18 research outputs found

    Deep Learning With Attention Mechanisms in Breast Ultrasound Image Segmentation and Classification

    Get PDF
    Breast cancer is a great threat to women’s health. Breast ultrasound (BUS) imaging is commonly used in the early detection of breast cancer as a portable, valuable, and widely available diagnosis tool. Automated BUS image analysis can assist radiologists in making accurate and fast decisions. Generally, automated BUS image analysis includes BUS image segmentation and classification. BUS image segmentation automatically extracts tumor regions from a BUS image. BUS image classification automatically classifies breast tumors into benign or malignant categories. Multi-task learning accomplishes segmentation and classification simultaneously, which makes it more appealing and practical than an either individual task. Deep neural networks have recently been employed to achieve better image segmentation and classification results than conventional approaches. In addition, attention mechanisms are applied to deep neural networks to make them focus on the important parts of the input to improve the segmentation and classification performance. However, BUS image segmentation and classification are still challenging due to the lack of public training data and the high variability of tumors in shape, size, and location. In this dissertation, we introduce three different deep learning architectures with attention mechanisms, each of which aims to address the drawbacks of their peers and evaluate their performance in terms of segmentation and classification accuracy on two public BUS datasets. First, we propose a Multi-Scale Self-Attention Network (MSSA-Net) for BUS image segmentation that can be trained on small BUS image datasets. We design a multi-scale attention mechanism to explore relationships between pixels to improve the feature representation and achieve better segmentation accuracy. Second, we propose a Multi-Task Learning Network with Context-Oriented Self-Attention (MTL-COSA) to segment tumors and classify them as benign or malignant automatically and simultaneously. We design a COSA attention mechanism that utilizes segmentation outputs to estimate the tumor boundary, which is treated as prior medical knowledge, to guide the network to learn contextual relationships for better feature representations to improve both segmentation and classification accuracy. Third, we propose a Regional-Attentive Multi-Task Learning framework (RMTL-Net) for simultaneous BUS image segmentation and classification. We design a regional attention mechanism that employs the segmentation output to guide the classifier to learn important category-sensitive information in three regions of BUS images and fuse them to achieve better classification accuracy. We conduct experiments on two public BUS image datasets to show the superiority of the proposed three methods to several state-of-the-art methods for BUS image segmentation, classification, and Multi-task learning

    Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review

    Full text link
    Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs. COVID-19 is a medium-sized, coated virus with a single-stranded RNA. This virus has one of the largest RNA genomes and is approximately 120 nm. The X-Ray and computed tomography (CT) imaging modalities are widely used to obtain a fast and accurate medical diagnosis. Identifying COVID-19 from these medical images is extremely challenging as it is time-consuming, demanding, and prone to human errors. Hence, artificial intelligence (AI) methodologies can be used to obtain consistent high performance. Among the AI methodologies, deep learning (DL) networks have gained much popularity compared to traditional machine learning (ML) methods. Unlike ML techniques, all stages of feature extraction, feature selection, and classification are accomplished automatically in DL models. In this paper, a complete survey of studies on the application of DL techniques for COVID-19 diagnostic and automated segmentation of lungs is discussed, concentrating on works that used X-Ray and CT images. Additionally, a review of papers on the forecasting of coronavirus prevalence in different parts of the world with DL techniques is presented. Lastly, the challenges faced in the automated detection of COVID-19 using DL techniques and directions for future research are discussed

    Health Risk Measurement and Assessment Technology: Current State and Future Prospect

    Get PDF
    With accelerated technologies, different kinds of health technology devices have been provided to customers that continuously record bio and vital signals. Some of these products are wearable that can be used all day long and during sleeping time. Due to the wearability feature and continuous recording, a vast amount of data can be achieved and analyzed. The recorded data are usually shared with a cloud to implement comprehensive analysis methods where deep and machine learning algorithms play the main role. Finally, they can assess some health factors of the customer and most likely predict future health risks. This chapter shall review the role of the clinical scanners and their valuable data in risk detection, more portable modalities, home-used commercial devices, and emerging techniques which are so potent for future home-used health risks analysis. In the end, we conclude the state-of-the-art and provide our vision about the future of health risk analysis

    Bioinformatics and Machine Learning for Cancer Biology

    Get PDF
    Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer

    Measurement model of brass plated tyre steel cord based on wave feature extraction

    Get PDF
    In the production of Truck and Bus Radial (TBR) vehicle tyres, one of the essential components is the wire that supports the tyre. There are several types of tyre wire, one of which is Brass Plated Tyre Steel Cord (BPTSC), produced by Bekaert Indonesia Company. BPTSC object has a micro-size with a diameter of 0.230 mm and has a wave shape. In checking the quality of steel straps, brass-coated tyres are usually measured manually by experienced experts by measuring instruments to measure the diameter using a micrometre, wave amount, and wavelength using a profile projector. The manual measurement process results in inaccuracy due to fatigue in employees' eyes and low lighting and must be repeated, thus, consuming more time. Technological developments that use computer vision are increasingly widespread. Moreover, from the results of studies in various literature, it is proposed to combine the models obtained to find new models to solve this problem. The objectives of this study were to implement and evaluate an automatic segmentation method for obtaining regions of interest, to propose a BPTSC diameter, wave amount, and wavelength measurement model based on its edge, and to evaluate the proposed model by comparing the results with standard and industrial measurement results. The technique to prepare the brass plated tyre steel cord was done in two ways: image acquisition techniques with enhanced image quality, noise removal, and edge detection. Secondly, ground truth techniques were utilised to find the truth about the stages of the image acquisition process. Finally, sensitivity testing was conducted to find the similarity between the acquired images and the ground truth data using Jaccard, Dice, and Cosine similarity method. From 148 wire samples, the average similarity value was 93% by Jaccard, 96% by Dice, and 91% by the Cosine method. Thus, it can be concluded that the acquisition stage of the brass-coated steel tyre cable with image processing techniques can be carried out. For the subsequent process, the pixel distance and the sliding windows model applied can correctly detect the diameter of the BPTSC properly. The wave amount and wavelength of BPTSC objects in the form of waves were measured using several local minima and maxima approaches. This included maxima of local minima maxima distance, the average of local minima maxima distance, and perpendicular shape to centre distance for measuring wave amounts. While for wavelength measurements, the midpoint of local maxima minima distance and the intersection of local maxima minima with a central line were used. Measurement results were evaluated to determine the accuracy and efficiency of the measurement process compared to standard production values using the accuracy, precision, recall, and Root Mean Square Error (RMSE) test. From the evaluation results of the two methods, the accuracy rate of diameter measurement is 97%, wave rate measurement is 95%, and wavelength measurement is 90%. A new model was formed from the evaluation results that could solve these problems and provide scientific and beneficial contributions to society in general and the companies related to this industry

    A model for the detection of breast cancer using machine learning and thermal images in a mobile environment

    Get PDF
    Breast cancer is the most common cancer amongst women and one of the deadliest. Various modalities exist which image the breasts, all with a focus on early detection; thermography is one such method. It is a non-invasive test, which is safe and can be used for a wide variety of breast densities. It functions by analysing thermal patterns captured via an infrared camera of the surface of the breast. Advances in infrared and mobile technology enable this modality to be mobile based; allowing a high degree of portability at a lower cost. Furthermore, as technology has improved, machine learning has played a larger role in medical practices by offering unbiased, consistent, and timely second opinions. Machine learning algorithms are able to classify medical images automatically if offered in the correct format. This study aims to provide a model, which integrates breast cancer detection, thermal imaging, machine learning, and mobile technology. The conceptual model is theorised from three literature studies regarding: identifiable aspects of breast cancer through thermal imaging, the mobile ecosystem, and classification using machine learning algorithms. The model is implemented and evaluated using an experiment designed to classify automatically thermal breast images of the same quality that mobile attachable thermal cameras are able to capture. The experiment contrasts various combinations of segmentation methods, extracted features, and classification algorithms. Promising results were shown in the experiment with a high degree of accuracy obtained. The successful results obtained from the experimentation process validates the feasibility of the model

    A model for the detection of breast cancer using machine learning and thermal images in a mobile environment

    Get PDF
    Breast cancer is the most common cancer amongst women and one of the deadliest. Various modalities exist which image the breasts, all with a focus on early detection; thermography is one such method. It is a non-invasive test, which is safe and can be used for a wide variety of breast densities. It functions by analysing thermal patterns captured via an infrared camera of the surface of the breast. Advances in infrared and mobile technology enable this modality to be mobile based; allowing a high degree of portability at a lower cost. Furthermore, as technology has improved, machine learning has played a larger role in medical practices by offering unbiased, consistent, and timely second opinions. Machine learning algorithms are able to classify medical images automatically if offered in the correct format. This study aims to provide a model, which integrates breast cancer detection, thermal imaging, machine learning, and mobile technology. The conceptual model is theorised from three literature studies regarding: identifiable aspects of breast cancer through thermal imaging, the mobile ecosystem, and classification using machine learning algorithms. The model is implemented and evaluated using an experiment designed to classify automatically thermal breast images of the same quality that mobile attachable thermal cameras are able to capture. The experiment contrasts various combinations of segmentation methods, extracted features, and classification algorithms. Promising results were shown in the experiment with a high degree of accuracy obtained. The successful results obtained from the experimentation process validates the feasibility of the model
    corecore