6 research outputs found

    A Software Defined Radio based UHF Digital Ground Receiver System for Flying Object using LabVIEW

    Get PDF
    This study demonstrates the design and implementation of a software defined radio based digital ground receiver system using LabVIEW. In flight testing centre, command transmission system is used to transmit specific commands to execute some operation inside the flight vehicle. One ground receiver system is needed to monitor the transmitted command and monitor the presence of the command in air. The newly implemented ground receiver system consists of FPGA, RTOS and general processing unit. The analog to digital conversion and RF down conversions are carried out in high speed PCI extension for instrumentation express cards. The communication algorithms, digital down conversion are implemented in FPGAs. The communication system uses digital demodulation and decoding scheme and realised by NI PXI-7966R with Xilinx Virtex 5, SXT, FPGA. The performance of the receiver system has been analysed by linearity measurement of pre-amplifier Gain, Noise figure, frequency, power and also measurement of sensitivity. The results show successful implementation of the ground receiver system

    Error correction and uncertainty measurement of short-open-load calibration standards on a new concept of software defined instrumentation for microwave network analysis

    Get PDF
    Software-Defined Radio (SDR) has appeared as a sufficient framework for the development and testing of the measurement systems such as a signal generator, signal analyzer, and network analysis used in the network analyzer. However, most of researchers or scientists still rely on commercial analyzers were larger benchtop instruments, highly cost investment and minimum software intervention. In this paper, a new concepts measurement revolution called as Software Defined Instrumentation (SDI) on network analysis is presented, which is based on reconfigurable SDR, a low-cost implementation, ability to access RF chain and utilizing open source signal processing framework. As a result, a Vector Network Analyzer (VNA) has been successful implemented by deploying an SDR platform, test sets, and data acquisition from the GNU Radio software in host PC. The known calibration process on SHORT-OPEN-LOAD (SOL) technique is validated to ensure measurement data from this SDI free from systematic error. Two types of SOL calibration standards used for a comparison study to validate the SDI measurement system which is capable of generating the response on the differential of standard quality and accuracy of standards kits. Finally, calibration uncertainty analysis is also presented in this work by utilizing RF open source package without any cost addition

    Oportunidades para la implementación de radio definida por software en redes de sensores

    Get PDF
    En este artículo se revisan los conceptos y las características de la radio definida por software. Se presenta una revisión de las problemáticas de las redes de sensores en cada uno de los campos de aplicación desde la perspectiva de la integración con SDR, para finalmente hacer un análisis de oportunidades y desafíos como estrategia de solución a algunas de las problemáticas más importantes en redes de sensores

    A Novel Iterative Structure for Online Calibration of M-Channel Time-Interleaved ADCs

    Get PDF
    published_or_final_versio

    Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems

    Full text link
    The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client s requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client s requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.This work has been supported by the Spanish Science and Innovation Ministry MICINN under the CICYT project M2C2: "Codiseno de sistemas de control con criticidad mixta basado en misiones" TIN2014-56158-C4-4-P and the Programme for Research and Development PAID of the Polytechnic University of Valencia: UPV-PAID-FPI-2013. The responsibility for the content remains with the authors.Munera Sánchez, E.; Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE.; Blanes Noguera, F. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors. 15(8):18080-18101. https://doi.org/10.3390/s150818080S1808018101158Gupta, R. A., & Mo-Yuen Chow. (2010). Networked Control System: Overview and Research Trends. IEEE Transactions on Industrial Electronics, 57(7), 2527-2535. doi:10.1109/tie.2009.2035462Morales, R., Badesa, F. J., García-Aracil, N., Perez-Vidal, C., & Sabater, J. M. (2012). Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments. Sensors, 12(5), 5212-5224. doi:10.3390/s120505212Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013). Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6), 1800-1806. doi:10.1016/j.measurement.2013.01.011Pordel, M., & Hellström, T. (2015). Semi-Automatic Image Labelling Using Depth Information. Computers, 4(2), 142-154. doi:10.3390/computers4020142Zuehlke, D. (2010). SmartFactory—Towards a factory-of-things. Annual Reviews in Control, 34(1), 129-138. doi:10.1016/j.arcontrol.2010.02.008Wang, X., Şekercioğlu, Y., & Drummond, T. (2014). Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras. Robotics, 4(1), 1-22. doi:10.3390/robotics4010001Gil, P., Kisler, T., García, G. J., Jara, C. A., & Corrales, J. A. (2013). Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(4), 453-464. doi:10.1016/j.riai.2013.08.002Castrillón-Santan, M., Lorenzo-Navarro, J., & Hernández-Sosa, D. (2014). Conteo de personas con un sensor RGBD comercial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(3), 348-357. doi:10.1016/j.riai.2014.05.006Vogel, A., Kerherve, B., von Bochmann, G., & Gecsei, J. (1995). Distributed multimedia and QOS: a survey. IEEE Multimedia, 2(2), 10-19. doi:10.1109/93.388195Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078Aurrecoechea, C., Campbell, A. T., & Hauw, L. (1998). A survey of QoS architectures. Multimedia Systems, 6(3), 138-151. doi:10.1007/s005300050083Xu, W., Zhou, Z., Pham, D. T., Liu, Q., Ji, C., & Meng, W. (2012). Quality of service in manufacturing networks: a service framework and its implementation. The International Journal of Advanced Manufacturing Technology, 63(9-12), 1227-1237. doi:10.1007/s00170-012-3965-yKang, W., Son, S. H., & Stankovic, J. A. (2012). Design, Implementation, and Evaluation of a QoS-Aware Real-Time Embedded Database. IEEE Transactions on Computers, 61(1), 45-59. doi:10.1109/tc.2010.240Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., Simarro, R., & Benet, G. (2015). Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service. Sensors, 15(3), 4700-4733. doi:10.3390/s150304700Manzoor, A., Truong, H.-L., & Dustdar, S. (2014). Quality of Context: models and applications for context-aware systems in pervasive environments. The Knowledge Engineering Review, 29(2), 154-170. doi:10.1017/s0269888914000034Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F. L., & Mirandola, R. (2012). MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Transactions on Software Engineering, 38(5), 1138-1159. doi:10.1109/tse.2011.68Nogueira, L., Pinho, L. M., & Coelho, J. (2012). A feedback-based decentralised coordination model for distributed open real-time systems. Journal of Systems and Software, 85(9), 2145-2159. doi:10.1016/j.jss.2012.04.033del-Hoyo, R., Martín-del-Brío, B., Medrano, N., & Fernández-Navajas, J. (2009). Computational intelligence tools for next generation quality of service management. Neurocomputing, 72(16-18), 3631-3639. doi:10.1016/j.neucom.2009.01.016Tian, Y.-C., Jiang, X., Levy, D. C., & Agrawala, A. (2012). Local Adjustment and Global Adaptation of Control Periods for QoC Management of Control Systems. IEEE Transactions on Control Systems Technology, 20(3), 846-854. doi:10.1109/tcst.2011.2141133Vilalta, R., & Drissi, Y. (2002). Artificial Intelligence Review, 18(2), 77-95. doi:10.1023/a:1019956318069Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018Yélamos, I., Escudero, G., Graells, M., & Puigjaner, L. (2009). Performance assessment of a novel fault diagnosis system based on support vector machines. Computers & Chemical Engineering, 33(1), 244-255. doi:10.1016/j.compchemeng.2008.08.008Zhang, X., Qiu, D., & Chen, F. (2015). Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis. Neurocomputing, 149, 641-651. doi:10.1016/j.neucom.2014.08.010Iplikci, S. (2010). Support vector machines based neuro-fuzzy control of nonlinear systems. Neurocomputing, 73(10-12), 2097-2107. doi:10.1016/j.neucom.2010.02.008Ferrari, P., Flammini, A., & Sisinni, E. (2011). New Architecture for a Wireless Smart Sensor Based on a Software-Defined Radio. IEEE Transactions on Instrumentation and Measurement, 60(6), 2133-2141. doi:10.1109/tim.2011.2117090Munera Sánchez, E., Muñoz Alcobendas, M., Blanes Noguera, J., Benet Gilabert, G., & Simó Ten, J. (2013). A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform League. Sensors, 13(11), 14954-14983. doi:10.3390/s131114954Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647. doi:10.1109/34.295913JIMÉNEZ-GARCÍA, J.-L., BASELGA-MASIA, D., POZA-LUJÁN, J.-L., MUNERA, E., POSADAS-YAGÜE, J.-L., & SIMÓ-TEN, J.-E. (2014). Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor. ADCAIJ: ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 3(8), 46. doi:10.14201/adcaij2014384655Feng-Li Lian, Moyne, J., & Tilbury, D. (2002). Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, 10(2), 297-307. doi:10.1109/87.98707
    corecore