450 research outputs found

    Advances in Sea-Ice Research Based on Remotely Sensed Passive Microwave Data

    Get PDF
    The contributions made to our knowledge of polar sea ice since the early 1970s by passive microwave remote sensing are surveyed

    RETRIEVAL OF ICE CLOUD PARAMETERS USING DMSP SPECIAL SENSOR MICROWAVE IMAGER/SOUNDER

    Get PDF
    Clouds exert a profound influence on both the water balance of the atmosphere and the earth's radiation budget (Stephens 2005; Stephens and Kummerow 2007). Among the global distribution, 30% of them are ice clouds (Riedi et al. 2000). It is important to improve our knowledge of the ice cloud properties in order to determine their influence to the global ecosystem. For ice clouds with millimeter-size ice particles, which are generally found in anvil cirrus and deep convections, microwave and millimeter wave length satellite measurements are suitable for the ice cloud microphysical property retrieval because of its strong ability to penetrate deeper into dense ice clouds. For these types of ice clouds, brightness temperatures at the top of the atmosphere are analytically derived as a function of vertically integrated ice water content (i.e. ice water path), effective particle diameter, and bulk volume density. In general, three brightness temperature measurements are needed to retrieve the three ice cloud microphysical parameters. A two-stream radiative transfer theory was applied to data from the Advanced Microwave Sounding Unit (AMSU) and the Moisture Humidity Sensor (MHS) in order to generate global ice water paths operationally. This research further applied the model and theory to derive ice water path (IWP) from the Special Sensor Microwave Imager/Sounder (SSMIS) onboard the Defense Meteorological Satellite Program (DMSP) F-16 satellite. Compared to AMSU/MHS, which have field of views (FOV) varying with scan position, SSMIS scans the Earth's atmosphere at a constant viewing angle of 53o and therefore offers a uniform FOV within each scan. This unique feature allows for improved global mapping and monitoring of ice clouds so that a more accurate and realistic IWP and ice particle effective diameter distribution is expected. A direct application of SSMIS-derived ice water path is its relationship with surface rain rate as derived previously for AMSU and MHS instruments. Here, SSMIS-derived rain rate was compared to the AMSU and MHS rainfall products and hourly synthetic precipitation observations from rain gauges and surface radar. Results show that SSMIS surface precipitation distribution is spatially consistent and does not have apparent artificial boundary near coastal zones as previously seen in other algorithms. Also, the ice water path associated with a severe storm reasonably delineates the strong convective precipitation areas and has a spatial variation consistent with surface precipitation. From retrieved instantaneous surface precipitation, a tropical and subtropical oceanic precipitation anomaly time series is constructed from 5 year's worth (2005-2009) of SSMIS data. This data record is also linked to the previous constructed SSM/I 15-year (1992-2006) data record to provide a longer term climate study by satellite observations. In future studies, refined algorithms for the estimate of ice cloud base temperature and ice particle bulk volume density are going to be developed to improve the accuracy of IWP retrieval under various cloud vertical distributions. Meanwhile, a better inter-sensor cross calibration scheme is the key to make satellite measurements more useful in climate change study

    Optimal estimation of sea surface temperature from AMSR-E

    Get PDF
    The Optimal Estimation (OE) technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI) to retrieve subskin Sea Surface Temperature (SST) from AQUA’s Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E). A comprehensive matchup database with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most consistent. The corresponding mean uncertainty is estimated to 0.48 K including the in situ and sampling uncertainties. An independent validation against Argo observations from 2009 to 2011 shows an average difference of 0.01 K, a standard deviation of 0.50 K and a mean uncertainty of 0.47 K, when considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can thus be used to obtain very good retrieval results. In general, the results from the OE retrieval are very encouraging and demonstrate that passive microwave observations provide a valuable alternative to infrared satellite observations for retrieving SST

    Aqua: AIRS, AMSU, HSB, AMSR-E, CERES, MODIS

    Get PDF
    This brochure provides an overview of the Aqua spacecraft, instruments, science, and data products Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice. Additional variables also measured by Aqua include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. Note: this guide was produced before Aqua was launched; for the most recent information on Aqua, go to http://aqua.nasa.gov. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education

    Evaluation of the potential of one to three SEASAT-SMMR channels in retrieving sea surface temperature

    Get PDF
    The scanning multichannel microwave radiometer (SMMR) aboard the SEASAT satellite measured emitted radiation in both horizontal and vertical polarizations at microwave frequencies of 6.6, 10.69, 18.0, 21.0 and 37.0 GHz. Retrieval algorithms, for sea surface temperature (SST) determination, from subsets of one to three SMMR channels are obtained by a two step statistical technique. The technique first selects the best subsets of a given size defined by an R2 criterion (coefficient of determination), of a given size by the application of an efficient 'leaps and bounds' technique on a statistical data base. It then performs a regression analysis on the selected subsets. The statistical data base employed a large (600) set of seasonally and geographically diverse atmospheric and surface parameters for radiative transfer calculations. The results of the study of one to three channel subset retrieval algorithms indicate the possibility of using 6.6V, 6.6H and 18V channels for SST determination from SEASAT-SMMR data

    Satellite Observed Salinity Distributions at High Latitudes in the Northern Hemisphere: A Comparison of Four Products

    Get PDF
    Global surface ocean salinity measurements have been available since the launch of SMOS in 2009 and coverage was further enhanced with the launch of Aquarius in 2011. In the polar regions where spatial and temporal changes in sea surface salinity (SSS) are deemed important, the data has not been as robustly validated because of the paucity of in situ measurements. This study presents a comparison of four SSS products in the ice-free Arctic region, three using Aquarius data and one using SMOS data. The accuracy of each product is assessed through comparative analysis with ship and other in situ measurements. Results indicate RMS errors ranging between 0.33 and 0.89 psu. Overall, the four products show generally good consistency in spatial distribution with the Atlantic side being more saline than the Pacific side. A good agreement between the ship and satellite measurements were also observed in the low salinity regions in the Arctic Ocean, where SSS in situ measurements are usually sparse, at the end of summer melt seasons. Some discrepancies including biases of about 1 psu between the products in spatial and temporal distribution are observed. These are due in part to differences in retrieval techniques, geophysical filtering, and sea ice and land masks. The monthly SSS retrievals in the Arctic from 2011 to 2015 showed variations (within approximately 1 psu) consistent with effects of sea ice seasonal cycles. This study indicates that spaceborne observations capture the seasonality and interannual variability of SSS in the Arctic with reasonably good accuracy

    Satellite microwave observations of polar lows

    Get PDF
    Includes bibliographical references

    Exploring the limits of variational passive microwave retrievals

    Get PDF
    2017 Summer.Includes bibliographical references.Passive microwave observations from satellite platforms constitute one of the most important data records of the global observing system. Operational since the late 1970s, passive microwave data underpin climate records of precipitation, sea ice extent, water vapor, and more, and contribute significantly to numerical weather prediction via data assimilation. Detailed understanding of the observation errors in these data is key to maximizing their utility for research and operational applications alike. However, the treatment of observation errors in this data record has been lacking and somewhat divergent when considering the retrieval and data assimilation communities. In this study, some limits of passive microwave imager data are considered in light of more holistic treatment of observation errors. A variational retrieval, named the CSU 1DVAR, was developed for microwave imagers and applied to the GMI and AMSR2 sensors for ocean scenes. Via an innovative method to determine forward model error, this retrieval accounts for error covariances across all channels used in the iteration. This improves validation in more complex scenes such as high wind speed and persistently cloudy regimes. In addition, it validates on par with a benchmark dataset without any tuning to in-situ observations. The algorithm yields full posterior error diagnostics and its physical forward model is applicable to other sensors, pending intercalibration. This retrieval is used to explore the viability of retrieving parameters at the limits of the available information content from a typical microwave imager. Retrieval of warm rain, marginal sea ice, and falling snow are explored with the variational retrieval. Warm rain retrieval shows some promise, with greater sensitivity than operational GPM algorithms due to leveraging CloudSat data and accounting for drop size distribution variability. Marginal sea ice is also detected with greater sensitivity than a standard operational retrieval. These studies ultimately show that while a variational algorithm maximizes the effective signal to noise ratio of these observations, hard limitations exist due to the finite information content afforded by a typical microwave imager
    • …
    corecore