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Clouds exert a profound influence on both the water balance of the atmosphere and 

the earth’s radiation budget (Stephens 2005; Stephens and Kummerow 2007). Among 

the global distribution, 30% of them are ice clouds (Riedi et al. 2000). It is important 

to improve our knowledge of the ice cloud properties in order to determine their 

influence to the global ecosystem. For ice clouds with millimeter-size ice particles, 

which are generally found in anvil cirrus and deep convections, microwave and 

millimeter wave length satellite measurements are suitable for the ice cloud 

microphysical property retrieval because of its strong ability to penetrate deeper into 

dense ice clouds. For these types of ice clouds, brightness temperatures at the top of 

the atmosphere are analytically derived as a function of vertically integrated ice water 

content (i.e. ice water path), effective particle diameter, and bulk volume density. In 

general, three brightness temperature measurements are needed to retrieve the three 

ice cloud microphysical parameters. A two-stream radiative transfer theory was 



  

applied to data from the Advanced Microwave Sounding Unit (AMSU) and the 

Moisture Humidity Sensor (MHS) in order to generate global ice water paths 

operationally. This research further applied the model and theory to derive ice water 

path (IWP) from the Special Sensor Microwave Imager/Sounder (SSMIS) onboard 

the Defense Meteorological Satellite Program (DMSP) F-16 satellite. Compared to 

AMSU/MHS, which have field of views (FOV) varying with scan position, SSMIS 

scans the Earth’s atmosphere at a constant viewing angle of 53o and therefore offers a 

uniform FOV within each scan. This unique feature allows for improved global 

mapping and monitoring of ice clouds so that a more accurate and realistic IWP and 

ice particle effective diameter distribution is expected. A direct application of SSMIS-

derived ice water path is its relationship with surface rain rate as derived previously 

for AMSU and MHS instruments. Here, SSMIS-derived rain rate was compared to 

the AMSU and MHS rainfall products and hourly synthetic precipitation observations 

from rain gauges and surface radar. Results show that SSMIS surface precipitation 

distribution is spatially consistent and does not have apparent artificial boundary near 

coastal zones as previously seen in other algorithms. Also, the ice water path 

associated with a severe storm reasonably delineates the strong convective 

precipitation areas and has a spatial variation consistent with surface precipitation. 

From retrieved instantaneous surface precipitation, a tropical and subtropical oceanic 

precipitation anomaly time series is constructed from 5 year’s worth (2005-2009) of 

SSMIS data. This data record is also linked to the previous constructed SSM/I 15-

year (1992-2006) data record to provide a longer term climate study by satellite 

observations. In future studies, refined algorithms for the estimate of ice cloud base 



  

temperature and ice particle bulk volume density are going to be developed to 

improve the accuracy of IWP retrieval under various cloud vertical distributions. 

Meanwhile, a better inter-sensor cross calibration scheme is the key to make satellite 

measurements more useful in climate change study. 
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Chapter 1: Introduction 

Clouds play a vital role in Earth’s climate and radiation energy budget, and 

influence weather and climate prediction through their horizontal and vertical 

distribution, as well as their optical properties. To understand how clouds affect the 

climate and vital feedbacks within the Earth system, it is important to study the 

transfer of radiation through and within clouds. Several satellite experiments, such as 

the Earth Radiation Budget Experiment (ERBE) (Barkstrom 1984; Barkstrom and 

Smith 1985) and the Clouds and the Earth’s Radiant Energy System (CERES) 

(Wielicki et al. 1996), focused on obtaining quantitative measurements of the 

instantaneous effects of clouds on the top-of-the-atmosphere (TOA) radiation 

balance. From 1983 onward, the International Satellite Cloud Climatology Program 

(ISCCP) (Rossow and Schiffer 1991, 1999) began processing satellite visible (VIS) 

and infrared (IR) radiance data, and for the first time provided the global distribution 

of total cloud cover and related optical properties. These satellite measurements are 

an important source of information for testing models related to TOA fluxes and other 

properties of the climate system. However, very limited information is offered by 

these measurements for understanding the net effects of clouds on atmospheric and 

surface radiation budgets. 

At the TOA, the radiation budget is determined by the net shortwave flux and 

the outgoing longwave radiation (OLR).  The effects of clouds in internally heating 

and cooling the atmosphere are imbedded in this whole process. Understanding how 

clouds partition the absorption of radiation between the surface and atmosphere 

requires a global surface radiation budget climatology, in combination with TOA 
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fluxes (Stephens 2005). A major limitation in the determination of atmospheric and 

surface radiation budgets is the lack of cloud input properties and other information 

needed in radiative transfer calculations. Nevertheless, the growing use of satellite 

measurements has greatly helped in the estimation of global cloud effects on the 

radiative budget. 

In general, the net thermal effect of clouds occurs as a residual of the cooling 

associated with reduced solar radiation reaching the surface and the warming of the 

atmosphere by the absorptive effects of clouds on longwave radiation (Stephens et al. 

1994; Rossow and Zhang 1995; Zhang et al. 1995). Cloud effects may vary over 

different geographical locations. At low latitudes and compared to clear-sky 

conditions, clouds heat the atmosphere through the increased absorption of surface 

upwelling infrared radiation and emission at colder temperatures despite the reduction 

in solar shortwave radiation reaching the surface due to cloud reflection. Clouds at 

higher latitudes play almost an opposite role in the radiation budget at the TOA 

(Rossow and Zhang 1995). Such cloud-related heating/cooling effects enhance the 

latitudinal temperature gradient and are responsible for the reinforcement of the mean 

atmospheric meridional circulation. The vertical distribution of clouds is another 

important factor in determining heating/cooling effects. Compared to clear-sky 

conditions, high cold clouds tend to warm the atmosphere, particularly at low 

latitudes, whereas low clouds enhance the cooling of atmosphere, particularly at high 

latitudes (Slingo and Slingo 1988). 

Ice clouds represent 30% of the global cloud distribution (Riedi et al. 2000). 

Based on their formation mechanism, two types of clouds are recognized. One is 
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cirrus clouds, which are formed by deposition from water vapor forming ice crystals 

at high altitudes. Due to the sparseness of moisture in the surrounding air, cirrus 

clouds tend to be very thin. The other commonly observed ice cloud is associated 

with deep convection. Convective clouds develop because of instability in the 

boundary layer. An updraft associated with deep convection may raise water vapor 

from lower levels of the atmosphere to above the freezing level (around -20oC) where 

ice particles are formed. During this updraft process, liquid phase cloud droplets are 

also observed.  A common characteristic of both ice cloud types is that the cloud-top 

pressure is lower than 300 mb. However, even with similar cloud-top pressures, their 

radiative properties are quite different due to their distinctive optical properties. 

Cirrus clouds have relatively small optical thicknesses and can absorb IR radiation 

from the lower atmosphere underneath, but they emit radiation at colder temperatures 

which is a typical greenhouse effect. Cirrus clouds also reflect shortwave solar 

radiation due to their high albedo, thereby reducing the solar energy reaching the 

Earth’s surface. The net effect is still under debate. Deep convective ice clouds 

generally have large optical depths because of their large vertical extent. The 

interaction among ice clouds, the ambient atmosphere, and the surface environment is 

a major uncertainty in the estimation of the resulting radiative properties. In addition, 

deep convective clouds are commonly associated with heavy precipitation. Latent 

heat release and consumption occurring either directly in clouds or in the ensuing 

precipitation may further complicate any estimation of cloud properties. 

Cloud parameterization is an important part of general circulation models 

(GCM) and global numerical weather prediction (NWP) models when estimating the 
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impact of clouds on global climate and weather systems. Numerical studies have 

shown that the net radiative flux largely depends on the optical thickness of clouds 

(Stephens and Webster 1981; Liou 1986; Stephens 2005). Recent versions of most 

NWP models now include ice water content (IWC) as a prognostic variable, and 

provide estimates of this quantity for high-level clouds (Buehler et al. 2007; Liou et 

al. 2008). Ice particle size (De) is another important quantity used in NWP 

microphysical parameterizations.  It determines the cloud radiative effect per mass 

and the ice cloud lifetime (through the particle fall speed). Global quantitative 

measurements of microphysical parameters, vertically integrated cloud ice mass (or 

ice water path, hereafter IWP), and ice particle size in ice clouds are critical for the 

validation of global climate models as well as for understanding the nature of climate 

change. 

Many earlier studies focused on better understanding cirrus cloud properties 

(Liou 1986; Stone et al. 1990; Fu and Liou 1993; Minnis et al. 1993a; Evans et al. 

1998; Mace et al. 2001; Heymsfield et al. 2002; Mace et al. 2005). In these studies, 

cirrus cloud microphysical and bulk properties, as well as their climate impacts, were 

explored using observations from different satellites, surface radars, and lidars. 

Results demonstrated that the parameterization of cirrus cloud radiative properties in 

GCMs and NWP models may significantly help improve simulation accuracy and 

prediction ability.  

The retrieval of deep convective cloud ice parameters as well as studies of 

their climate impacts have also been broadly examined (Spencer et al. 1983; 

Hakkarinen and Adler 1988; Vivekanandan et al. 1991; Evans and Stephens 1995b; 
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Liu and Curry 1998; Deeter and Evans 2000; Weng and Grody 2000; Zhao and Weng 

2002; Evans et al. 2005). Due to the much larger optical depth of such clouds, as 

described earlier, different methodologies and algorithms needed to be developed to 

help resolve the difficulties faced in retrievals of deep convective cloud ice 

parameters. For example, deep convection is generally associated with severe or 

damaging storms where heavy precipitation is observed. It is important to distinguish 

the ice particle scattering effect from liquid water emission effects when they are 

mixed together because their radiative impacts offset each other. In addition, in 50-

60% of cases, there is the coexistence of multiple layers of clouds (Hahn et al. 1982; 

Warren et al. 1985; Tian and Curry 1989), which may further complicate the situation 

(Chang and Li 2005a). However, as more advanced instrumentation is installed on 

new satellites, it is possible for the community to improve the understanding of deep 

convective ice cloud properties using more extensive and accurate observational 

information. 

In this study, deep convective ice cloud parameters, including IWP and 

precipitation-sized ice particle effective diameter (De), will be retrieved by 

simplifying the radiative transfer model using a one-layer two-stream assumption 

(Weng and Grody 2000). The retrieval algorithm will be then applied to a new-

generation conically scanning microwave instrument, the Special Sensor Microwave 

Imager/Sounder (SSMIS), onboard the Defense Meteorological Satellite Program 

(DMSP) F-16 satellite.  It should be mentioned that this is the first time that a 

conically scanning instrument has included microwave channels from 19 to 183.31 

GHz with temperature and water vapor sounding capabilities. Two channels at 91.655 
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GHz and 150/183.31 ± 6.6 GHz will be used for the study of ice cloud parameters. At 

these two channels, the optical impact of cirrus ice particles is negligible due to their 

relatively smaller particle size with respect to the wavelength. Furthermore, these 

wavelengths can penetrate fairly deeply into convective clouds, where the majority of 

precipitation-sized ice particles exist and where the effect of surface radiation is 

minimal. Such features make these two microwave channels suitable candidates for 

deep convective ice cloud parameter retrievals. In this retrieval algorithm, both IWP 

and De are retrieved simultaneously from dual millimeter-wavelength measurements 

for a given particle bulk volume density ice . This algorithm has been made 

operational for generating  IWP from the Advanced Microwave Sounding Unit 

(AMSU) and the moisture humidity Sounder (MHS) and has proven effective in the 

estimation of deep convection ice particle properties (Zhao and Weng 2002; Weng et 

al. 2003).  The surface rainfall rate (RR) from deep convective clouds can also be 

derived based on its correlation with ice scattering. Case studies suggested that the RR 

algorithm performs well, particularly for heavy precipitation associated with severe or 

damaging weather conditions, such as with hurricanes and squall lines. It is also 

important to note that the rainfall rate of deep convective clouds involves mostly 

liquid phase drops, which are common over the western Pacific Ocean warm pool. So 

rainfall rate might not be accurately retrieved because the IWP/De retrieval algorithm 

is a scattering-based approach and liquid cloud droplets are more emissive than 

scattering.  

This dissertation is organized as follows. First, a detailed review is given 

regarding the historical development of ice cloud parameter retrievals using different 
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spectral emission regions. A brief introduction to the DMSP SSMIS instrument is 

then presented. To provide quality retrievals, the SSMIS temperature data record 

(TDR) is then evaluated for its accuracy and calibrated in order to remove instrument 

contamination. An assessment of SSMIS imaging channels at lower frequencies is 

made by comparing SSMIS-derived products to those from the DMSP F-15 satellite. 

A two-stream radiative transfer approximation is presented with detailed retrieval 

steps and case studies, followed by discussion of the retrieval of ice cloud parameters  

To evaluate the retrieval quality, results from error analyses and validation will be 

presented. The rainfall rate retrieval algorithm which is based on correlation between 

rainfall rate and ice scattering will also be presented. SSMIS rainfall rate retrievals 

are then going to be used for the construction of global precipitation climate data 

records (CDR) for climate change analysis.  

The quality of SSMIS data at all imaging and window channels will be 

qualitatively assessed by comparing the SSMIS-derived products with those from the 

heritage SSM/I retrieval algorithms.  
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Chapter 2: Review of Ice Cloud Parameter Retrievals 
 

Global measurements of ice cloud parameters are best determined from 

satellite platforms because of their high altitude and wide spatial coverage. Many 

studies regarding the remote sensing of ice clouds at various wavelengths for the 

purpose of inferring ice cloud optical and microphysical properties have been 

conducted. 

The ice-phase microphysical process in a cloud is greatly complicated by the 

variety of forms of the ice phase, as well as by the numerous physical processes that 

determine the crystal forms (Rogers and Yau 1989). Ice crystals might form once a 

cloud extends to altitudes where the temperature is colder than 0oC. There are two 

phase transitions leading to ice formation. One is the freezing of a liquid droplet, and 

the other is direct deposition of vapor to the ice phase. Both homogeneous and 

heterogeneous nucleation of ice crystals is possible in either phase transition.  

Homogeneous freezing of ice from a pure liquid droplet is analogous to the 

nucleation of liquid in the vapor phase. Theoretical and empirical results indicate that 

droplets will freeze spontaneously at temperatures lower than about -35 to -40oC, 

depending somewhat on the size of the drops being subjected to the low temperature. 

Theoretical estimates confirm that the homogeneous deposition nucleation process 

only occurs at temperatures below -65oC and at supersaturation levels around 1000%. 

These conditions cannot be simultaneously met in natural clouds so this process does 

not exist in practice. Observations confirm that appreciable numbers of ice crystals 

usually appear in a cloud at temperatures between 0oC and -40oC. Since 
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homogeneous nucleation does not occur in this temperature range, the crystals are 

considered to be formed by heterogeneous processes. Water in contact with most 

materials freezes at temperatures warmer than -40oC, while deposition occurs on most 

surfaces at supersaturating and supercooling levels less than the homogeneous 

nucleation values. Thus the probability of heterogeneous nucleation of freezing or 

deposition depends strongly on supersaturating and supercooling levels as well as on 

the properties of the foreign material that triggers the formation of ice crystals. 

Nucleation mechanisms include condensation nucleation, immersion freezing, contact 

nucleation, and deposition nucleation. A given particle might nucleate in different 

ways, depending on the ambient conditions and its history in the cloud. Thus it is 

difficult to distinguish between the four nucleation processes. 

Once ice crystals are nucleated through some mechanism, they then grow in 

one of the following ways: (1) by riming if relatively large crystals experience 

collision-coalescence processes with super cooled liquid cloud droplets; or (2) by 

aggregation if collision and coalescence happens among ice crystals; or (3) by vapor 

deposition if the environment is supersaturated with respect to ice. Some observations 

confirm that ice particle concentration may be orders of magnitude greater than the 

number of ice nuclei due to ice enhancement processes. The strongest contender for 

an ice enhancement process in clouds is one that involves water droplets freezing. 

When a supercooled droplet collides with an ice particle, it is possible for liquid water 

to be trapped in the interior of the droplet and to form an ice shell over the surface of 

the droplet. Water expands as it freezes so may crack the ice shell, t creating 

numerous small ice splinters. This is the reason why ice clouds associated with high 
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liquid water content (LWC) generally have high ice particle concentrations. On the 

other hand, thin cirrus clouds have very low LWC at high altitudes so ice particle 

growth occurs through vapor deposition and aggregation among particles. Low ice 

particle concentrations are quite common in thin cirrus compared to other water-ice 

mixed cumulus clouds. Additionally, with different ambient temperatures and water 

vapor contents, an ice crystal can also grow into different shapes, such as hexagonal 

plates, columns, dendrites, and so on. During some stage of the riming process, the 

original shape of the ice crystal may disappear and this rimed particle is called 

graupel. In vigorous convective clouds containing high LWC, riming can produce 

hailstones varying in size from several millimeters to centimeters. So-called spongy 

hailstones are commonly formed and contain ice particles with different densities. 

The wide range of ice particle shapes, sizes, densities, and mixed liquid water 

contents may greatly affect ice cloud optical properties at different wavelengths. Thus 

different remote sensing methods at different sensing frequencies must be developed 

in order to correctly retrieve ice cloud parameters. Visible or IR frequencies are most 

useful for measuring particles with sizes on the order of tens of micrometers; 

millimeter frequencies are not able to detect ice particles at such small sizes because 

of the larger wavelength. However, for thick anvil cirrus or the upper portions of deep 

convective clouds that generally contain larger particles such as graupel and hail, 

microwave channels are more suitable for retrievals. The larger wavelengths make it 

possible to penetrate deep into clouds for cloud microphysical information while 

visible and IR channels reach their optical limitations under these circumstances. 
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Therefore, it is critical to carefully select remote sensing bands and sensing modes 

when inferring cloud microphysics for different cloud types.  

In this chapter, a brief review of past work done concerning ice cloud 

parameter retrievals is presented and categorized according to spectral band(s) and 

sensing mode (passive/active). Advantages and limitations of each category are also 

summarized to emphasize the importance of channel selections for different ice cloud 

types. 

 

(a) Passive Visible (VIS)/Infrared (IR) Bands 

Measurements at 0.75 µm (visible - VI S) and at 2.76 µm (near-infrared – nIR) 

are used to infer cloud properties (Nakajima and King 1990). The Moderate 

Resolution Imaging Spectroradiometer (MODIS) on board the National Aeronautics 

and Space Administration (NASA) Earth Observing System (EOS) Terra and Aqua 

platforms (Minnis et al. 1993b; Rolland et al. 2000; King et al. 2003; Platnick et al. 

2003)measures reflected solar radiances at 0.75 and 2.16 μm. These radiances are 

linked to the optical thickness and effective particle radius of optically thick 

stratiform clouds through the principle that the reflection function of clouds at non-

absorbing channels in the visible wavelength region is primarily a function of cloud 

optical depth, whereas the reflection function at water (or ice) absorbing channels in 

the near-infrared wavelength region is a function of cloud particle size. This principle 

does not apply well to optically thin clouds. 

To resolve the cloud overlap problem in ice cloud parameter retrievals, a new 

method (Chang and Li 2005a, b) was developed to effectively detect cirrus over water 
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clouds using Terra/MODIS CO2-slicing channels and the visible (0.65 µm) and 

infrared (11 µm) window channels. The results, after preliminary validation, indicate 

that this new dual-layer algorithm can overcome some major shortcomings of the 

conventional single-layer algorithms and can provide more accurate information 

about cloud-layer structure. 

The International Satellite Cloud Climatology Project (ISCCP) (Rossow and 

Schiffer 1991, 1999) attempts to provide a global spatial and temporal distribution of 

clouds by using several geostationary and polar-orbiting satellites that measure 

radiances from clouds in the visible and thermal infrared (IR) channels. In the ISCCP 

cloud analysis procedure, the image pixels are first separated into cloudy and clear 

scenes by the cloud algorithm. Radiances from each scene are then compared to 

calculations from a radiative transfer model that simulates radiances that should be 

measured by satellites as a function of surface visible reflectance and temperature 

(clear scenes), and cloud optical thickness and cloud-top temperature (cloudy scenes). 

The key assumption used in detecting cloudy pixels is that radiances in clear scenes 

are less variable than in cloudy scenes and that it is the clear scenes that compose the 

“darker” and “warmer” parts of the VIS and IR radiance distributions, respectively. 

After estimates of clear radiances are obtained for each place and time, the entire 

radiance data set is re-examined and each radiance value is compared to its 

corresponding clear value. The differences are compared to the uncertainties in 

estimating the clear radiances: if the differences are larger than the uncertainty and in 

the “cloudy direction” at either wavelength (colder IR or brighter VIS), then the pixel 

is labeled cloudy. The measured radiance of each identified pixel is then compared to 
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the radiative transfer model calculations that include the effects of the atmosphere, 

surface, and clouds. However, the restriction of satellite-measured radiances to two 

wavelengths limits the number of parameters that can be determined from the 

observations. Clouds represented in the model simulation are assumed to be single 

thin layers uniformly covering the image pixel and composed of droplets with a 

specified average size and size distribution. Therefore, the retrieved optical thickness 

and temperature parameters in the ISCCP dataset are not adequate in providing 

accurate cirrus cloud ice water content (IWC) information. 

The character of these VIS/nIR/IR frequency channel measurements limits 

their capability of addressing some key issues. For example, it is difficult to 

distinguish ice from water cloud optical depth using only VIS/IR channels. Also, due 

to the high land emissivity, low optical depth clouds cannot be measured over 

brighter land surfaces. Additionally, these solar reflection methods only work during 

daytime. Solar techniques can only retrieve particle sizes near cloud tops, leading to 

overestimation of the IWP due to the small particle size, and are highly sensitive to 

non-spherical particle shapes because of back- and side-scattering effects. Therefore, 

a number of gross assumptions about ice particle shape, size distribution, and cloud 

spatial homogeneity are required to convert radiances to optical depths to IWP.  

 

(b) Passive Infrared (IR) Band 

The data from multichannel imagery sources, particularly the Advanced Very 

High Resolution Radiometer (AVHRR) onboard the National Oceanic and 

Atmospheric Administration (NOAA) operational satellites as well as other similar 
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channels, are also widely used to retrieve cirrus cloud parameters (Szejwach 1982; 

Pollinger and Wendling 1984; Runheng and Liou 1984; Arking and Childs 1985; 

Inoue 1985; Wu 1987; Ackerman and Smith 1990; Liou et al. 1990; Stone et al. 

1990; Ou et al. 1993; Ou et al. 1995; Giraud et al. 1997; Ou et al. 1999; Stubenrauch 

et al. 1999). These thermal infrared methods use the brightness temperature 

difference between different AVHRR IR channels to simultaneously determine cirrus 

cloud-top temperature, IR effective emissivity, mean effective particle size, and 

optical depth. In addition to AVHRR IR channels,  Geostationary Operational 

Environmental Satellite (GOES) channels, such as the 3.9 μm and 12.7 μm bands, are 

used to build relationships between this brightness temperature difference and optical 

depth, as well as microphysics. However, some methods, like using single-channel 

data to infer the optical depth, require the estimation of both cloud-base radiance and 

cloud emission from external data sources such as from radiosondes and lidars.  Ice 

crystal sizes cannot be determined from this kind of retrieval. Some bi-spectral 

methods make use of the brightness temperature difference from multiple channels 

that are least affected by the presence of water vapor, i.e. 3.7 and 10.9 μm channels, 

to derive the effective distinction ratio, which is a function of ice crystal size 

distribution. Ice water path (IWP) can then be estimated. However, thermal infrared 

methods easily saturate for moderate optical depths and can only determine particle 

size (and hence IWP) for small crystal sizes. In addition, thermal infrared techniques 

require accurate knowledge of cloud temperature. 

 

(c) Passive Microwave Band 
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Millimeter-wave and sub-millimeter-wave ice cloud remote sensing 

techniques have been developed over the past decades (Vivekanandan et al. 1991; 

Evans and Stephens 1995b; Liu and Curry 2000; Weng and Grody 2000; Evans et al. 

2005). A theoretical study on the sensitivity of frequencies up to 410 GHz to water 

vapor, precipitation, and liquid and ice clouds was performed (Gasiewski 1992). The 

theoretical investigations were then extended by considering non-spherical ice 

particles at frequencies up to 340 GHz. This showed that the brightness temperature 

depression depends strongly on particle size and ice water path (Evans and Stephens 

1995b). It is also shown that retrievals of both particle size and ice water path could 

be done with multiple widely-spaced frequencies. In another theoretical study, 

brightness temperatures up to 880 GHz from observed particle size distributions and 

several non-spherical ice particle shapes were modeled (Evans et al. 1998). This 

study considered the fact that there is absorption by water vapor, and proposed a 

method to use the 183-GHz frequency band with matched water vapor transmission to 

provide the upwelling atmospheric emission background. A simple two-channel 

algorithm based on brightness temperature depression was used to estimate retrieval 

errors due to particle shape and size distribution. However, the study did not consider 

the variability of the height of ice clouds, vertically non-uniform cirrus clouds, liquid 

water clouds, or atmospheric variability. Thus, the results were not accurate. 

Observational studies (Wilheit et al. 1982; Wu and Weinman 1984; Hakkarinen and 

Adler 1988; Spencer et al. 1989; Adler et al. 1990; Liu and Curry 1998; Bennartz and 

Bauer 2003) have shown that the brightness temperature near 85 GHz is strongly 

depressed due to the presence of precipitation- sized ice particles. A time-dependent 



 

 16 
 

cloud model was used to examine the temporal evolution of the cloud droplet size 

distribution and its impact on the microwave brightness temperature (Mugnai and 

Smith 1988). Further simulations show that the scattering process is also very 

sensitive to the distribution of the ice particle size (Mugnai and Smith 1988; Smith 

and Mugnai 1988; Evans and Stephens 1995a; Evans et al. 2005). Brightness 

temperatures simulated at millimeter to sub- millimeter wavelengths are found to be 

very sensitive to ice clouds having a relatively low IWP (Gasiewski 1992; Evans and 

Stephens 1995b). Measurements made at 150, 220, and 340 GHz display different 

spatial characteristics for non-raining anvil cirrus and precipitating clouds, while both 

visible and thermal infrared measurements show very little variations within the 

clouds (Heymsfield et al. 1996; Weng et al. 1997).  

Compared to VIS/IR techniques, microwave radiometers offer a number of 

potential advantages for measuring IWP. They can penetrate deep into dense clouds 

and provide more information for the estimation of ice cloud bulk properties, 

especially for precipitation-sized ice particles commonly associated with deep 

convective cloud systems. Microwave radiation interacts with ice particles primarily 

through scattering so that emission and cloud temperatures are relatively unimportant. 

The microwave emission emerging from a precipitating cloud top and lying in a 

radiometer’s field of view (FOV) represents the culmination of a complex interaction 

between emitted microwave radiation and its ongoing extinction through overlapping 

regions of liquid, melting phase, and ice. Since most ice clouds are above the 

absorbing part of the atmosphere, they simply modulate the upwelling microwave 

radiation from below. Furthermore, microwave radiative transfer is linear in behavior 
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so the signal is directly proportional to optical depth and cloud spatial inhomogeneity 

effects are less important. The effects of particle shape and size distribution are also 

important for microwave remote sensing of ice clouds because they determine the 

relation between optical depth and IWP. They are more amenable to calculation 

because the particle sizes are comparable to or smaller than the wavelength. 

Microwave methods are also complementary to VIS and IR methods, in that 

microwave radiation is sensitive to larger ice crystals and to thicker cloud layers, 

whereas VIS/IR radiation is more sensitive to smaller particles and ice clouds with 

low IWP.  

Vivekanandan (1991) quantitatively inferred microphysical parameters 

through simulations of brightness temperatures at 37 and 85 GHz. The possibility of 

using the brightness temperature difference between these two frequencies to estimate 

integrated ice water path was investigated and it was found that brightness 

temperatures monotonically decrease as the cloud microwave optical thickness 

increases. However, the relationship between IWP and brightness temperature 

difference may also change due to the variation of particle bulk densities. In addition, 

over convective cores, both the 37 and 85 GHz weighting functions may peak higher 

into the ice region due to stronger scattering by the largest ice particles, thereby 

underestimating the total ice water path. For IWP greater than 1 g/m3, a simple ice 

exponential size distribution with bulk ice density independent of size, and with fixed 

limits of integration independent of the ice content present, does not characterize well 

many ice characteristics. The ice crystal size distribution also plays a key role in their 

methodology because of its influence on scattering processes. The two channels must 
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also have the same viewing angle because the scattering effects are closely dependent 

upon this condition. It has also been shown that the sensitivity of brightness 

temperatures at sub-millimeter frequencies to IWP is nearly independent of cloud 

temperature and the details of the underlying atmosphere due to the higher scattering 

effects. 

To provide a theoretical understanding of the microwave signatures for ice 

clouds, the relation between brightness temperature and the similarity parameter and 

transmittance was studied using simulated data (Weinman and Schols 1992). 

However, no elaboration on how the relationship can be used for satellite remote 

sensing of ice clouds was presented.  

Upper tropospheric (UT) ice water contents are also retrieved from Earth 

Observing System Microwave Limb Sounder (EOS MLS) measurements on the Aura 

platform (launched on July 15, 2004) (Wu et al. 2006; Read et al. 2007; Wu et al. 

2008). In the retrieval algorithm, the difference between measured radiance and 

model-estimated clear-sky radiance at different pressure levels is used to flag cloud 

conditions. The UT IWC is then retrieved from an empirical relationship constructed 

from the results of 1-D cloudy-sky radiative transfer simulations. However, their 

retrieval is largely dependent on how accurately the model identifies cloud 

conditions. Because the retrieval is only made from 240 GHz observations at 

pressures lower than 215 hPa, retrieval of ice water content with large ice particles 

associated with deep convection may easily be saturated because of its optical limit. 

Studies using MLS measurements (Su et al. 2006a) have discovered that UT ice water 

content associated with deep convection increases sharply with sea surface 
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temperature (SST), when SST is over 300 K. Meanwhile, UT water vapor rises as ice 

water content increases, leading to an enhanced positive water vapor feedback. Both 

European Center for Medium-Range Weather Forecast (ECMWF) analysis and 

simulations from atmosphere-ocean coupled general circulation models (GCMs) 

support the existence of such correlations (Su et al. 2006b). However, the lack of an 

onboard calibration system in EOS MLS (Cofield and Stek 2006) cannot provide real 

time instrument performance monitoring and may introduce uncertainties in the 

application of the data, particularly when sunlight directly illuminates the antenna in 

each orbit. 

The Millimeter-wave Imaging Radiometer (MIR) (Racette et al. 1996) with 

frequencies at 89, 150, 183, and 220 GHz is used to derive IWP (Liu and Curry 1998, 

1999; Deeter and Evans 2000; Weng and Grody 2000). The IWP and particle size in 

tropical cirrus anvils are retrieved using the MIR channel combinations of 150/220 

GHz and 89/150 GHz (Liu and Curry 1998). Some significant brightness temperature 

depressions were observed from Arctic cirrus using a new channel at 340 GHz (Wang 

et al. 2001). The algorithm is modified further to derive IWP in tropical cloud 

systems using satellite microwave data (Liu and Curry 1999). Although the IWP 

algorithm works well for cirrus clouds in the tropics, an uncertainty arises due to the 

unknown particle size. Weng and Grody (2000) proposed an algorithm to derive both 

IWP and ice particle effective diameter (De) using dual millimeter wavelength 

measurements. For a given particle bulk volume density, the brightness temperature 

at microwave frequencies can be uniquely related to IWP and De through a two-

stream radiative transfer model solution. The algorithm was tested with 



 

 20 
 

measurements obtained from MIR and the Advanced Microwave Sounding Unit 

(AMSU) (Zhao and Weng 2002). The retrieved IWP and De display a reasonable 

spatial distribution comparable to radar and infrared measurements. 

 

(d) Active Cloud Radar and Lidar 

Radar technology is also widely used for remotely sensing cloud 

microphysical parameters. It can provide long-term higher resolution measurements 

of cloud properties. However, radars measure the equivalent reflectivity factor (Ze) of 

cloud properties, but not the mass. The accuracy of the retrieved ice mass or ice 

precipitation rates from radar reflectivity is highly dependent on the algorithms used. 

These algorithms are usually developed on the basis of in situ observations or ground 

measurements, or in combination with radar and in situ measurements. The 

development of a parameterization based on both radar and aircraft in situ data is not 

trivial due to the difference in sampling volume and time lag. By comparing various 

IWC-Ze power-law relationships based on aircraft and radar measurements against an 

explicit cloud microphysics model simulation (Sassen and Wang 2002), it was found 

that these power-law relationships do not always fit. One study (Brown et al. 1995) 

also showed that the IWC retrieval using a 94-GHz radar can be accurate within a 

factor of 2 if Ze alone is used, and it can be improved if the mean ice particle 

effective size is included in the algorithm. The inclusion of the temperature profile 

can also improve the accuracy of IWC retrievals (Liu and Illingworth 2000).  

Launched on April 28, 2006, CloudSat carries the first W-band (94 GHz) 

cloud profiling radar (CPR) as its only payload instrument (Stephens et al. 2002; 
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Stephens et al. 2008). This unique instrument has an ability to sense condensed cloud 

particles while coincidently detecting precipitation and providing a vertical cross-

section of cloud structures.  

Preliminary comparisons of lidar and backscattering properties were first 

conducted during the early 90s (Intrieri et al. 1990; Uttal et al. 1990). One of the first 

studies on the retrieval of cloud properties by the combination of lidar and radar 

measurements was developed by Intrieri et al. (1993). The method employs the 

wavelength-dependent difference in backscattering between a carbon dioxide lidar at 

10.6 µm, an X-band radar at 3.2 cm, and a Ka-band radar at 8.6 mm to determine the 

ice particle effective diameter. The theoretical and observed backscattering 

coefficients are also compared by assuming that all cloud particles are spherical solid 

ice and limiting the lidar retrievals to an optical depth of 1. Later, radar and lidar data 

are used to describe cloud structure (Mace et al. 1998). Studies (Flamant et al. 2000) 

on cirrus conclude that such radar-lidar combinations have difficulty in retrieving 

small particles with effective diameters smaller than 20 µm due to the limitation in 

radar sensitivity. Other approaches that constrain lidar extinction retrievals by using 

radar information (Donovan and Lammeren 2001; Donovan and Coauthors 2001; 

Okamoto et al. 2003; Tinel et al. 2005) were also developed. 

It is noteworthy that active remote sensing instruments can only carry a very 

limited number of channels for observations. The scan position is also limited to a 

fixed short range, which makes the coverage significantly smaller compared to 

passive instruments. Therefore, the satellite microwave radiometer is the most 

suitable instrument for deep convective cloud ice property retrievals. 
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Different methods and satellite channels need to be carefully chosen to infer 

ice cloud parameters for different cloud types. Thin cirrus clouds are better observed 

by satellite IR channels because they have smaller ice particle sizes and optical 

depths. Microphysical properties of ice clouds from deep convective systems and 

anvil cirrus, which are composed of larger ice particles, are better estimated from 

microwave channels which can penetrate within and through clouds and which are 

sensitive to cloud vertical and horizontal structure information. This study focuses on 

the retrieval of ice cloud parameters from the DMSP SSMIS instrument. In the next 

chapter, this instrument and its calibration issues will be first discussed before 

proceeding to its use in retrieving ice cloud parameters.  
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Chapter 3: Calibration and Validation of DMSP SSMIS 

In October 2003, the first Special Sensor Microwave Imager Special (SSMIS) 

was launched aboard the Air force Defense Meteorological Satellite Program (DMSP) 

F-16 Spacecraft to obtain synoptic maps of critical atmospheric, oceanographic, and 

land parameters to support Numerical Weather Prediction (NWP) as well as other 

civilian users. As the first of five instruments scheduled for launch over the next 

decade, the SSMIS integrates the imaging capabilities of the heritage DMSP conically 

scanning Special Sensor Microwave/Imager (SSM/I) sensor with the cross-track 

microwave Special Sensor Microwave Temperature (SSM/T) and Special Sensor 

Microwave Humidity (SSM/T-2) sounders into a single conically scanning 24-

channel instrument with extended sounding capability to profile the mesosphere (10-

0.03mb). As such, the SSMIS represents the most complex operational satellite 

passive microwave imager/sounding sensor ever flown, while at the same time 

offering new capabilities associated with radiometer channels having common fields 

of view (FOV), uniform polarizations, and fixed spatial resolutions across the scan 

swath (1700 km), and bringing with it new challenges as well.  

In this chapter, after briefly introducing SSMIS scan geometry and channel 

frequencies, calibration issues of F-16 SSMIS will be described to provide a in-depth 

understanding on the advantages of such new generation microwave instrument. 

Imaging channel data quality is also evaluated by comparing same products from 

DMSP F-15 SSM/I (Sun and Weng 2008) to prove that F-16 SSMIS data are suitable 

for operational applications. 
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3.1 Introduction to DMSP SSMIS 

As shown in Fig. 3.1, the DMSP F-16 spacecraft flies in a circular sun-

synchronous near-polar orbit at an altitude of approximately 833 km with an 

inclination of 98.9 degrees, an orbit period of 101.8 min, and a local time ascending 

node of 19:54. 

 

Figure 3.1: DMSP F-16 SSMIS Scan Geometry (from SSMIS Technical Report) 

The passbands and polarizations selected from SSMIS are based largely on 

the heritage sensors SSM/T, SSM/T-2, and SSM/I as shown in Table 3.1.  

Table 3.1: DMSP F-16 SSMIS Channel Characteristics (SSMIS Technical Report) 

Channel 
Center 

Freq.(GHz) 
3-db Width 

(MHz) 
Freq. 

Stab.(MHz) 
Pol. 

NEDT 
(K) 

Sampling 
Interval(km) 

1 50.3 380 10 V 0.34 37.5 

2 52.8 389 10 V 0.32 37.5 

3 53.596 380 10 V 0.33 37.5 

4 54.4 383 10 V 0.33 37.5 

5 55.5 391 10 V 0.34 37.5 

6 57.29 330 10 RCP 0.41 37.5 

7 59.4 239 10 RCP 0.40 37.5 
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8 150 1642(2) 200 H 0.89 12.5 

9 183.31±6.6 1526(2) 200 H 0.97 12.5 

10 183.31±3 1019(2) 200 H 0.67 12.5 

11 183.31±1 513(2) 200 H 0.81 12.5 

12 19.35 355 75 H 0.33 25 

13 19.35 357 75 V 0.31 25 

14 22.235 401 75 V 0.43 25 

15 37 1616 75 H 0.25 25 

16 37 1545 75 V 0.20 25 

17 91.655 1418(2) 100 V 0.33 12.5 

18 91.655 1411(2) 100 H 0.32 12.5 

19 63.283248±0.285271 1.35(2) 0.08 RCP 2.7 75 

20 60.792668±0.357892 1.35(2) 0.08 RCP 2.7 75 

21 
60.792668±0.357892

±0.002 
1.3(4) 0.08 RCP 1.9 75 

22 
60.792668±0.357892

±0.0055 
2.6(4) 0.12 RCP 1.3 75 

23 
60.792668±0.357892

±0.016 
7.35(4) 0.34 RCP 0.8 75 

24 
60.792668±0.357892

±0.050 
26.5(4) 0.84 RCP 0.9 37.5 

Notes 

(1) Sampling refers to along-scan direction based on 833km spacecraft altitude. 

(2) NEDT for instrument temperature 0C and calibration target 260K with integration times of 8.4 

msec for Channels 12-16; 12.6 msec for Channels 1-7, 24; and 25.2 msec for Channels 19-23 and 

4.2 msec for Channels 8-11, 17-18.  

(3) Number of sub-bands is indicated by (n) next to individual 3-db width. 

(4) RCP denotes right-hand circular polarization. 

 

The center frequencies, bandwidths, and frequency stabilities of the lower air 

temperature sounding channels (LAS), 1-7, are similar to those employed by SSM/T, 

whereas the humidity sounding frequencies, passbands, and stabilities, of Channels 8-

11, are nearly the same as SSM/T-2. The horizontal polarization (H-POL) was 

selected for the sounding channels sensing the surface emissions. However, the F-16 

SSMIS (S/N 02) is incorrectly designed with vertical polarization (V-POL) in LAS 

channels 1 to 5. For subsequent SSMIS Flight units, these channel will be configured 
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as H-POL. Based on the success of the SSM/I instrument, the SSM/I frequencies and 

polarizations were selected, with the exception of changing 85.5 to 91.655 GHz to 

reduce hardware complexity, along with the SSM/I conical scan geometry and 

external calibration approach. The 6 upper air temperature sounding channels (UAS), 

19-24, near the 60 GHz oxygen absorption band are actually sensing the right hand 

circular polarization (RCP) of the upwelling partially polarized energy (Table 3.1).  

 

Figure 3.2: DMSP F-16 SSMIS LAS/UAS Weighting Function for Standard 

Atmosphere (from SSMIS Technical Report) 

Presented in Fig. 3.2 are the SSMIS LAS and UAS weighting functions for 

the standard atmosphere. With its 24 channels, the SSMIS combines the capabilities 

of the SSM/I and the existing Advanced Microwave Sounding Unit (AMSU-B) on a 

single platform and alleviates the difficulty of aligning scenes from separate conical 

and cross-track scanning instruments. 
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3.2 Reclibration of DMSP SSMIS Temperature Data Records (TDR) 

After preliminary analysis of the SSMIS TDR distributed by the Fleet 

Numerical Meteorology and Oceanography Center (FNMOC), it was found that the 

original TDRs display notable anomalies compared to radiative transfer model 

simulations (Kunkee et al. 2008; Yan and Weng 2008). In this section, an 

introduction to SSMIS TDR calibration in different subunits will be given. It was 

found that the TDR bias existing in one subunit may not be present in others, which 

further complicates the calibration procedure.  

3.2.1 Calibration of Sounding Channels 

Shown in Fig. 3.1 is the TDR bias between observations and model 

simulations. The radiative forward model adopted here is the community radiative 

transfer model (CRTM) developed at Joint Center for Satellite Data Assimilation 

(JCSDA). The model assessment is built on a 0.3x0.3 degree global grid, which 

means that SSMIS orbital data have been interpolated onto the same resolution grid 

points. The forward model input field is generated from the National Center for 

Environmental Prediction (NCEP) Global Forecast System (GFS) 1x1 degree 26-

layer 6-hour forecast output. Because the GFS data are generated every 6 hours, four 

global fields need to be interpolated onto the same resolution SSMIS grid points, both 

spatially and temporally, for instrument evaluation purposes.  

For sounding channels, surface effects only play a very limited role in the 

forward simulation so that the surface emissivity deficiencies in the radiative transfer 
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model, particularly over land, will be minimized. The input temperature profile 

covers the height from the atmospheric lower surface boundary up to 10 mb, so that 

the CRTM essentially captures the top of atmosphere (TOA), while the water vapor 

profile derived from the relative humidity only extends up to 100 mb. The CRTM 

surface input includes the surface type, wind speed, wind direction, coastal 

percentage, skin temperature, and surface pressure. In addition, because the model 

simulation exports brightness temperature rather than antenna temperature, the 

SSMIS TDR data actually undergo an antenna pattern correction (APC), which will 

be introduced in the next section, so that the bias purely contains the error 

independent of pre-launch identified hardware problems.  

 

Figure 3.3: DMSP F-16 SSMIS TDR bias at 54.4 GHz V-POL 

It is clearly shown in Fig. 3.3 that the brightness temperature bias between 

observations and simulations can reach as large as 2.5 K in lower atmospheric 

sounding (LAS) channel 4 (54.4 GHz). The bias in the ascending node case presents a 
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different pattern compared to that for the descending node. Generally the bias 

gradient for the ascending node is higher than that for the descending node. The 

maximum bias always happens when the satellite flies northward after it reaches 

about 25-30ON. The bias for the descending node becomes larger when passing 

southward and passing 40 ON. Further study also indicates that all other LAS channels 

present a similar anomaly distribution pattern, but the scale of the associated 

anomalies may depend on the channel frequency, as well as the season. It is also 

found that the bias “jump” latitude changes with the time, showing an annual 

oscillation around 30ON. Because the average local equatorial crossing time of 

ascending scanning is around 19:40, it is believed that such anomalies may be related 

to the solar heating of reflector when the instrument emerges from earth’s or the 

spacecraft’s shadow (Fig. 3.4a) and from the effects of warm load solar intrusions 

(Fig. 3.4b). The reflector emission occurs for all scenes where the reflector and scene 

temperature differ, but its impact is larger when the reflector emerges from shadows 

and the solar elevation angles are impinging from below the canister top, resulting in 

a dramatic jump in the reflector face temperature of 70 K or more. Therefore, to 

remove the TDR anomaly, both the warm count anomaly and the reflector emission 

need to be corrected. However, due to the different effects of both sources, different 

methods will be used in the SSMIS TDR recalibration procedure.  
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Figure 3.4: DMSP F-16 SSMIS (a) main reflector arm temperature variation (left), and 

(b) warm calibration count variation (right) at 54.4 GHz V-POL (Yan and Weng 2007) 

The warm calibration count anomalies are primarily corrected by applying fast 

Fourier Transformation (FFT). Due to the distinctive features of warm calibration 

count variation, designated by the markers I through V in Figure 3.4b, preservation of 

the major spectrum of FFT decomposition components can effectively remove the 

anomaly, as shown in Fig. 3.5. 

 
Figure 3.5: Comparison between observed warm calibration count and FFT re-

composite (Yan and Weng 2007) 
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After obtaining the bias of warm calibration count from FFT, the TDR bias 

then needs be calculated from the calibration equation, as shown in Eq. 3.1.  

A C W A
A W C

W C W C

T T T T
T C C

C C C C

    
            

  , (3.1) 

where, TA, TC, and TW are the antenna temperature (TDR), cosmic background 

temperature, and warm load PRT temperature, respectively. CW and CC are warm and 

cold calibration counts. A cold calibration target bias is also occasionally detected 

and can be up to as large as 10 counts. Therefore, the cold calibration count bias 

correction is also included as the second term in the above equation using a similar 

FFT detection method. Therefore, the error introduced by the warm calibration count 

solar intrusion can be identified. 

The correction of antenna emissions is a little more complicated because the 

main reflector face temperature cannot be directly observed. In our recalibration 

method, the antenna emission contamination will be removed by the applying 

reflector emissivity at different channels to the reflector temperature, which is 

estimated from the reflector arm temperature TARM using the following equation: 

( )A R R AT T T      , (3.2) 

where, TA and TR are the antenna brightness temperature (TDR) and main reflector 

temperature, and εR is the reflector emissivity. Because no main reflector temperature 

is directly measured, the reflector arm temperature will be used to estimate the 

reflector face temperature from an empirical function generated by training datasets. 

However, it is noteworthy that there are time delays between changes in the reflector 

face temperature and arm temperature. Therefore, there might be a little difference 

between the real reflector face temperature and derived reflector temperature at any 
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given time. Considering the small value of the emissivity, such differences can be 

ignored. 

 

Figure 3.6: Same as in Fig. 3.3, but after recalibration 

After both recalibration procedures (correction of warm load solar intrusion 

and reflector emission), the anomalies presented in the original TDR bias figure (Fig. 

3.3) are significantly reduced, as shown in Fig. 3.6. 

 

3.2.2 Calibration of Imaging Channels 

For SSM/I-like channels, especially those below 40 GHz, the problems faced 

are quite different from that of the sounding channels. For 91.655 GHz channels, 

which have been shifted from 85.5 GHz in SSM/I due to the frequency dependence in 

the main reflector emissivity, there might be residual biases that affect the TDR in a 

more significant manner. Such biases could in turn cause residual error in the product 

retrievals. Because of the uncertainties of surface emissivity in the forward model, it 
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is difficult to accurately simulate the brightness temperature in these imaging 

channels. To better identify the bias, the F-16 SSMIS TDR data sets are matched with 

similar channels from the F-15 spacecraft’s SSM/I using the Simultaneous Conical 

Overpassing (SCO) method (Cao et al. 2005). In our SCO match, the spatial window 

is set to 12.5 km and temporal window is set to 60 seconds. It is also should be 

mentioned that the SCO match-up data are generally located at the higher latitudes 

(between 70 and 80) in both hemispheres due to the matching method. Over these 

areas, the surface type of coincident TDR pairs could be sea ice, snow, water, or 

permafrost. Because the spatial window is set to 12.5 km, it is possible that one of the 

matched data may be from land and the other from ocean. Such situations may affect 

the SCO technique’s accuracy. Therefore, the coincident pairs with extreme high 

TDR bias will be dropped to ensure the SCO method quality. To minimize the 

geophysical difference, the matched data are also categorized as either Antarctic and 

Arctic. The SCO comparison results for year 2005, shown in Table 3.2, indicate that 

the TDR biases exist in all SSM/I-like channels. The maximum bias can reach up to 

3.7 K, occurring in the 22.235 GHz water vapor channel over the Antarctic. It is also 

found that the SCO biases from the Arctic and Antarctic areas are also different. For 

example, the mean bias for the 19.35 GHz V-POL case is 0.9 K in the Arctic but is 

1.2 K in the Antarctic region. It is also worth mentioning again that for the SSMIS 

91.655 GHz channels, the central frequencies were shifted from their original 85.5 

GHz for SSM/I so that the SCO TDR biases of these two channels could additionally 

include the frequency shifting impacts and the contribution of instrumental antenna 

emission and scattering from the atmosphere. 
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Table 3.2: DMSP F-16 SSMIS and F-15 SSM/I TDR bias by SCO (Yan and Weng 2008) 

Arctic 
Samples: 5901 

Antarctic 
Sample: 9540 

Cloud Free 
Samples: >100,000 Frequency 

(GHz) 
Bias STDEV Bias STDEV Bias STDEV 

19.35 (V) 0.9 0.8 1.2 0.8 1.4 2.0 

19.35 (H) -0.3 0.6 0.0 0.6 0.2 3.6 

22.235 (V) 3.2 1.6 3.7 1.6 3.6 3.5 

37 (V) 2.7 1.1 2.8 1.0 3.0 1.9 

37 (H) 0.6 1.4 0.4 1.4 1.0 3.9 

91.655 (V) -0.2 1.4 -0.2 1.3 -0.1 2.4 

91.655 (H) -0.1 1.6 -0.1 1.6 0.6 4.0 

 

After systematic analysis, several possible error sources are proposed, which 

include: 

(a) Observation earth incidence angle (EIA); 

(b) Instrument antenna pattern difference; 

(c) Anomalies associated with calibration parameters; 

(d) Nonlinearity impacts in the calibration equation.  

The error caused by EIA is caused by the satellite drifting problem. The EIA 

of both F-16 SSMIS and F-15 SSM/I were set to 53.2 at their launching times. As 

time passes, the scan angle might incur slight differences after several years of 

operation. However, model simulations have shown that the brightness temperature 

variation is only 0.2 K with 1 degree of EIA change. Therefore, biases due to 

variations of the EIA have very limited impact on the TDR bias overall.  
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The TDR actually contains earth-located sets of brightness temperature 

directly converted from the original sensor counts. However, due to the sensor 

hardware limitations, e.g. feedhorn spillover loss and unavoidable leaks of the vertical 

polarization signal onto the horizontal polarization receiver, an antenna pattern 

correction (APC) is needed to correct such errors and obtain usable sensor brightness 

temperatures (known as Sensor Data Records or SDRs). The Antenna Pattern 

Function (APF) coefficients for F-15 and F-16 SSM/I-like channels are not the same, 

which might affect the bias determination between the two instruments.  

Table 3.3 presents the contribution of the APC difference to the mean antenna 

temperature bias at frequencies from 19.35 to 37.0 GHz, which may vary from -1.99 

K to 1.6 K near polar areas. The results for the 91.655 GHz channels are not shown 

here because the bias of the SSMIS 91.655 GHz channels also contains the frequency 

shift effects. Thus, the antenna pattern difference has significant impacts on the 

antenna temperature bias. 

Table 3.3: TDR bias between F16 and F15 due to APC difference (Yan and Weng 2008) 

Frequency (GHz) TA (K) 

19.35 (V) -0.72 

19.35 (H) 0.17 

22.235 (V) -1.99 

37.0 (V) -0.18 

37.0 (H) 1.60 

 

Similar to the earlier description, an effect like the main reflector emission 

bias in the LAS TDR data may also exist for these SSM/I-like high frequency 
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channels. In order to identify the impacts of reflector emission, the SCO matching 

restrictions were broadened to collect more coincident pairs. Time differences of less 

than 10 minutes are used. In addition, only cloud free pairs over the ocean between 

60ON and 60OS are used for analysis. The collected matchup data are averaged 

longitudinally. However, by comparing the longitudinally averaged biases, no 

significant latitude dependent bias patterns can be found, which indicates that the 

reflector emission contaminating the LAS antenna temperature has little impact on 

SSM/I-like channels. 

The antenna temperature can theoretically be obtained using the following 

calibration equation (Mo 2007) 

2

( ) ( )( )W C W C
A C S C S C S W

W C W C

T T T T
T T C C C C C C

C C C C

  

        
 ,    (3.3) 

where, TA, TC, and TW are antenna temperature, cosmic background temperature, and 

warm load PRT temperature, respectively. CW, CC, and CS are warm calibration, cold 

calibration, and scene counts. The third term in Eq. 3.3 is the nonlinear calibration 

term. µ is the nonlinear parameter, which is proportional to the radiometric counts 

from the earth view scene.  

To calculate the nonlinear parameter, the SCO coincident pairs from F-15 and 

F-16 collected close to the Arctic and Antarctic regions are separated. Assuming each 

SCO pair observes exactly the same location at the same time, the antenna 

temperature difference, after removing the APC bias, is supposed to be exclusively 

due to the nonlinear term in the calibration equation. Therefore, the nonlinear 

parameters can be obtained from the calibration equations of the two satellites over 

the Antarctic and Arctic regions. Table 3.4 gives the nonlinear parameters for five 
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channels from both F-15 SSM/I and F-16 SSMIS. Because the two 91.655 GHz 

channels on SSMIS contain frequency shifting effects in the SCO matching, the 

nonlinear parameters calculated using above method are not as reliable as for the 

other channels, and no nonlinear parameters are available for these two channels. 

Table 3.4: Nonlinear parameters in calibration equation for F-15 SSM/I and F-16 

SSMIS at channels from 19.35 to 37.0 GHz (Yan and Weng 2008) 

Nonlinear Parameter () 
Frequency(GHz) 

F-15 F-16 

19.35 (V) -7.0449E-6 1.0913E-5 

19.35 (H) -1.1059E-6 -1.0825E-6 

22.235 (V) -5.4371E-5 6.7848E-5 

37.0 (V) -5.6897E-5 7.1057E-5 

37.0 (H) -1.7801E-5 2.2946E-5 

 

The results show that all nonlinear parameters are on the scale of 10-5, which 

will be equivalent to about 1 K in the 22.235 and 37.5 GHz channel nonlinear terms, 

but only 0.3 K for the 19.35 GHz channels. Furthermore, if we combine both linear 

and nonlinear calibration terms in the calibration equation (Eq. 3.3) for the TDR, the 

SSM/I-like channels antenna temperature biases are significantly reduced and the 

mean bias is lower than 0.3 K (Yan and Weng 2008).  

 

3.3 Footprint Matching of SSMIS TDRs 

As shown in Table 3.1, the SSMIS TDR data are actually collected at different 

resolutions. In each scan, there are 180 scenes for the environmental (ENV) channels, 

but 90 scenes for imaging (IMG) channels, only 60 scenes for LAS channels, and just 
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30 scenes for UAS channels. Even for the IMG channels, the geophysical locations of 

channel 12-14 (19.35 GHz V/H-POL and 22.235 GHz V-POL) are different from 

those of channel 15-16 (37.0 GHz V/H-POL). Fig. 3.7 plots all the varisou latitudes 

and longitudes of a single scan footprint.  

 

Figure 3.7: DMSP F-16 SSMIS TDR single scan geophysical locations of different 

channels 

In this study, both the ENV and IMG channels’ (Channel 8-18) brightness 

temperature information will be used to derive IWP. It is necessary to match different 

resolution channels to a uniform resolution for better retrieval quality. After 

comparing the latitude and longitude of different resolution channels, it is found that 

the best results are to match all other target channels to the 37.0 GHz channel 

footprint.  
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Figure 3.8: Same as in Figure 3.7, but after footprint matching based on 37.0 GHz 

resolution (Sun and Weng 2009) 

Fig. 3.8 is the footprint matching result using Channels 15/16 (37.0 GHz) as 

the base footprint. For each scan, the scan before and after are grouped and the FOV 

with the closest geophysical location will be taken. After footprint matching, most 

scattered scan FOVs are centered within a very nearby geophysical area, if not the 

exact same location. It is also noteworthy that the identical FOV size given in the plot 

is for visualization purposes. In fact, the FOVs of lower frequency channels are much 

larger than higher frequency ones. The designated footprint size is indicated in Table 

3.1. 
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3.4 Evaluation of SSMIS ENV/IMG Channels by Heritage Retrieval 

Algorithms 

3.4.1 SSMIS TDR Antenna Pattern Correction (APC) 

TDR data actually contain earth-located sets of brightness temperature 

directly converted from the original sensor counts. However, due to the sensor 

hardware limitations, e.g. feedhorn spillover loss and unavoidable leak of vertical 

polarization signal onto the horizontal polarization receiver, an antenna pattern 

correction (APC) is used to help identify and reduce such errors and obtain usable 

sensor brightness temperatures (also known as Sensor Data Records or SDRs). In our 

study, the APC algorithm consists of a linear correction for the feedhorn spillover loss 

and cross-polarization coupling, as shown in Eq. (3.4). 
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  ,  (3.4) 

where 

)(hvTB SDR at vertical (horizontal) polarization, 

)(hvTA TDR at vertical (horizontal) polarization, 

)(hv Feedhorn spillover factor, and 

)(hva Cross-polarized coupling coefficient. 

Because the maximum cross-polarization occurs when the SSMIS views a cloudless 

dry atmosphere over a calm ocean surface, av(h) approaches zero in the LAS and UAS 
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channels. Only the spillover correction term is kept in the APC linear equation for 

those channels. The DMSP F-16 SSMIS has a larger than expected correction for 

antenna cross polarization effects even though the APC for SSMIS was originally 

intended to correct primarily for antenna spillover. In our study, the DMSP F-16 

SSMIS SSM/I-like lower frequency channels’ linear mapping coefficients and APC 

are take from Yan and Weng 2008. Because some SSM/I heritage algorithms were 

developed using 85.5 GHz observations, linear mapping coefficients for converting 

91.655 GHz to 85.5 GHz were kindly provided by Naval Research Laboratory (NRL) 

to make the heritage retrieval algorithms directly applicable to SSMIS data when 85.5 

GHz observations are involved.  

Due to the different sampling resolution of SSM/I-like channels, we first 

produce global gridded data at a resolution of 0.3x0.3 degrees and then separate the 

data into two files corresponding to ascending and descending nodes. Next, a set of 

empirical linear remapping coefficients are applied to F-16 SSM/I-like channels. Eq. 

(3.5) is used to make these channel signatures closer to the corresponding heritage 

SSM/I channels. 

ichanichanichanichan TATA  '   ,  (3.5) 

where 

'
ichanTA remapped antenna brightness temperature, 

ichanTA original antenna brightness temperature, and 

ichanichan  , remapping coefficients. 



 

 42 
 

Note that such a remapping also includes the mapping of F-16 SSMIS 91.655 

GHz to SSM/I 85.5 GHz so as to minimize the effects of the channel frequency shift, 

thereby allowing existing F-15 SSM/I retrieval algorithms to be used with F-16 data. 

Finally, the TDR to SDR conversion will be implemented by applying the linear APC 

algorithm to the remapped TDRs, as shown in Eq. (3.4). 

3.4.2 Applications of Heritage Retrieval Algorithms  

The retrieval algorithms used to generate environmental products were 

previously developed by the SSM/I Cal/Val science teams and have been widely used 

at NOAA since the 1990s, as described in Ferraro et al. (1996). The products used in 

this evaluation include total precipitable water (TPW), cloud liquid water path 

(LWP), snow and sea ice coverage, land surface temperature (LST), rainfall rate 

(RR), and land emissivity, as presented in Table 3.5. In addition to comparing the 

global pattern profiles of the retrieval data, we also analyze the differences by plotting 

scatter diagrams for TPW, LWP, LST, and land emissivity retrievals in order to 

provide a more straightforward sense of whether heritage retrieval algorithms are fit 

for the application to F-16 SSM/I-like channels, and whether the F-16 SSMIS TDR 

recalibration algorithm performs well. 

To demonstrate the product retrieval quality and stability, data between 

December 2005 and February 2006 (DJF) are processed. By evaluating these products 

from hydrometeor (TPW, LWP, and RR) and land surface products (LST, 

emissivity), as well as snow and ice cover, we may not only better understand the 

quality of DMSP F-16 SSMIS retrievals. In this section, each product will be 

illustrated, and statistical analyses of several products will also be given. 
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Table 3.5: Summary of Validation Heritage Retrieval Algorithms 

Parameter Channels (GHz) Units Area Reference 

Total Precipitable Water (TPW) 19.35V, 22.235V, 37.0V mm Ocean Alishouse et al. 1990 

Cloud Liquid Water (LWP) 19.35V, 22.235V, 37.0V, 85.5H mm Land 
Weng and Grody 1994; 

Weng et al. 1997 

Snow Cover 
19.35V/H, 22.235V, 37.0V, 

85.5V 
 Land 

Grody 1991; Grody 

and Basist 1996 

Sea Ice Cover 
19.35V/H, 22.235V, 37.0V/H, 

85.5V 
 Ocean 

unpublished 

Land Surface Temperature (LST) 22.235V, 37.0V, 85.5V K Land Weng and Grody 1998 

Rain Rate (RR) 19.35V, 22.235V, 37.0V, 85.5V mm/hr All 
Grody 1991; Ferraro 

and Marks 1995 

Land Emissivity 
19.35V/H, 22.235V, 37.0V/H, 

85.5V/H 
 Land 

Weng et al. 2001; Yan 

and Weng 2003 

 

A. Total Precipitable Water (TPW) 

The water vapor path retrieval, also known as total precipitable water (TPW), 

has been constructed globally over the ocean from passive microwave instruments 

since 1987 when the first SSM/I was launched aboard the DMSP F-8 vehicle. The 

algorithm has been updated from Alishouse et al. (1990) by using brightness 

temperatures at 19.35V, 22.235V, 37.0V, and 85.5V (all frequencies in GHz). As one 

of the most accurate parameters retrieved by passive microwave sensors, the error is 

only around 10% on a globally averaged basis compared with radiosonde 

observations (Alishouse et al. 1990). In our study, a slight modification is applied to 

the original algorithm in order to obtain more accurate results under extreme weather 

conditions. 
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Figure 3.9: Totoal precipitatble water (TPW) retrieved from F-16 SSMIS (left) and F-15 

SSM/I (right) 

In the retrieval process, TPW is first calculated using the first equation in Eq. 

(3.6a). Simultaneously, a scattering index (SI) is also computed (the details of this 

index will be introduced in the discussion of rain rate retrieval). Whenever the 

scattering index is greater than 10 K, meaning the possible existence of precipitation, 

an additional cubic correction is applied via the second equation in Eq. 3.6b to get a 

corrected TPW. 

 

Figure 3.10: Scatter plot of (a) TPW (left) and (b) LWP (right) from DMSP F-15 SSM/I 

and DMSP F-16 SSMIS Imaging Channels  
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Plotted in Fig. 3.9 are the TPW data retrieved from F-16 (left) and F-15 

(right), respectively. Please note that no TPW is retrieved over sea ice due to its high 

and variable emissivity. From both figures, we can observe many similar features and 

phenomena associated with the Inter-tropical Convergence Zone (ITCZ), South 

Pacific Convergence Zone (SPCZ), and South Atlantic Convergence Zone (SACZ). 

Fig. 3.10(a) gives a statistical comparison between TPW retrievals from F-16 and F-

15. The mean bias, standard deviation (STDEV), and root mean square (RMS) of 

corresponding parameters are given in Table 3.6. The statistical results indicate that 

the preprocessing of F-16 SSMIS data produces good quality TPW data from the 

imager channels at 19.35, 22.235, and 37.0 GHz. 

Table 3.6: Statistical Analysis of Retrieval Bias for Selected Parameters 

Parameter Mean Bias STDEV RMS 

TPW -0.753 mm 0.629 mm 0.981 mm 

LWP -0.007 mm 0.017 mm 0.018 mm 

LST 1.531 K 1.373 K 2.056 K 

RR -0.013 mm/hr 0.110 mm/hr 0.111 mm/hr 

V35.19  0.0017 0.0034 0.0038 

H35.19  0.0019 0.0045 0.0049 

V235.22  0.0017 0.0034 0.0038 

V0.37  0.0007 0.0050 0.0051 

H0.37  0.0017 0.0063 0.0065 

 

B. Cloud Liquid Water Path 

The retrieval algorithm for cloud liquid water path (LWP) adopted in our 

study was introduced in a pair of papers (Weng and Grody 1994; Weng et al. 1997). 
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This algorithm makes use of brightness temperature measurements at both low and 

high frequencies to retrieve LWP in precipitating and non-precipitating clouds over 

ocean. Three LWPs are pre-calculated using different channel combinations (19.35 

V/22.235 V, 37.0V/22.235 V, and 85.5 H/22.235 V). The final LWP is determined by 

several criteria, as shown in Eq. 3.7: 
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 .    (3.7) 

This algorithm improves over former LWP retrievals by detecting LWP both 

in optically thin stratus and low-level clouds, as well as in highly convective clouds. 

The global LWP retrievals in boreal winter using F-15 and F-16 data are given in Fig. 

3.11. 

 

Figure 3.11: Same as Fig. 3.9 but for cloud liquid water path (LWP) retrieval 

Cloud liquid water path retrieved from the two sensors shows similarities in 

their spatial distribution. Some expected features have been captured in the global 

patterns, such as the presence of strong convection over the western Pacific warm 

pool, SPCZ, and SACZ. However, along the continental coasts and sea ice edges 

there are some anomalously large LWP values. This may be caused by a mismatch of 

TDRs or contamination by surface sea ice. Meanwhile, near the high LWP areas, 
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some anomalously low points may be due to the saturation of SSMIS imaging 

channels from heavy precipitation. The correlation between F-15 and F-16 is 

presented in Fig. 3.10(b) and is nearly linear. The increased scatter at higher LWP is 

probably due to the mismatch of the scale of the observations and the spatial 

inhomogeneity of clouds and precipitation. However, the small mean bias and 

standard deviation indicate that the LWP retrievals from SSMIS are reliable and can 

be used operationally. 

 

C. Land Surface Temperature 

The land surface temperature (LST) algorithm for SSM/I was originally 

presented in Weng and Grody (1998). As a linear regression algorithm developed 

from ground truth data, LST can be directly obtained over crop/range, moist and dry 

soils, and other surface types without identify surface type in advance. SDR 

measurements at 22.235 GHz V, 37.0 GHz V, and 85.5 GHz V are used in this 

algorithm as shown by Eq. (3.8):  
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Figure 3.12: Same as Fig. 3.9 but for land surface temperature (LST) retrieval 
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The global retrieval results can be found in Fig. 3.12(e) and (f). The LST 

patterns of F-15 and F-16 are highly consistent with each other. Compared to the 

summer season retrievals (not shown here) which shows the expected changes, most 

of Eurasia presents a lower LST due to the snow cover. However, it is shown (see 

Fig. 3.13(a)) that the mean LST of F-15 is about 1.5 K higher than that of F-16. The 

bias and standard deviation also increase with increasing LST. The outliers with large 

bias in Fig.3.13(a) are probably caused by measurement mismatches along coastal 

regions and by the deficiencies in the remapping algorithm which excludes scattering 

and emission adjustment. Overall, the SSM/I LST retrieval algorithm may be 

migrated to SSMIS for operational use, but there is still a need to refine the 

remapping coefficients that convert SSMIS brightness temperatures at 91.655 GHz to 

SSM/I brightness temperature at 85.5 GHz, since Eq. 3.8 is used for both SSM/I and 

SSMIS. 

 
Figure 3.13: Scatter plot of (a) LST (left) and (b) emissivity at 37.0 GHz (right) from 

DMSP F-15 SSM/I and DMSP F-16 SSMIS Imaging Channels  

 

D. Rain Rate 
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The rainfall rate (RR) algorithm developed at NESDIS (Ferraro and Marks 

1995) makes use of the scattering of upwelling radiation by precipitating cloud ice 

particles and large raindrops at 85.5 GHz to detect rainfall both over land and oceans. 

The difference between actual and an estimated (through 19.35 GHz V-POL and 

22.235 GHz V-POL observations) brightness temperatures at 85.5 GHz V-POL, 

which is referred to as the ”scattering index” in Grody 1991, is calculated by Eq.(3.9). 
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An indication of rain is obtained if SI is greater than 10K. In addition, the 

LWP retrieval is also used over the oceans to identify the rainfall area. As a result, the 

minimum detectable rain rate is about 0.5 mm/h over land and 0.2 mm/hr over ocean.  

 

Figure 3.14: Same as Fig. 3.9 but for rain rate (RR) retrieval 

Fig. 3.14 display the rain rate retrieval from F-16 (left) and F-15 (right). Over 

ocean, RR retrievals from each sensor correlate highly to its own high LWP retrieval 

regions and also between each other. One can also easily discern from the figures the 

heavy rainfall over certain key areas, such as the western Pacific warm pool and 
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SPCZ. The smooth continuous RR transition between land and ocean in both figures 

confirms that the RR retrieval algorithm can correctly capture the rainfall signals both 

over land and ocean. However, even though the geophysical locations for RR are 

close to each other over land, the scales are not consistent between F-15 and F-16. As 

RR is a parameter highly dependent on the scan time, the bias could be very large 

even when the scan time difference between F-15 and F-16 is around 30 minutes. 

Therefore, it is yet to be determined whether the source of bias is due to scan time 

differences or sensor differences. Furthermore, because the RR retrieval also uses the 

85.5 GHz channel measurements remapped from 91.655 GHz in F-16 SSMIS via 

globally derived linear coefficients, the more localized RR retrieval presents a larger 

bias between F-16 SSMIS and F-15 SSM/I. 

 

E. Sea Ice 

Several sea ice concentration and ice age algorithms have been developed for 

passive microwave radiometers (Rubinstein et al. 1994; Markus and Cavalieri 2000). 

Comparisons between these algorithms have also been performed (Markus and 

Dokken 2002; Shokr and Markus 2006). To maintain the continuity of our heritage 

study of sea ice cover, a simple algorithm is used to identify the presence of sea ice. 

The retrieval function firstly calculates the ice concentration by  
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When ICE is greater than 70%, this point is defined to be covered by sea ice. In our 

sea ice averaging, the percentage of sea ice present during the three winter months 
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(December, January, February) is calculated. Fig. 3.15 (a)-(d) presents the sea ice 

cover retrieved from F-16 and F-15 over the northern and southern polar areas, 

respectively.  

 

 
Figure 3.15: Sea ice cover retrieved in North Polar region from (a) F-16 SSMIS and (b) 

F-15 SSM/I; and in South Polar region from (c) F-16 SSMIS and (d) F-15 SSM/I  

The sea ice cover in the northern hemisphere extends south of 50oN both 

along east coast of North America and the Eurasian continent. Due to the North-
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Atlantic current, there is a lack of sea ice in the Barents Sea. Overall, the sea ice cover 

from F-15 SSM/I and F-16 SSMIS are in good agreement. 

 

F. Snow Cover 

The snow coverage retrieval algorithm used in our study was published in a 

pair of papers by Grody (Grody 1991; Grody and Basist 1996). The method includes 

measurements at 85.5 GHz to detect shallow snow cover and also screens for 

precipitation, cold desert, frozen ground, and other signatures which could potentially 

increase retrieval error. In this algorithm, brightness temperature measurements at 

19.35 GHz V-POL, 22.235 GHz V-POL, 37.0 GHz V-POL and 85.5 GHz V-POL are 

used. 

Snow cover retrieved from F-15 and F-16 near the north and south poles are 

shown in Fig. 3.16 (a), (b), (c), and (d). Because the retrievals are from December 

2005 to February 2006, most of areas north of 40oN are covered by snow. Overall, the 

snow cover retrievals from the two sensors are highly consistent. However, because 

snow retrieval also uses 85.5 GHz measurements to derive the scattering parameter, 

the globally derived remapping coefficient may also affect snow cover retrieval. 

Therefore, stratified remapping coefficients will be developed. 
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Figure 3.16: Snow cover retrieved in North Polar region from (a) F-16 SSMIS and (b) 

F-15 SSM/I; and in South Polar region from (c) F-16 SSMIS and (d) F-15 SSM/I  

G. Land Emissivity 

The land emissivity is an important parameter that can be used to infer some 

other geophysical parameters, such as soil moisture, vegetation water, and soil 

wetness. The land emissivity algorithm was published in a pair of papers by Weng 

(Weng et al. 2001; Yan and Weng 2003). For low frequency channels at 19.35 GHz 

V/H and 37.0 GHz V/H, the emissivities are based on a linear regression relationship 

among all seven SSM/I-like channel SDR measurements, as shown in Eq. 3.11: 
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For emissivity at 85.5 GHz V-POL and 85.5 GHz H-POL a nonlinear 

relationship is built from the 37.0 GHz V and 85.5 GHz V/H data using Eq. 3.12 due 

to the high scattering effects in both channels: 
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  .   (3.12) 

Table 3.7 presents the coefficients in Eq. 3.11 and Eq. 3.12 for each channel. 

Here, we choose retrievals at 19.35 GHz (H/V) and 37.0 GHz (H/V) for 

demonstration purposes. 

Table 3.7: Land Emissivity Retrieval Coefficients 

Channel a0 a1 a2 a3 a4 a5 a6 a7 

19.35 V 0.5098 4.4664E-3 -6.0427E-6 -2.5285E-3 -2.3725E-3 9.8163E-4 -2.2269E-3 -1.3193E-3 

19.35 H 0.4290 1.0685E-3 4.0082E-3 -2.9672E-3 1.4281E-3 1.7393E-3 -1.0247E-3 -2.2088E-3 

22.235 V 0.5098 4.4664E-3 -6.0427E-6 -2.5285E-3 -2.3725E-3 9.8163E-4 -2.2269E-3 -1.3193E-3 

37.0 V 0.3186 -1.5225E-3 1.7213E-3 -3.7164E-4 6.5607E-3 8.1213E-4 -1.7678E-3 -1.7250E-3 

37.0 H 0.2622 -1.5095E-3 -1.9587E-5 5.0142E-4 6.8795E-4 5.7910E-3 -7.1539E-4 -2.1267E-3 

Channel b0 b1 b2 b3 b4 b5 b6  

85.5 V -0.9435 4.1137E-3 -7.0109E-6 1.5677E-2 -3.1055E-5 -6.5089E-3 1.4984E-5  

85.5 H -0.9788 3.0851E-3 -5.2696E-6 7.4612E-3 -2.2772E-5 2.9755E-3 4.5324E-6  

 

The results are shown in Fig. 3.17. Because the channel frequency shifts from 

85.5 GHz in F-15 SSM/I to 91.655 GHz in F-16 SSMIS, we do not include these two 

channel emissivities in this comparison. 
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Figure 3.17: Land emissivity retrieved in the 19H channel by (a) F-16 SSMIS and (b) F-

15 SSM/I; for 19V by (c) F-16 SSMIS and (d) F-15 SSM/I; for 37H by (e) F-16 SSMIS 

and (f) F-15 SSM/I; for 37V by (g) F-16 SSMIS and (h) F-15 SSM/I 

The retrievals from each sensor capture land surface signatures well. For 

example, vertical polarization over deserts shows a larger emissivity compared to 
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horizontal polarization. In addition, emissivity retrieved from 37.0 GHz is more 

sensitive to snow surface conditions than the 19.35 GHz channels. Generally 

speaking, the retrievals are very well correlated. However, very similar to the land 

surface temperature retrieval, the difference between emissivities retrieved for F-16 

and F-15 for 37.0 GHz horizontal polarization case is observed over a large dynamic 

range as the emissivity increases (Fig. 3.13(b)). Furthermore, the differences become 

larger in the desert and snow cover areas where surface scattering is present. 

 

3.4.3 Assessment of DMSP F-16 SSM/I-like Channels Performance 

Orbit data for F-16 SSMIS and F-15 SSM/I have been processed to a 1/3 

degree grid for easy comparison. Because the time difference between DMSP F-15 

and F-16 is within 30 minutes, most retrieval products will not be affected much by 

such a small time variation except for the rain rate, which is more temporally 

variable. The products, including TPW, LWP, LST, Snow Cover, Sea Ice Cover, and 

land emissivity are retrieved both by SSM/I and SSMIS. It is shown that the retrievals 

from both sensors demonstrate a high level of agreement with each other. The 

statistical results based on the seasonally averaged data for TPW, LWP, LST, RR, 

and emissivity for five SSM/I channels are listed in Table 3.6. Both the relatively 

small mean bias and standard deviation prove that F-16 SSMIS data can be 

successfully used for the retrievals previously developed for use with SSM/I 

channels. However, retrievals sensitive to 85.5 GHz measurements, such as the land 

surface temperature and the land emissivity, display some biases. For example, over 

the Sahara desert LST retrieved from F-16 is slightly lower than that from F-15 while 
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there are no significant biases over non-desert areas. Because the LST retrieval 

algorithm uses the quadratic term of the vertically polarized 85.5 GHz brightness 

temperature, the higher scattering features of the 91.655 GHz band in F-16, despite 

being remapped to 85.5 GHz, might be the source of the biases. Therefore, the F-16 

SSMIS to SSM/I remapping algorithm requires further improvement beyond the 

simple linear remapping algorithm used to correct the change from 85.5 to 91.655 

GHz, which cannot account for scattering and emission effects under all weather and 

surface conditions. 

In this chapter, an introduction on DMSP F-16 SSMIS scan geometry, channel 

frequency, calibration and validation were given to indicate that this new generation 

microwave instrument may provide high resolution top quality microwave satellite 

data on cloud physics study, particularly for strong deep convections associated with 

large ice particles. In the next chapter, an ice cloud parameter retrieval method is 

introduced and then improved to be applied on SSMIS high frequency channel 

measurements to infer ice particle effective diameter and ice water path. Retrievals 

over severe weather conditions, such as hurricane and multiple cell severe storms, and 

theoretical error analysis as well as indirect comparison to observations will be given 

to evaluate the retrieval quality. 
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Chapter 4: Retrieval of Ice Cloud Parameters Using DMSP 

F-16 SSMIS TDR 

In addition to the considerations raised for the retrieval algorithms evaluated 

in the previous section, additional issues are also notable. For example, rain rate 

retrievals along coastal regions or along sea ice boundaries always give some non-

zero values. This may be due to the mixture of land and ocean or sea ice surface types 

embodied within a single footprint while using an emission-based algorithm. 

Fortunately, because DMSP F-16 SSMIS contains not only imaging channels but 

environmental channels at 150 and 183.31 GHz, new algorithms based on particle 

scattering will be developed for precipitation estimation. This new SSMIS algorithm 

will allow rain rate to be inferred by using the direct relationship to cloud ice water 

path (IWP). Meanwhile, the IWP retrieval will directly use channel measurements at 

91.655 GHz. Thus, there is no need for remapping F-16 SSMIS and SSM/I for 

precipitation studies. 

In this chapter, an retrieval method for precipitation size ice particle effective 

diameter and IWP is going to be introduced and improved so as to be applied on 

DMSP SSMIS high frequency channels. The application of this algorithm on selected 

severe weather conditions, such as hurricanes and multicell strong storms, is also 

going to be presented. The operational IWP retrieval from different instruments is 

used to evaluate our algorithms. The error analysis of the algorithm will be conducted 

for future improvement. 
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4.1 Methodology 

4.1.1 Radiative Transfer in Ice Clouds 

At microwave frequencies, if we assume a single layer of ice cloud, the 

radiative transfer through an ice cloud layer can be approximated by a two-stream 

model as shown in the schematic diagram Fig. 4.1.  

 
Figure 4.1: Schematic diagram of the two-stream radiative transfer in an ice cloud layer 

(Weng and Grody, 2000) 

From the radiative transfer equation, 
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mathematic manipulation and the introduction of several approximations (shown in 

the Appendix), the solution of the radiative transfer equation for such a one layer two-

stream model can be obtained as:  
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where,   is the scattering parameter defined as, 
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and where  is a similarity parameter, g  is an asymmetry factor in the phase 

function, and 0  is the single scattering albedo. 

Because the similarity parameter   is generally smaller than 1 at microwave 

frequencies, the 2  term in Eq. 4.1-4.2 is much smaller than 1 and can be ignored 

with a reasonable approximation. Meanwhile, at the top of atmosphere (TOA), the 

downward radiance, 0( , )I   , is close to null due to the extremely low cosmic 

background radiation. Therefore, the radiative transfer equation solutions can be 

simplified to:  
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The upwelling (Eq. 4.4) and downwelling (Eq. 4.5) radiances (or brightness 

temperatures) in microwave frequencies are then directly proportional to the incident 

radiation at the cloud lower boundary, 1( , )I   . For a space-based platform above the 
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ice clouds, the upwelling radiance decreases as the scattering parameter increases. 

Conversely, the downwelling radiance, observed from a ground-based instrument 

looking upward, increases as the scattering parameter increases. The variation of the 

scattering parameter may result from changes in the cloud ice water path and particle 

size. Therefore, the determination of the scattering parameter Ω is critical for the 

retrieval of IWP and De. 

To determine the relationship between the scattering parameter Ω and IWP, 

the optical depth is introduced as  
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where N(D) is the particle size distribution function, Qext is the extinction efficiency 

of ice particles, x is the function of particle size, and m is the complex refractive 

index. 

Meanwhile, IWP can also be related to the particle size distribution by, 
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where ρice is the ice particle bulk density. 

For mono-dispersed particle size, the relation between IWP and τ can be 

derived from Eq. 4.6-4.7 as 
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For poly-dispersed particle size, if we use a gamma function to describe the 

particle size distribution and define the particle effective diameter as 
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the scattering parameter can be shown to be 
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In either case, the relation between IWP and De can be given by 
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where the normalized scattering parameter is defined as )1(
4

3
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From Eq. 4.12, the IWP can be retrieved if the ice particle bulk density, the 

particle diameter, scattering parameter, and the corresponding normalized scattering 

parameter are known. In the next section, the determination of these parameters will 

be introduced for the IWP/De retrieval.  

 

4.1.2 Retrieval Algorithms 

For one layer ice clouds, when the upwelling brightness temperature at the 

bottom of ice cloud, ( , )b bottomT z  , is known, the scattering parameter Ω can be 

obtained by combining Eqs. 4.4 and 4.5, as shown in Eq. (4.13), to obtain:  
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Because brightness temperature at millimeter wavelengths is sensitive to both 

IWP and De of precipitating cold cloud ice particles, dual-frequency measurements 

are required to unambiguously determine both IWP and De for a given particle bulk 

density ρice (Evans and Stephens 1995b). The theoretical relationship between the 

normalized scattering parameter (ΩN) and the particle effective diameter (De) is 

plotted in Fig. 4.2a using simulated data from a simplified radiative transfer model 

(Weng 1992). The scattering scheme in this model is based on Mie theory, which is 

used for both scattering and absorbing property determination. Several other 

assumptions are made. Cloud ice water content is randomly generated within a range 

of 0 to 0.5 3/g m . The ice cloud base is set to a height of 9 km with a thickness of 1 

km. The ice particle effective diameter randomly varies within a range of 0.1 to 3.5 

mm. The incident radiation at the cloud base is set to a constant corresponding to a 

temperature of 280 K, which indicates a middle level cloud type.  

Previous studies have shown that the brightness depression caused by 

precipitating cold cloud ice particle scattering effects within ice clouds can be 

accurately captured by microwave bands from 85.5 GHz to 220 GHz, even though the 

scale varies with the spectrum (Liu and Curry 2000; Weng and Grody 2000; 

Greenwald and Christopher 2002; Bennartz and Bauer 2003). Because the 183.31±6.6 

GHz frequency band is sensitive to middle to high troposphere ice clouds, less 

affected by surface emissivity, and more sensitive to smaller ice particle sizes 

compared to 150 GHz, but less affected by the water vapor contents in the near 

altitudes compared to 183.31±1.0 GHz channel (Muller et al. 1994), the 
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measurements at 91.655 GHz and 183.31±6.6 GHz are chosen in this study for the 

retrieval to make the retrievals cover a broader ice particle size range.  

Shown in Fig. 4.2 is the theoretical relation plotted among ice particle 

effective diameters, normalized scattering parameters, and the ratio of dual-channel 

normalized scattering parameters constructed from the model simulations. In Fig. 

4.2(a), for extremely small ice particles, the normalized scattering parameters of both 

91.655 GHz and 183.31±6.6 GHz approach zero, which indicates that both channels 

cannot “see” small ice particles. As the ice particle size increases, the sensitivity of 

both channels also increases but at different rates. The rate of increase for the 

normalized scattering parameter ΩN at 183.31±6.6 GHz is higher than for the 91.655 

GHz channel. However, ΩN at 183.31±6.6 GHz quickly reaches its optical limit 

around 1.5 mm, which means the scattering effect is saturated, while ΩN at 91.655 

GHz continues in an increasing phase for De beyond 1.5 mm. The normalized 

scattering parameter for 91.655 GHz eventually reaches to its optical limitations as 

the ice particle diameter grows to about 3.0 mm. Meanwhile, the scattering parameter 

at 183.31±6.6 GHz does not show significant variation but a slight decrease for De 

larger than 1.5 mm. From this simulation plot, it is found that the retrievals are most 

reliable when the ice particle effective diameters are within 0.5 to 2.5 mm. For ice 

particles outside this range, the results are not accurate due to the channel optical 

limitations. It should be mentioned that the outliers around the line are due to the 

randomly generated ice particle size in model simulations. 
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Figure 4.2: (a) Normalized scattering parameter as function of the particle effective 

diameter derived using a gamma size distribution; (b) the particle effective diameter as 

a function of the ratio between the scattering parameters at 91.655 and 183.31±6.6 GHz 
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To determine ice particle effective diameter, De, from dual-frequency 

channels, a scattering parameter ratio r for the 91.655 and 183.31±6.6 GHz channels 

is defined in Eq. 4.14 as 
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Fig. 4.2(b) gives the relationship between the scattering parameter ratio r and 

the particle effective diameter De from the model simulations. To infer ice particle 

effective diameter from the scattering parameter ratio, the multiple regression fit of 

the normalized scattering parameter at 91.655 GHz and the ice particle effective 

diameter are also performed using Eqs. 4.15 and 4.16, respectively.  

2 3
0 1 2 3eD a a r a r a r       (4.15) 

2 3
0 1 2 2exp[ ln( ) ln ( ) ln ( )]N e e eb b D b D b D      (4.16) 

Table 4.1 gives the coefficients for the regression fitting equations. For the 

dual-frequency measurements at 91.655 and 183.31±6.6 GHz, reliable results are 

expected when the ratio ranges from 0.2 to 0.8.  

Table 4.1: The coefficients used in the eD  and IWP  retrieval algorithm 

eD  0a  1a  2a  3a  

 -0.314 4.175 -5.614 5.228 

IWP  0b  1b  2b  3b  

 -1.645 1.910 -1.039 0.203 

 

The regression fits of 
91.655N  and De using the derived coefficients are 

presented by the blue line in Fig. 4.2(a) and (b). If the upwelling brightness 
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temperature at the bottom of the ice cloud is known, the channel scattering parameter 

can be calculated by Eq. (4.12). Thus, De and IWP can be estimated from Eqs. 4.13-

4.15 for a given ice particle bulk volume density. 

 

4.1.3 Estimation of Cloud Base Temperature 

As described in Eq. 4.13, to get the scattering parameter, brightness 

temperatures at both top and bottom of an ice cloud need to be known. For one layer 

ice cloud, the brightness temperature at the cloud top is actually the observation of the 

instrument. The question goes to how to estimate the cloud base brightness 

temperature. 

Under clear sky conditions, the brightness temperatures approximately follow 

a linear relationship for microwave frequencies, which indicates that the cloud base 

upwelling incident brightness temperature at 91.655 and 183.31±6.6 GHz can be 

estimated from lower frequency channels of 19.35 and 22.235 GHz. For ice cloud 

covered conditions, because both low frequency microwave channels can penetrate 

the clouds, these two channels can be used to predict the cloud base temperature with 

good confidence. 
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Figure 4.3: Comparison between measurements and estimates based on a regression 

relationship for the cloud base brightness temperature at several channels: (a) 91.655 

GHz V-POL, (b) 91.655 GHz H-POL, and (c) 183.31±6.6 GHz H-POL  

In our study, a set of empirical equations constructed between the SSMIS 

lower frequency channels (19.35 and 22.235 GHz) and higher frequencies (91.655 

and 183.31±6.6 GHz) are applied to estimate the ice cloud base brightness 

temperature. The relation is built by brightness temperatures collected under cloud-

free conditions at each matched environmental channel footprint scene. The cloud-

free location is identified by cloud liquid water path over ocean (Weng and Grody 

1994) and rainfall free over land (Ferraro and Marks 1995) using DMSP SSMIS 

heritage algorithms.  
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Shown in Fig. 4.3a-c is the scatter plot of estimated brightness temperatures 

versus observed brightness temperature at 91.655 and 183.31±6.6 GHz under clear 

sky conditions over land surface. The statistical analysis shows that the cloud bases 

can be estimated with a standard deviation of about 1.5 K at 91.655 GHz and about 

4.25 K at 183±6.6 GHz over land. Smaller standard deviations are shown in the case 

of ocean areas due to the smoother surface conditions. However, the relatively bigger 

standard deviation in the 183.31±6.6 GHz channel also indicates that the prediction of 

cloud base temperature may introduce additional uncertainties in the retrieval of ice 

cloud parameters, which will be discussed in the error analysis section. 

 

4.2 Retrieval of Ice Particle Effective Diameter and Ice Water Path 

Presented in the Fig. 4.4 is a flow chart for retrieval of IWP/De from the 

original DMSP SSMIS TDR.  

As described in previous sections, the original TDR data first undergoes a 

recalibration process. Then, data from different subunits are footprint matched to the 

IMG original resolution within about 25 km. The cloud base temperature at 91.655 

GHz V-POL and 183.31±6.6 GHz V-POL are estimated using footprint matched 

19.35 GHz V/H-POL and 22.235 GHz V-POL. The scattering parameter as well as 

the ratio of scattering parameters can then be obtained. Finally, both IWP and De will 

be retrieved simultaneously by the proposed retrieval algorithm. 

In this section, two severe weather cases associated with deep convection are 

selected to demonstrate the application of the retrieval algorithm. One is the hurricane 

during landfall; the other is a multicell storm over land. 
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Figure 4.4: Flow chart of the retrieval of IWP/De from DMSP SSMIS TDR 

 

4.2.1 Hurricane Case Study 

Hurricane Gustav was one of the most destructive hurricanes of the 2008 

Atlantic hurricane season. It caused serious damage and casualties in several 

countries in the Caribbean and triggered the largest evacuation in United States 

history. Gustav formed on August 25, 2008 southeast of Haiti and rapidly 

strengthened into a tropical storm that afternoon and further into a hurricane by early 

the next day. It remained at Category 2 intensity until landfall on the morning of 

September 1, 2008 in Louisiana.  

The De and IWP retrievals at the time of landfall of Hurricane Gustav on 

September 1, 2008 EST are presented in Fig. 4.5a-b. Typical hurricane features, such 
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as the eyewall, spiral rainfall bands associated with large IWP of more than 2 kg/m2, 

and De close to 1.5 mm are consistently present in the IWP and De retrievals. Because 

the hurricane moved northeastward after landfall, the maximum spiral rainbands 

occur to the right side of the hurricane track, where the most dangerous part of the 

hurricane exists due to the additive effect of the vortex wind speed and the broader 

atmospheric flow. The relatively calm eye and downdraft areas between the spiral 

bands are also clearly shown. Away from the eyewall and the heavy rain bands, the 

ice particle effective diameter shows a large area of quite uniform particle size 

smaller than 0.3 mm in Fig. 4.5(b), which corresponds well to the scattering 

parameter optic limits below 0.3 mm in Fig. 4.2(a) for 91.655 GHz. This indicates 

that the retrieval over these areas might not be as reliable as in other regions.  
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Figure 4.5: (a) Ice particle effective diameter; (b) ice water path; and (c) GOES-12 and 

ice water path in a superimposed plot for hurricane Gustav at the time of landfall on 

September 1, 2008 UTC 

The smooth transition of De and IWP from the ocean to the land proves that 

the estimation of cloud base temperatures for ocean and land are quite accurate. The 
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surface impacts from different surface types can actually be minimized through the 

multiple regression prediction method so that the quality of IWP retrievals can be 

assured. Because De is only determined by the scattering parameter but the IWP is 

determined by not only by De but also the ratio of the scattering parameter and the 

normalized scattering parameter, as well as the depth of the ice cloud, a large De does 

not necessarily correspond to a large IWP or vice versa, which is the reason why the 

location of maximum De is not exactly the same location as the maximum of IWP. 

However, it should be pointed out that the brightness temperature at 

183.31±6.6 GHz may be heavily affected by the water vapor content associated with 

the ice clouds so that the brightness temperature depression by ice particle scattering 

effects may be significantly offset, which indicates a smaller scattering parameter in 

this channel. As a result, the retrieved De may be larger than the real value. 

Shown in Figure 3c is the superimposed plot of Geostationary Operational 

Environmental Satellite (GOES-12) visible channel image at 14:15 UTC on 

September 1, 2008 and the IWP retrieval demonstrated earlier. It is observed that 

most of precipitation ice clouds exist near the hurricane eye, even as the clouds are 

distributed over a huge area in the visible channel image. Due to its high capability to 

deep penetrate into clouds for internal structure sensing, the microwave instrument 

greatly helps to identify the large particles and heavy rainfall locations, which cannot 

be easily distinguished by visible or infrared channels under such severe weather 

conditions because of their optical limitations. 
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4.2.2 Mid-latitude Multicell Storms Case Study 

A mid-latitude multicell storm captured by the DMSP F-16 SSMIS during the 

evening of April 3, 2007 EST is presented in Fig. 4.6a-b.  

The multicell storm extended in the northeastern-southwestern direction with 

a distinct and strong leading-edge thunderstorm belt. There are at least three strong 

updraft cells clearly shown along the cold forward front line. Because the strong 

updrafts associated with the supercells are favorable for the creation of large ice 

particles such as graupel or hail, moderate to large ice particle effective diameters 

generally exist along the leading edge of the storm. 
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Figure 4.6: Same as in Fig. 4.5, but for mid-latitude multicell storm on April 3, 2008  

However, the fairly different discrete distribution pattern shown in the IWP 

figure (Fig 4.6b) once again proves that the IWP is not exclusively related to the De. 

Actually, the bulk ice density, scattering parameter, and normalized scattering 

parameterd interactively determine the IWP. Following the leading strong updraft 

belt, there is a large area of relatively stratified clouds with smaller ice particles.  
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Figure 4.7: (a) The brightness temperature measured by DMSP F-16 SSMIS along the 

cross-section between A and B at 19.35, 91.655, and 183.31±6.6 GHz; (b) the scattering 

parameter at 91.655 and 183.31±6.6 GHz. 

Fig. 4.7 a-b give the brightness temperature measurements at the 19.35, 

91.655, and 183±6.6 GHz channels and the corresponding calculated scattering 

parameters in the IWP retrieval along the cross-section between A and B shown in 

Fig 4.6(b), respectively. Because the instrument observations actually reflect the 

cloud top optical signals, the relatively stable brightness temperature at 19.35 GHz 

indicates that there are very limited impacts on the low frequency channels. However, 

the lower brightness temperatures at 183±6.6 and 91.655 GHz are the result of 

particle scattering effects. Most of the brightness temperatures of these two channels 

are in good correspondence. However, some big brightness temperature depression at 

91.655 GHz may not be shown at 183±6.6 GHz, such as between 92OW and 91OW, 

where the sharp peak to valley change shown in the 91.655 GHz plot is not quite clear 

at 183±6.6 GHz. A possible explanation is that the clouds within these longitudes are 

actually in a large mixing phase so that the water vapor effects offset the scattering 

signal at 183±6.6 GHz. The multiple peaks in the scattering parameter plots indicate 

that there may be several individual strong updrafts, and the large values also indicate 
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that these updrafts are also possibly associated with large ice particles, which have 

been clearly illustrated in the retrievals of De and IWP even though the magnitudes 

are smaller than those of the hurricane case.  

 

4.3 Evaluation of IWP Retrievals 

The retrieval algorithm in this study is applied for mid-altitude precipitating 

ice cloud microphysics. Neither direct observations in a recent field campaign for this 

cloud type nor IWP derived from other methods suitable for closely (temporally) 

matched evaluation are available. For instance, CloudSat IWP retrievals are about 6 

hours earlier than the DMSP F-16 SSMIS local scan.  

 

Figure 4.8: Same as in Fig. 4.6(b), except for retrieval from MetOp-A in MSPPS  

For qualitative comparison purposes, the IWP retrieved from MetOp-A in the 

Microwave Surface and Precipitation Products System (MSPPS) (Ferraro et al. 2005) 

on the same day is also presented in Fig. 4.8. The MSPPS project is dedicated to the 

retrieval of near-real-time operational surface and precipitation products using 

antenna temperatures from the AMSU-A and AMSU-B/MHS instruments on board  
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NOAA's K/L/M/N/N' series and the EUMETSAT Polar System's (EPS) MetOP series 

of polar-orbiting satellites. This project has advanced from 5 products at its Day-1 

phase to 9 products at the Day-2 phase. The current Day-2 MSPPS products include 

rain rate and falling snow, total precipitable water, cloud liquid water, snow cover, 

snow water equivalent, sea ice concentration, ice water path, emissivity (23.8 GHz, 

31.4 GHz, and 50.3 GHz), and land surface temperature. 

Please note that the local scan time of F-16 is about two hours earlier than that 

of MetOp-A, so Fig. 4.8 actually indicates results from two hours later than Fig. 4.6. 

From the figure, the multiple cell structure can still be identified clearly even after 

two hours of additional development. However, the structure is slightly changed 

compared to that from DMSP F-16 SSMIS, and the IWP in the storm center areas are 

smaller than those retrieved from F-16, which may be caused by both the dissipation 

of the weather system and instrument differences. It is also worthwhile to note that 

there are large areas in the northern part of the American midwest which are flagged 

as non-retrievable, and these are areas which are resolved in the SSMIS retrievals by 

applying different coefficients for different surface type estimated from SSMIS low 

frequency channels. 

 

4.4 Error Analysis of Retrievals 

As pointed out earlier, several major uncertainties in the retrievals of cloud ice 

water path, such as ice particle bulk volume density, scattering parameters, and ice 

particle effective size, may affect the quality of retrievals. In this section, the error 

caused by these uncertainties will be discussed.  
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4.4.1 Error in Ice Particle Effective Diameter Retrieval 

The ice particle effective size is obtained through the regression relationsship 

between De and scattering parameter ratio r  from Eq. 4.13, derived from the physical 

model (Weng and Grody 2000). Therefore, the indeterminate error of the particle 

effective diameter retrieval can be determined by: 

1( , )e
e

e

D r
f D r

D r

 
 ,    (4.17) 

where 

( , )( )topbottom

bottom top

bottom top

BB
B B

B B

TTr
g T T

r T T


   .  (4.18) 

bottomBT and 
topBT  represent the error of the brightness temperature estimated at the 

bottom of ice clouds and observed at the top of clouds, respectively. 
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Figure 4.9: The retrieval uncertainties associated with particle effective diameter due to 

cloud base temperature; (b) ice water path due to cloud base temperature; (c) ice water 

path due to ice particle effective diameter 

With the nonlinear amplifying factor of ( , ) ( , )
bottom tope B Bf D r g T T  in Eq. 4.18, 

the cloud base brightness temperature estimation in both channels, as well as the 

cloud top brightness temperature detected by the satellites, will affect the particle 

effective diameter retrieval quality. Figure 4.9a gives the estimation of the impact on 

the effective diameter retrieval by the cloud base temperature at different particles 

sizes. It is found that the error in the cloud base temperature will introduce more 

errors in the smaller ice particle retrievals. However, the impact of cloud base 

temperature error on De retrievals decreases with particle size. A 5K error in the 

cloud base temperature can result in a 4-8% error for De retrievals. As for the cloud 

top brightness temperature error, the introduced error will not exceed 2% in De 

retrievals because of the relatively low NEΔT at chosen channels. 
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4.4.2 Error in Ice Water Path Retrieval 

Similarly, because the IWP retrieval algorithm is a function of ice particle 

effective diameter, the ice particle bulk volume density, and the scattering parameter, 

the retrieval error can be analyzed as follows: 

1( , ) e
e ice

e

DIWP
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IWP D
  

 


 , (4.19) 

where 
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TT T

T T T T


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 
 .  (4.20) 

The IWP retrieval error is linearly related to the scattering parameter error 

with the temperature depression, but nonlinearly related to the error of ice particle 

effective diameter, as shown in Eq. 4.19. The error of the scattering parameter 

includes two sources from Eq. 4.20. One is from the estimation of the ice cloud base 

brightness temperature and the other is from instrument noise. For DMSP F-16 

SSMIS, the instrument noise of the imager and environmental channels used in this 

study is smaller than 1K, which alone could only contribute less than 2% of the errors 

in the scattering parameter for brightness temperature depression higher than 40 K. 

Thus, the error in estimating the ice cloud base brightness temperature will be a major 

error source. Fig. 4.9b presents the IWP retrieval error caused by the estimated 

scattering parameter. The error decreases with increasing cloud temperature 

depression. A 2% error in cloud base temperature estimation will introduce about 

10% IWP retrieval error for cloud temperature depression greater than 40 K. The 

effective particle size error demonstrates a different pattern, which is shown in Fig. 

4.9c. For smaller ice particles, the underestimate of ice water path increases with the 
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increase of ice particle size error. On the contrary, the increase of relatively large 

particle size error causes the overestimat of ice water path increase. .It is also noticed 

that the error in smaller ice particles has larger impact on the ice water path retrieval.  

 

In this chapter, a precipitation droplet size ice particle effective diameter and 

ice water path were retrieved simultaneously from DMSP SSMIS high frequency 

channel measurements at 91.655- and 183.31±6.6 GHz for strong convective cloud 

types. Error analysis and a direct comparison to currently operational system, 

MSPPS, ice water path product by different satellite measurements proved that this 

enhanced ice cloud parameter retrieval algorithm can successfully provide not only 

comparable retrieval quality but also higher resolution product. In the next chapter, 

the application of ice cloud parameters on rain rate inference and the generation of 

global oceanic precipitation climate change time series will be conducted to 

demonstrate the advantage of DMSP SSMIS data on global climate change study. 
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Chapter 5: Application of Ice Cloud Parameters to Global 

Precipitation Climate Change Study 

 
The physical retrieval of rainfall rate over ocean and land by passive and 

active microwave instruments has been widely explored (Petty 1994; Ferraro and 

Marks 1995; Petty 1995; Wentz and Spencer 1998; Kummerow et al. 2001; Liu and 

Fu 2001).  

DMSP SSMIS high-frequency window channels are also useful in delineating 

precipitation due to the correlation between ice scattering and the surface rain rate. 

SSMIS sensitivity to light rain events is significantly improved compared with the 

previous SSM/I because of the availability of the 150 GHz and double-side band 

183.31 GHz channels. Meanwhile, a rain rate of 10 mm/h or larger can also be 

successfully retrieved due to the use of information at SSMIS 91.655 GHz. In this 

chapter, the attempt to derive rainfall rate from the retrieved IWP is made. The global 

total precipitation is then estimated from the rainfall rate and used to construct the 

global precipitation climate change time series since the launch of DMSP F-16. The 

application of DMSP SSMIS hydrometeor products to global precipitation studies 

provides a complementary method for monitoring global hydrological climate 

change.  
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5.1 Scattering Based Rainfall Rate Retrieval 

5.1.1 Methodology 

The relationship between the surface rain rate and ice water path is derived 

using the Goddard precipitation profiling algorithm data sets that contain the profiles 

of various hydrometeors generated from the cloud models (Kummerow et al. 1996).  

 
Figure 5.1: Relationship between the surface rainfall rate and cloud ice water path 

based on the cloud data sets used in the Goddard precipitation profiling algorithm 

(Weng et al.,2003) 

Shown in Figure 5.1 is the relationship between surface rainfall rate and IWP 

based on the Goddard precipitation profiling algorithm generated data sets (Weng et 

al. 2003). Such relationships have been successfully applied to AMSU-B 

observations, as follows: 

2
0 1 2RR r r IWP r IWP     . (5.1) 

In most precipitation systems, the rain layer extends above the freezing level, 

and contains a mixture of water and ice particles. Scattering of the upwelling 

radiation due precipitation sized ice particles results from within the precipitation 

layer. Depending upon the cloud microphysics and vertical structures, the RR is 
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retrieved using different sets of coefficients under different cloud types. By adopting 

similar criteria to those used by the NOAA operational Microwave Surface and 

Precipitation Products System (MSPPS) (Ferraro et al. 2005), the convection index 

(CI) is always calculated first using three double side-band channels at 183.31±6.6 

GHz, 183.31±3 GHz, and 183.31±1 GHz. The RR is then derived under different CI 

conditions. 

 

5.1.2 Comparison to Heritage Rainfall Rate Retrievals 

Shown in Fig. 5.2 a-b are rainfall rates of the multicell storm derived from 

IWP and from the heritage retrieval algorithm using the SSM/I-like channels (Ferraro 

and Marks 1995).  

 (a) 
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(b) 

 
(c) 

 
Figure 5.2: (a) rainfall rate derived from ice water path; (b) rainfall rate from NOAA 

heritage algorithm; and (c) hourly total rainfall derived from the radar reflectivity and 

gauge observations for the mid-latitude multicell storm on April 4, 2007 (UTC) 

It is found that both products well illustrate the multiple heavy rainfall areas 

corresponding to the multiple cells in the storm. The maximum rainfall rates both 
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exceed 20 mm/hr.  However, it should also be noted that the rainfall rate derived from 

IWP is generally smaller than from the heritage algorithm, especially over the 

stratiform precipitation area, where the smaller IWP is dominant, behind the leading 

strong convection zone. In addition, the new rainfall rate retrieval algorithm can 

successfully handle the coastal areas without extraordinary contamination due to the 

mixture of land and ocean signals inside a single FOV.   

The National Weather Service (NWS) operational synthetic one-hour 

cumulated rainfall product derived from both radar reflectivity and gauge 

observations (Fulton et al. 1998) around the F-16 SSMIS scan time is presented in 

Figure 5.2c. For a clear illustration, the scale has been set to the same as the rainfall 

rate retrieval even thought the units are different. Due to their large difference 

between F-16 satellite observation FOV and irregular rainfall product geophysical 

location, point-to-point comparison between SSMIS retrievals and synthetic rainfall 

observations cannot provide reliable statistic analysis results. Therefore, only a 

qualitative discussion will be conducted here. From both Fig. 5.2a and 5.2c, the 

rainfall product clearly shows that the maximum one-hour cumulated rainfall areas 

along the storm front match very well to the maximum rainfall rates derived from the 

ice water path by the microwave instrument.  The uncertainty still exists in the anvil 

cloud region behind the leading convection zone, where relatively larger rainfall is 

shown in the SSMIS retrievals. However, it is noteworthy that, unlike the GOES 

series satellites, the polar orbital satellite scans a particular geographical location only 

within a very limited time period so that it is not quite suitable for the analysis of 

cumulative parameters. Therefore, providing microwave instruments aboard a 
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geostationary vehicle can dramatically improve the deep cloud property prediction 

capabilities, especially under the most severe weather conditions.  

The new algorithm actually provides an alternative way to retrieve rainfall 

rate through IWP from the DMSP SSMIS series, which was not available preceding 

the launch of SSMIS. In addition, the rainfall rate retrieved from IWP along the 

coastline performs very well without extraordinary contamination due to the mixture 

of land and ocean inside the FOVs. The top scanning quality, high sampling 

resolution, and advanced scanning mode of such newly developed microwave sensors 

could also contribute to better retrieval quality under severe weather conditions. 

 

5.2 Global Oceanic Precipitation Climatology 

5.2.1 Methodology 

To generate the global total precipitation time series from DMSP SSMIS, the 

daily rainfall rate is firstly converted to daily precipitation by multiplying the mean 

value of ascending and descending nodes rainfall rate by 24 within each 0.3 by 0.3 

degree grid area. The global total precipitation amount is then obtained by adding all 

grid point values together. To minimize the uncertainties over snow or ice surfaces, 

rainfall rate data within only 60ON and 50OS are processed. Because of the scan gaps 

between orbits, it takes about 5 days to cover the entire global area for DMSP F-16 

SSMIS. Therefore, a pentad averaging of daily total precipitation is used to lower the 

uncertainty introduced by the gaps. In another words, there are approximately 73 

pentad averaged time points every year. Simultaneously, two global total precipitation 

anomaly time series from DMSP F-16 SSMIS are generated for comparison purposes. 
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One is from the heritage-processed rainfall rate. The other is from the rainfall rate 

derived using the newer IWP retrieval method.  

 

5.2.2 Results and Discussion 

Shown in Fig. 5.3 a-b is the global oceanic total precipitation and frequency 

pentad anomaly time series derived from IWP using the method mentioned above for 

the period between January 2005 and September 2009.  

 

Figure 5.3: Climate anomaly time series between January 2005 to September 2009 of 

oceanic (a) total precipitation derived from IWP, and (b) precipitation frequency 

It is clearly shown that both global total precipitation and precipitation 

frequency over ocean have a decreasing trend during the study period. The trend is 

equal to about 0.27 mm per decade.  

For comparison purposes, the same CDR products from heritage RR retrieval 

are also presented in Fig. 5.4 a-b. 
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Figure 5.4: Same as in Fig. 5.3, but from heritage RR retrieval 

Similarly, both CDR products display a decreasing trend during the same 

period of time. The only difference is the scale of change. As shown in Table 5.1, the 

heritage RR derived total precipitation decreases at only one third of the rate of the 

IWP derived precipitation. The statistical analysis also found that the 5 year mean 

precipitation from the IWP algorithm is also about one third higher than from the 

heritage algorithm, which indicates that the RR derived from IWP is generally larger 

than from the heritage RR retrieval. 

However, it is also noteworthy that the rainfall rate is a high variance regional 

parameter, one which could dramatically change within minutes. The climate data 

record constructed from 5 years of F-16 SSMIS data might not be reliably reflect the 

reality, even though the T-test score given in Table 5.1 indicates that the climate 

change trends obtained from the time series are statistically significant. 

 

Table 5.1: Statistical Analysis of Precipitation Climate Data Records 
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Parameter Mean Change Rate T-test Score 

Precipitation (heritage) 1.20 mm -0.08±0.05 mm/decade -3.45 

Precipitation Frequency 9.71 % -0.23±0.40 %/decade -1.38 

Precipitation (IWP) 1.97 mm -0.27±0.07 mm/decade -6.74 

Precipitation Frequency 8.66 % -1.53±0.45 %/decade -9.01 

 
In this chapter, rain rate was retrieved from ice cloud parameters and 

qualitatively compared to surface synthetic hourly precipitation observations from 

radar reflectivity and gauge measurements. Analysis results demonstrated that this 

scattering-base algorithm can improve rain rate accuracy, particularly for strong 

convections. Global oceanic precipitation climate data records were generated from 

5-year (2005-2009) DMSP F-16 SSMIS data using this enhanced rain rate retrieval 

results. Comparison was made to that generated from heritage emission-base rain rate 

retrievals for the same period of time. Both climate change time series, even 

presented in different change rates, clearly showed decreasing trends in both the 

global oceanic precipitation amount and rainfall frequency between 2005 and 2009, 

which is also well consistent to what was obtained from inter-sensor calibrated DMSP 

SSM/I (F8-F15) generated climate data records (Sun et al. 2008; Yang et al. 2009). 

Our study has proved that DMSP SSMIS series data can safely be used in global 

climate change study if accurate inter-sensor calibration schema can be carefully 

applied and product retrieval algorithms are successfully improved. 
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Chapter 6:  Summary and Future Work 

 

6.1 Summary 

The joint Air Force and Navy Defense Meteorological Satellite Program 

launched the newly developed SSMIS in 2005, which contains the functionality of the 

heritage DMSP sounder (SSM/T and SSM/T-2) and imager (SSMI/I) in a single 

integrated conically scanning instrument with additional channels to profile the 

mesosphere. It is the first time that atmospheric soundings can be derived by a sole 

instrument with a constant viewing geometry. This benefit encourages the satellite 

data user to develop/improve previous scattering based retrieval algorithms because 

the scan view angle is considered a major issue in the development of those 

algorithms. 

Preliminary assessments of SSMIS TDR data show that numerous calibrations 

related issues were still not identified until the satellite was flying in space. These 

issues include the main reflector face frequency dependent emission, warm/cold 

calibration count solar intrusions, and calibration nonlinearity errors. The microwave 

instrument calibration/validation group has proposed a set of corrections to fix those 

problems successfully. Model simulations and product evaluations prove that SSMIS 

data can be safely used for retrieving microwave based hydrometer parameters 

generated after such effective calibration preprocessor corrections are applied to the 

TDR data.  
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Retrievals of hydrological and surface parameters from F-16 SSMIS are 

demonstrated herein using the SSM/I algorithms. The products are compared for three 

months of data from both sensors. All F-16 TDRs have been reprocessed as the 

experimental TDR data for these tests. The procedure for TDR to SDR correction and 

the remapping of F-16 SSMIS imaging channels to F-15 SSM/I is based on the 

algorithm from NRL. After the reprocessing of F-16 SSMIS data, contamination of 

measured antenna temperatures, direct solar radiation, cross polarization coupling, 

and antenna spillover are effectively reduced. The F-16 SSMIS to SSM/I imaging 

channel remapping is a critical step in our study because it allows us to apply the 

same algorithms for the two instruments. Both satellites’ orbit data have been 

processed to a 1/3 degree grid. Because of the time difference between DMSP F-15 

and F-16 is about 30 minutes, most retrieval products will not be affected much by 

such a small time variation except for the rain rate, which is relatively more 

temporally variable. Products comparisons, including TPW, LWP, LST, Snow Cover, 

Sea Ice Cover, and land emissivity have been presented here. It is shown that the 

retrievals from both sensors demonstrate a high level of agreement with each other. 

Both the relatively small mean bias and standard deviation prove that F-16 SSMIS 

data can be successfully used for retrievals previously developed for use with SSM/I 

channels only.  

As the 150 GHz and three double side-band 183.31 GHz channels are also 

integrated into SSMIS, a new algorithm is then developed to potentially retrieve the 

ice particle effective diameter and ice water path from the DMSP SSMIS high 

resolution environmental unit measurements at 91.655 GHz and 183.31±6.6 GHz.  
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For a single cloud layer, the upwelling and downwelling radiances are nearly 

independent of the cloud layer temperature and are directly linked to the cloud 

droplets scattering parameter Ω, which can be derived from the brightness 

temperatures at the bottom and top of the ice cloud. The ratio of the scattering 

parameters measured at 91.655 GHz and 183.31±6.6 GHz is directly used to estimate 

the ice particle effective diameter De when ice particlse are near millimeter or 

precipitation droplet size. The relationship between particle effective diameter and the 

scattering parameter is established by assuming a gamma size distribution for ice 

particles. The IWP is retrieved from the particle effective diameter and scattering 

parameter with a known ice particle bulk density. 

Several major sources in the retrieval errors of particle effective diameter and 

ice water path are identified and analyzed. The uncertainties in estimating the ice 

cloud base brightness temperature using the lower frequency channels may contribute 

up to 10% of retrieval errors in the ice particle effective diameter. The particle 

effective diameter retrieval is not sensitive to the exponential parameter in the gamma 

size distribution. The uncertainties of the IWP retrievals come from the errors of 

estimating the ice cloud base temperature and particle effective diameter.  

Particularly, an overestimate of the particle effective diameter will lead to an 

underestimate of IWP for smaller particles, and a lower cloud temperature depression 

will introduce more errors in IWP retrievals.  

The algorithm is tested under severe weather conditions of hurricanes and 

multicell storms. The derived rainfall rates are also analyzed and shown to provide 

very comparable results to those retrieved by the NOAA heritage rate algorithm using 
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measurements at lower than 91.655 GHz. This new algorithm shows less 

contamination over coastal areas where the heritage algorithm has more errors, and 

hence the new method can be potentially useful to generate better operational 

products for the DMSP SSMIS series instruments. It is also worthwhile to note that 

the ice particle bulk density displays wide variations, though this is a critical 

parameter in the IWP/De retrieval; so, any method that provides more accurate values 

for this parameter will greatly help to improve the retrieval quality. 

The RR derived from IWP is also used to construct a global total precipitation 

analysis between 50OS and 65ON. The global total precipitation anomaly time series 

from SSMIS since January 2005 is generated to demonstrate a satellite data-based 

global hydrological series for climate studies. For comparison purposes, the same 

time series generated from the heritage RR algorithm was also produced in parallel. 

Both anomaly time series present a decreasing trend in the global precipitation 

amount, which indicates that the earth is in a global drought phase. Meanwhile, the 

rainfall coverage is also decreasing during the past 5 years, which further supports the 

above conclusion. The application of new algorithms for use in global climate change 

studies is critical, as the climate science community believes that satellite data will 

continue to play a central role in future studies. 

 

6.2 Future Work 

It is noteworthy that there are several assumptions which have been made to 

simplify the complicated radiative transfer equations. In practice, cases of multiple 
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layer ice clouds are quite common. The estimation of the ice cloud base temperature 

in those cases may be difficult, but is critical for more accurate IWP retrievals. 

The ice particle shape is assumed to be spherical so that the scattering 

properties used in the equations are relatively stable in the forward model 

simulations. However, several studies have shown that ice clouds are actually 

composed of a number of different ice particle shapes, which each have quite 

different scattering properties in reality. Therefore, improvements of the particle 

scattering scheme may significantly improve retrieval quality.  

In this study, the satellite measurements at 91.655 and 183.31±6.6 GHz are 

used for the retrievals. However, it is well known that 183.31±6.6 GHz is quite 

sensitive to the water vapor content, which is actually always closely associated with 

precipitating cold clouds. Because of the uncertainty provided by the water vapor 

emission effects, the scattering signals may be strongly and nonlinearly offset so that 

smaller scattering parameters will be obtained. With the retrieval algorithm presented 

here, a smaller scattering parameter at 183.31±6.6 GHz indicates that the ice particle 

effective diameter retrieval will be bigger, and so will the value for the IWP. The 

presence of an upward bias in the retrieval for IWP can be indirectly concluded by 

examining the global precipitation time series, where it is observed that the IWP-

derived global precipitation is larger than that from the heritage rainfall rate 

algorithm. Fortunately, 150 GHz measurements are also available aboard SSMIS, 

which can serve as another candidate for use in this retrieval algorithm. As a channel 

with less water vapor contamination, measurements at 150 GHz may help to improve 

the ice cloud parameter retrieval quality. 
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The process of evaluating the retrieved products for precipitating clouds is 

very important to guide development on how to improve the algorithms. The best 

evaluation sources are in situ observations from field campaigns, which are not 

available since the launch of SSMIS. Another method is to compare the results to 

reliable retrievals from other instruments or algorithms, such as CloudSAT. 

Unfortunately, the huge time gap between CloudSAT and F-16 SSMIS orbits (more 

than 6 hours) makes such a comparison unreliable for evaluation of such temporally 

sensitive products. Therefore, other indirect evaluation methods, such as via radar 

observations, may allow the best comparisons possible.  
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Appendix 
 

The derivation of angular dependent two-stream model solutions: 

From Radiative Transfer Equation, 
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1  ll LPd  is the l-th moment of the phase function. 

For the two-stream model, the zero-th and first moments are retained. At the zero-th 

moment ( 0l ), 10  l , which is the normalization of the phase function (from 

the definition of phase function) and 1)()( 0   LLl . At the first moment, 
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phase function can be written as: 
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By Gaussian Quadrature, an integration function can be approximated by a 
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So then, the scattering term in radiative function can be written as 
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where ia is the weight and ii aa  , jj    and
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Using the two-stream model phase function, we obtain 





n

ni
iii IgadIP ),()31(),(),( '

1

1

''  . 

For the simplest case, let 1n , 111  aa  and 11   ; the scattering term is 

changed to 

 ),(),(3),(),(

)()31()()31(

)()31()()31(

)()31()()31(),()31(

11111

1111

1111

111111



















IIgII

IgIg

IgIg

IgaIgaIga
n

ni
iii

. 

Introducing the Eddington approximation: 

)()(),( 10  III  . 

Then, 

)(2)()()()(),(),( 011011011  IIIIIII   

    )(32)()()()(3),(),(3 111101101111  IgIIIIgIIg   

By replacing corresponding terms in the radiative transfer equations and separating 

the upwelling and downward parts: 

  vBIaIaI
d

dI
)1(),()3(),()3(

2
),(

),(
01110111101

0
1

1
1 


  

 

and 

  vBIaIaI
d

dI
)1(),()3(),()3(

2
),(

),(
01110111101

0
1

1
1 


 


 

. 
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If we apply 111  aa , 
3

1
11   (averaged value), 10  , and g1 , the 

previous equations can be changed to: 

  vBIII
d

dI
)1(),()1(),()1(

2
),(

),(
01

2
111

2
11

0
1

1
1 


   

and 

  vBIII
d

dI
)1(),()1(),()1(

2
),(

),(
01

2
111

2
11

0
1

1
1 


  . 

Combining both ),( 1I  and ),( 1 I terms on the right hand side, we obtain: 

vBII
d

dI
)1(),()1(

2
),()1(

2
1

),(
01

2
11

0
1

2
11

01
1 


 



   

and 

vBII
d

dI
)1(),()1(

2
1),()1(

2

),(
01

2
11

0
1

2
11

01
1 


 



  . 

Let us define the following terms, and insert g1 and
3

1
11   , arriving at: 

)1(1)
2

1
1(1)1(

2
1)1(

2
1 00

02
11

0
1 b

g
gh 


 

, 

b
g

h 00
2
11

0
2 )

2

1
()1(

2




 . 

Taking the derivative of , the two-stream radiative transfer functions can be written 

as: 










d

dI
h

d

dI
h

d

Id ),(),(),( 1
2

1
12

1
2

1


  

and 










d

dI
h

d

dI
h

d

Id ),(),(),( 1
1

1
22

1
2

1





 . 
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To resolve the above functions, we use 



d

dI ),( 1  and 



d

dI ),( 1
from the above 

equations to obtain: 

   vv BIhIh
h

BIhIh
h

d

Id
)1(),(),()1(),(),(

),(
01112

1

2
01211

1

1
2

1
2

1 





 

 

and 

   vv BIhIh
h

BIhIh
h

d

Id
)1(),(),()1(),(),(

),(
01112

1

1
01211

1

2
2

1
2

1 





 




. 

Rearranging the equations, then: 

vB
hh

I
hh

d

Id
)1(),(

),(
02

21
2

2
2

2
1

2

2














  

and 

vB
hh

I
hh

d

Id
)1(),(

),(
02

21
2

2
2

2
1

2

2
















 . 

Define
2

2
2

2
12

1 
 hh 

 , )1( 02
212

2 


 



hh

and we have: 

vBI
d

Id 2
2

2
12

2

),(
),( 




  

and 

vBI
d

Id 2
2

2
12

2

),(
),( 





 . 

To obtain the solutions to the above, we define the general solution and specific 

solution by: 

vv BeDeCBeDeCI   




2
1

2
2),(  
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and 

vv BeDeCBeDeCI   




2
1

2
2),( , 

where 

2
0022

2
2
1

0

0

21

0
2
2

2
1

021
2
1

2
2 )1)(1(

1
1

11)1)((








 g

hhhh

hh 













 (eigen

value). 

Substituting back into the equations, we get: 

    vvv BBeDeC
h

BeDeC
h

eDeC




  021 1

   

and 

    vvv BBeDeC
h

BeDeC
h

eDeC




  011 1

  . 

Combining C , C , D , and D , and setting 0 at TOA for the above equations: 

vB
hh

D
h

C
h

D
h

C
h








 )1()(

)()( 0212211 
   

and 

vB
hh

D
h

C
h

D
h

C
h











)1()(

)()( 0211122 
   

because 021 1  hh , 0
)1()( 021 


vB

hh




 in the above equations. 

Now let us define


 1
1

h
m  , 


 1

2

h
m   and 


2

3

h
m  , so the above equations can 

be written as: 

  DmCmDmCm 3321  
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and 

  DmCmDmCm 1233 . 

 

After combining the two equations together, we obtain 

  DmmCmmDmmCmm )()()()( 31232331 . 

And next we obtain the relationships: 































 CC

g

g
C

hhhh

hhhh
C

hh

hh
C

mm

mm
C












1

1

1

1
1

1

1
1

0

0

0

0

2
2

2
112

2
2

2
112

12

12

13

23

 

and 































 DD

g

g
D

hhhh

hhhh
D

hh

hh
D

mm

mm
D












1

1

1

1
1

1

1
1

0

0

0

0

2
2

2
112

2
2

2
112

12

12

23

13

, 

with similarity parameter
g0

0

1

1







 . 

Let  

KvKC 




2

1 
, KuKC 




2

1 
 

and HuHD 




2

1 
, HvHD 




2

1 
, where K and H are ratios. 

Inserting terms back into the radiative transfer equation solutions (general plus 

specific), we get: 

vBHueKveI   ),( , 
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vBHveKueI   ),( . 

At the top of the cloud ( 0  ), the downward radiation is 

00 ),(00 IBIHveKue v    , 

while at the bottom of cloud ( 1  ), upward radiation is 

11 ),(11 IBIHueKve v    . 

Then, solving the above equations: 

)(2)(2
10

0101

01





 



euev

ueIveI
H  

and 

)(2)(2
01

0101

10













euev

ueIveI
K . 

Substituting both H and K back into the solutions, finally: 

vB
euev

uveuveIeuevI
I 




 



)(2)(2

)()(
0

)(2)(2
1

0101

1100 )()(
),( 





and 

vB
euev

euevIuveuveI
I 




 



)(2)(2

)(2)(2
0

)()(
1

0101

1100 )()(
),( 





. 

At the top of the cloud, 00  . There, we have: 

vB
euev

eeuvIuvI
I 




 



11

11

22
0

22
1 )()(

),( 



  

and 

vB
euev

eeuvIuvI
I 




 



11

11

22
1

22
0 )()(

),( 



 . 
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For typical cirrus clouds (thin layer), 11  . 

By applying a Taylor series expansion, 111  e and 111  e  to the first 

equation we have 

)1()1(

)()(

)1()1(

)2()(
),(

1
2

1
2

1
2222

1
2

1
2

10
22

1
















uv

uvBuvB

uv

uvIuvI
I vv . 

Because vBII  ),( 11  and vBII  ),( 00  , the above solution can be changed 

to 

)1()1(

)()2(),())(,(
),(

1
2

1
2

2
110

22
1








uv

uvBuvIuvI
I v . 

The same is true for ),(  I , so we get  

)1()1(

)()2(),())(,(
),(

1
2

1
2

2
111

22
0








uv

uvBuvIuvI
I v . 

As we defined earlier, 
2

1 
u and

2

1 
v , so then  22 uv , 22)( uv , 

4

1 2
vu , and 

2

1 2
22 
 uv . 

Using these in the above two solutions: 

2

1
2

1
),(),(

),( 2

1

2
1

2

101















vBII
I  

and 

2

1
2

1
),(),(

),( 2

1

2
1

2

110















vBII
I . 
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Let us define a scattering parameter, 
0

011

1

1

22 









g

, so then: 

)1(1

2)1(),(),(
),(

2

22
01







 vBII
I  

and 

)1(1

2)1(),(),(
),(

2

22
10







 vBII
I . 

For small ice particles (compared to the wavelength), 12   and at TOA, 

0),( 0 I  due to the very low cosmic background radiation, then we simplify 

solutions to:  




 








b

bbb
b T

TTT
T

I
I

),(

1

),(

1

),(
),0( 111   (Upward radiation at top of 

cloud) 

and 





1

),(
),( 1  I

I  (Downward radiation at ), 

and for thin cirrus clouds we may assume ),(~~),( 10  IBI v . 

Therefore, the above solutions can be simplified to: 





1

),(),(
),( 01  II

I  

and 





1

),(),(
),( 10  II

I . 

Furthermore, if it is assumed that 1  then  0~),( 0 I , 0~),( 1 I and 

vBII ~),(~),( 10   . 
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The solutions can then be written as: 

)1(1

2),(

)1(1

2),(
),(

2

2
1

2

2
1














 Cloudb

b
v TT

T
BI

I  

and 

)1(1

2),(

)1(1

2),(
),(

2

2
0

2

2
0














 Cloudb

b
v TT

T
BI

I . 

Please note that this assumption will be invalid for large optical thickness.  

Because the similarity parameter 1 , 




 





b

bbb
b T

TTT
T

),(

1

),( 11 
, 

where, 


bT : Upwelling brightness temperature obtained by satellite; 

),( 1 bT : Incident brightness temperature (91GHz and 150GHz) at bottom of cloud 

layer, obtained by empirical relationship from lower frequencies (19GHz, 22GHz, 

and 37GHz); 

),( 0  bT : Incident brightness temperature at top of cloud layer; 

CloudT : cloud physical temperature in K; 

g : Asymmetry factor in phase function. 
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