113 research outputs found

    New Generation Sensor Web Enablement

    Get PDF
    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement

    SWE bridge: software interface for plug & work instrument integration into marine observation platforms

    Get PDF
    The integration of sensor systems into marine observation platforms such as gliders, cabled observatories and smart buoys requires a great deal of effort due to the diversity of architectures present in the marine acquisition systems. In the past years important steps have been taken in order to improve both standardization and interoperability, i.e. the Open Geospatial Consortium’s Sensor Web Enablement. This set of standards and protocols provide a well -defined framework to achieve standardized data chains. However a significant gap is still present in the lower -end of the data chain, between the sensor systems and the acquisition platforms. In this work a standard s -based architecture to bridge this gap is proposed in order to achieve plug & work, standardized and interoperable acquisition systems.Award-winningPostprint (published version

    Applying OGC sensor web enablement to ocean observing systems

    Get PDF
    The complexity of marine installations for ocean observing systems has grown significantly in recent years. In a network consisting of tens, hundreds or thousands of marine instruments, manual configuration and integration becomes very challenging. Simplifying the integration process in existing or newly established observing systems would benefit system operators and is important for the broader application of different sensors. This article presents an approach for the automatic configuration and integration of sensors into an interoperable Sensor Web infrastructure. First, the sensor communication model, based on OGC's SensorML standard, is utilized. It serves as a generic driver mechanism since it enables the declarative and detailed description of a sensor's protocol. Finally, we present a data acquisition architecture based on the OGC PUCK protocol that enables storage and retrieval of the SensorML document from the sensor itself, and automatic integration of sensors into an interoperable Sensor Web infrastructure. Our approach adopts Efficient XML Interchange (EXI) as alternative serialization form of XML or JSON. It solves the bandwidth problem of XML and JSON.Peer ReviewedPostprint (author's final draft

    Enabling IoT ecosystems through platform interoperability

    Get PDF
    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broadly accepted IoT ecosystems. The BIG IoT (Bridging the Interoperability Gap of the IoT) project aims to ignite an IoT ecosystem as part of the European Platforms Initiative. As part of the project, researchers have devised an IoT ecosystem architecture. It employs five interoperability patterns that enable cross-platform interoperability and can help establish successful IoT ecosystems.Peer ReviewedPostprint (author's final draft

    Sensor web enablement implementations in marine observation platforms

    Get PDF
    The study of global phenomena requires the integration of scientific data coming from multiple sources. Data is usually acquired by a wide variety of observation platforms, managed by different institutions and often using non-standardized data and metadata formats. In order to address these issues a generic solution to integrate sensor data into spatial data infrastructures based on the Sensor Web Enablement framework is proposed.Peer Reviewe

    Making the Sensor Observation Service INSPIRE Compliant

    Get PDF
    The Sensor Observation Service (SOS) [3] provides access to near real-time environmental data, or observations, in a standardized way. Thereby, the SOS offers flexible spatial, temporal, and thematic filtering capabilities that enable clients to query and discover large sources of time series data over the Web. The SOS standard is already in version 2.0 [6] and applied in many projects and organizational infrastructures (see e.g., [4]). The data encoding leveraged by SOS is the Observations & Measurements (O&M) standard, which is been introduced in the INSPIRE data specification through the Guidelines for the use of O&M. O&M data can also be accessed through the Web Feature Service (WFS), which has been incorporated in INSPIRE [2] as an implementation of the INSPIRE Download Service [1]. However, the WFS interface is very generic and not optimized for O&M data access. So, an inclusion of the SOS in the INSPIRE Technical Guidance (TG) is desired. Hence, this work analyses the SOS specification on how it can be enhanced to conform to the implementation rules for INSPIRE download services.JRC.H.6-Digital Earth and Reference Dat

    SWE bridge: software interface for plug & work instrument integration into marine observation platforms

    Get PDF
    7th International Workshop on Marine Technology – Martech Workshop 2016, 26-28 October 2016, Barcelona.-- 2 pages, 2 figuresThe integration of sensor systems into marine observation platforms such as gliders, cabled observatories and smart buoys requires a great deal of effort due to the diversity of architectures present in the marine acquisition systems. In the past years important steps have been taken in order to improve both standardization and interoperability, i.e. the Open Geospatial Consortium’s Sensor Web Enablement. This set of standards and protocols provide a well-defined framework to achieve standardized data chains. However a significant gap is still present in the lower-end of the data chain, between the sensor systems and the acquisition platforms. In this work a standards-based architecture to bridge this gap is proposed in order to achieve plug & work, standardized and interoperable acquisition systemsWe acknowledge the financial support from Spanish Ministerio de Economía y Competitividad under contract CGL2013- 42557-R INTMARSIS, the European Union’s NeXOS Project under contract nº 614102 and EMSODEV Project under contract n°676555Peer Reviewe

    etos para la investigación en infraestructuras de datos espaciales (IDE)

    Get PDF
    En los últimos años se ha producido un crecimiento sin precedentes del volumen, valor y uso de la información geográfica o georreferenciada. De hecho, la aparición del prefijo ‘geo’ junto a la más variada terminología (geomarketing, geovisualización, geoinformación, geociencias, etc.) evidencia la importancia de la referencia geográfica (Vintimilla y Ballari, 2009). Esta importancia se hace especialmente visible en los procesos de toma decisiones (Nebert, 2004) como el ordenamiento territorial, la gestión de emergencias, el manejo de recursos naturales y el estudio de impacto ambiental. Dada la influencia multidisciplinar de estas decisiones, la información requerida suele ser producida y gestionada por diferentes instituciones, volviéndose esencial el descubrimiento, acceso, integración y uso de la geoinformación proveniente de fuentes diversas (Nebert,2004). Las infraestructuras de datos espaciales (IDE) facilitan el acceso a geoinformación proveniente de fuentes diferentes, a través del establecimiento de normativas y del desarrollo de geoservicios web estandarizados. Los principales geoservicios de una IDE son los catálogos como metadatos, la visualización de cartografía online y el acceso a los datos mismos para su análisis espacial. Las IDE permiten,a través de la web, descubrir la geoinfor- mación existente en diferentes instituciones y acceder a ella de forma estandarizada. La investigación en IDE se ha centrado, por un lado, en los aspectos institucionales para lograr acuerdos y políticas que permitan compartir geoinformación, y por otro lado, en el desarrollo tecnológico y de estándares para los geoservicios. Sin embargo, un cambio en la dirección de la investigación en IDE se está evidenciando motivado por tres factores principales de cambio. El primero es el crecimiento sin precedentes en el uso de la geoinformación, que ha permitido situar a la geografía como el eje central para integrar cualquier tipo de información (Craglia et al., 2008). El segundo es la innovación tecnológica de los sensores de monitoreo que facilita el acceso, a un coste relativamente bajo,de datos dinámicos y en tiempo real (Bröring et al., 2011; Nittel, 2009). Finalmente, el tercero, es el avance de la web 2.0 que posiciona a los ciudadanos como participantes activos en la creación de la geoinformación (Goodchild,2007)
    corecore