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Abstract The sensitivity of climate models to increasing CO2 concentration and the climate 

response at decadal time-scales are still major factors of uncertainty for the assessment of the long 

and short term effects of anthropogenic climate change. While the relative slow progress on these 

issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the 

need for stronger theoretical foundations to the problem of studying climate sensitivity and 

performing climate change predictions with numerical models. Here we demonstrate that it is 

possible to use Ruelle’s response theory to predict the impact of an arbitrary CO2 forcing scenario 

on the global surface temperature of a general circulation model. Response theory puts the concept 

of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of 

predictability at different time-scales. Conceptually, our results show that performing climate 

change experiments with general circulation models is a well-defined problem from a physical and 

mathematical point of view. Practically, our results show that considering one single CO2 forcing 

scenario is enough to construct operators able to predict the response of climatic observables to any 

other CO2 forcing scenario, without the need to perform additional numerical simulations. We also 

introduce a general relationship between climate sensitivity and climate response at different time 

scales, thus providing an explicit definition of the inertia of the system at different time scales. 

While what we report here refers to the linear response, the general theory allows for treating 

nonlinear effects as well. Our results pave the way for redesigning and interpreting climate change 

experiments from a radically new perspective.  
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1 Introduction 

One of the main goals of climate science is to predict how modulations on different time scales of 

internal or external parameters impact the statistical properties of the climate system. Due to the 

observational evidence of the ongoing anthropogenic climate change, the problem of the response 

of the system to increasing greenhouse gases (GHGs) and in particular CO2 concentration ([CO2]) is 

of particular social and environmental relevance (IPCC 2007a, 2013). The assessment of the future 

impacts of climate change under a variety of CO2 forcing scenarios (IPCC 2007b, 2013) and the 

evaluation of the climate sensitivity to the increase of [CO2] (Knutti and Hegerl 2008, Galloway et 

al. 2013, Otto et al. 2013) mostly rely on the use of general circulation models (GCMs).  

 The intense efforts put on model development by the scientific community in the past decades 

have led to impressive improvements in the GCMs complexity and computational performances. 

However, even the evaluation of the most basic measure of climate sensitivity, the Equilibrium 

Climate Sensitivity (ECS, the change of the globally averaged surface temperature for doubling 

[CO2]), is still subject to large uncertaineties (Otto et al. 2013, Sherwood et al. 2014). The 

relationship between the ECS and the Transient Climate Response (TCR), defined as the change in 

the globally averaged surface temperature at the end of 1% per year increase of CO2 until its 

doubling (Otto et al. 2013), is also unclear. More in general, the response of the surface temperature 

(as well as of other relevant observables) at different time scales for CO2 forcings with non-trivial 

temporal evolution is a poorly understood problem, emphasized by the presence of substantial 

uncertainties in the predictive skills of the models at decadal time scales (IPCC 2013).  

 These issues are certainly partially due to technical difficulties related to the inaccuracies of the 

GCMs. However, the very efforts put in model development in the past decades and the results 

achieved show that these issues can not be approached only as a technological problem to be solved  

by building (arguably endlessly) bigger and more complex numerical models. The need for 

substantial advances in the scientific ideas at the basis of climate modelling strategies (and not only 

in the technological tools in use) is more and more clear in the climate community (Shukla et al 

2009). An illuminating perspective on mathematical frameworks suited for a theory of climate 

sensitivity has been recently presented (Chekroun et al. 2011a). Here we follow a complementary 

approach to define a robust theoretical framework for the use of GCMs in addressing the problem 

of climate response, sensitivity and prediction, based upon Lucarini and Sarno (2011). 

 In the past, several attempts have been aimed at constructing some sort of response operator for 

the CS able to relate a forcing (e.g. change in [CO2]) with a given spatial and temporal pattern to the 

time dependent climate response as measured by the change of chosen climatic observables (e.g. 

global surface temperature). In equilibrium statistical mechanics, the fluctuation-dissipation 

theorem (FDT) relates the response of a system to external perturbations to its internal fluctuations 
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in the unperturbed state (Kubo 1966). The FDT has proved to be a very powerful tool for studying a 

variety of physical processes in condensed matter physics, acoustics, optics and many other fields 

of physics. FDT thus provides a tempting framework for deducing climate response from its 

internal variability. In fact, varous authors have gone in this direction by adopting simplified 

versions of the FDT, with in general a satisfactory degree of success (Langen and Alexeev 2005, 

Gritsun and Branstator 2007, Abramov and Majda 2008). However, it has been shown that the 

applicability and effectiveness of FDT-based methods to nonequilibrium systems crucially depend 

on the observable one wants to predict (Cooper and Haynes 2011, Cooper et al. 2013). See also the 

discussion in Wouters ans Lucarini (2013). Here we approach the problem from a related but 

different point of view. 

 Ruelle introduced general methods for studying how nonequilibrium systems respond to external 

perturbations (Ruelle 1998a, 1998b, 2009). Ruelle’s response theory (RRT) clarifies the limits of 

FDT-based methods for nonequilibrium systems and shows that is indeed possible to compute 

deviations from a nonequilibrium steady state (NESS) due to weak forcings through explicit 

response formulas and using the statistical properties of the unperturbed state only. Recently RRT 

has been proposed as a rigorous framework for computing climate response and its applicability has 

been tested on the Lorenz 96 model (Lucarini and Sarno 2011). Going in the direction of bridging 

the gap between statistical mechanical theories and climate science, we show how, starting from an 

ensemble of runs forced by instantaneous CO2 doubling, the formalism of RRT can be used for 

predicting the response of the globally averaged surface temperature of a GCM to an arbitrary 

temporal evolution of the CO2 forcing. Despite the nonlinear nature of the system, the statistical 

properties of the response are remarkably well captured by the linear version of RRT even when 

finite forcings of practical interest are applied. Our results show that in order to predict the response 

of the system to any CO2 forcing scenario at both infinite and lead-time, only one single scenario 

needs to be taken into account. This suggest that one could reduce the vast range of forcing 

scenarios considered in the IPCC protocol with few selected scenarios, and derive more information 

from currently available data. While what we report here refers to linear response, the theory behind 

these findings allows for treating nonlinear effects as well (Lucarini 2009, Lucarini and Colangeli 

2012).  

 Note that this approach targets the way we use numerical models in climate science. The 

evaluation of the sensitivity of the real climate depends of course on the quality and realism of the 

models we use. In this sense, RRT does not lead directly to an improvement of the skills of the 

models in representing the actual climate and climate change. What RRT inform us about is not the 

realism of the answer, but the consistency of the following scientific question: how does the state of 

a GCM change when changing one or more of its parameters? If this question proved to be ill posed 
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(that in general with a nonequilibrium system like a complex GCM could be), the whole project of 

the numerical simulation of climate change would be essentially flawed, independently on the 

(apparent) level of realism of the results. The applicability itself of RRT demonstrates that the 

problem of studying climate change with GCMs is mathematically and physically well-posed, and 

faceable with rigourous techniques widely used in other fields of physics. RRT provides a way to 

reformulate the question of climate change numerical simulation in a more theoretically grounded 

way, which hopefully would also help in understanding how to improve the quality of the answer 

and of the tools used in order to get to it. The issue of understanding and improving the skills of 

climate models per se is a challenging one, but of essentially different nature (IPCC 2007a, 2013). 

 The paper is organized as follows. In Section 2 we give a brief summary of the basic concepts of 

Ruelle’s linear response theory, we describe the numerical experiments we have performed, and we 

describe how we have analyzed the data. In Section 3 we present the results of the numerical 

simulations and data analysis demonstrating the predictive power of the theory, we show how the 

concept of climate sensitivity assumes a natural role in the context of linear response theory, and we 

present some guidelines for designing future experiments based on a scale analysis. Eventually, in 

Section 4 we discuss our results and we propose possible future lines of research. 

 

2 Methods and materials 

2.1 Linear response theory 

RRT strictly applies to Axiom A dynamical systems (Ruelle 1998a, 1998b, 2009). Roughly 

speaking, a dynamical system is Axiom A if 1) the dynamics is uniformly hyperbolic on the 

attractor and 2) the set of the periodic points is dense on the attractor. Axiom A systems possess a 

Sinai-Ruelle-Bowen (SRB) invariant measure, which guarantees a) the asymptotic equivalence of 

time and ensemble averages of observables (that it is not, despite intuition, a general property of 

nonequilibrium systems) and b) the stability of the statistical properties when a weak stochastic 

forcing is applied. In this sense Axiom A systems are good physical systems, for which the 

statistical properties of the observables are well defined. Note that property b) requires to be far 

from tipping points, in the neighbourhood of which response formulas are expected to fail (indeed a 

tipping point could be rigorously defined by the breaking of the applicability of RRT). 

 Demonstrating that a dynamical system is Axiom A is a difficult task even for simple systems, 

and impossible for a numerical model of the complexity of a GCM. However, the use of response 

formulas in most cases of physical interest is justified thanks to the Chaotic Hypothesis (Gallavotti 

1996), which states that chaotic systems with many degrees of freedom effectively behave as 

Axiom A systems in terms of properties a) and b) even if they do not satisfy rigorously 

requirements 1) and 2), at least when considering the statistical properties of coarse-grained 
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observables (e.g. globally or regionally integrated quantities). See also Penland (2003) for a 

discussion in a geophysical context. In a sense the Chaotic Hypothesis is the extension to 

nonequilibrium systems of the ergodic hypothesis for equilibrium systems. As an example, when 

we compute the expectation value of an observable in a numerical model as the long-term average 

on a stationary state, we are in fact implictly assuming that the system is Axiom A-like. Similarly, 

operations like the computation of Lyapunov exponents or the setup of data assimilation systems 

(Kalnay 2003) implicitely assume the same conditions. In this paper we assume that the Chaotic 

Hypotesis allows using RRT to study climate response with a GCM. Note that in this sense the high 

dimensionality and complexity of the system enforce the applicability of theoretical instruments, 

rather than the opposite. If we consider low dimensional models, or dynamical systems living at the 

edge of chaos, the basic tenets of response theory may fail (Chekroun et al. 2011b). 

 Let us briefly recapitulate the basic elements of RRT. See Ruelle (2009) for a detailed 

presentation and Lucarini and Sarno (2011) for a geophysical oriented approach. Let us consider the 

dynamical system described by the set of ordinary differential equations corresponding to a 

numerical model of the climate system. We apply a weak forcing to the system so that the evolution 

equations can be written as 𝒙̇ = 𝑭(𝒙) + 𝑿(𝒙)𝑓(𝑡), where 𝒙 is the state vector of the system, 𝑭(𝒙) 

represents the unperturbed dynamics with set boundary conditions, 𝑿(𝒙) is a vector field defining 

the pattern of the forcing in the phase space, and 𝑓(𝑡) is the time modulation of the forcing. We 

consider the case where the base dynamics is autonomous (no explicit time dependence in the 

unperturbed dynamics, e.g. absence of daily or seasonal cycle), but one could accommodate more 

general time-dependent flows by resorting to the concept of pullback attractor (Chekroun et al. 

2011a). Ruelle showed that the expectation value of an observable Φ in the forced system can be 

computed as a perturbative expansion  

〈Φ〉𝑓(𝑡) = 〈Φ〉0 + �〈Φ〉𝑓
(𝑛)(𝑡)

+∞

𝑛=1

 (1) 

where 〈Φ〉0 is the expectation value in the unperturbed state and the perturbative terms 〈Φ〉𝑓
(𝑛)(𝑡) 

can be computed as convolution integrals of 𝑓(𝑡)  and suitable functions determined by the 

unperturbed dynamics only (Ruelle 1998a, 1998b, 2009). The linear response is given by the first 

term in the series, that can be computed as 

 
〈Φ〉𝑓

(1)(𝑡) = � 𝑑𝜎1𝐺𝚽
(1)(𝜎1)

+∞

−∞
𝑓(𝑡 − 𝜎1) (2) 

where 𝐺𝚽
(1)(𝑡) is the first order Green function of the observable Φ, that can be computed with an 

explicit formula defined by the unperturbed flow only as described in Ruelle (1998a, 1998b, 2009).  

 Response theory guarantees general properties for 𝐺𝚽
(1)(𝑡) and its Fourier transform 𝜒Φ

(1)(𝜔), the 



 7 

(linear) susceptibility of the observable Φ (Lucarini et al. 2005, Ruelle 2009).  The Green function 

is in general a causal function, that is 𝐺𝚽
(1)(𝑡) = 0 if  𝑡 < 0. By taking the Fourier transform of 

Equation (1) we have 

 〈Φ〉� 𝑓
(1)(𝜔) = 𝜒Φ

(1)(𝜔)𝑓(𝜔) (3) 

where 𝑓(𝜔) is the Fourier transform of 𝑓(𝑡). The susceptibility gives therefore the structure of the 

response of the system to forcings at different frequencies (time-scales). The real and imaginary 

parts of the 𝜒Φ
(1)(𝜔) represent the in- and out-of-phase response of the system respectively to a 

sinusoidal forcing at frequency 𝜔. Maxima in the absolute value of the susceptibility correspond to 

resonances of the system, where the response is enhanced due to positive feedbacks at the 

corresponding time-scales. Being 𝐺𝚽
(1)(𝑡) a causal function, its Fourier transform 𝜒Φ

(1)(𝜔) obeys the 

following identity (Lucarini et al. 2005):  

 
𝜒Φ

(1)(𝜔) =
𝑖
𝜋
𝑃� 𝑑𝜔′

∞

−∞

𝜒Φ
(1)(𝜔′)
𝜔′ − 𝜔

 (4) 

where P indicates integration in principal part and the susceptibility is related to its complex 

conjugate through  𝜒Φ
(1)(𝜔) = [𝜒Φ

(1)(−𝜔)]∗. Equation (4) can be recast in terms of the so called 

Kramers-Kronig relations (KK), self-consistency relations linking the real and imaginary parts of 

𝜒Φ
(1)(𝜔) of wide use in several fields of physics, notably in optics (Lucarini et al. 2005, Lucarini 

2008).  RRT provides similar formulas to compute any order of nonlinearity of the response and the 

related nonlinear Green functions and susceptibilities (Lucarini 2009, Lucarini and Colangeli 2012). 

Note that limiting the attention to the linear response does not imply neglecting the nonlinear nature 

of the dynamics: the linear susceptibility accounts for the linear part of the response of the full 

nonlinear system. 

 Equations (2-3) show that RRT boils down to a surprisingly simple formalism for computing the 

linear response of a system to an arbitrary forcing, once the Green function and the susceptibility 

are computed. When dealing with an high dimensional system like a GCM, the direct computation 

of 𝐺𝚽
(1)(𝑡) on the unperturbed dynamics following Ruelle (1998a,1998b,2009) can be extremely 

difficult. However, the above formulas allow computing 𝐺𝚽
(1)(𝑡) and 𝜒Φ

(1)(𝜔) from a set of suitabe 

forcing experiments in a simple way. Consider performing an experiment with a prescribed forcing 

𝑓(𝑡) . Let us suppose that we are in the  linear regime, so that the observed response of the 

observable Φ  is approximately 〈Φ〉𝑓
(1)(𝑡) . Equations (2-3) provide then the basis for deriving 

𝐺𝚽
(1)(𝑡), or equivalently 𝜒Φ

(1)(𝜔), from the output of the numerical experiments and the (known) 

functional form of the forcing (Lucarini and Sarno 2011, Lucarini et al. 2014). Note that Equation 

(3) implies that for reconstructing 𝜒Φ
(1)(𝜔)  one must consider a broadband forcing, since the 
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response 〈Φ〉� 𝑓
(1)(𝜔) does not contain frequencies that are not present in the forcing 𝑓(𝜔).  

 Knowing 𝐺𝚽
(1)(𝑡), we can then use Equation (2) to perform projections at any lead-time t when a 

different temporal evolution 𝑔(𝑡) of the forcing is used, while knowing 𝜒Φ
(1)(𝜔) inform us about the 

properties of the response of the system to forcings on a wide horizon of time-scales. 

Demonstrations of the validity of RRT for simple systems of geophysical interest have been 

proposed in the past (Abramov and Majda 2008, Lucarini and Sarno 2011); here we assess the 

predictive power of the theory with a real GCM, following the approach described above. 

 

 2.2 Experimental settings 

 

2.2.1 Description of the model 

The numerical model used in this study is PLASIM (Fraedrich et al. 2005), a simplified GCM 

developed at the University of Hamburg. Even if indeed not competitive with state-of-the-art 

GCMs, PLASIM produces a fairly realistic present climate and is representative of the class of 

complex numerical models used for operational climate prediction. The dynamical core is based on 

the Portable University Model of the Atmosphere PUMA (Fraedrich et al. 1998). The primitive 

equations are solved by a spectral transform method. The model has a full set of physical 

parameterizations for unresolved processes. Parameterizations include long and shortwave radiation 

with interactive clouds, horizontal and vertical diffusion, boundary layer fluxes of latent and 

sensible heat. Stratiform precipitation is generated in supersaturated states, and the Kuo scheme is 

used for deep moist convection, while shallow cumulus convection is parameterized by means of 

vertical diffusion. See the Reference Manual freely available toghether with the code at 

http://www.mi.uni-hamburg.de/plasim for a detailed and referenced description of the 

parameterizations included in the model.  

 The atmospheric model is coupled to a 1-layer slab model of the oceanic mixed layer with a 

depth of 50 m, which includes a thermodynamic sea-ice module. The climate response and 

sensitivities evaluated with PLASIM are therefore due only to the fast feedbacks (Lunt et al. 2010, 

Previdi et al. 2013), missing contributions from ocean, continental ice-sheets, vegetation and 

interactive carbon cycle. For the present study we set the model at T21 horizontal resolution and 10 

levels vertical resolution, for a total of O(105) degrees of freedom, with a time-step of 45 minutes. 

In order to simplify the analysis, we have removed daily and seasonal cycles, so that the evolution 

equations in the reference state do not explicitly depend on time. 

 

2.2.2 Description of the experiments 
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We consider as our observable the globally averaged surface temperature 𝑇𝑠  and as forcing the 

convergence of radiative fluxes due to the increase in the logarithm of [CO2], since the radiative 

forcing scales approximately logarithmically with [CO2] within a reasonable range of 

concentrations (IPCC 2007b, 2013). Therefore from now on 〈Φ〉𝑓
(1) = 〈𝑇𝑠〉𝑓

(1)  represents the 

expectation value of the increase the globally averaged surface temperature 𝑇𝑠 in the linear regime 

and 𝑓(𝑡) represents the temporal evolution of the radiative forcing correspondent to a chosen CO2 

forcing scenario. Linear RRT in principle applies only in the limit of infinitesimal forcings. 

Nonetheless, we show that its range of validity extends to rather intense finite forcings.  

 We consider a control run of 2400 years. The [CO2] is set to the value of 360 ppm, representative 

of the present-day value. We then perform two sets of forcing experiments, prototypical of the 

scenarios proposed by the IPCC protocol for estimating the climate sensitivity and the impact of 

CO2 forcings on the CS. In the first set of experiments we double istantaneously the CO2 

concentration and we keep it fixed at 720 ppm afterwards. This corresponds to a constant radiative 

forcing after the [CO2] doubling. This is the scenario used for computing the ECS. In the second set 

of experiments [CO2] is increased by 1% per year until reaching 720 ppm (after about 70 years), 

and it is kept fixed afterwards. This corresponds to a radiative forcing linearly increasing for the 

first 70 years until [CO2] has doubled, and constant afterwards. This is the scenario in which one 

computes the TCR. In both experiments the forcing is applied homogeneously at each point of the 

model.  

 In both cases we have performed an ensemble of 200 experiments starting from different initial 

conditions (Lucarini 2009, Lucarini and Sarno 2011). The 200 initial conditions are taken from the 

control run at intervals of 10 years starting from year 200, in order to guarantee their statistical 

independence and performing in this way a reasonable sampling of the attractor of the unperturbed 

system. Each run is 200 years long. For each set of forcing experiments we consider yearly 

averaged values of 𝑇𝑠  as output. We then compute the expectation values of the temperature 

difference 〈𝑇𝑠〉𝑓
(1)  and 〈𝑇𝑠〉𝑔𝜏

(1)  by averaging over all the ensemble members and subtracting the 

average value computed from the control run. 

 

2.2.3 Data analysis 

In general, the susceptibility 𝜒T𝑆
(1)(𝜔) can be computed from the response of the surface temperature 

〈𝑇𝑠〉𝑓
(1)(𝑡) by taking its Fourier transform 〈𝑇𝑠〉� 𝑓

(1)(𝜔) and using Equation (2), being the Fourier 

transform of the forcing 𝑓(𝜔) known. The Green function 𝐺T𝑆
(1)(𝑡) can then be derived by taking the 

inverse Fourier transform of 𝜒T𝑆
(1)(𝜔). For special choices of the forcing, 𝐺T𝑆

(1)(𝑡) can be computed 
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directly from 〈𝑇𝑠〉𝑓
(1)(𝑡). If we consider the case of instantaneous [CO2] doubling, the time evolution 

of the forcing is given by 𝑓(𝑡) = 𝑓𝐶𝑂2
2𝑥 𝐻(𝑡), where 𝑓𝐶𝑂2

2𝑥  is a constant and 𝐻(𝑡) is the Heaviside 

function  (𝐻(𝑡) = 0 for 𝑡 ≤ 0 and  𝐻(𝑡) = 1 for 𝑡 > 0), setting 𝑡 = 0 at the instant at which the 

[CO2] doubles. Inserting this expression of 𝑓(𝑡) in Equation (2) and differentiating both sides of the 

equation gives 

𝑓𝐶𝑂2
2𝑥 𝐺T𝑆

(1)(𝑡) =
𝑑
𝑑𝑡
〈𝑇𝑠〉𝑓

(1)(𝑡) (5) 

The Green function can therefore also be computed differentiating the response signal, and the 

susceptibility can then be computed by taking its Fourier transform.  

All the computations have been performed in MATLAB® V. 7.9 environment using the 

standard Fast Fourier Tranform (fft) algorithm. When applying fft, we implictly force the input 

function to be periodic outside the time domain where it is defined. Applying this method to the 

time series of  〈𝑇𝑠〉𝑓
(1) introduces a frequency-dependent bias in the estimate of the spectrum due to 

the long-term behaviour of  〈𝑇𝑠〉𝑓
(1). We need to keep the information on such long-term behaviour, 

in order to estimate properly the low-frequency variability. It is possible to cure this issue by 

subtracting a suitably defined function before applying fft (Nicolson 1973).  

The analysis of the spectral properties of the response has been carried out starting from Eq. 

(4). In this case, we have used a slightly modified version (Lucarini et al. 2005) of the KK relations 

usually referred to as singly subtractive Kramers-Kronig relations (SSKK). Conventional KK 

relations stems from considering the real and imaginary parts of Equation (4) and exploiting the 

symmetries of the susceptibility, obtaining 

ℜ�𝜒T𝑆
(1)(𝜔)� =

2
𝜋
𝑃� 𝑑𝜔′

𝜔′ℑ�𝜒T𝑆
(1)(𝜔)�

𝜔′2 − 𝜔2

+∞

0

ℑ�𝜒T𝑆
(1)(𝜔)� = −

2𝜔
𝜋
𝑃� 𝑑𝜔′

ℜ�𝜒T𝑆
(1)(𝜔)�

𝜔′2 − 𝜔2

+∞

0

 (6) 

KK relations provide a self-consistency test for measured or observed data in many fields of 

physics, notably in optics (Lucarini et al. 2005). The accuracy of the KK inversion depends on the 

quality of the observed data. The SSKK method consists in referring to an anchor point 𝜔1where it 

is supposed that the direct estimate of 𝜒T𝑆
(1)(𝜔) from the data is reliable (Lucarini et al. 2005). The 

SSKK relations then read 
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ℜ�𝜒T𝑆
(1)(𝜔)� − ℜ�𝜒T𝑆

(1)(𝜔1)� =
2(𝜔2 − 𝜔1

2)
𝜋

𝑃� 𝑑𝜔′
𝜔′ℑ�𝜒T𝑆

(1)(𝜔)�
(𝜔′2 − 𝜔2)(𝜔′2 − 𝜔12)

+∞

0

𝜔−1ℑ�𝜒T𝑆
(1)(𝜔)� − 𝜔1

−1ℑ�𝜒T𝑆
(1)(𝜔1)� = −

2(𝜔2 − 𝜔1
2)

𝜋
𝑃� 𝑑𝜔′

ℜ�𝜒T𝑆
(1)(𝜔)�

(𝜔′2 − 𝜔2)(𝜔′2 − 𝜔12)

+∞

0

 (7) 

With a careful choice of the anchor point the SSKK relations improve the accuracy of the KK 

analysis (Lucarini et al. 2005). In our case we have taken 𝜔1 = 2𝜋𝜉1  with 𝜉1 = 0.1 𝑦𝑒𝑎𝑟𝑠−1 , 

obtaining a rather good quality of the inversion. We remark anyway that the results are rather robust 

with respect to different choices of the anchor point 𝜔1. 

  

3 Results 

3.1 Climate response and prediction 

Figure 1 shows the time serie of the ensemble average of the increase of globally averaged surface 

temperature for the instantaneous doubling scenario (blue). The shaded area represents the 95% 

(two standard deviations) of the ensemble variability. The long-term increase of the surface 

temperature for the doubling scenario (the equilibrium climate sensitivity) is rather high if 

compared with what is typically obtained with standard IPCC models, being 8.1 K against typical 

estimates between 1.5 and 4.5 K (IPCC 2007b, 2013). This is due to the fact we have chosen a 

simplified setup without the daily and in particular the seasonal cycle, which greatly enhances the 

system response to the radiative forcing. While this is mathematically more convenient at the price 

of decreasing the realism of our experiments, it also pushes the RRT more to its limits, thus 

providing a more stringent test for our approach. We have performed additional experiments 

increasing istantaneously the [CO2] by a factor √2 (about 510 ppm), checking that the observable 

indeed scales reasonably linearly with the logarithm of the [CO2], the actual behavior being only 

slightly sublinear (not shown).  

 In the insert of Figure 1 we show 𝐺𝑻𝒔
(1)(𝑡), derived from the doubling experiment output. The 

Green function 𝐺𝑻𝒔
(1)(𝑡)  is to a first impression consistent with a relaxation process with a 

characteristic time scale of about 10 years, even if relevant differences emerge, as explained later. 

Hasselmann et al. (1993) introduced the concept of Green function of the global surface 

temperature of a GCM when addressing empirically the problem of the so called cold start of 

climate simulations. This is the warming negative bias obtained when, due to limitations in 

computational resources, a climate change experiment was not started from the preindustrial 

stationary state but from a stationary state corresponding to an higher GHGs concentration. In that 

case, the response of 𝑇𝑠 was fitted with a prescribed functional form and then 𝐺𝑇𝑠
(1)(𝑡) computed 

analitically with Equation (5). Here, instead, we are computing 𝐺𝑇𝑠
(1)(𝑡) numerically directly from 



 12 

the output of the GCM without loss of information. 

 In order to test the predictive power of the theory, we consider another scenario where [CO2] is 

increased by 1% per year starting from the present-day value of 360 ppm until the value of 720 ppm 

is reached, and kept fixed afterwards. Since to a very good approximation the radiative absorption is 

proportional to the logarithm of [CO2], the corresponding radiative forcing is, to a good 

approximation, a ramp function 𝑔𝜏(𝑡) = 𝑓𝐶𝑂2
2𝑥 𝑡/𝜏  for 0 ≤ 𝑡 ≤ 𝜏  and  𝑔𝜏(𝑡) = 𝑓𝐶𝑂2

2𝑥  for 𝑡 > 𝜏  with 

𝜏 ≈ 70 𝑦𝑒𝑎𝑟𝑠. In Figure 3 we compare the ensemble average of the simulations and the prediction 

for 〈𝑇𝑠〉𝑔𝜏
(1) obtained using the estimate of the Green function shown in Figure 2. The agreement is 

excellent both on the short and long term. Discrepancies of less that 10% are present during the 

transient in the window between 25 and 100 years, because of of the strong nonlinearities due to the 

activation of the ice-albedo feedback. The degree of precision of the prediction obtained with the 

linear RRT is remarkable, considering the complexity of the climate model in use and the presence 

of strong nonlinearities in the underlying equations.  

 

3.2 Climate sensitivity in response theory framework 

Figure 3 shows the real ℜ�𝜒𝑇𝑠
(1)(𝜔)� and imaginary ℑ�𝜒𝑇𝑠

(1)(𝜔)� part of the susceptibility, computed 

as the Fourier transform of 𝐺𝑻𝒔
(1)(𝑡) . The function is plotted against the frequency 𝜉 = 𝜔/2𝜋 

measured in 𝑦𝑒𝑎𝑟𝑠−1 . The susceptibility to CO2 forcing at a frequency 𝜉′  gives a precise 

quantification of the climate response at the corresponding time scale 𝑡′ = 1/𝜉′. The estimate of the 

susceptibility becomes rather noisy for frequencies higher than 0.25 𝑦𝑒𝑎𝑟𝑠−1  (time-scales ≤

4 𝑦𝑒𝑎𝑟𝑠,), where we are not able to compute reliable climate projections. The overall quality of the 

experimentally obtained 𝜒𝑇𝑠
(1)(𝜔) is confirmed by the good agreement between the measured and 

KK-reconstructed real and imaginary parts. We have truncated the integral in Equation (4) at the 

highest measured frequency 𝜉ℎ = 0.5/Δ𝑡, where Δ𝑡 = 1 𝑦𝑒𝑎𝑟, and used the SSKK technique for 

the reconstruction (Lucarini et al. 2005). One must emphasize that all the bumps around 𝜉 ≈

0.15 𝑦𝑒𝑎𝑟𝑠−1 and 𝜉 ≈ 0.20 𝑦𝑒𝑎𝑟𝑠−1 found in the 𝜒𝑇𝑠
(1)(𝜔) are not due (only) to the presence of the 

noise, but correspond indeed to physical processes of the system (multiannual variability), as they 

are consistently captured by the KK relations. These spectral features are not consistent with a 

simple relaxation model of the climate response.  

 While the importance of  𝐺𝑻𝒔
(1)(𝑡) is due to its predictive power, 𝜒𝑇𝑠

(1)(𝜔) is a powerful tool for 

defining accurately climate sensitivity at different time scales. The equilibrium climate sensitivity is 

defined as 𝐸�𝑆 = lim𝑡→+∞〈𝑇𝑠〉(1)(𝑡) after an istantaneous doubling of [CO2]. Using Equation (3) 

and the definition of 𝜒𝑇𝑠
(1)(𝜔) one can show that, in linear approximation, 
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 𝐸𝐶𝑆 = 𝑓𝐶𝑂2
2𝑥 𝜒𝑇𝑠

(1)(0) (8) 

Therefore ECS is proportional to the zero frequency value of the susceptibility. From Figure 3 (and 

Figure 1) we see that 𝑓𝐶𝑂2
2𝑥 𝜒𝑇𝑠

(1)(0) ≈8.1 K. Therefore, when computing the ECS as long-term 

average of the 𝑇𝑠 increase from a GCM run, we actually compute 𝜒𝑇𝑠
(1)(𝜔) for a specific frequency 

𝜔 = 0. By using Equations (3-4) and the expression of 𝑓(𝜔) we obtain: 

 
𝐸𝐶𝑆 =

2
𝜋
𝑃� 𝑑𝜔

+∞

0

𝐼𝑚�𝑓𝐶𝑂2
2𝑥 𝜒𝑇𝑠

(1)(𝜔)�
𝜔

=
2
𝜋
𝑃� 𝑑𝜔

+∞

0
𝑅𝑒�〈𝑇𝑠〉� 𝑓

(1)(𝜔)� (9) 

The RRT formalism allows linking the ECS to the imaginary part of the susceptibility at all 

frequencies or, equivalently, to the real part of the response at all frequencies for the imposed step 

function forcing 𝑓(𝑡). Equation (9) clarifies that the values of the response at all frequencies are 

relevant for determining the long-term response. One may compare the integrand of Equation (9) 

obtained for two different models in order to test their agreement. In so doing, one would find out 

which time-scales (and therefore which physical processes) are mostly responsible for possible 

discrepancies in their ECSs. Alternatively, one may find that two models with similar ECSs differ 

substantially regarding their response at different time scales, detecting possible misleading 

compensating effects. 

 As mentioned above, the Transient Climate Response (TCR) is defined as the 𝑇𝑠  increase at the 

moment (after about 70 years) [CO2] has doubled following a 1% per year increase (Otto et al. 

2013). In our case 𝑇𝐶𝑅(𝜏) = 〈𝑇𝑠〉𝑔𝜏
(1)(𝜏) when the forcing is given by the ramp function 𝑔𝜏(𝑡). The 

forcing is the same used for the scenario of Figure 3, and we obtain 𝑇𝐶𝑅(𝜏) = 7.2 𝐾. Considering 

the Fourier representation of 〈𝑇𝑠〉𝑔𝜏
(1)(𝑡) evaluated for 𝑡 = 𝜏 and using Equation (3) 

〈𝑇𝑠〉𝑔𝜏
(1)(𝜏) =

1
2𝜋

� 𝑑𝜔
+∞

−∞
〈𝑇𝑠〉� 𝑔𝜏

(1)(𝜏)𝑒−𝑖𝜔𝜏 =
1

2𝜋
� 𝑑𝜔
+∞

−∞
𝜒𝐓𝑺

(1)(𝜔)𝑔�𝜏(𝜔)𝑒−𝑖𝜔𝜏 (10) 

The forcing is the sum of the ramp function up to time 𝜏 and the Heaviside function traslated by 𝜏, 

therefore its Fourier transform is given by 𝑔𝜏�(𝜔) = 𝑓𝐶𝑂2
2𝑥 𝑃�𝜋𝛿(𝜔)𝑒𝑖𝜔𝜏 + 𝑖 sinc (𝜔𝜏/2)𝑒𝑖𝜔𝜏/2 /𝜔�, 

where 𝑠𝑖𝑛𝑐(𝑥) = sin(𝑥) /𝑥. Therefore 

〈𝑇𝑠〉𝑔𝜏
(1)(𝜏) =

1
2
𝑓𝐶𝑂2
2𝑥 𝜒𝚽

(1)(0) − 𝑃� 𝑑𝜔
+∞

−∞
𝑓𝐶𝑂2
2𝑥 𝜒𝚽

(1)(𝜔)
sinc (𝜔𝜏/2)𝑒−𝑖𝜔𝜏/2 

2𝜋𝑖𝜔
 (11) 

Using the Cauchy formula 

1
2
𝑓𝐶𝑂2
2𝑥 𝜒𝐓𝑺

(1)(0) = 𝑃� 𝑑𝜔
+∞

−∞

𝑓𝐶𝑂2
2𝑥 𝜒𝐓𝑺

(1)(𝜔)
2𝜋𝑖𝜔

 (12) 

we derive 
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〈𝑇𝑠〉𝑔𝜏
(1)(𝜏) = 𝑓𝐶𝑂2

2𝑥 𝜒𝐓𝑺
(1)(0) − 𝑃� 𝑑𝜔

+∞

−∞
𝑓𝐶𝑂2
2𝑥 𝜒𝐓𝑺

(1)(𝜔)
1 + sinc (𝜔𝜏/2)𝑒−𝑖𝜔𝜏/2 

2𝜋𝑖𝜔
 (13) 

Therefore we can write 

 𝐸𝐶𝑆 − 𝑇𝐶𝑅(𝜏) = 𝐼𝑁𝑅(𝜏)

= 𝑓𝐶𝑂2
2𝑥 𝑃� 𝑑𝜔

+∞

−∞
𝜒𝑇𝑠

(1)(𝜔)
1 + sinc(𝜔𝜏/2)𝑒−𝑖𝜔𝜏 /2

2𝜋𝑖𝜔
 

(14) 

The difference between ECS and TCR is given by a weighted integral of the susceptibility, 

accounting for the contribution of processes and feedbacks occurring at different time scales. The 

integral in Equation (14) by KK relations gives 𝜒𝑇𝑠
(1)(0) in the limit 𝜏 → 0, decreases monotonically 

with 𝜏, and vanishes in the limit 𝜏 → ∞. 𝐼𝑁𝑅(𝜏) provides a measure of the inertia of the system at 

the timescale 𝜏, due to the overall contribution of the internal physical processes and characteristic 

time-scales of the relevant climatic sub-systems (Saltmann 2001, Winton et al. 2010). By changing 

𝜏, 𝐼𝑁𝑅(𝜏) allows one to deal with different rates of increase of [CO2] (Figure 4). In Figure 4 we 

also plot 〈𝑇𝑠〉𝑓
(1)(𝜏) − 〈𝑇𝑠〉𝑔𝜏

(1)(𝜏), which instead measures the difference in the transient response at 

time 𝜏 between the case where the forcing is modulated by 𝑓(𝑡) and by 𝑔𝜏(𝑡), respectively. This 

quantity approximately coincides with 𝐼𝑁𝑅(𝜏)  for 𝜏 > 50  years but has a completely different 

behavior for small values of 𝜏. 

 

3.3 Horizons of predictability 

We can quantify the limits to the predictive skills of the theory with a scale analyis.  We focus on 

the high-frequency range. Given an ensemble of N realizations, the error in the estimate of 

〈Φ〉� 𝑓
(1)(𝜔) with respect to the true expectation value can be represented as a random signal 𝜎(𝜔) 

such that |𝜎(𝜔)| ≈ 𝛼𝑁−1/2, where 𝛼 is a suitable constant. If the forcing spectrum decays for high 

frequencies as |𝑓(𝜔)|~𝛽𝜔−𝜈, from Equation (3) we derive that the error on the estimate of the 

susceptibility is �𝛿�𝜒Φ
(1)(𝜔)�� ≈ 𝛼/𝛽𝑁−1/2𝜔𝜈. Assuming that the true susceptibility asymptotically 

decays as �𝜒Φ
(1)(𝜔)�~𝛾𝜔−𝜅, the signal to noise ration approaches unity at 

𝜔𝑐 = �
𝛽𝛾𝑁1/2

𝛼
�
1/(𝜈+𝜅)

 (15) 

For 𝜔 ≳ 𝜔𝑐 the estimate of the susceptibility will be seriously deteriorated by the presence of noise 

so that we will have no skills in prediction at time scales smaller than 𝜏𝑐 = 2𝜋/𝜔𝑐. From our data 

N=200, we estimate 𝛼 ≈ 0.2 , 𝛾 ≈ 0.63, 𝜅  =1, while we have by construction 𝛽 = 1 and 𝜈  =1. 

Using Equation (15), we obtain an estimate of 𝜏𝑐 ≈ 1  year, which fits with the qualitative 

information provided by Figure 3. The design of the experiment and the processing of the output 
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involve 3 parameters: the temporal resolution of the response signal Δ𝑡 (tipically a coarse graining 

of the raw output of the numerical model), the length of the simulations T, and the size of the 

ensemble N. They define respectively the high frequency cutoff 𝜔ℎ = 𝜋/Δ𝑡, the low frequency 

cutoff 𝜔𝑙 = 2𝜋/𝑇  (that is also the spectral resolution Δ𝜔 = 𝜔𝑙 ) and the critical value for 

predictability 𝜔𝑐. Given the time scales of interest, the appropriate temporal resolution, integration 

length and ensemble size to have good predictive skills can thus be determined. The quality of 

prediction differs for different observables and forcings, with red observables featuring a slowly 

decaying susceptibility and forced by red modulations being better candidates for a successful 

prediction. 

 

4 Summary and discussion 

The applicability of RRT has several important implications regarding climate change science. At a 

fundamental level, it demonstrates that the problem of climate change is indeed well-defined from a 

mathematical and a physical point of view, as we can study it in a statistical mechanical framework. 

Applying the FDT to a non-equilibrum system like the climate can introduce mathematically 

uncontrollable errors in the estimates of the response or, anyway, requires a very accurate 

representation of the attractor of the system. While there might be ways to circumvent this problem 

(Colangeli and Lucarini 2014), we expect to be able to reconstruct the climate response from its 

natural variability only in special cases. The approach proposed here bypasses some of these 

mathematical issues by exploiting formal properties of the response and allows for constructing 

rigorous definitions of climate sensitivity at different time scales through the susceptibility function. 

 We have provided a framework for relating the difference between transient and equilibrium 

climate sensitivity to the inertia of the CS, and have shown how these properties depend of the  

response of the system on all time scales. This partially addresses some issues debated in the 

literature regarding the specific relevance of the ECS (Allen and Frame 2007) and provide viable 

ways to intercompare GCMs. Deviations from a simple relaxation behaviour have been detected, 

and point to the complexity of the climate response at multi-annual time-scales. Considering the 

corresponding spectral features is necessary for having a consistent and integrated picture of the 

overall climate response at all frequencies. Our approach helps clarifying the limits of simple linear 

feedbacks approximations.  

 On the practical side, our results provide a way to perform climate prediction (in an ensemble 

sense) at all lead-times. We have also shown how to estimate the predictability horizon and assess 

how it scales with different sizes of the ensemble of simulations. Inaccuracies in representing 

specific spectral features have serious impacts on our ability to predict climate response on the 

corresponding time scales, and our findings could help understanding why, e.g., climate response at 
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decadal time scales may be hard to capture. We have highlighted that our ability to predict the 

response may vary substantially when different observables are considered. It appears that 

considering only one single CO2 forcing scenario allows for reconstructing accurately the response 

of the system to other temporal patters of changes in [CO2]. Exploiting the linearity of the response 

it is possible to compose the effect of multiple forcings (like changes in the solar constant or in 

other GHGs) by simply adding the linear corresponding Green functions and susceptibilites; the 

extension to nonlinear cases is more cumbersome but theoretically doable (Lucarini 2009, Lucarini 

and Colangeli 2012), and basically points to a generalisation of the factor separation technique 

(Stein and Alpert 1993).  

 We have limited our analysis to one single observable of primary climatic interest. The analysis 

of other observables could shed light on the mechanisms determining the response of the CS to CO2 

forcing. As an example, the analysis of the response of large-scale meridional gradients of 

temperature at surface and in the middle troposphere could provide information on changes in the 

midlatitude circulation. We expect the analysis to work better for globally or regionally integrated, 

rather than for local, quantities, in terms of signal to noise ratio in the estimate of the susceptibility 

at high frequencies. In general different observables will show different ranges of linearity. The 

response of water vapor related observables, in particular, is expected not to scale linearly in the 

same range as the surface temperature, because of the Clausis-Clapeyron equation (Held and Soden 

2006). In this case, if one wants to study large climate shifts the role of the nonlinear terms will 

likely be relevant. The existence of approximate functional relationship between the susceptibilities 

of different observables (Lucarini 2009) could set a way for rigorously defining the so-called 

emergent constraints (Bracegirdle and Stephenson 2013, Cox et al. 2013). 

 The analysis of fully coupled atmosphere-ocean GCMs is crucial in order to understand the 

important role of ocean and interactive sea-ice on climate response. Obviously, considering models 

with interactive ocean introduces longer time scales and makes the analysis technically more 

difficult. For a prediction in an ensemble sense, we need to be able to account for all time scales. 

This implies the use of very long integrations and a large number of ensemble members. A tentative 

intercomparison analysis on several GCMs could be performed using CMIP5 data, even if this goal 

seems to be out of reach given the limited length of the hosted runs. This hints at the need of 

including in model data repositories longer runs to properly assess the effect of the climate change 

scenarios on the state of the system (Lucarini and Ragone 2011). As a first (still challenging but 

currently more doable) step in the direction of testing RRT in state of the art climate models, we are 

currently working on the large ensemble of simulations made available in the climateprediction.net 

project.  

 RRT provides a well defined theoretical framework and tools that allows to diagnose rigorously 
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discrepancies in the properties of the frequency dependent response of different models and to 

guide the design of the climate change experiments. On one side, this could support strategies for 

future GCM development aimed at improving the persisting deficiencies in the model performances 

highlighted in the last IPCC report (IPCC 2013) by exploiting rigorous analysis and 

intercomparison procedures. On the other side, the vast number of diverse scenarios considered 

nowdays in the IPCC protocol could be substituted by a more focused effort on few selected forcing 

experiments making use of ensemble methods. Or, conversely, given the present palette of forcing 

scenarios, one could fill in the gaps and create projections for combinations of scenarios without 

resorting to additional simulations. This is promising for applications, considering that simulations 

for climate change assessment are extremely expensive and, at the same time, it is necessary to 

inform policymakers on a wide range of climate change scenarios. 
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Figures 

 

 

Figure 1 Ensemble average of increase of global surface temperature after an instantaneous 

increase of the [CO2] by a factor 2. The upper and lower limit of the bands are computed as two 

standard deviations of the ensemble distribution. Insert: Green function of the global surface 

temperature. 
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Figure 2 Comparison between GCM simulation (blue) and response theory prediction (red) for 1% 

per year increase of the CO2 concentratrion. The upper and lower limit of the bands are computed 

as two standard deviations of the ensemble distribution. The agreement between the GCM run and 

the prediction via linear response theory is remarkable, with only a slight discrepancy during the 

transient, most probably connected to the activation of the ice-albedo feedback. 
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Figure 3 Real (black) and imaginary (red) parts of the susceptibility computed as the Fourier 

transform of the Green function of Figure 1. Real (blue) and imaginary (pink) parts of the 

susceptibilty obtained via singly subtractive KK relations. 
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Figure 4 Measuring the relaxation of the system. Inertia of the system at time scale 𝜏 (blue) and 

difference at lead time 𝜏 between the response at the system to a step-like and ramp (of time scale 

𝜏) forcings (black). 
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