26 research outputs found

    Improved linear response for stochastically driven systems

    Full text link
    The recently developed short-time linear response algorithm, which predicts the average response of a nonlinear chaotic system with forcing and dissipation to small external perturbation, generally yields high precision of the response prediction, although suffers from numerical instability for long response times due to positive Lyapunov exponents. However, in the case of stochastically driven dynamics, one typically resorts to the classical fluctuation-dissipation formula, which has the drawback of explicitly requiring the probability density of the statistical state together with its derivative for computation, which might not be available with sufficient precision in the case of complex dynamics (usually a Gaussian approximation is used). Here we adapt the short-time linear response formula for stochastically driven dynamics, and observe that, for short and moderate response times before numerical instability develops, it is generally superior to the classical formula with Gaussian approximation for both the additive and multiplicative stochastic forcing. Additionally, a suitable blending with classical formula for longer response times eliminates numerical instability and provides an improved response prediction even for long response times

    A simple closure approximation for slow dynamics of a multiscale system: nonlinear and multiplicative coupling

    Full text link
    Multiscale dynamics are ubiquitous in applications of modern science. Because of time scale separation between relatively small set of slowly evolving variables and (typically) much larger set of rapidly changing variables, direct numerical simulations of such systems often require relatively small time discretization step to resolve fast dynamics, which, in turn, increases computational expense. As a result, it became a popular approach in applications to develop a closed approximate model for slow variables alone, which both effectively reduces the dimension of the phase space of dynamics, as well as allows for a longer time discretization step. In this work we develop a new method for approximate reduced model, based on the linear fluctuation-dissipation theorem applied to statistical states of the fast variables. The method is suitable for situations with quadratically nonlinear and multiplicative coupling. We show that, with complex quadratically nonlinear and multiplicative coupling in both slow and fast variables, this method produces comparable statistics to what is exhibited by an original multiscale model. In contrast, it is observed that the results from the simplified closed model with a constant coupling term parameterization are consistently less precise

    A simple linear response closure approximation for slow dynamics of a multiscale system with linear coupling

    Full text link
    Many applications of contemporary science involve multiscale dynamics, which are typically characterized by the time and space scale separation of patterns of motion, with fewer slowly evolving variables and much larger set of faster evolving variables. This time-space scale separation causes direct numerical simulation of the evolution of the dynamics to be computationally expensive, due both to the large number of variables and the necessity to choose a small discretization time step in order to resolve the fast components of dynamics. In this work we propose a simple method of determining the closed model for slow variables alone, which requires only a single computation of appropriate statistics for the fast dynamics with a certain fixed state of the slow variables. The method is based on the first-order Taylor expansion of the averaged coupling term with respect to the slow variables, which can be computed using the linear fluctuation-dissipation theorem. We show that, with simple linear coupling in both slow and fast variables, this method produces quite comparable statistics to what is exhibited by a complete two-scale model. The main advantage of the method is that it applies even when the statistics of the full multiscale model cannot be simulated due to computational complexity, which makes it practical for real-world large scale applications
    corecore