectively generate a strong classifier to create a 

successful learning algorithm. However, the overfitting and instability of trees can affect RF 

model performance, particularly with varying sizes of trees (Hosseini et al., 2020). In contrast to 

the LR model, which is a probabilistic classification model for both binary and multi-class 

classification tasks (Conklin, 2002), RF works on both discrete and continuous data, thus 



17 

 

providing models for classification and regression problems. Furthermore, the parallelization 

structure of RF results in better performance than that of the other supervised algorithms on large 

fMRI datasets in addressing classification problems (Sarica, Cerasa and Quattrone, 2017).  

LDA is a linear transformation technique used to identify linear combinations of the variables 

that most effectively separate the classes (Bandos, Bruzzone and Camps-Valls, 2009; Tharwat et 

al., 2017). LDA is based on the assumption that the density for the data is normally distributed, 

with equal covariance for both classes. The separating hyperplane is achieved by maximizing the 

distance between the two classes, while minimizes the distance points within each class (Lotte et 

al., 2007). This technique is simple to use and has very low computational requirements. 

However, the main limitation of this model is its linear nature which prevents competitive results 

on nonlinear brain data (Balakrishnama, Ganapathiraju and Picone, 1999; Garcia, Ebrahimi and 

Vesin, 2003). 

Deep Learning Algorithms 

Deep learning is a new branch of machine learning that has received widespread attention in 

fMRI classification tasks. Although conventional classification algorithms have been very 

effective in analyzing massive datasets and understanding the relationship between variables, 

such algorithms often lead to poor generalization behavior and low classification performance 

when highly dynamic features are encountered (Sakhavi, Guan and Yan, 2018). Deep learning 

algorithms inspired by neuroscience (McCulloch and Pitts, 1943) exploit learning features from 

raw data without depending completely on preprocessing (Lecun, Bengio and Hinton, 2015). 

Humans can transfer knowledge and memory throughout their lifespan, whereas deep learning 

algorithms immediately forget the previous learning after being trained on a new dataset (van de 
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Ven, Siegelmann and Tolias, 2020). For instance, (Borgomaneri et al., 2020) have confirmed that 

fear memory remains in humans after memory reactivation and affects the future learning 

process. Such a life-long learning task is a large challenge in developing neural network 

algorithms (Parisi et al., 2019). Deep learning algorithms apply multiple layers of perceptrons 

that obtain representation learning (Lecun, Bengio and Hinton, 2015). Recent developments in 

graphics processing unit technology have enabled the development of deep learning architectures 

on large datasets. This advantage has significantly improved the performance on large datasets 

with high-dimensional data (Craik, He and Contreras-Vidal, 2019).  

Convolutional neural network (CNN) is a type of deep neural network that has gained attention, 

particularly in computer vision and neuroimaging (Lecun, Bengio and Hinton, 2015). CNN can 

identify the image of an object by using convolutions within its architecture; including 

convolutional layers that have parameters to create a feature map; pooling layers that reduce the 

number of features for computational efficiency; dropout layers that help avoid overfitting by 

randomly turning off perceptron; and an output layer that map the learned features into the final 

decision, such as classification (Abiodun et al., 2018; Valliani, Ranti and Oermann, 2019). The 

recent emergence of the CNN algorithm has enabled outstanding performance in several 

applications such as image processing (Bhattacharya et al., 2021), natural language processing 

(Fiok et al., 2021), and fMRI data analysis (Wen et al., 2018). However, CNN performance is 

highly dependent on hyperparameters such as the number of convolution layers, and the size and 

number of kernels and pooling windows (Al-Saegh, Dawwd and Abdul-Jabbar, 2021). 

Fortunately, CNN architectures have led to automatic optimization of parameters through several 

iterations (Craik, He and Contreras-Vidal, 2019); therefore, CNN is very commonly used for 

addressing classification problems involving large datasets (see illustration in Figure 2.3.A).  
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Recurrent neural network (RNN) is a time series-based deep learning algorithm that uses 

sequential data and learns from training data, similar to feed-forward and CNN methods (see 

illustration in Figure 2.3.B). Unlike traditional deep neural networks, which assume 

independence of the input and output, RNN takes information from inputs continually. 

Consequently, the output of RNN depends on the prior outputs and the current inputs within the 

sequence (Al-Saegh, Dawwd and Abdul-Jabbar, 2021). Thus, the architecture of this network 

includes inbuilt memory cells for storing information from previous output states (Faust et al., 

2018). The form of RNN architecture has enabled these types of networks to effectively analyze 

time-series data for applications such as speech recognition (Miao, Gowayyed and Metze, 2016), 

natural language processing (Wiggins et al., 2021), and disease signal identification (Tan et al., 

2018).  

The most commonly used RNN variants are long short-term memory (LSTM) (Hochreiter and 

Schmidhuber, 1997), LSTM peephole connections (P. Wang et al., 2018), gated recurrent units 

(GRU) (Roy, Kiral-Kornek and Harrer, 2019), and multiplicative LSTM (Krause et al., 2016). 

The ability of these variants to preserve and retrieve memories is part of the generic structure of 

these networks. However, CNNs have a different architecture and use filters and pooling layers. 

According to differences in the internal network structure of CNNs and RNNs, CNNs are 

effective for the analysis of spatial data, because CNN models consider the complete trial as an 

object and can extract features. In contrast, RNN models are suited for the analysis of temporal 

and sequential data by slicing the trail into several sub-trails (Al-Saegh, Dawwd and Abdul-

Jabbar, 2021).  
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Figure 2.3. Illustration of the A) Convolutional Neural Network architecture and B) Recurrent Neural 

Network architecture. 

Graph Neural Networks 

The first introduction of GNNs goes back to the study by (Gori, Monfardini and Scarselli, 2005) 

and (Scarselli et al., 2009) who generalized existing recursive neural networks to learn graph-

structured data. Since that time, GNNs have attracted great attention in a large number of 

technological domains, including social networks (Zhang and Chen, 2018), chemical molecules 

networks (Duvenaud et al., 2015), drug interaction networks (Zitnik, Agrawal and Leskovec, 

2018), and many other research areas (Bojchevski and Günnemann, 2017; Dai et al., 2017). 

Generally, GNNs utilize graph structure and node features to learn a representation vector of 

each node. Modern GNN architectures proceed with a neighborhood aggregation step in which 

the representation of each node has been constantly updated with the aggregating representations 
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of its neighbors. After h iterations of aggregation, the structural information for each graph node 

has been captured from h-hop network neighborhood.  

The idea behind GNNs is to learn a mapping that represents graph nodes into low-dimensional 

vectors, so that provide geometric relationships in the embedding space to reflect the structure of 

the original graph (Hamilton, Ying and Leskovec, 2017b). The main contribution of GNN 

methods is to address the limitations of traditional approaches to learning on graphs in which 

fixed, and hand engineering parameters have been used, by employing methods to learn the 

embeddings that represent the desired graph structure. In this section, we will briefly review 

some basic concepts and the set of required definitions of graph theory that are used in this 

dissertation. Then, we will present the main variants of GNNs.  

Theoretical Aspects of Graph Theory 

We used the basic notions described in reference (Gross, Yellen and Anderson, 2018). A graph is 

defined as G = (V, E) that consists of the set of nodes {v1, v2, … , vn} and set of edges that eij =

(vi , vj) ∈ E and E ⊆ V × V. An edge e has two endpoints vi and vj, that are said to be joined by 

e. In this case, these two nodes are adjacent. A graph can either be directed or undirected. With 

an undirected graph, edges have no orientation. In contrast to undirected graphs, directed graphs 

are the set of nodes connected by edges that have a direction associated with them. Furthermore, 

a graph is a weighted graph if weight is assigned to each edge. These weights quantify the degree 

of interaction between the nodes or the volume of exchange. Table 2.2 illustrates a list of 

notations used in this dissertation. 

 



22 

 

Table 2.2. Notations used in this dissertation 

Notations Description 

𝑵 = 𝟏, 𝟐, … , 𝒏 number of ROIs 

𝒗𝒊 node 𝑖 (ROI 𝑖) in the graph 

𝒆𝒊𝒋 edge connecting node 𝑣𝑖 and 𝑣𝑗 

𝑽 nodes set 

𝑬 edge set 

𝑮 graph, 𝐺 = (𝑉, 𝐸) 

𝑨 adjacency matrix, 𝐴 = [𝑒𝑖𝑗] ∈ 𝑅𝑁×𝑁 

𝒙𝒊 node feature vector associated with 𝑣𝑖 

𝒅 node feature dimension 

𝑿 node feature matrix, 𝑋 ∈ 𝑅𝑉×𝑑 

𝒑 edge feature dimension 

𝑿𝒆 edge feature matrix, 𝑋𝑒 ∈ 𝑅𝑀×𝑝 

 

Definition 1 (Adjacency Matrix): The adjacency matrix 𝐴  for a graph 𝐺 with 𝑛-nodes is an 

𝑛 × 𝑛 matrix representation with 𝐴𝑖𝑗 = 1 if the direct connections exist between 𝑣𝑖 and 𝑣𝑗 , and 

𝐴𝑖𝑗 = 0 if no direct connection exist. If the graph is weighted, the entry of the adjacency matrix 

𝐴𝑖𝑗 > 0 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 and 𝐴𝑖𝑗 = 0, otherwise. 

Definition 2 (Feature Matrix): The node feature matrix 𝑋 ∈ 𝑅𝑉×𝑑, where 𝑉 is the number of 

nodes in the graph and 𝑑 is the number of node features, is a matrix with 𝑥𝑖 ∈ 𝑅𝑑 representing 

the 𝑑- dimensional feature vector of the node 𝑣. Similarly, the edge feature matrix 𝑋𝑒 ∈ 𝑅𝑀×𝑝 is 

a matrix with 𝑋𝑣𝑖,𝑣𝑗

𝑒 ∈ 𝑅𝑃 representing the 𝑝- dimensional feature vector of the edge 𝑒𝑖𝑗.     

Definition 3 (Laplacian Matrix): The Laplacian matrix (or graph Laplacian) 𝐿 ∈ 𝑅𝑁×𝑁 is 

defined as 𝐿 = 𝐷 − 𝐴, where 𝐷 is the degree matrix, 𝐷𝑖𝑗 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1 , and 𝐴 is the adjacency 

matrix of the unweighted graph. Similarly, for a weighted graph, 𝐿 = 𝐷 − 𝑊, where 𝑊 is a 
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weighted adjacent matrix.  The Symmetric normalized Laplacian matrix can be defined as 

𝐿𝑠𝑦𝑚 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2, where 𝐼 is the Identity matrix.  

Graph Convolutional Networks 

The structure of GCNs is inspired by the Convolutional Neural Networks (CNNs) to learn 

hierarchical representations of irregular data (i.e., graph and manifold). Despite increasing efforts 

to generalize the CNN models on graph-structured data, several challenges still exist to extract 

spectral-spatial features (Zhou et al., 2020; Zhang, Cui and Zhu, 2022). GCNs, however, can be 

categorized into two major algorithms as spectral GCNs (Kipf and Welling, 2016) and spatial 

GCNs (Simonovsky and Komodakis, 2017). Spectral GCNs implement convolutional operation 

on graph spectral domains based on the Fourier transform and graph Laplacian. Spatial GCNs, 

on the other hand, implement convolutional operations based on spatial relationships between 

nodes to aggregate neighborhood information for each node.  In the following, we will represent 

an introduction to spectral- and spatial-based GCNs. 

Spectral-Based GCN 

Spectral GCNs use the Laplacian matrix to compute the eigen-decomposition of the graph 

Laplacian in the Fourier domain (see illustration in Figure 2.4.A). Let Lsym be the symmetric 

normalized Laplacian matrix of graph G. Lsym can be decomposed into Lsym = UΛUT, where 

U = (u0, u1, … , un−1)ϵRn×n is the eigenvector matrix, and Λ is the diagonal matrix of 

eigenvalues, Λ = diag(λ1, λ2, … , λn). In graph signal processing, node features are mapped to 

feature vectors (i.e., x0, x1, … xn−1) which may be formed as a feature vector of all nodes of a 

graph, X ∈ Rn. The graph Fourier transform to a signal X is defined as X̂ = UTX, and the inverse 
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graph Fourier transform is defined as X = UX̂. The graph convolution operation of X in the 

Fourier domain is defined as follows: 

X ∗ g = U((UTg) ⊙ (UTX)) (2.1) 

where ∗ represents convolution operation, ⊙ represents the pointwise product and g ∈ RN 

represents the learnable parameters of the graph convolutional kernel. By defining gθ =

diag(UTg) as a spectral filter in the spectral domain, the graph convolution operation can be 

simply defined as follows:    

X ∗ gθ = Ugθ(Λ)UTX (2.2) 

Equation (2) has been used for the first spectral network proposed (Bruna et al., 2013). However, 

this operation was computationally expensive because of multiplication eigenvector matrix U 

which is a full matrix with n Fourier functions. To avoid the quadratic complexity, (Defferrard, 

Bresson and Vandergheynst, 2016) proposed ChebNet model which avoids the eigen-

decomposition by directly a learning function of the Laplacian. ChebNet model uses Chebyshev 

polynomials of the diagonal matrix of eigenvalues to estimate filter gθ as shown below: 

gθ = ∑ θiTk(Λ̃)

K

i=0

(2.3) 

where Λ̃ = 2Λ λmax − IN⁄ , and Λ ∈ [−1,1]. The model uses a Chebyshev polynomial for 

recursive calculation as Tk(x) = 2xTk−1(x) − Tk−2(x) with T0(x) = 1 and T1(x) = x. Therefore, 

the definition of the convolution of the graph signal x with a filter gθ is as shown below: 

X ∗ gθ = U(∑ θiTi(L̃))UTX

K

i=0

(2.4) 
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where L̃ = 2Lsym λmax − IN⁄ , and maps the eigenvalues from [0, λmax] to [−1,1] (Yi Ma et al., 

2019). 

The filters defined by ChebNet are unstable for localizing frequency bands of interest, which are 

essentially the graph communities. To improve the above-mentioned ChebNet model and reduce 

the overfitting problem (Zhou et al., 2020), (Kipf and Welling, 2016) have proposed the 

CayleyNet model to capture narrow frequency band by using Cayley polynomials. ChebNet 

assumes a linear function with respect to K = 1 and λmax = 2, which results in a simplification 

of Equation (4) as shown below: 

X ∗ gθ = f(D̃−
1

2ÃD̃−
1

2XΘ) (2.5) 

where Ã = I + A, is an adjusted adjacency matrix A, D̃ij = ∑ jÃij, f is the activation function, and 

Θ is a matrix of filter parameters. Spectral GCNs are powerful tools for graph-structured data. 

However, this method is difficult to calculate for a dense graph.  

Spatial-Based GCN 

Spatial GCNs define graph convolutions by aggregating the neighborhood’s information based 

on the node’s spatial relations. This process generally consists of aggregation and combine 

functions (Kim and Ye, 2020). Unlike the spectral GCNs, spatial-based methods update the 

representation for the central node with its neighbors’ representations (see illustration in Figure 

2.4.B). Diffusion convolutional neural network (DCNN) (Atwood and Towsley, 2015) regards a 

process of diffusion between nodes for graph convolutions, i.e., the information is transferred 

between nodes with a certain diffusion transition probability after random walking. Specially, the 

structure of the diffusion graph convolution is as follows:   
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Hl+1 = f(θPkHl) (2.6) 

where Pk is the transition probability of a length-k between two nodes (i.e., random walk) and θ 

is a learnable model parameter. DCNN describes the high-order information between nodes 

through a series of operations. As such, the computational complexity of the model for a large 

graph is O(n2K). 

GraphSAGE (Hamilton, Ying and Leskovec, 2017a) solved this problem by proposing a batch-

training algorithm for GCNs. Instead of applying all nodes during the training process of the 

embedding, GraphSAGE randomly samples the local neighboring nodes and aggregates their 

features to generate the embedding function for unseen data. The graph convolutions are as 

follows: 

hv
(k)

= σ(Wk. fK (hv
(k−1)

, {hu
(k−1)

, ∀u ∈ SN(v)
})) (2.7) 

where fk(. ) is an aggregation function, and SN(v)
 is a random sample of neighbors node v. 

GraphSAGE proposes three different aggregator functions: mean aggregator, LSTM-based 

aggregator, and max pooling aggregator. GraphSAGE with a mean aggregator takes the element-

wise average values of the input nodes without the concatenation with the previous layers 

representation of the current node while the LSTM-based aggregator requires order invariant of 

the nodes. A max pooling aggregator is implemented as a trainable fully connected neural 

network which stands as the most general argument for the overall structure of the GraphSAGE 

algorithm (X. Bi et al., 2020).     
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Figure 2.4. Graph Convolutional Network architecture. A) spectral-based GCN; convolutional operation 

is implemented based on the Fourier transform and graph Laplacian, B) spatial-based GCN; convolutional 

operation is implemented based on spatial relationships between nodes to aggregate neighborhood 

information for each node. Images adapted from  (Zhou et al., 2022) 

 

Graph Isomorphism Network (GIN) (Xu et al., 2018) proposes a generalization of GraphSAGE 

and GCNs frameworks by adapting the aggregation and update functions that make 

discriminative and representational power of GIN equivalent to the Weisfeiler-Lehman test 



28 

 

(Weisfeiler et al., no date). GIN considers the node features and implements the aggregate and 

combine functions as the sum of them: 

hv
(k)

= MLP(k)((1 + ϵ(k)). hv
(k−1)

+ ∑ hu
(k−1)

)
u∈𝒩(v)

(2.8) 

where hv
(k)

 is the k-th layer feature vector at the v-th node, ϵ(k) is a learnable parameter, and MLP 

is a multi-layer perceptron with non-linearity. Hence, the proposed architecture achieves 

maximum discriminative power for classification tasks (Schweitzer PASCAL et al., 2011; Xu et 

al., 2018).  

Graph Attention Networks 

The graph attention network (GAT) (Veličković et al., 2017) adopts attention mechanisms to 

learn the attention coefficient between two connected nodes. The attention coefficient denotes 

how important node j are for node i and is defined as eij = a(Whi, Whj), where hi, hj are node 

feature vectors that are multiplied with the weight matrix, W, and a is an attention mechanism 

that is adapted to learn the relative weights between two connected nodes and return the attention 

coefficient. The normalized attention coefficient is represented by ∝ij and can be defined by 

using softmax function as   

∝ij= softmaxj(eij) =
exp (a(Whi, Whj))

∑ exp (a(Whi, Whk))k∈𝒩i

(2.9) 

Similarly, the full attention coefficient between the node i and its neighbor j is defined as: 

∝ij=
exp (LeakyReLU(aT[Whi||Whj]))

∑ exp (LeakyReLUk∈𝒩i
(Whi||Whk]))

(2.10) 
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where || denotes the concatenation operation. The output representations of each node according 

to GAT are calculated by the following equation:   

hi
′ = σ(∑ αijWhj)

j∈𝒩i

(2.11) 

Additionally, GAT performs the multiple attention heads that applies K independent attention 

mechanisms to increase the stability of the learning process as below: 

hi
′ = σ(

1

K
∑ ∑ αij

kWkhj)
j∈𝒩i

K

k=1
(2.12) 

GAT performs computing operations of the node-neighbor pairs in parallel, resulting in 

computational efficiency, and is helpful for inductive learning to generalize the training process 

to unseen nodes and graphs (Zhou et al., 2020).  

Graph Recurrent Networks 

Graph Recurrent Networks (GRNs) as the particular cases of Recurrent Neural Networks 

(RNNs), capture a sequential representation of a given graph and can be designed for 

classification tasks in both graph-level and node-level. The assumption of these models is to 

information/messages exchange between nodes until a stable equilibrium is reached. The termed 

recurrent in RNNs refers to the dependency between the output of the prior element and the 

current inputs within the sequence (Saeidi et al., 2021). Similarly, GRNs reduce the limitation of 

solving long-term dependencies between graph-structured data in GNNs by extending gate 

mechanisms from RNNs (Li et al., 2015) such as LSTM (Hochreiter and Schmidhuber, 1997) 

and GRU (Cho et al., 2014).  
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LSTM-Based Approach 

(Hochreiter and Schmidhuber, 1997) proposed the LSTM model to reduce the impact of the 

vanishing gradients problem by employing an internal memory. The basic architecture of LSTM 

includes an input gate, memory unit, output gate, and hidden state (Tai, Socher and Manning, 

2015), and can be described as below:  

ft = σF(Wfxt + Ufht−1 + bf),

it = σI(Wixt + Uiht−1 + bi),
(2.13)

ot = σO(Woxt + Uoht−1 + bo),

c̃t = tanh(Wcxt + Ucht−1 + bc) ,
ct = fc ⊙ ct−1 + it ⊙ c̃t−1,

ht = ot ⊙ tanh (ct)

 

where xt is the input data at time step t; σF(⋅) is the activation function of the forget gate; σI(⋅) is 

the activation function of the input gate; σO(⋅) is the activation function of the output gate; Wf 

and Uf are the weights of the forget gate; Wi and Ui are the weights of the input gate; Wo and Uo 

are the weights of the output gate; Wc and Uc are the weights of the LSTM; bf is the bias vector 

of the forget gate; bi is the bias vector of the input gate; bo is the bias vector of the output gate; 

bc is the bias vector of the LSTM; ht is the hidden state at time step t; and ⨀ denotes the 

element-wise product.  

GRU-Based Approach 

GRU is another common gated architecture for graph-structure data that calculate the gradients 

by back-propagating timestep and has fewer parameters than LSTM (Li et al., 2015). In this 

approach, the given node aggregates messages from its neighbors. Then the hidden state of each 

node is updated by its previous hidden states and its neighboring hidden states (Zhou et al., 

2020). The GRU-based approach propagation formula is as follows:  
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rt = σR(Wrxt + Urht−1 + br),

zt = σZ(Wzxt + Uzht−1 + bz),
(2.14)

h̃t = tanh(Whxt + Uh(rt⨀ht−1) + bh) ,

ht = (1 − zt)⨀ht−1 + zt⨀h̃t

 

where xt is the input data at time step t; σR(⋅) is the activation function of the reset gate; σZ(⋅) is 

the activation function of the update gate; Wr and Ur are the weights of the reset gate; Wz and Uz 

are the weights of the update gate; Wh and Uh are the weights of the gated GNNs at time step t; 

and rt, zt, h̃t, ht denotes the reset gate, update gate, candidate activation, and hidden state 

respectively. The advantage of GRU over the LSTM is the speed of convergence and less 

complexity than LSTM.    

Spatial-Temporal Graph Neural Networks 

Conceptually, spatial-temporal graph neural networks (STGNNs) are the type of graphs in that 

graph structure is dynamic and feature information keeps changing over time. Specifically, 

STGNNs simultaneously model spatial and temporal dependencies to predict values and perform 

graph node classification. For example, a human brain connectome can be represented as a 

spatio-temporal graph, where the temporal graph represents the dynamics of brain activity in 

each region of interest and the spatial graph represents the dynamic properties of the functional 

interaction between different brain regions (Azevedo, Passamonti, Liò, et al., 2020; Kim, Ye and 

Kim, 2021).  

Existing STGNNs can be divided into RNN-based approaches and CNN-based approaches. 

RNN-based approaches take into consideration spatial-temporal dependencies by filtering both 

input data and hidden states passed to recurrent units using convolutional operations on graphs 
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(Seo et al., 2018). According to this, suppose that hidden states of RNNs at time step t is defined 

as:   

HRNN
t = σ(WRNN

t XRNN
t + URNN

t HRNN
t−1 + bRNN

t ) (2.15) 

 where WRNN
t  and URNN

t  are the weights of RNNs; bRNN
t  is the bias vector; XRNN

t  is the node 

feature matrix at time step t; and σ(∙) is the activation function. Adding graph convolutional 

operations to (15), the hidden states of RNN-based models become: 

HRG
t = σ(Gconv(XRNN

t , A; WRNN
t ) + Gconv(Ht−1, A; URNN

t ) + bRNN
t ) (2.16) 

Where Gconv(∙) is a graph convolutional layer; and A is the adjacency matrix (Z. Wu et al., 

2021).  

Furthermore, edge-level RNNs and node-level RNNs have been used in (Y. Bi et al., 2020) to 

deal with various aspects of the temporal information of nodes. For example, (Jain et al., 2015) 

proposed the edge-level RNN and the node-level RNN to capture temporal features and classify 

labels of nodes at each time step. To do that, the temporal information of edges and nodes is 

passed through the edge-level RNN and node-level RNN respectively. Then, to merge spatial 

information, the inputs of the node-level RNN use the outputs of edge-level RNN (Z. Wu et al., 

2021).       

The RNN-based approaches have a deficiency in iterative propagation and have gradient 

vanishing problems. To overcome the mentioned deficiencies of existing RNN-based models, 

CNN-based approaches have been introduced to handle the temporal-spatial graphs issues in a 

non-recursive manner. This solver uses parallel computing, stable gradient, and low memory 

requirement (Y. Zhang et al., 2020). For example, a 1-D convolutional layer is used to create a 
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temporal-spatial block and generate the final prediction in (Azevedo, Passamonti, Lio, et al., 

2020). 

Computational methods for fMRI data analysis  

Over the past several decades, a variety of computational methods have been proposed to 

analyze fMRI time-series data, such as the generalized linear model (GLM) (Friston et al., 1994; 

Barch et al., 2013), sparse dictionary learning (Hu et al., 2015; Lv et al., 2017; W. Zhang et al., 

2019), and blind source separation techniques including independent component analysis 

(Calhoun et al., 2001; Beckmann et al., 2005; Calhoun, Liu and Adali, 2009; Calhoun and Adali, 

2012) and tensor decomposition (Sen and Parhi, 2017, 2019b). For example, an analysis by 

Tavor et al. (Tavor et al., 2016) has confirmed that GLM analysis can provide trustworthy results 

for fMRI data analysis to predict tasks by showing interparticipant variability in task activation. 

However, these methods are fundamentally limited because they cannot address the needs of 

modeling the hierarchical structures of task fMRI functional connectivity (Ferrarini et al., 2009; 

Meunier et al., 2009): they only build shallow models that overlook all information in the task 

fMRI data (Huang, Hu, Zhao, et al., 2018).  

Deep learning (DL) based methods can achieve satisfactory classification performance, in 

contrast to traditional machine learning algorithms. In DL methods, rather than using manual 

features, which are usually based on expert domain knowledge and heuristics (Xu, 2021), high-

level complex features can be automatically extracted from the original fMRI data, thus 

providing meaningful information to improve the performance of classification models. For 

example, Huang et al. (Huang, Xiao and Wu, 2021) have proposed a deep neural network 

framework, consisting of both convolutional and recurrent layers, that automatically extracts 
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spatial and temporal features of fMRI data. In the past several years, a growing body of literature 

has applied DL algorithms to decoding fMRI data. Among those DL models, convolution 

autoencoder (Huang, Hu, Dong, et al., 2018; Huang, Hu, Zhao, et al., 2018; Wang et al., 2020; 

Zhao et al., 2020), recurrent autoencoder (Wang et al., 2019; Q. Li et al., 2021), and deep belief 

networks (Jang et al., no date; Hjelm et al., 2014; Dong et al., 2020) have shown a superior 

ability to decode fMRI data. Huang et al. have developed a deep convolutional autoencoder to 

model fMRI data (Huang, Hu, Dong, et al., 2018; Huang, Hu, Zhao, et al., 2018); Zhao et al. 

have used a spatio-temporal convolutional neural network to obtain both spatial and temporal 

features of functional networks (Zhao et al., 2020); Wang et al. have applied a deep sparse 

recurrent neural network on task fMRI data that has shown promising performance in extracting 

the temporal dependencies of input fMRI volumes (Wang et al., 2019); and a deep belief 

network with a restricted Boltzmann machine (Hjelm et al., 2014) has been used to identify 

networks in fMRI data. Similarly, Jang et al. have applied the same deep belief network 

algorithm as that in reference (Hjelm et al., 2014) to initialize the weights of fully connected 

deep neural networks (Jang et al., no date). Despite the advances made by these methods, the 

proposed DL algorithms have been limited in neuroimaging data applications, because the 

complex interactions within brain regions cannot be naturally encoded in deep features by deep 

neural network algorithms, particularly when the data have high dimensionality and are 

generated from non-Euclidean domains (Z. Wu et al., 2021).  
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Review of Literature in fMRI data analysis with Graph Neural Networks 

Search Strategy 

The comprehensive literature searches were performed within databases based on a search 

strategy using the following databases and search engines such as Science Direct, arXiv, IEEE 

Xplore, and PubMed. To meet the eligibility criteria for defining search space, the combinations 

of keywords in the title, keywords or abstract were applied, with no restrictions on publication 

date, as follows: (“graph neural networks” OR “GNNs” OR “graph convolutional networks” OR 

“GCNs” OR “graph recurrent networks” OR “GRNs” OR “graph attention networks” OR 

“GATs” OR “geometric deep learning”) AND (“graph topology” OR “brain connectome”) AND 

(“fMRI” OR “functional MRI” OR “functional magnetic resonance imaging”). These keywords 

resulted in identifying relevant studies and keeping focused on publications addressing the 

research questions. All titles and abstracts of the selected articles were reviewed, and the full text 

review of the remaining articles were independently performed by two authors (MS and WK) for 

inclusion and exclusion criteria.  

Criteria for Identification of Studies 

The following criteria were applied to exclude unqualified published original articles and limit 

the final selection of studies: (a) be included fMRI data only, studies with fMRI analysis 

combined with physiological recordings (e.g., EEG, MEG, etc.) were excluded; (b) be written in 

English; (c) be applied to the human brain network, this review focused solely on a graph 

representation of the human brain connectome. Other exclusion criteria set applied during the 

screening process were: (a) studies not in a peer-reviewed journal; (b) published abstracts, book 

chapters, and dissertations; (c) studies that were irrelevant to the research questions. According 
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to the aforementioned inclusion and exclusion criteria, the relevant studies were selected to 

further investigation through the four stages featured in the PRISMA guidelines process (Moher 

et al., 2009).   

Synthesis of Results 

Figure 2.5 indicates PRISMA guidelines of the study selection process (Moher et al., 2009). 

According to this flow diagram, at the first step, we obtained 123 articles after the removal of 

duplicates. Next, we applied a formal abstract screening process to determine relevant scientific 

articles based on our inclusion criteria. A total of 71 articles remained after this stage. The full 

text of these 71 articles was reviewed, resulting in 39 relevant articles that met all the 

aforementioned criteria.  

Our extensive literature investigation indicates that the application of GNNs to process fMRI 

data has been rapidly developed in the last three years, and the number of publications in this 

field has shown significant growth. Based on various tasks, the existing application of GNNs in 

fMRI data analysis can be organized into three main topics: neurological and psychiatric disease 

prediction, gender classification, and brain response cognitive stimuli. Note that the application 

of GNNs in fMRI data analysis is relatively limited. A summary of existing applications of 

GNNs in fMRI data analysis is presented in Table 2.3. 
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Figure 2.5. Flow diagram based on the PRISMA guideline (Moher et al., 2009), including identification, 

screening, eligibility, and inclusion stages. 
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Table 2.3. Existing applications of GNNs in fMRI data analysis. Abbreviation: GNN, graph neural 

network; GCN, graph convolutional network; GIN, graph isomorphism network; SGC, simple graph 

convolution; EV-GCN, edge-variational GCN; Hi-GCN, hierarchical GCN; GAT, graph attention 

network; GCRNN, graph convolutional recurrent neural network; GNEA, GNN with extreme learning 

machine aggregator; ST-GCN, spatio-temporal GCN; STAGIN, spatio-temporal attention GIN. 

Article Year Algorithm Database Highlights 

(Parisot et al., 

2017) 

2017 Spectral-based 

GCN 

ABIDE (Di Martino 

et al., 2013) 

One of the pioneers of GCN for group-

level disease prediction applications. 

(Ktena et al., 

2017) 

2017 Spectral-based 

GCN 

ABIDE Siamese GCN has been applied to learn 

the similarity between a pair of graphs. 

(Ktena et al., 

2018) 

2018 Spectral-based 

GCN 

ABIDE Siamese GCN has been applied to learn 

the similarity between a pair of graphs. 

(Parisot et al., 

2018) 

2018 Spectral-based 

GCN 

ABIDE An extension of their previous study on 

GCN model that considered 

characteristics and features of nodes as 

well as interactions between them. 

(X. Li et al., 

2019) 

2019 GIN Yale Child Study 

Center (X. Li et al., 

2019) 

Feature importance scores are 

identified for the GNN model by 

applying an extensive comparison 

between the proposed GNN and 

random forest.  

(Rakhimberdina 

and Murata, 

2020) 

2019 SGC ABIDE The complexity of the GCN model is 

reduced by removing nonlinearities 

between consecutive layers. 

(Kazi, 

Shekarforoush, et 

al., 2019) 

2019 Inception GCN ABIDE Inception modules with different kernel 

sizes are considered in each layer, then 

the output of each layer is used in the 

aggregator function.  
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Article Year Algorithm Database Highlights 

(Yao et al., 2019) 2019 Multi-scale 

triplet GCN 

ABIDE Multiple templates are applied for 

coarse-to-fine brain parcellation to 

create functional connectivity graphs. 

Then, a triplet GCN model is used to 

learn each graph obtained from 

functional connectivity networks. 

(Anirudh and 

Thiagarajan, 

2019) 

2019 Spectral-based 

GCN 

ABIDE A bootstrapped version of GCN is used 

to reduce the sensitivity of the initial 

graph construction phase. The proposed 

model is trained by multiple random 

graphs from the initial graph.  

(Felouat and 

Oukid-Khouas, 

2020) 

2020 Spectral-based 

GCN 

ABIDE Complex network measures and GCN 

structure are used with a large multi-

site dataset. 

(Li, Dvornek, et 

al., 2020) 

2020 Graph 

Embedding 

Learning 

Yale Child Study 

Center 

Improving the graph classification task 

by adding an extra loss including 

mutual information loss to regularize 

the embedding of noisy fMRI.  

(Huang and 

Chung, 2020) 

2020 EV-GCN ABIDE Monte-Carlo edge dropout improves 

the learning process of multi-modal 

data to approximate the uncertainty of 

the graph topology. 

(H. Jiang et al., 

2020) 

2020 Hi-GCN ABIDE Hierarchical GCN framework is used 

for graph embedding resulting in better 

training and convergence performances 

in the brain network.  
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Article Year Algorithm Database Highlights 

(Li, Zhou, et al., 

2020) 

2020 GAT ACD Biopoint task 

(Kaiser et al., 2010) 

Pooling Regularized-GNN framework 

with a new loss term for the biomarker 

analysis in both the individual and 

population levels. 

(X. Li et al., 

2021) 

2021 GAT Biopoint 

(Venkataraman et al., 

2016) 

The proposed BrainGNN framework 

contains a pooling layer and a 

regularization loss term to modify the 

distribution of the node pooling scores. 

(Rakhimberdina 

and Murata, 

2020) 

2019 SGC COBRE The complexity of the GCN model is 

reduced by removing nonlinearities 

between consecutive layers. 

(Mahmood et al., 

2021) 

2021 Gated GNN FBIRN (Keator et al., 

2016) 

Novel attention based GNN to capture 

the functional connectivity matrices 

resulted in improving the model 

interpretability. 

(Rakhimberdina 

and Murata, 

2020) 

2019 SGC ADHD-200 (Bellec 

et al., 2017) 

The complexity of the GCN model is 

reduced by removing nonlinearities 

between consecutive layers. 

(Yao et al., 2019) 2019 Multi-scale 

triplet GCN 

ADHD-200 Multiple templates are applied for 

coarse-to-fine brain parcellation to 

create functional connectivity graphs. 

Then, a triplet GCN model is used to 

learn each graph obtained from 

functional connectivity networks. 

(Saboksayr, Foxe 

and Wismüller, 

2020) 

2020 Spectral-based 

GCN 

ADHD-200 Successfully applied GCN model in the 

identifications of ADHD from subjects.  
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Article Year Algorithm Database Highlights 

(Yao et al., 2021) 2021 Mutual multi-

scale triplet 

GCN 

ADHD-200 A triplet GCN framework is employed 

to learn the representation of each 

functional connectivity network.  

(Parisot et al., 

2017) 

2017 Spectral-based 

GCN 

ADNI2 (Beckett et 

al., 2015) 

One of the pioneers of GCN for group-

level disease prediction applications. 

(Parisot et al., 

2018) 

2018 Spectral-based 

GCN 

ADNI (Petersen et 

al., 2010) 

An extension of their previous study on 

the GCN model that considered 

characteristics and features of nodes as 

well as interactions between them.  

(Banka and 

Rekik, 2019) 

2019 GCN ADNI Adversarial Connectome Embedding 

architecture is proposed with graph 

convolutional layers. The proposed 

framework uses GCN for the encoding 

network operations.  

(Kazi, Krishna, et 

al., 2019) 

2019 Multi-GCN TADPOLE 

(Marinescu et al., 

2018) 

An automatic learning layer for weights 

elements of the demographic data 

increases the performance of the model.  

(L. Zhang et al., 

2019) 

2019 GCRNN ADNI An RNN framework captured the 

temporal features of functional brain 

activity along with a GCN to model 

spatial and temporal characteristics of 

MRI data. 

(Yu et al., 2019) 2019 Multi-Scale 

GCN 

ADNI A GCN model with a combination of 

neuroimaging and demographic 

information. 
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Article Year Algorithm Database Highlights 

(Kazi, 

Shekarforoush, et 

al., 2019) 

2019 Inception GCN TADPOLE Inception modules with different kernel 

sizes are considered in each layer, then 

the output of each layer is used in the 

aggregator function. 

(Park and Friston, 

2013) 

2019 Spectral-based 

GCN 

ADNI2 A combination of GCN architecture 

with a long-short term memory 

network is shown to reinforce the 

performance of classification tasks. 

(J. Liu et al., 

2020) 

2020 Spectral-based 

GCN 

ADNI A new recognition framework based on 

multimodal data is proposed to improve 

the efficiency of the feature selection 

process.  

(Huang and 

Chung, 2020) 

2020 EV-GCN ADNI/TADPOLE Monte-Carlo edge dropout improves 

the learning process of multi-modal 

data to approximate the uncertainty of 

the graph topology. 

(An et al., 2020) 2020 Spectral-based 

GCN 

Private dataset from 

Xuanwu Hospital, 

China 

Compering the combination of three 

types of features with a GCN 

framework. The proposed framework 

uses dynamic functional connectivity to 

consider changes in the brain over time.  

(Cosmo et al., 

2020) 

2020 Spatial-based 

GCNs 

TADPOLE The complexity of the model is reduced 

by proposing a single graph learning 

method. 



43 

 

Article Year Algorithm Database Highlights 

(S. Yu et al., 

2020) 

2020 Multi-Scale 

Enhanced GCN  

ADNI Automatically extracting the 

topological information of brain 

networks through the local weighted 

clustering coefficients resulted in 

significantly improving the 

performance of the model. 

(X. Bi et al., 

2020) 

2020 GNEA  

 

ADNI The aggregator based on an extreme 

learning machine can boost learning 

performance in brain network 

classification tasks. 

(H. Jiang et al., 

2020) 

2020 Hi-GCN ADNI Hierarchical GCN framework is used 

for graph embedding resulting in better 

training and convergence performances 

in the brain network.  

(Xing et al., 2021) 2021 Spectral-based 

GCN 

ADNI2 Dynamic functional connectivity with 

sliding windows is computed as input 

for the GCN model along with two 

subnetworks for assistance to improve 

disease prediction tasks. 

(Yao et al., 2021) 2021 Mutual multi-

scale triplet 

GCN 

ADNI A triplet GCN framework is employed 

to learn the representation of each 

functional connectivity network.  

(Zhang and 

Huang, 2019) 

2019 Spectral-based 

GCN 

HCP S1200 (Van 

Essen et al., 2013) 

Leveraging the brain graph embedding 

using GCN. 
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Article Year Algorithm Database Highlights 

(Yao et al., 2020) 2020 Temporal-

adaptive GCN 

MDD (Yan et al., 

2019) 

An adaptive GCN has been used to 

extract topological features from brain 

regions. In addition, to consider brain 

status changes, temporal changes for 

each ROI are modeled. 

 

(Arslan et al., 

2018) 

2018 Spectral-based 

GCN 

UK Biobank (Sudlow 

et al., 2015) 

Spectral convolutional network 

classifier is used for ROI identification 

task based on network functional 

connectivity in males and females. 

(Ktena et al., 

2017) 

2018 Spectral-based 

GCN 

UK Biobank Siamese GCN has been applied to learn 

the similarity between a pair of graphs. 

(Kim and Ye, 

2020) 

2020 GIN HCP S1200 GIN-based analysis method can be 

used for improving the performance of 

GNN architecture for graph 

classification.  

(Gadgil et al., 

2020) 

2020 ST-GCN HCP S1200 ST-GCN has been used to extract 

temporal dynamic information and 

functional connectivity between brain 

regions resulting in improving the 

performance and interpretability of the 

model. 

(Azevedo, 

Passamonti, Lio, 

et al., 2020) 

2020 ST-GCN HCP S1200 Spatial and temporal information has 

been used in a GNN model, followed 

by linear transformations to generate 

the final gender classification.  
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Article Year Algorithm Database Highlights 

(W. Zhang et al., 

2020) 

2020 GAT HCP S1200 A graph autoencoder framework has 

been applied to fuse multimodal brain 

networks. The proposed framework is 

based on a multi-stage graph 

convolution kernel. 

(Filip et al., 2020) 2020 GAT HCP S1200 The aggregation strategies for the GAT 

architecture is developed to classify the 

entire graph. 

(Kim, Ye and 

Kim, 2021) 

 

2021 STAGIN HCP S1200 A spatio-temporal attention graph is 

used to obtain dynamic graph 

representation.  

(X. Li et al., 

2021) 

2021 GAT HCP S1200 The proposed BrainGNN framework 

contains a pooling layer and a 

regularization loss term to modify the 

distribution of the node pooling scores.  

(Zhang et al., 

2021) 

2021 Spectral-based 

GCN 

HCP S1200 The performance of brain decoding has 

been improved by using an automated 

learning tool to interpret human brain 

activity within a short time window. 

(Kim, Ye and 

Kim, 2021) 

2021 STAGIN HCP S1200 A spatio-temporal attention graph is 

used to obtain dynamic graph 

representation.  
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Application of Graph Neural Network in fMRI data analysis 

Deeper discussions about the existing applications of GNNs in neurological and psychiatric 

disease, gender classification, and brain response cognitive stimuli are provided in three separate 

subsections. Note that, due to the novelty of the domain, the applications of GNNs in fMRI data 

analysis are relatively limited. In this section, further explanations of the contents of the articles 

reviewed and the proposed GNN frameworks are provided in more detail.  

Application of GNNs in Neurological and Psychiatric Disease 

Diagnosing neurological disorders is challenging due to the uncertainty of medical assessment to 

identify the symptoms (Ecker, Spooren and Murphy, 2012; Mastrovito, Hanson and Hanson, 

2018). Significant progress has been made using rs-fMRI and task fMRI to characterize the 

functional architecture of the brain to analyse network properties and metrics extracted from 

brain topology (Bassett and Bullmore, 2009; Wang, Zuo and He, 2010; Stam, 2014; Zhou et al., 

2017). Recently, the advances in GNNs to arbitrarily fMRI and non-imaging data, make these 

architectures a promising solution to the disease classification (X. Li et al., 2019). The node 

classification problems that GNNs solve can be broadly classified into two categories: graph-

based and population-based models. Graph-based models use a brain graph where nodes denote 

brain Regions of Interest (ROIs), and edges represent the functional correlations of the sets of 

brain nodes. In contrast, population-based models consider a graph of subjects where nodes 

correspond to specific subjects with their own brain connectivity data, and edges denote 

similarity between subjects’ non-imaging information such as age, gender, and handedness. In 

the following, studies that have applied GNNs models to classify common neurological 

disorders, including autism spectrum disorder (ASD), Schizophrenia (SZ), Alzheimer’s disease 
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(AD), and attention-deficit/hyperactivity disorder (ADHD) are discussed. However, other 

psychiatric research was found in the study selection process, predicting clinical depression 

scores and comprising major depression (Zhang and Huang, 2019; Yao et al., 2020) that make a 

negligible contribution to this systematic review.    

Autism Spectrum Disorder 

ASD is a neurodevelopmental disability that can cause difficulties in social, communication, and 

behavior (Roux et al., 2012). ASD disrupts the functional network organization of the brain so 

many studies attempt to investigate how this network changes by using functional connectivity 

analysis and graph analysis (Zeng et al., 2017; Farahani, Karwowski and Lighthall, 2019). As 

pioneering works for brain analysis, Parisot et al. (Parisot et al., 2017, 2018) applied GCNs in a 

population graph with both imaging and non-imaging information. The population was 

represented as a sparse graph where the imaging feature vector was used as the feature 

representation of the node, and their edges were associated with phenotypic information. Further, 

in two rs-fMRI studies using spectral-based GCN, Ktena et al. proposed a Siamese GCN model 

to learn a graph similarity metric in the spectral domain in a supervised setting (Ktena et al., 

2017, 2018). They evaluated their model with individual graphs constructed to identify ASD 

patients from HC and the results showed an improvement in the classification accuracy 

compared to the previous works. The other type of spectral-based GCN model was proposed by 

Felouat and Oukid-khouas (Felouat and Oukid-Khouas, 2020) in which the voting classifier 

integrated multi-classifiers into a single model based on the majority voting (Al-Shboul et al., 

2016). However, the proposed GCN models used a special template to construct the functional 

connectivity network. Such restriction of using the single spatial scale for brain regions of 

interest (ROIs) has been addressed by (Yao et al., 2019) by proposing a multi-scale triplet GCN 
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framework in which functional connectivity for each subject has been generated by using multi-

scale templates for coarse-to-fine ROIs parcellation, followed by a triplet GCN model to learn 

graph representations of brain functional connectivity networks. 

Apart from the mentioned limitation of spectral-based GCN, applying all nodes of the graph 

during training is the other restriction in most spectral-based GCN models which may result in 

poor performance on unseen nodes. To deal with this restriction, Li et al. (X. Li et al., 2019) 

proposed a two-stage pipeline to identify ASD brain biomarkers from task-fMRI. Unlike 

spectral-based GCN models, the proposed GCN algorithm is a graph isomorphism network 

(GIN) (Xu et al., 2018) which divides the whole graph structure into some equivalence sub-

graphs with different nodes and edges. The aim of the proposed model is to update the feature 

vector of each node by recursively aggregating representations of its neighborhood. Further 

improvement of these authors presented in (Li, Zhou, et al., 2020; X. Li et al., 2021) by 

proposing a GAT architecture and a pooling regularized GNN model, respectively. Due to the 

low signal-to-noise ratio and high dimensionality of fMRI data, embedding node representations 

for classifying ASD and HC groups arises a limitation for graph-based classification. Li et al. 

(Li, Dvornek, et al., 2020) dealt with this challenge by using the Infomax graph embedding with 

Infomax loss which improved node representation. This novelty led to learning a better graph 

embedding and improving the classification of ASD or HC in a group of children collected at 

Yale Child Study Center (X. Li et al., 2019). 

(Rakhimberdina and Murata, 2020) proposed a simple graph convolution (SGC) (Wu et al., no 

date) by removing nonlinearities between layers, and aggregating weight matrices of each layer 

into a single matrix. Based on the reported results, the proposed SGC-based model showed a 

high classification performance and efficiency over GCN based model for ASD classification in 
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the ABIDE (Di Martino et al., 2013) dataset. However, these GCN models have some inherent 

limitations in extracting sufficient features. Kazi et al. (Kazi, Shekarforoush, et al., 2019) 

addressed this limitation by introducing the Inception GCN model as a spectral domain 

architecture for deep learning on non-Euclidean space. In the proposed model, multiple kernel 

sizes have been employed across graph convolution layers to leverage spectral convolutions. 

Thereby, the Inception GCN improved the performance of node classification by using a 

population graph. In addition, (Huang and Chung, 2020) proposed the Edge-Variational GCN 

(EV-GCN) to reduce the uncertainty estimation associated with disease prediction.        

In addition to the various above extensions, (Anirudh and Thiagarajan, 2019) proposed a 

bootstrapped approach to the GCN model to reduce the sensitivity of GCN models to the choice 

of the population graph. The bootstrapped GCN generated randomized graphs from the initial 

population graph to train the set of weak GCN for ASD and HC classification, and integrate their 

prediction as to the final result which achieved better classification accuracy than the similar 

work done in reference (Parisot et al., 2017). Hierarchical GCN (Hi-GCN) (H. Jiang et al., 2020) 

is another spectral approach targeting the classification task. (H. Jiang et al., 2020) proposed Hi-

GCN to learn the graph feature embedding to a low-dimensional vector. The Hi-GCN framework 

consists of two independent GCNs: f-GCN and p-GCN which preserve the topology information 

in the population network and subject’s association brain function network, respectively. The 

model has been used to extract features of the brain, resulting in better classification of ASD vs 

AD from the ABIDE dataset in comparison to Eigenpooling GCN (Yao Ma et al., 2019) and 

population GCN (Parisot et al., 2017).  
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Schizophrenia 

Schizophrenia (SZ) is a mental disease with brain dysconnectivity (Schmitt et al., 2011) with 

behavioral symptoms such as disorganized speech and decreased participation in daily activities. 

fMRI studies in patients with SZ have revealed local abnormalities in brain activity resulting in 

disrupted functional connectivity networks (S. Li et al., 2019). (Mahmood et al., 2021) proposed 

the BrainGNN framework consisting of a CNN encoder, a self-attention model, and a gated 

recurrent unit (GRU) network. The performance of the proposed framework was tested on the 

data repository from Function Biomedical Informatics Research Network (FBIRN) (Keator et al., 

2016) and showed the state-of-the-art performance for the classification of SZ patients and 

healthy controls (HC) task. Further, (Rakhimberdina and Murata, 2020) also implemented a SGC 

model for SZ detection with an 80.55% classification accuracy with the COBRE1 dataset. The 

authors constructed population graphs in which the patients diagnosed with SZ and healthy 

subjects as nodes and the hamming distance between phenotypic attributes of the subjects as the 

weights of the edges. The use of the SGC model can dramatically reduce the computational cost, 

however, the edge construction method can be improved by using techniques to learn the edge 

weights.     

Alzheimer’s Disease 

The AD is a prevalent neurodegenerative disorder accompanied by decreased cognitive functions 

in memory and motor disorders (Albert et al., 2011). The AD can be diagnosed based on changes 

in the functional connectivity architecture of the brain and computational models have undergone 

dramatic developments to discover biomarkers related to AD (Trojanowski et al., 2010). Inspired 

by geometric deep learning to learn relevant connectional features, several studies attempted to 

 
1 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html (accessed on 29 October 2020). 
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reduce the brain network complexity by projecting high-dimensional graph nodes into low-

dimensional Euclidean space (Banka and Rekik, 2019; Cosmo et al., 2020). Despite the 

remarkable performance of GCN, existing GCN-based methods usually use a fixed graph 

topology to extract temporal features. To address this issue, a dynamic spectral-based GCN was 

proposed by (Xing et al., 2019, 2021) in which a LSTM network was used to extract temporal 

information related to the early mild cognitive impairment.  (L. Zhang et al., 2019) also applied a 

graph convolutional recurrent neural network (GCRNN) that is a combination of GCN and 

recurrent neural network (RNN) models to integrate multi-modal data from diffusion tensor 

imaging (DTI) and rs-fMRI signals. In that work, GCN layers used multi-modality data structure 

to learn the spatial features, then, RNN was developed to capture temporal information in fMRI 

signals for AD/MCI classification.  

In two interesting studies using multi-level GCN models, (Kazi, Krishna, et al., 2019) and (Yu et 

al., 2019) examined the contribution of the image information and non-image information (i.e., 

gender and age) to construct the sparse graphs. To improve model efficiency, the former study 

applied weights for every demographic element towards the decision layer through attention 

mechanisms, whereas the latter study improved the feature selection process by using different 

kernel sizes. Given the proposed models, the accuracy performance showed superiority 

compared to the state-of-the-art methods for MCI prediction in the ADNI (Petersen et al., 2010) 

dataset. Motivated by (Yu et al., 2019), Yu and his colleagues improved the performance of the 

model by presenting a multi-scale enhanced GCN model in which random walk embedding 

techniques have been used to get the node representation (S. Yu et al., 2020). Further, (J. Liu et 

al., 2020) applied GCN models by using multi-modal data, MRI and rs-fMRI, to perform the 

early MCI classification task from the ADNI dataset. In this study, multi-task feature selection 
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was conducted to obtain more relevant features. Then, a non-fully labeled subject graph was 

developed as the input of a GCN model to get a fully labeled subject graph.  

Attention-Deficit/Hyperactivity Disorder 

The ADHD is one of the common childhood neurodevelopmental disorders that usually lasts into 

adulthood (Nair et al., 2006; Marcos-Vidal et al., 2018). ADHD is a condition that exhibits age-

inappropriate levels of inattention, hyperactivity, and behavior problems (Norman et al., 2016). 

In references (Yao et al., 2019) and (Yao et al., 2021), Yao et al. implemented the multi-scale 

tripled GCN to classify ADHD patients by using fMRI data from ADHD-200 (Bellec et al., 

2017) dataset. The authors first generated multi-scale functional connectivity for each subject. 

Then a triplet GCN model is designed to learn multiscale graph representations of brain 

functional connectivity, followed by a weighted fusion strategy for classification. Further, 

(Rakhimberdina and Murata, 2020) applied the SGC model for brain disorder classification. The 

proposed model was on the basis of the population graph in which phenotypic features (e.g., 

gender, handedness, and acquisition site) were used to construct the graph. The performance of 

the model outperformed other GCN-based models with high levels of efficiency. Another 

population-based approach was proposed in (Saboksayr, Foxe and Wismüller, 2020) to identify 

ADHD patients using the ADHD-200 dataset.  

Application of GNNs in Gender Classification 

Human gender classification is one of the key assignments of neuroscience, and it finds practical 

applications to identify brain regions based on masculinity and femininity characteristics. To 

explore the task of brain ROI identification, there is evidence that gender-related differences are 

accompanied by related changes in brain functional connectivity (Satterthwaite et al., 2015). For 
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example, some studies have applied GNN to classify gender-related status based on the graph 

structure of the brain. (Kim and Ye, 2020) adapted a framework to identify the important brain 

regions related to the subject’s phenotypic difference by using a GIN model (Xu et al., 2018). 

(Arslan et al., 2018) applied a spectral-based GCN model on brain connectivity networks for 

ROIs identification task in gender classification of more than 5000 participants from the UK 

Biobank (Sudlow et al., 2015) dataset. The gender classification experiment showed the 

robustness of the proposed model across all runs. Further, the graph similarity metric 

implemented by (Ktena et al., 2018), was a Siamese GCN using a set of 2500 participants from 

the UK Biobank dataset. The Siamese GCN took a pair of graphs with the same structure but 

different signals as inputs and used spectral GCN to get graph embedding for each input graph 

which resulted in producing the similarity estimate between the two graphs.   

Deep learning methods used for rs-fMRI data analysis are promising techniques to decode the 

brain, however, those methods cannot simultaneously consider the functional dependency 

between different brain regions in a network and the time dynamics of brain activity (Cheng, 

Ning and Du, 2021). To address these limitations, Spatio-Temporal GCN (ST-GCN) model has 

been proposed by (Gadgil et al., 2020) and (Kim, Ye and Kim, 2021). (Gadgil et al., 2020) 

examined the BOLD time series to model the non-stationary nature of functional connectivity 

and has achieved success in the classification of gender tasks. The ST-GCN used data from HCP 

1200 (Van Essen et al., 2013) and National Consortium on Alcohol and Neurodevelopment in 

Adolescence (NCANDA) (Brown et al., 2015) datasets and the accuracy outperformed RNN-

Based networks associated with gender differences. The spatio-Temporal Attention Graph 

Isomorphism Network (STAGIN) model was proposed by (Kim, Ye and Kim, 2021) to obtain 

dynamic graph representation as well. Different from the proposed model in (Gadgil et al., 



54 

 

2020), STAGIN applied two types of attention functions: Graph-Attention Readout and Squeeze-

Excitation Readout that significantly improved the gender classification of healthy individuals on 

the HCP dataset. In addition, (Azevedo, Passamonti, Lio, et al., 2020) proposed a model on the 

basis of Geometric Deep Learning that was the preliminary version of the model (Azevedo, 

Campbell, et al., 2020). The proposed model used 1D convolution operations in the neural 

network and a GNN model to leverage both the spatial and temporal information in rs-fMRI 

data, followed by a set of linear transformations to make the final gender prediction.  

(Filip et al., 2020) proposed an adaptation of the GAT architecture with inductive learning in 

which three aggregation strategies have been employed to produce an integrated feature vector 

over all nodes. Specifically, the idea of a master node as a proposed aggregation strategy creates 

a new graph construction by connecting it to all the other nodes and discarding other connections 

between nodes. In addition, (Zhang et al., 2020) used the autoencoder architecture for a dynamic 

adjustment of the aggregation weights. The authors proposed a novel GAT model for a dynamic 

adjustment of the weights. To do that, three aggregation mechanisms: graph attention weight, the 

original edge weight, and the binary weight are combined through a multi-stage graph 

convolutional kernel.  

Application of GNNs in Brain Response Cognitive Stimuli 

Understanding which brain regions are related to a certain cognitive stimulus is a key goal in 

neuroscience studies. Researchers are interested in examining changes in brain functional 

networks during different cognitive tasks and decoding visual stimuli in human brains (Braun et 

al., 2015; Liang et al., 2016; Zhang et al., 2021). GNNs have recently been successful in learning 

the representation of graph-structured data (Z. Wu et al., 2021) and decoding brain activities 
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using fMRI signals to identify brain mechanisms of cognitive functions. (Zhang et al., 2021)  

have used a deep GNN consisting of six graph convolutional layers, on the basis of the spectral-

based GCN model for brain decoding. Their model applied a DL approach to learning the 

spatiotemporal dynamics of brain activity from fMRI time series.  Furthermore, (X. Li et al., 

2021) have improved the GNN model by proposing the BrainGNN framework with pooling 

layers. The framework has been used to map regional and cross-regional functional activation 

patterns for decoding cognitive states in the HCP S1200 dataset. 

Research Gap in task-evoked fMRI data analysis with GCN 

Task fMRI provides an opportunity to analyze the working mechanisms of the human brain 

during specific task performance. Our review revealed that GCN has shown promising 

performance in the neural decoding of fMRI signals in various applications, particularly in the 

disease association classification domain. However, there is a research gap with respect to 

applying GCN to decode task-based fMRI data. Furthermore, there are limited studies 

investigating the impact of node embedding methods on classification performance. Depending 

on the particular data structure of a graph, the performance of embedding methods in extracting 

the structural properties of graph nodes varies; thus, classification algorithms may perform 

differently according to the node embedding used (Goyal and Ferrara, 2018).  Although previous 

studies have attempted to increase the classification performance of task fMRI data by using 

various node embedding methods (Li, Dvornek, et al., 2020), no effort has been directed toward 

inferring how various node embeddings perform differently in classification task fMRI data. 

Most of the reviewed GNN studies used fMRI time-series data and the functional connectivity 

matrix as inputs for their model, however, we indicated that defining node weight by extracting 
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topological features of nodes before feeding the GNN model can significantly improve the 

performance of the model.  

In addition, several studies have reported the good performance of classification models on 

limited datasets (Fabry-Asztalos et al., 2008; Li et al., 2016; Chen et al., 2017) and have 

proposed several methods to augment the training set (Mao et al., 2006; Althnian et al., 2021). 

However, this assumption has not yet been tested against task fMRI data. On the basis of prior 

studies indicating a close link between individual variability and the organization of brain 

function (Santarnecchi et al., 2017; R. Jiang et al., 2020; X. Zhang et al., 2020; Bruzzone et al., 

2022), there is a significant gap to research whether individual differences can affect a 

classification model. To the best of our knowledge, this is the first task fMRI study to examine 

the impact of individual discrepancy (i.e., gender and fluid intelligence) on task classification 

performance by using a GCN model. 

Based on our systematic review of the applications of GNN to process fMRI data in 

neuroscience, our investigation indicates that the application of GNNs to process fMRI data has 

been rapidly developed in the last three years, and the number of publications in this field has 

shown significant growth. Figure 2.6 displays the number of published GNN articles in fMRI 

data analysis from 2017 to 2021. Although the application of GNN in fMRI data analysis is 

relatively limited, this figure shows the researchers’ special attention to neurological and 

psychiatric disease prediction studies. Furthermore, the number of publications on analysing 

brain response cognitive stimuli by using GNN is three and we can infer that there is still room to 

develop computational models to improve task-evoke classification performance.  
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Figure 2.6. The bar chart shows the number of published graph neural network articles in fMRI analysis 

from 2017 to 2021. The pie chart shows the categorization of included studies. 
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CHAPTER THREE: METHODOLOGY 

Some of the material in this chapter are adapted from the published paper by (Saeidi et al., 2022) 

which has been published in the Brain Sciences1 journal. 

fMRI Dataset and Data Acquisition 

We obtained task fMRI data for 302 participants, consisting of 164 women and 138 men (22–35 

years, mean = 28.7 ± 3.6) from the HCP 1200 Subject Release (S1200) (Van Essen et al., 

2013). HCP participants are drawn from a population of healthy individuals, and scans are 

performed during seven different tasks—emotion, gambling, working memory, language, 

relational, social, and motor (Barch et al., 2013)—with a single dedicated 3 Tesla scanner at 

Washington University. Here, we give a summary of the task and a more detailed description can 

be found in  (Barch et al., 2013).  

Emotion processing task: The emotion task consists of two sub-tasks: face and shape 

images in which the face image has either angry or fearful expressions. Participants are 

presented with blocks of trial and asked to match the two images shown on the bottom of 

the screen to the target image. There are 7 blocks per run including 3 face blocks, 3 shape 

blocks and 1 fixation block at the end of each run. 

Gambling task: The gambling task consists of two sub-tasks including win and loss. 

Participants are presented with cards and asked to guess a possible number ranging from 

1 to 9 on a mystery card by selecting one of two buttons on a response box. 

 
1 https://www.mdpi.com/2076-3425/12/8/1094. 
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Working memory task: Participants are presented with four different stimulus types 

including pictures of places, tools, faces, and body parts in separate blocks, with half of 

the blocks using a 2-back working memory task and the other half using a 0-back 

working memory task. There are 12 blocks per run with 8 task blocks and 4 fixation 

blocks. For each task trial, the stimulus is presented for 2 seconds followed by a 500 

millisecond inter-task interval. 

Language task: The language task consists of two sub-tasks: story and math, and each 

sub-task has 4 blocks. The average lengths of the blocks are approximately 30 seconds.  

In the story trials, participants are asked to listen to a short auditory story (5-9 sentences), 

followed by a two-alternative choice question about the topic of the story. During the 

math trials, participants are asked to answer addition and subtraction operations, followed 

by a two-alternative choice question about the result of the operations.  

Relational processing task: The relational task consists of two sub-tasks: relational 

processing and matching. In the relational processing sub-task, participants are presented 

with 2 pairs of objects, which are shown in 6 various shapes and filled with 6 various 

textures. There are four trials per each relational block and the stimuli are presented for 

3500 milliseconds, with a 500 millisecond inter-task interval. In the control matching 

sub-task, two objects at the top of the screen and one object at the bottom of the screen 

are shown followed by a word in the middle of the screen. Participants are asked to 

decide whether the bottom object matches either of the top objects on the dimension. In 

this sub-task, there are 5 trials per block where stimuli are presented for 2800 

millisecond, with a 400 millisecond inter-task interval.  
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Social cognitive task: Participants are presented with short video clips of objects 

including squares, circles, and triangles that interacted in some way, or moved randomly 

on the screen. After each video clip, participants decide that whether the objects had a 

mental interaction, Not Sure, or No interaction. Each of the two runs consists of 5 video 

blocks and 5 fixation blocks.    

Motor task: Participants are presented with visual cues that ask them to response by 

tapping their fingers, squeezing their toes, or moving their tongue. Each block of a 

movement type lasts 12 seconds for 10 movements and is preceded by a 3 second cue. 

This task is carried out in 2 runs with 13 blocks for each run including 2 of tongue 

movements, 4 of hand movements, 4 of foot movement, and 3 extra fixation blocks per 

run.  

Furthermore, a complete explanation of image acquisition has been provided in reference (Van 

Essen et al., 2013). Briefly, the image data was acquired with TR = 0.72s, TE = 33.1ms, flip 

angle = 52 degree, FOV = 208 ×180mm, and voxel size = 2.0mm isotropic with opposite phase 

encoding directions (left-to-right and right-to-left).  

To perform our experiments aimed at evaluating the influence of individual differences, we 

considered two categories of task fMRI data: gender and fluid intelligence (gF). The first 

category consisted of two (female and male) sub-datasets in which task fMRI data for 164 and 

138 participants were assigned to each sub-dataset according to gender. In the second category, 

we sorted gF scores of 302 participants in descending order and divided the dataset of 302 

participants into two sub-datasets, LM-gF and HM-gF, of participants with gF scores lower than 

the median value (gF score < 18) and with gF score higher than the median value (gF score ≥

18), respectively. Consequently, a total of 144 and 158 participants’ task fMRI data were 
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assigned to the LM-gF and HM-gF sub-datasets, respectively. Table 3.1 presents the 

demographics and subject distribution of the four defined sub-datasets. 

Table 3.1. Demographics and participant distribution results. 

Groups Number of participants Age (mean±SD) gF-score (mean±𝑆𝐷) 

Female 164 29.2 ± 3.6 − 

Male 138 28.1 ± 3.6 − 

LM-gF 𝐹 = 91, 𝑀 = 53 29.1 ± 3.6 12.5 ± 3.4 

HM-gF 𝐹 = 83, 𝑀 = 75 28.4 ± 3.6 20.6 ± 1.7 

Abbreviations: LM-gF, low median-gF score; HM-gF, high median-gF score; F, female; M, male. 

Data Pre-processing 

The preprocessing of the task fMRI volume time series was performed by the HCP consortium 

as previously described (Glasser et al., 2013). The preprocessing pipeline included artifact 

removal and gradient distortion correction, motion correction, and registration to the standard 

Montreal Neurological Institute space using DARTEL and voxel size of 2 × 2 × 2 mm3. Spatial 

smoothing and activation maps generation were performed with a GLM implemented in FSL’s 

FILM (FMRIB’s Improved Linear Model with autocorrelation) (Beckmann and Smith, 2004). 

More details about the HCP preprocessing pipeline can be found in Barch et al. (Barch et al., 

2013).  

Brain Functional Graph 

An overview of our analysis pipeline is presented in Figure 3.1. First, the raw task fMRI data 

were collected and preprocessed by means of the HCP minimal preprocessing pipeline (Glasser 

et al., 2013) and denoised by using ICA-FIX (Salimi-Khorshidi et al., 2014) to remove spatial 
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artifacts and motion correction. Then, we used a large-scale multimodal brain atlas to parcellate 

the brain regions into 360 anatomical areas using the Human Connectome Project Multi-Modal 

Parcellation that is based on a combination of cortical architecture, function, connectivity, and 

topography (Glasser et al., 2016). By parcellation, we define ROIs that represent graph nodes for 

brain network construction. Theoretically, the construction of a functional graph involves two 

steps. First, the time series of all voxels in the region were averaged. Then, we computed the 

functional connectivity between each pair of averaged time series of brain regions by means of 

Pearson’s correlation coefficient. We used Fisher’s z transformation to normalized r value to 

improve the normality and obtained a 360 × 360 symmetric matrix A (adjacency matrix) for 

each subject. Figure 3.2, Figure 3.3, and Figure 3.4 illustrate functional connectivity averaged 

based on task fMRI across the whole dataset, gender sub-dataset, and fluid intelligence sub-

datasets, respectively. The regions (nodes) are ordered according to which cognitive system they 

belong to. 
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Figure 3.1. Overview of Graph Convolutional Network (GCN) model for task fMRI classification. After 

acquisition of the raw task fMRI data and identification of the brain’s divisions into various parcels, 

several time courses of each parcel were extracted (A) to create the functional connectivity matrix. To 

reduce the complexity of the graph, a threshold was applied to the connectivity matrix (B) and transferred 

to a graph. The initial representation of each node was extracted by using the FRESH algorithm and node 

embedding methods (C).Finally, the feature vectors were used to perform the classification task with the 

proposed GCN framework including three Conv layers followed by a dropout layer after each Conv layer 

(D).    
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Figure 3.2. Functional connectivity averaged across N = 302 subjects based on task fMRI. The regions 

were sorted according to which cognitive system they belong to. Network names are listed on the left. 
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Figure 3.3. Correlation-based task fMRI connectivity for both female (A) and male (B) sub-datasets. The 

regions were sorted according to which cognitive system they belong to. Network names are listed on the 

left. 
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Figure 3.4. Correlation-based task fMRI connectivity for both LM-gF (A) and HM-gF (B) sub-datasets. 

The regions were sorted according to which cognitive system they belong to. Network names are listed on 

the left. 
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Feature Engineering and Node Embedding Algorithms 

Features from averaged time series of brain regions were extracted by using Time Series FeatuRe 

Extraction on basis of Scalable Hypothesis tests (tsfresh), an efficient and scalable feature 

extraction algorithm for time series based on a Python package (Christ et al., 2018). The tsfresh 

algorithm integrates the components from the hypothesis tests with the feature significance 

testing on the basis of the FRESH algorithm (Christ, Kempa-Liehr and Feindt, 2016). Each 

generated feature vector is independently assessed to identify its significance for the given target 

by quantifying p-values and is further evaluated through the Benjamini-Yekutieli procedure 

(Benjamini and Yekutieli, 2001) to decide which features to keep. The features extracted by 

tsfresh consist of both basic and advanced characteristics of the time series, and a complete list 

of features along with their mathematical descriptions can be found in the reference (Christ, 

Kempa-Liehr and Feindt, 2016). We selected a minimum set of relevant statistical features to 

prepare feature representations for each node as follows: “absolute_sum_of_changes,” 

“benford_correlation,” “c3” (i.e., a measure of nonlinearity in the time series), “cid_ce” (i.e., a 

measure of complexity in the time series), “longest_strike_above_mean,” “variance,” “standard 

deviation,” “skewness,” and “quantile” (i.e., 0.25 quantile). 

In addition to the statistical features obtained through the tsfresh algorithm, Node embeddings 

were applied to automatically extract node attributes in graphs. Node embedding algorithms 

project nodes into low-dimensional vectors such that nodes with similar topological structures 

are in proximity in the embedding space (Cai, Zheng and Chang, 2018) through an encoder 

function. Specifically, the aim of the encoder function is to take the data from the original space 

or graph and then provide us with the data in the embedding space. The illustration is presented 

in Figure 3.5. 
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We used the Python framework Karate Club (Rozemberczki, Kiss and Sarkar, 2020), which 

consists of at least 30 graph mining algorithms, for node and graph embedding. We compared 

the performance of four state-of-the-art node embedding algorithms: Walklets (Perozzi et al., 

2017) and Node2Vec (Grover and Leskovec, no date), which use sampled random walks to make 

the node embeddings; NetMF (Qiu et al., 2018), a factorization-based model; and the recently 

proposed RandNE (Z. Zhang et al., 2018), which is based on a Gaussian random projection 

approach with the default dimension ordering. 

Walklets. In this method, instead of the random walk process used in DeepWalk (Perozzi, Al-

Rfou and Skiena, 2014), Walklets approximates sample node neighborhoods by skipping over 

nodes in each short random walk. Then, the set of results of multiple skip lengths are used to 

train the model (Goyal and Ferrara, 2018).   

Node2Vec. This method is a modification of DeepWalk by introducing parameters p and q to 

smoothly interpolate between breadth-first sampling and depth-first sampling. Parameter p 

controls the likelihood of immediately revisiting a node in the walk whereas parameter q allows 

the search to differentiate between “inward” and “outward” nodes. In Node2Vec, a vector 

representation of a node is computed based on the second order random walks in the graph, and 

the core assumption is that Node2Vec’s sampling strategy is based on the mixture of breadth-

first sampling and depth-first sampling which are suited for structural equivalence (i.e., similar 

roles of nodes) and homophily (i.e., network community) respectively (Dalmia, Ganesh and 

Gupta, 2018).  

NetMF. This method is a matrix factorization-based algorithm that is based on the connection 

between DeepWalk’s implicit matrix and graph Laplacians (Z. Zhang et al., 2018). NetMF uses a 
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small subset of nodes and extracts embedding vectors by approximating the proximity between 

nodes and the subset with the help of graph Laplacians (B. Yu et al., 2020).     

RandNE. This method of iterative random projection network embedding preserves high order 

proximity between nodes using Gaussian random projection method while reduces the time 

complexity (Z. Zhang et al., 2018).   

 

Figure 3.5. Schematic of embedding process. The goal in embedding is to encode nodes into low-

dimensional space/embedding space. 

 

Proposed Model 

Modular Architecture 

Our proposed model was developed by using PyTorch (Paszke et al., 2019) and PyTorch 

Geometric (Fey and Lenssen, 2019). The model takes a time series of fMRI volumes as input, in 

which each time series is a 2D matrix 𝑋 of size 𝑇 × 𝑁 where 𝑇 is the number of time steps, and 

𝑁 is the number of brain regions. The tsfresh algorithm was used for statistical feature extraction 

for each node, and then high-level node features associated with each node were extracted with 
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node embedding methods. The overall GCN model architecture for task fMRI classification is 

summarized in Figure 3.1.D. 

The GCN model consists of three Conv layers with 92 neurons per layer. ReLU and batch 

normalization layers are applied between each Conv layer to accelerate the convergence and 

enhance stability, and dropout layers are added after each Conv layer. Then, a global mean 

pooling layer is applied to calculate the final graph representation vector. We performed 

experiments on the same computing machine equipped with a single NVIDIA Tesla T4 24 GB 

RAM GPU.  

Training and Testing 

This study used five-fold Stratified cross-validation within a training/validation/test setup. Four-

fifths of the available data were allocated to a training set within each fold. The remaining one-

fifth of the data were partitioned with a 60:40 ratio into a validation set and a final test set. The 

hyperparameter search consisted of a grid of learning rate, dropout, and weight decay values. 

The model with the lowest loss in the validation set was considered the best model for the final 

test. The following ideal parameters were used: learning rate: 0.001, dropout: 0.65, weight decay: 

0.0. Furthermore, because batch size is among the most important hyperparameters to tune, we 

considered a set of values of batch sizes. The batch sizes used in all experiments were 𝐵 =

[16, 32, 48, 64] over 100 epochs, all using the Adam optimizer and reducing the learning rate on 

a plateau with a patience of 10. Furthermore, cross-entropy loss was used for the optimization 

function.   
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Evaluation Metrics 

The metrics used for comparison embedding methods and evaluation of classification 

performance included accuracy, balanced accuracy, F1 scores (macro, micro, and weighted), 

Mathews correlation coefficient (MCC), precision, and recall. F1 macro and MCC have been 

widely considered as metrics to evaluate imbalanced datasets in which all classes are weighted 

equally (Géron, 2019; Chicco and Jurman, 2020). Therefore, we applied accuracy, F1 macro, and 

MCC for further node embedding method comparisons and evaluation of GCN model 

performance. For statistical analysis, we used a significance threshold of 0.05. We also used the 

Shapiro-Wilk normality test (Shapiro and Wilk, 1965) followed by the t-test to evaluate the 

statistical significance of the model’s classification performance in different scenarios. 

Accuracy =
TP + TN

TP + TN + FP + FN
                                                                                                         (3.1) 

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False 

Negative measures respectively. 

Balanced Accuracy =  
sensitivity + specificity

2
                                                                              (3.2) 

Where sensitivity =
TP

TP+FN
 and specificity =

TN

TN+FP
  

Macro F1 score =  
1

N
∑ F1scorei

N

i=0

                                                                                                      (3.3) 

Where i is the class/label index and N is the number of classes/labels. 

Micro F1 score = 2 ×
Precision × Recall

Precision + Recall
                                                                                         (3.4) 
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Precision =
TP

TP + FP
                                                                                                                              (3.5) 

Recall =
TP

TP + FN
                                                                                                                                    (3.6) 

MCC =
TN × TP − FN × FP

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
                                                                    (3.7) 
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CHAPTER FOUR: RESULTS 

In this section, the experimental results are presented for the GCN model implementation and 

classification performance in different scenarios. Furthermore, detailed information regarding the 

evaluation of node embeddings in the context of task fMRI decoding concerning gender and gF 

score differences is provided. Finally, we implemented a t-test to determine whether the 

difference in classification performance was statistically significant.   

Classification of task fMRI data 

The first set of results included the evaluation of our proposed GCN framework to classify task 

fMRI data with respect to node embeddings. The experiment was performed by using task fMRI 

data from the 302 participants, and the framework was set up by application of the four defined 

node embeddings regarding different batch sizes during training. The results shown in Table 4.1 

illustrated that RandNE, NetMF embedding methods outperformed DeepWalk methods 

(Node2Vec, Walklets). This result might have been because DeepWalk-based methods require 

many sampled node neighborhoods to create node embedding vectors (Dong et al., 2021). The 

F1 macro scores for RandNE and NetMF revealed similar performance across the GCN 

framework, and the application of different batch sizes had a minor effect on the classification 

performance. 

Figure 4.1 illustrates the effect of batch size on classification performance. As the number of 

batch sizes increased from 16 to 64, the F1 macro score and MCC increased. We also observed 

that using a batch size of 64 achieved superior results if any node embeddings were selected. 

However, our GCN model showed the best classification performance with NetMF when a batch 

size of 64 was chosen. We set up our GCN model and obtained the confusion matrix for task 
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fMRI classification after the training step, as shown in Figure 4.2. The normalized confusion 

matrix indicated that the top confusions were between 1) the social and motor tasks and 2) the 

gambling and social tasks.  

Performance Comparison 

We compared the proposed GCN model with Logistic Regression (LR) that used L2 

regularization, as our baseline model, to prove if the classification performance represented a 

noticeable improvement over the traditional machine learning model. LR works well as a 

baseline model since it is relatively easy to implement. The use of regularization prevents 

overfitting of the task fMRI data so that the model features are shrunk towards zero and perform 

feature selection automatically. We evaluated the same brain decoding tasks and ran LR on our 

task fMRI dataset, splitting it into the train, validation, and test sets. To tune the regularization 

parameter, we used a range of values and perform 5-fold cross-validation to achieve the optimal 

regularization parameter of 0.1. The result of L2- regularized LR showed a lower prediction 

accuracy in the seven-class classification task (97.7% vs. 86.4%, respectively, for GCN and LR 

with L2 regularization). 
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Table 4.1. Two-factor performance comparison on predicting experimental task, taking into account the 

influence of node embedding methods and batch sizes for the task fMRI classification. The training 

processes were set with 100 epochs, 10 step patience for early stopping, and learning rate = 0.001 for 

Adam. The proposed GCN model showed impressive results with both RandNE and NetMF node 

embedding methods. Classification performance values for 302 participants’ task fMRI data were in the 

range of 94% to 98%. Bold values represent the best classification performance obtained for each batch 

size. 

Batch 

size 

Node 

embeddings 

Metrics 

Accuracy Balanced 

accuracy 

F1 

macro 

F1 

micro 

F1 

weighted 

MCC Precision Recall 

16 

Walklets 0.886 0.893 0.89 0.886 0.885 0.867 0.891 0.893 

Node2Vec 0.854 0.866 0.863 0.854 0.854 0.831 0.869 0.866 

RandNE 0.939 0.942 0.941 0.939 0.939 0.928 0.941 0.942 

NetMF 0.933 0.937 0.936 0.933 0.933 0.921 0.936 0.937 

32 

Walklets 0.911 0.917 0.915 0.91 0.911 0.895 0.916 0.917 

Node2Vec 0.873 0.888 0.886 0.873 0.874 0.854 0.891 0.888 

RandNE 0.969 0.971 0.97 0.969 0.969 0.954 0.97 0.971 

NetMF 0.974 0.976 0.976 0.974 0.974 0.97 0.975 0.976 

48 

Walklets 0.915 0.922 0.92 0.915 0.914 0.901 0.919 0.922 

Node2Vec 0.898 0.903 0.9 0.898 0.895 0.882 0.904 0.904 

RandNE 0.971 0.974 0.973 0.971 0.971 0.966 0.973 0.974 

NetMF 0.976 0.978 0.977 0.976 0.976 0.971 0.976 0.978 

64 

Walklets 0.932 0.937 0.936 0.933 0.933 0.922 0.935 0.937 

Node2Vec 0.902 0.907 0.908 0.902 0.902 0.886 0.911 0.937 

RandNE 0.975 0.977 0.976 0.973 0.975 0.971 0.976 0.977 

NetMF 0.977 0.979 0.978 0.977 0.977 0.974 0.978 0.979 
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Figure 4.1. F1 macro (A) and MCC (B) comparison of GCN model, taking into account the influence of 

node embedding methods and batch sizes for the task fMRI classification task, by using the 302 

participants’ fMRI data.   

 

Figure 4.2. Confusion matrix of the GCN classification results on the 302 participants’ task fMRI data 

that is normalized to the seven tasks in the five-fold cross-validation. The top two confusions were caused 

by the social task versus motor task and the gambling task versus social task. The F1 macro and MCC of 

classification were 0.977 and 0.974, respectively. 
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Effects of individual discrepancy (gender and fluid intelligence) on classification 

We performed experiments to evaluate the effects of gender and gF score on classification 

performance by using task fMRI data. The experiments were performed separately on the 

datasets described in the fMRI Dataset and Data Acquisition section. We applied the proposed 

GCN framework with the same hyperparameters above for all classification experiments.    

Gender discrepancy 

Classification 

We first assessed the predictive performance of our model on predicting gender. The 

classification performance of the GCN model with the four node embedding methods when 

varying batch sizes were used during training is presented in Table 4.2 and Table 4.3 for the 

female and male sub-datasets, respectively. 

Several observations were made in Table 4.2 and Table 4.3. First, we observed that the average 

F1 macro of the classifier on both sub-datasets ranged from 79.5% to 97.9%. Second, the GCN 

model achieved the best classification performance with NetMF for both sub-datasets. Third, the 

GCN model was sensitive to the choice of batch size, such that the best performance was 

obtained with a batch size of 64 for male and female sub-datasets.  

Similar trends were observed in the performance of the GCN model for F1 macro and MCC in 

Figure 4.3. For MCC, model performance across both sub-datasets ranges from 82% to 97% with 

batch sizes of 48 and 64, respectively.  
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Table 4.2. Two-factor performance comparison, taking into account the influence of node embedding 

methods and batch sizes in the GCN model, by using the female fMRI data. Bold values represent the best 

classification performance obtained for each batch size. 

Batch 

size 

Node 

embeddings 

Metrics 

Accuracy Balanced 

accuracy 

F1 

macro 

F1 

micro 

F1 

weighted 

MCC Precision Recall 

16 

Walklets 0.881 0.886 0.882 0.881 0.881 0.862 0.882 0.886 

Node2Vec 0.792 0.806 0.795 0.793 0.794 0.764 0.794 0.805 

RandNE 0.916 0.921 0.916 0.916 0.916 0.902 0.915 0.921 

NetMF 0.927 0.932 0.928 0.927 0.927 0.915 0.926 0.932 

32 

Walklets 0.919 0.922 0.919 0.919 0.918 0.905 0.915 0.922 

Node2Vec 0.835 0.839 0.837 0.836 0.835 0.807 0.849 0.838 

RandNE 0.938 0.941 0.939 0.938 0.938 0.927 0.937 0.941 

NetMF 0.959 0.961 0.959 0.959 0.959 0.952 0.959 0.96 

48 

Walklets 0.931 0.936 0.932 0.931 0.931 0.92 0.931 0.936 

Node2Vec 0.871 0.871 0.869 0.871 0.867 0.851 0.874 0.874 

RandNE 0.952 0.955 0.952 0.951 0.948 0.944 0.951 0.955 

NetMF 0.967 0.968 0.967 0.966 0.966 0.961 0.965 0.968 

64 

Walklets 0.928 0.932 0.928 0.928 0.928 0.916 0.927 0.932 

Node2Vec 0.859 0.869 0.861 0.861 0.858 0.837 0.867 0.87 

RandNE 0.971 0.971 0.972 0.972 0.969 0.966 0.969 0.972 

NetMF 0.979 0.98 0.979 0.98 0.978 0.974 0.976 0.979 
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Table 4.3. Two-factor performance comparison, taking into account the influence of node embedding 

methods and batch sizes in the GCN model, by using the male fMRI data. Bold values represent the best 

classification performance obtained for each batch size. 

Batch 

size 

Node 

embeddings 

Metrics 

Accuracy Balanced 

accuracy 

F1 

macro 

F1 

micro 

F1 

weighted 

MCC Precision Recall 

16 

Walklets 0.849 0.861 0.85 0.849 0.848 0.823 0.847 0.861 

Node2Vec 0.841 0.857 0.845 0.842 0.84 0.817 0.846 0.858 

RandNE 0.907 0.911 0.909 0.908 0.907 0.891 0.907 0.911 

NetMF 0.908 0.913 0.911 0.908 0.908 0.892 0.911 0.913 

32 

Walklets 0.879 0.891 0.882 0.879 0.879 0.859 0.88 0.891 

Node2Vec 0.878 0.887 0.879 0.878 0.877 0.856 0.878 0.884 

RandNE 0.949 0.951 0.951 0.949 0.949 0.94 0.952 0..951 

NetMF 0.939 0.943 0.941 0.939 0.939 0.928 0.941 0.943 

48 

Walklets 0.887 0.895 0.889 0.884 0.887 0.862 0.887 0.895 

Node2Vec 0.852 0.865 0.857 0.852 0.852 0.827 0.857 0.862 

RandNE 0.955 0.959 0.957 0.955 0.956 0.947 0.957 0.959 

NetMF 0.962 0.965 0.964 0.962 0.962 0.953 0.964 0.965 

64 

Walklets 0.871 0.885 0.874 0.871 0.87 0.844 0.87 0.885 

Node2Vec 0.845 0.855 0.849 0.845 0.845 0.817 0.853 0.852 

RandNE 0.958 0.961 0.961 0.958 0.959 0.951 0.96 0.961 

NetMF 0.962 0.966 0.965 0.962 0.961 0.953 0.964 0.963 
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Figure 4.3. F1 macro and MCC comparisons of GCN model, taking into account the effects of node 

embedding methods and batch sizes, by using female task fMRI data (A1, A2) and male task fMRI data 

(B1, B2). 

 

Statistical analysis concerning MCC 

According to the results of our model applied independently to female and male sub-datasets, the 

proposed GCN model had the best classification performance when NetMF was the node 

embedding method, and the batch size of 64 was selected during training. We set up the GCN 

model with NetMF and trained it with a batch size of 64, by using a learning rate of 0.001 for 

100 epochs to classify task fMRI data for each sub-dataset separately. This process was 
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performed iteratively a total of 35 times, and related MCC values were used to assess the 

statistical significance of the differences in classification performance. Figure 4.5.A represents 

the results of this process. The GCN model performed relatively similarly, whereas each run 

showed varying performance between two sub-datasets.  

To perform statistical significance testing, we used the Shapiro-Wilk normality test to assess 

normality. After assessing the statistical significance of the difference between the classification 

performance of two sub-datasets (i.e., female and male), we performed a t-test, which indicated a 

significant difference (𝑝 = 0.000001022), at 𝑝 < 0.05. The null hypothesis for this test was that 

the mean of classification performance for two sub-datasets was identical. Together, these results 

revealed that differences between the male and female task fMRI data were significant, such that 

classification was more accurate for female than male task fMRI data. Therefore, gender 

differences should be considered a feature in performing a task fMRI classification.                      

Fluid intelligence level discrepancy 

Classification  

We evaluated the gF-score through the same procedures used for the assessment of the influence 

of gender differences on classification task fMRI data. We set up the model and independently 

performed classification experiments on two sub-datasets: LM-gF and HM-gF. Table 4.4 and 

Table 4.5 show the model’s performance regarding defined node embedding methods after 

training with a batch size range from 16 to 64 for LM-gF and HM-gF. Correspondingly, Figure 

4.4 represents the visualization of the model’s performance for various node embeddings for F1 

macro and MCC. The x-axis in the figures shows the batch sizes. The GCN classification 

showed high performance on LM-gF and HM-gF sub-datasets with RandNE and NetMF node 
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embedding methods, which exhibited similar trends. In addition, the results indicated a change in 

the performance of the model when the size of the batch size increased from 16 to 64. The most 

striking observation was that for both sub-datasets, classification performance with RandNE 

achieved the best MCC.  

Statistical analysis concerning MCC 

To assess the influence of individuals’ gF-scores on the classification performance, we 

conducted the same procedure as the previous scenario for gender differences. However, we 

found that the GCN model had the best classification performance when RandNE was used as 

the node embedding method. Similarly, the model was set up and trained with a batch size of 48 

and a learning rate of 0.001 for 100 epochs to classify task fMRI data by using LM-gF and HM-

gF. We obtained two groups of values indicating the accuracy performance (i.e., MCC) of the 

classification model in different sub-datasets (Figure 4.5.B). The Shapiro-Wilk normality test 

was performed to assess normality, and a t-test was used to assess the statistical significance of 

the differences in classification performance. The difference was found to be non-significant 

(𝑝 = 0.604), at 𝑝 < 0.05. Therefore, the accuracy performance of classification task fMRI data 

for participants with lower and higher fluid intelligence was comparable. Thus, individuals’ gF 

scores do not affect task fMRI classification performance.     
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Table 4.4. Two-factor performance comparisons, taking into account the influence of node embedding 

methods and batch sizes in the GCN model, by using LM-gF task fMRI data. Bold values represent the 

best classification performance obtained for each batch size. 

Batch 

size 

Node 

embeddings 

Metrics 

Accuracy Balanced 

accuracy 

F1 

macro 

F1 

micro 

F1 

weighted 

MCC Precision Recall 

16 

Walklets 0.869 0.872 0.873 0.869 0.868 0.847 0.875 0.873 

Node2Vec 0.895 0.896 0.896 0.895 0.893 0.877 0.901 0.897 

RandNE 0.936 0.937 0.937 0.936 0.932 0.925 0.938 0.937 

NetMF 0.906 0.909 0.908 0.906 0.906 0.89 0.907 0.909 

32 

Walklets 0.899 0.902 0.902 0.899 0.899 0.882 0.903 0.902 

Node2Vec 0.891 0.894 0.893 0.891 0.89 0.869 0.895 0.894 

RandNE 0.977 0.977 0.977 0.977 0.976 0.973 0.977 0.976 

NetMF 0.93 0.932 0.93 0.929 0.929 0.918 0.931 0.932 

48 

Walklets 0.908 0.911 0.91 0.908 0.904 0.891 0.91 0.91 

Node2Vec 0.9 0.902 0.902 0.9 0.9 0.883 0.904 0.902 

RandNE 0.991 0.991 0.991 0.99 0.991 0.989 0.991 0.991 

NetMF 0.934 0.935 0.934 0.934 0.933 0.922 0.935 0.935 

64 

Walklets 0.899 0.901 0.901 0.899 0.898 0.881 0.903 0.901 

Node2Vec 0.901 0.904 0.903 0.902 0.901 0.885 0.905 0.905 

RandNE 0.991 0.991 0.991 0.99 0.991 0.99 0.991 0.991 

NetMF 0.936 0.938 0.938 0.936 0.935 0.925 0.938 0.938 
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Table 4.5. Two-factor performance comparisons, taking into account the influence of node embedding 

methods and batch sizes in the GCN model, by using LM-gF task fMRI data. Bold values represent the 

best classification performance obtained for each batch size. 

Batch 

size 

Node 

embeddings 

Metrics 

Accuracy Balanced 

accuracy 

F1 

macro 

F1 

micro 

F1 

weighted 

MCC Precision Recall 

16 

Walklets 0.876 0.877 0.876 0.876 0.875 0.855 0.878 0.878 

Node2Vec 0.876 0.878 0.878 0.876 0.877 0.855 0.882 0.879 

RandNE 0.945 0.944 0.944 0.945 0.945 0.936 0.946 0.944 

NetMF 0.921 0.92 0.921 0.921 0.92 0.909 0.922 0.92 

32 

Walklets 0.901 0.90 0.901 0.901 0.90 0.883 0.902 0.90 

Node2Vec 0.92 0.921 0.92 0.921 0.921 0.907 0.92 0.921 

RandNE 0.98 0.979 0.979 0.98 0.98 0.975 0.979 0.979 

NetMF 0.942 0.941 0.942 0.942 0.942 0.932 0.943 0.941 

48 

Walklets 0.92 0.919 0.919 0.92 0.919 0.906 0.92 0.919 

Node2Vec 0.915 0.915 0.915 0.916 0.915 0.901 0.916 0.916 

RandNE 0.988 0.987 0.988 0.988 0.988 0.983 0.987 0.987 

NetMF 0.948 0.947 0.947 0.947 0.948 0.939 0.947 0.947 

64 

Walklets 0.92 0.92 0.918 0.919 0.92 0.907 0.922 0.921 

Node2Vec 0.906 0.906 0.905 0.906 0.906 0.891 0.908 0.907 

RandNE 0.988 0.988 0.988 0.988 0.987 0.986 0.988 0.988 

NetMF 0.944 0.943 0.943 0.944 0.944 0.935 0.946 0.94 
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Figure 4.4. F1 macro and MCC comparison of the GCN model, taking into account the effects of node 

embedding methods and batch sizes, by using LM-gF task fMRI data (A1, A2) and HM-gF task fMRI 

data (B1, B2). 
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Figure 4.5. Box plots of classification performance of the GCN model in 35 independent runs, by using 

gender sub-datasets (A) and fluid intelligence sub-datasets (B). Significant differences in classification 

performance of task fMRI data were observed between female and male data, but not between high and 

low fluid intelligence data. 
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CHAPTER FIVE: DISCUSSION 

Overview 

In this study, we developed a classification framework based on a GCN model, which has been 

recently been proposed as a successful solution to the node classification task in graph-structured 

data. GCN can aggregate the high-order information of neighborhoods from graph nodes 

representing regions of interest and edges representing the functional connectivity between brain 

regions. This important feature allows researchers to use GCN to efficiently model the human 

brain network in various applications (Xing et al., 2019; Yu et al., 2019; Zhang and Huang, 

2019; S. Yu et al., 2020). Our study achieved an accuracy of 97.7% in a seven-class 

classification task, thus demonstrating a competitive classification performance for brain state 

decoding, with respect to those recently reported across task fMRI data by using the HCP dataset 

(Gui, Chen and Nie, 2020; Wang et al., 2020; Huang, Xiao and Wu, 2021; X. Li et al., 2021). 

Inspired by reference (X. Li et al., 2021), our proposed model included three Conv layers, in 

which we first implemented several node embedding methods to extract the topological features 

of nodes and defined node weight. Then the first Conv layer was fed by using different node 

embedding weights instead of using the same weights for all nodes. To this end, we tested four 

node embeddings (i.e., NetMF, RandNE, Node2Vec, and Walklets) and observed that our GCN 

model using NetMF and RandNE tended to yield the best results for classification task fMRI 

data. 

Furthermore, our findings confirmed the importance of selecting a proper node embedding 

method to extract topological features of graph nodes before feeding the GCN model, in 
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agreement with previous research detecting influenza-like symptoms with a GNN model (Dong 

et al., 2021).  

Effects of Individual Differences 

We examined the effects of individual differences on task fMRI classification in terms of gender 

and gF score discrepancy. With respect to gender differences, the performance of the proposed 

GCN model was tested on two sub-datasets (female/male) by considering four node embedding 

methods. The same procedure was applied to gF-associated sub-datasets (LM-gF/HM-gF). The 

p-value for classification performance between female and male sub-datasets was significantly 

less than 0.05, indicating a significant difference in task fMRI classification performance 

between these sub-datasets. However, no significant difference was observed in classification 

performance at a 95% confidence interval, because the p-value was greater than 0.05. These 

results can be considered evidence of gender-related differences in brain functional connectivity. 

Gender differences are associated with performance in spatial perception, memory, and verbal 

skills (Miller and Halpern, 2014; Siedlecki, Falzarano and Salthouse, 2019). Extensive research 

has addressed resting-state brain functional connectivity differences between men and women 

(Bluhm et al., 2008; C. Zhang et al., 2018; J. Zhang et al., 2018), and reported that women have 

strong functional connectivity in the default mode of the brain’s network (Sen and Parhi, 2019a). 

Furthermore, Sen and Parhi (Sen and Parhi, 2019a) have investigated the ability of task fMRI 

functional connectivity discrepancies to predict gender. The results of that study, in agreement 

with our findings, have shown that functional connectivity associated with relational, motor, 

social, gambling, and emotion differs between women and men, so that gender identity can be 

efficiently assessed on the basis of these differences. 
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Impact of Batch Size 

Training a DL model involves selecting a large set of hyperparameters, among which batch size 

is important (Ioffe, machine and 2015, no date). Batch size defines the number of training 

samples used in one iteration to update the internal network parameters. To achieve the best 

accuracy performance of the GCN model associated with the batch size values, we chose a 

sequence of batch sizes of 16, 32, 48, and 64, and applied GCN architectures to each dataset. 

This approach allowed us to obtain the best classification performance for each experiment. The 

trend of the batch size change influenced the classification performance for all considered 

datasets. The worst classification performance values were obtained with a batch size of 16, and 

the best results were achieved with batch sizes of 48 and 64.      
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CHAPTER SIX: CONCLUSION 

We proposed a GCN framework to decode task fMRI data. Four node embedding methods—

NetMF, RandNE, Node2Vec, and Walklets—were used to extract the topological features of 

graph nodes. We compared the performance of the model with different node embeddings 

through experiments and assessed classification accuracy. We further examined whether 

individual differences, specifically gender and fluid intelligence discrepancies, affect task fMRI 

data classification performance. Several conclusions were drawn. First, the overall task fMRI 

classification of the GCN model resulted in an F1 macro and MCC of 0.977 and 0.974, 

respectively. Second, the most robust node embedding methods for task fMRI data were NetMF 

and RandNE, whereas the least robust node embedding method was Node2Vec. Third, the 

influence of gender differences on task fMRI classification performance was significant, whereas 

no significant difference was observed between gF score categories.        

Research Contribution 

The major contribution of this study are as follow:    

1. We propose an end-to-end GCN framework to classify task-evoked fMRI data. The 

objective is to examine the performance of various node embeddings to generate 

topological embeddings of the graph’s nodes. To our knowledge, this is the first 

investigation of different node embeddings on task fMRI classification performance 

using the HCP dataset. 
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2. We demonstrate the performance of the proposed GCN framework according to 

individual differences (i.e., gender and fluid intelligence). To this end, we constructed 

four small sub-datasets of gender (female/male) and gF score (LM-gF/HM-gF) with 

replacement. We endeavored to examine whether gender and gF score might affect 

task fMRI classification performance.  

Limitation and Future Directions 

Our current study has several limitations that should be considered in future research. Although 

this study examined several node embedding methods to represent the graph nodes as low 

dimensional vectors, we disregarded the influence of the dimensionality of the node embeddings. 

Although finding the optimal dimension for embedding methods is challenging, some studies 

have applied several embedding dimensions on various datasets and achieved varying 

performance (Goyal and Ferrara, 2018; Martin and Riebeling, 2020). Therefore, the node 

embedding method must be customized to our dataset in future work. Furthermore, although 

batch size is an important hyperparameter to be considered in training a DL model (Ioffe, 

machine and 2015, no date), and we refitted our GCN model with different batch sizes and 

analyzed the effects of the change in batch size on classification performance, more 

hyperparameters should be studied, such as the number of convolutional layers, pooling ratio, 

and different readout operations. Finally, we analyzed only the task fMRI dataset for 302 

participants and concluded that gender differences can affect classification performance. 

However, the ability to generalize our findings should be studied over a large number of 

participants and evaluated our decoding model for experimental conditions under each task 

fMRI.      
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