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Chapter

Health Risk Measurement and
Assessment Technology: Current
State and Future Prospect
Sadegh Moradi, Davood Simyar and Mojtaba Safari

Abstract

With accelerated technologies, different kinds of health technology devices have
been provided to customers that continuously record bio and vital signals. Some of
these products are wearable that can be used all day long and during sleeping time.
Due to the wearability feature and continuous recording, a vast amount of data can be
achieved and analyzed. The recorded data are usually shared with a cloud to imple-
ment comprehensive analysis methods where deep and machine learning algorithms
play the main role. Finally, they can assess some health factors of the customer and
most likely predict future health risks. This chapter shall review the role of the clinical
scanners and their valuable data in risk detection, more portable modalities, home-
used commercial devices, and emerging techniques which are so potent for future
home-used health risks analysis. In the end, we conclude the state-of-the-art and
provide our vision about the future of health risk analysis.

Keywords: artificial intelligence, deep learning, machine learning, CT, PET, MRI,
ECG, EEG, NIRS, microwave imaging, bio-impedance, commercial products, disease
prediction

1. Introduction

Wellbeing and healthiness are always a crucial concern for human being as the
most intelligent specie around the globe. Based on the historical background, people
have suffered from different treatment methods which were employed to cure them.
The treatment methods are sometimes fruitless, more and less painful, and seldom
creates new side effects. By entering 21st century, where biomedical engineering has
remarkably developed, the intelligent human has seriously changed his attitude about
his wellbeing. Now, his expectance is prediction and prevention, not only treatment!
Modern measurement techniques have increased the people’s expectations to predict
their health abnormalities and prevent serious health issues. This is achievable by
continuous and long-term daily measurement of vital signals of the body and
employing novel technologies as well as artificial intelligence (AI) algorithms. In this
chapter, the main aim is to review the outstanding studies of the health risk analysis
using conventional and novel technologies. Therefore, we firstly introduce machine
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learning (ML) and deep learning (DL) in simple words, then review their applications
in conventional clinical modalities; Computed Tomography (CT), Positron Emission
Tomography (PET), and Magnetic Resonance Imaging (MRI). Moreover, several
selected studies with keywords “AI” and “clinical modalities” are mentioned to
explore the state of the art. Later, the most potent portable and home-used modalities
for health risk assessment purpose are listed and evaluated here; including electrocar-
diogram (ECG), electroencephalography (EEG), functional near infra-red spectros-
copy (fNIRS), photoplethysmogram (PPG), and digital stethoscopy. We definitely
choose also some brilliant studies related to the mentioned techniques to discuss. In
addition, the chapter also demonstrates the state of the art in commercially-available
devices and introduces noteworthy commercial devices which are mostly AI-based to
predict or diagnosis of the disease at home. Beside them, there are several products
which do not employ AI but provide critical information for remote health analysis.
Will finally introduce two attention-deserved modalities, in order to brighten the
future prospective; including microwave imaging and bio-impedance measurement.

2. Machine learning and deep learning application in medical devices

Although the details of ML and DL are beyond the scope of this book chapter, this
chapter will describe their fundamentals and application in medical imaging. The
most interested readers may consult the ML [1] and DL [2] books and explore the
seminal papers that will cover here.

The main objective of learning algorithms is to use a priori information to perform
a task such as detecting and classifying diseases and abnormalities [3, 4]. They learn
from data to perform a task rather than hard-coding.

Let us explain the difference between hard-coding and learning through the
dataset itself with an example. Assume we want to know the weather temperature in
Celsius (°C) but our measurement device provides it in Fahrenheit (°F). To do that we
can write a program to get the temperature in oF with multiplying it by 1.8 and add 32
to it (Figure 1a). Now, let us assume the mathematical relation between the (°C) and
(°F) is unknown, and even worst, the user is not able to perform the measurement
correctly or the device does not work properly. In this way, the user needs to perform
the measurements and employs a linear regression to find the (linear) relation as
illustrated in Figure 1b.

Figure 1.
(a) Hard coding and (b) learning from dataset procedures are illustrated.

2

Next-Generation Metrology



Training the ML models itself is composed of three important parts (a) a correct
model, (b) an optimizer to find the free parameters of the models to satisfy, and (c) a
criterion, which is also called cost function or loss function. Although selecting ML
model is a bit tricky, the dataset’s complexity and size guide us to select an appropriate
model. The model will over-fit when its complexity is high and the dataset size is small
[5]. After selecting the correct model, optimizers like stochastic gradient descent
iteratively optimize the cost function to find the model’s free parameters to satisfy a
criterion like mean squared error between the predicted and the ground truth values.

The datasets play an essential role in training the ML algorithms. For instance,
several a priori features like rate, rhythm, axis, and intervals that are extracted from
electrocardiograms were used to classify and localize cardiac diseases [6]. However, it
will be naive to discount other kinds of features including morphological and texture
feature. Those are indiscernible to the human eye and need to be extracted with
engineered algorithms [7].

Although DL is a subset of ML, its architecture is different from ML. for instance,
feed-forward DL models are composed of several layers and each layer consists of
simple neurons that perform a linear operation. Almost always non-linear transforma-
tions like sigmoid functions are added to the neurons’ output to comprehend the
dataset’s non-linearity. Figure 2(a) illustrates a neural network (NN) configuration of a
input layer and one hidden layer. The deep NN shown in Figure 2b is formed when
several hidden layers, which are composed of neurons, are stacked on top of each other.
The feed-forward NNs does not consider data continuity that are seen in medical
images or electrocardiogram. Thus, the Convolutional Neural Networks (CNNs) that
consider the data continuity are more in us [8]. CNNs are composed of the convolution
layers that consist of a learnable kernel through error backpropagation (Figure 3).

DL algorithms are different from ML in many aspects like:

1.do not need engineered hand-crafted features;

2.do not need to choose a model for training;

Figure 2.
(a) Input layer with first hidden layer and (b) a complete feed-forward NN are illustrated.
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• but still we need to design the networks’ architecture.

3.do not need as extensive pre-processing as ML models need;

However, DL typically require a larger dataset compared with ML to train. To
improve the generalization of the DL models, the datasets are needed to acquire with
different acquisition protocols. While lack of a large medical dataset had limited its
applications, nowadays several large databases are available, which push forward the
applications of DL in medicine [9, 10].

2.1 Artificial intelligence in clinical modalities

The following chapter will review some DL applications in tomography images.
The term tomos (τομος) in Greek means “cut”, however, tomography refers to creating
internal images from an imaged object without cutting it open. The tomography
images like CT, PET, and MRI can provide anatomical and physiological (functional)
information.

The detail of those imaging modalities is beyond the scope of this chapter, the most
interested readers refer to the medical imaging books [11, 12] and go through the
papers will cover here.

Subsections 2.1.1-2.1.3 will, respectively, review some applications of the DL algo-
rithms in medical images including CT, PET, and MRI to detect and classify lesions, to
enhance medical images, and to reconstruct medical images.

2.1.1 Deep Learning in CT

CT modalities with different variations are anatomical images that acquire electron
density using x-ray radiations (Figure 4). CTs are widely used in medicine such as
diagnosing stroke [13], searching the hemorrhage [14], and planning radiation ther-
apy (RT) [15]. CT images can be acquired after injecting a contrast agent, called CT
angiography, that are used to visualize the veins and arteries.

Automatic lesion detection and segmentation will improve (a) hospitals’ through-
put, (b) reproducibility of the decision, and (c) accuracy and precision when they are
assisted by a user. Segmentation tasks that is time-consuming, on average 56% of the
time are preferred by radiologist and oncologists [16]. DL was used to detect and
segment cancers including non-small cell lung cancer [16–18] and brain hemorrhage
[19] on CT with comparable performances of experienced medical doctors.

Figure 3.
Convolution layer composes of input like an image (left), learnable kernel (middle), and output (right).
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CT uses x-ray radiation to acquire the data, so it delivers radiation doses to the
patients. However, delivering the radiation doses to the patient should be avoided or
should be kept as low as possible. Thus, DL algorithms are used to reconstruct thera-
peutic CT images from low dose imaging method called low dose CT (LDCT) recon-
struction. Table 1 summarizes the DL application in CT imaging modality.

2.1.2 Deep learning in PET

PET scanners acquire the metabolic activity images of an organ. Metabolic activity
is obtained with a radio-pharmaceutical tracer that is injected to a patient, and, its
uptake and washout reveal the function of a target organ (Figure 5). Wash-in and
wash-out provide metabolic information of the regions. For instance, the information
are used to diagnose neurodegenerative diseases like Alzheimer’s disease, brain map-
ping, and treatments’ follow-up [28–30].

Application Architecture Results Ref.

Reconstruction both fully connected and
convolutional layers

provide better image quality and higher image
contrast.

[20]

U-net Outperforms FBP1 and POCS-TV2 [21]

Pix2Pix (GAN) Outperforms FBP, lower artifact, better
generalization

[22]

both fully connected and
convolutional layers

FBP, IR3 [23]

Quality
improvement

CNN Outperformed ASD-POCS, K-SVD4 BM3D5 in
noise reduction

[24]

U-net (GAN), CNN Outperformed in reducing metal artifact FBP [25, 26]

SinoNet Outperformed in reducing metal artifact FBP [27]
1Filtered back-projection.2Total variation minimization method with projection on convex.3Iterative reconstruction
sets.4Singular value decomposition.5Block-matching and 3D filtering.

Table 1.
Deep learning applications in CT images.

Figure 4.
(left) Axial view, (middle) sagittal view, and (right) coronal view of a brain CT image are illustrated. Image
from The Cancer Imaging Archive (www.cancerimagingarchive.net).
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Clinical diagnostic and prognosis accuracy, precision, and repeatability of PET
scans depended significantly on image quality. DL has been used to improve the PET
image quality; reduce the PET imaging time; and predict and classify diseases. For
instance, DL algorithms were used to reduce noise [31], to reduce the acquisition time
[32, 33], and to reduce the motion artifact [34], which deteriorates the image quality.
DL algorithms have been showing promising results in predicting and classifying
different tumors and neurodegenerative disease types. Table 2 summarizes the DL
applications in PET scans including noise reduction, image reconstruction, image
motion artifact correction, and disease detection and classification. In reconstruction

Figure 5.
(left) Axial view, (middle) sagittal view, and (right) coronal view of a brain PET image are illustrated. Image
from med.harvard.edu.

Applications Target Results (Compared with conventional methods) Ref

Noise reduction brain better SNR1 & SSIM2 [31]

heart better SNR & SSIM [35]

Reconstruction brain better SNR & SSIM [32]

brain better SNR [33]

Motion reduction heart Reduced [34]

• mean motion error
• maximum motion error

Diagnosis head-and-neck cancer Accuracy 86.60 [36]

AUROC3 0.87

Alzheimers’ disease accuracy >80 [37]

specificity 75

sensitivity 82

Alzheimers’ disease accuracy >84 [38]

AUROC 0.96

Alzheimers’ disease AUROC 0.98 [39]
1Signal-to-noise ratio.2structural similarity index measure.3area under receiver operating characteristic curve.

Table 2.
Wide range of DL applications in PET scans including image enhancement, acquisition acceleration, and
diagnosis.
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and noise reduction applications, DL methods were compared with standard iterative
methods.

2.1.3 Deep learning in MRI

MRI sequences are obtained without using the radiation doses. In this way, they do
not deliver radiation doses to the patients. MRI with different pulse sequences can
provide anatomical and physiological information with soft tissue contrast superior to
CT and PET images. Figure 6 illustrates a 3D T1 MRI sequence. Soft tissue contrast in
MRI is superior to (Figure 4) and PET (Figure 5).

Functional and Anatomical MRI sequences like functional MRI (fMRI) and 3D
T1-w sequences have a wide range of applications from diagnosing neurodegenerative
diseases such as Parkinson’s disease [40], brain mapping [41], and solid tumor
detection and localization [42].

DL algorithms have been investigated intensively for MRI image analysis and
processing, because MRI scanners are widely accessible; MRI images are obtained with
high spatial and contrast resolutions, and MRI images are obtained without delivering
radiation dose. Image processing applications including image reconstructions
[43, 44], artifact reduction [45, 46], segmentation [47], and registration [48] have
been widely investigated. DL algorithms in MRI are used to detect Parkinson’s disease
[49] and Alzheimer’s disease [50]. Moreover, DL has been extensively investigated for
brain tumor detection and classification. The list of articles in that domain could be so
long, however, interested readers in tumor can check out [51] for brain tumor, for
prostate cancer [52], and for breast cancer [53].

3. Artificial intelligence in portable and low-cost modalities

The cost of the device and portability could be considered as the most important
aspects for home-user costumers who aim to monitor their health condition. More-
over, by producing cost-effective devices, more costumers afford to purchase and use
them at home which leads a huge unlimited data from different people. This can
provide a priceless condition to apply different DL and ML methods to this big data to
extract unexpected information like different disease identification. In the following,
we will discuss promising studies which utilize DL and ML.

Figure 6.
(left) Axial view, (middle) sagittal view, and (right) coronal view of a brain 3D T1MRI image. Image from IXI.org.
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3.1 Electrocardiography (ECG)

Heart as an autonomous organ is periodically generating electrical stimulus to
contract atrias and then ventricles and finally, pump out blood. This phenomenon
occurs 60 to 100 times per minute. The mentioned electrical activity can be recorded
by an electronic device, named ECG. ECG utilizes sensitive electrodes, attached to the
chest, to capture the weak electrical activity of the heart, see Figure 7. ECG signals
provide different functional information about the heart that could be analyzed to
detect or predict disease and abnormalities of the heart [54].

Here, we mention some notable studies which use AI to diagnose or predict heart
diseases using ECG recorded signals. The following studies prove the potential of AI
algorithms to apply to ECG signals.

Heart disease: as a leading cause of death worldwide, always attracts the attention
of scientist to predict and diagnose it. In 2020, Khan et al. [55] developed an IoT
framework to assess heart disease more precisely by utilizing a Modified Deep
Convolutional Neural Network (MDCNN). The signal was collected by a smartwatch
and heart monitoring device that was attached to the patient to monitor the blood
pressure and ECG. Based on the results, MDCNN is found to be a more effective
method for predicting heart disease than other existing systems. With 98.2% accu-
racy, the proposed method achieves higher accuracy for the maximum records com-
pared to the existing classifier: hybrid random forest with liner model (HRFLM),
neutrosophic multi-criteria decision making (NMCDM), and particle swarm optimi-
zations (PSOs) with support vector machine (SVM).

Heart disease prediction: the pattern of heartbeat is an important marker for
heart function. The rhythm and rate of the beating can be irregular which is called
“Arrhythmia”. Vafaie et al. [56, 57] have used a novel classification method based on
dynamical models of ECG signals to classify ECG signals with higher accuracy, leading
to more precise arrhythmia detection. The proposed approach uses a fuzzy classifier to
segregate ECGs, and simulation results indicate that this classifier is 93.34% accurate.
In order to further improve the performance of the classifier, a genetic algorithm is
used, which enhances the prediction accuracy to 98.67%.

Cardiac arrest prediction: unexpected cardiac arrest in hospitals is always a major
burden for the health system. Using ECG and deep learning AI (DLAI). Kwon, J.M.
et al. [58] hypothesized that cardiac arrest could be sufficiently predicted and

Figure 7.
ECG device uses several electrodes, attached on the chest, to record electrical activity of heart. Here is also shown a
typical ECG signal at left side. EEG also utilizes multiple electrodes placed on the scalp to record brain electrical
activity, here we just showed two electrodes to simplify the figure. A regular EEG signal contain different frequency
components which individually describes the brain working status. At the right side, an example of different EEG
frequency has been pictured.
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prevented. During the 24 hours following the ECG, cardiac arrest was observed. Their
algorithm could classify some patient as non-event cases who experienced a delay
cardiac arrest over 14 days.

Pulmonary hypertension predication: pulmonary hypertension (PH) is a mortal
condition whereÂ the blood pressure in the blood vessels that supply the lungs is high
and there is a possibility of damage to the right side of the heart in this condition.
Again, Kwon, J.M. et al. [58] in 2020, successfully developed an AI algorithm to
predict PH based on ECG signals of patients. ECG signals were acquired by a 12-lead
device which enabled them to provide a sensitivity map.

3.2 Electroencephalography (EEG)

EEG device is a dedicated modality for brain electrical activity assessment and
detects abnormalities in our brain. It has multiple electrodes, dry or wet, placed on the
scalp to record the low-level voltage variations. For wet electrodes, it is needed to use
conductive gels [59]. EEG signals are primarily amplified by electronic circuits, then
processed to extract different frequency components, see Figure 7.

Cholinergic intervention detection: it is increasingly important for clinical trials
to monitor therapeutic intervention effects on brain function, despite the fact that
inter-individual variability and subtle effects make this a difficult task. To meet this
goal, Simpraga et al. [60] utilized complementary biomarker algorithms in EEG data
processing to figure out the signature of pharmacological intervention as well as ML to
improve classification accuracy. A biomarker for muscarinic acetylcholine receptor
antagonist (mAChR) that was developed by them, produced higher classification
performance than any single EEG biomarker. However, the mAChR index discrimi-
nated healthy people from AD patients, an AD-optimized index yielded a better
classification. In the end, they concluded that a clinical trial’s accuracy in the detection
of disease or drugs can be enhanced if multiple EEG biomarkers are integrated.

Seizure prediction: seizure is one of the well-known disorders in the brain. During
a seizure, there is an electrical disturbance in the brain that occurs suddenly and
uncontrollably. As EEG records the electrical activity, could be a worthy choice to
identify or predict seizure. Alshebeili, S.A. et al. [61] proposed a method for predicting
seizure activity using EEG signals, by applying statistical analysis, digital filtering, and
AI. For the AI part, they used Multi-Layer Perceptron (MLP) networks for seizure
prediction. Results of the simulation show that the proposed approaches are highly
accurate, have a short prediction time, and have a low false alarm rate.

3.3 Functional Near Infrared Spectroscopy (fNIRS)

fNIRS is an optics-based technique that uses two or more wavelengths in the near-
infrared (NIR) range (650–950 nm) for measuring the haemodynamics in the brain,
see Figure 8. As NIR light illuminates the scalp, it will be scattered and absorbed. In
the brain cortex, a portion of the incident light reflects and scatters back to the scalp,
which can be detected by an ultrasensitive photodetector. In the end, cerebral
haemodynamic can be calculated using the modified Beer–Lambert law, if the fNIRS
device uses at least two wavelengths around the isosbestic point at �810 nm, one
greater than 810 nm and one less than 810 nm [62].

Let us look at two selected fNIRS studies which are in AI-based studies category.
Stress assessment: stress is well-known to be one of the major threats to human

health [63]. According to a promising study, an approach based on CNN is proposed
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to assess stress. The introduced model was trained on the heart rate signal extracted
from fNIRS, which is called HRF. Thereafter, their employed CNN method was
compared with several ML algorithms and other methods were clearly outperformed
by CNN. Further, it can be applied in real-time stress assessment due to its low
computational cost.

Epileptic seizure prediction: Epileptic seizure is mostly studied using EEG but a
fully different study employed fNIRS to predict it [64]. The fNIRS results were
applied to a CNN algorithm due to its ability to model high-dimensional fNIRS as
three-dimensional tensors. CNN application to fNIRS recordings demonstrated pretty
reliable results to predict epileptic seizure.

3.4 Photoplethysmography (PPG)

PPG is a method to measure blood volume using a light source and detector. PPG
could be considered as a simpler version of the NIRS technique, but its aim is only
blood volume measurement and heart rate, see Figure 8. PPG devices are low-cost and
usually worn on a hand finger. It has recently been used in several studies to predict
different diseases or blood components, as described in the following.

Type 2 Diabetes detection: Type 2 Diabetes is a common impairment for people
that could be extracted from PPG signals using ML approaches. This study was done
by Hettiarachchi, C. et al. [65] based on PPG signals of smart devices and other
additional information such as gender, weight, age, and height. They tested several
classification models and found that A 79% area under the ROC curve was achieved by
the Linear Discriminant Analysis (LDA).

Blood pressure prediction: in 2019, Baek S. et al. [66] proposed a method to
predict blood pressure non-invasively using ECG and PPG signals. The method is

Figure 8.
fNIRS technique illuminates near-infrared light on the scalp to extract the Hb and Oxy-hemoglobin (HbO)
concentrations in the brain. Near-infrared wavelength range light can penetrate more deeply compared to other
ranges; visible and infrared. The NIRS raw data is applied to the well-known modified Beer–Lambert law to
calculate Hb and HbO concentrations. The trend of Hb vs. HbO concentrations should be vice versa, as you can see
in the example curves on the right side. Just to be mentioned here that the source and detector separation must be
enough long (at least 3 cm) to extract the brain’s hemodynamic otherwise, it belongs to the skin’s haemodynamic.
On the left side, the PPG technique is visually described. PPG signals are recorded from surficial tissues like skin
and the distance between source and detector is lower than fNIRS. PPG devices are regularly designed for fingers,
due to ease of use, but basically, PPG signals can be measured anywhere on our skin.
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based on a deep CNN and the prediction was accurate when both PPG and ECG
signals were used for calculation.

Blood pressure stratification: One year later, by Wang D. et al. [67] conducted a
study to model the relationship between PPG and blood pressure. They employed a
multi-information fusion artificial neural network (MIF-ANN). Moreover, this study
showed that blood pressure detection accuracy is greatly improved through multi-
information fusion based on meticulously designed networks.

Hemoglobin level prediction: non-invasively Hemoglobin (Hb) level measure-
ment could be a desirable goal for controlling the disease and its progression [68].
Regularly, it is invasively measured from blood samples. Using the characteristics of
the PPG signals and different ML algorithms, a non-invasive method is proposed by
Kavsaoğlu, A et al. [68] for the prediction of Hb. They employed different kinds of ML
algorithms where notable results were achieved (MSE-0.0027) using the selected
features by RELIEFF feature selection (RFS) and support vector regression (SVR).

3.5 Digital stethoscopes and sound processing

Digital stethoscope is an electronic device that can capture the voice of the internal
part of the body using a microphone and record it continuously. The long-term
recorded sound could include an ocean of information about the health of the lungs,
heart, and whole respiratory system. In other words, a digital stethoscope provides the
opportunity of applying AI algorithms to recorded sounds. In Figure 9, the typical
recorded signals of cardiac and pulmonary sound are shown.

Recognition of pulmonary diseases: Fraiwan, M et al. [69] conducted a study to
figure out the capability of DL in identifying a pulmonary disease from lung sounds.
Their DL network structure was built from two CNNs and bidirectional long short-
term memory units. Luckily, the performance of the network was promising; the
highest average accuracy of 99.62%. They could classify the patients based on type of
pulmonary disease with precision of 98.85%.

Lung disease identification: the recorded cough sound, similar to lung’s, contains
valuable information about the health condition of the respiratory system. Rudraraju,
G. et al. [70] could figure out a relationship between cough patterns and respiratory
conditions. Including stiff lungs, widened airway, fluid-filled air sacs, and narrowed
airway. According to the results, cough sound characteristics are strongly correlated
with airflow characteristics which are critical in the identification of the lung disease
type.

Figure 9.
Recording of heart and pulmonary sounds could provide plenty of information which contain buried hints to
evaluate the healthiness of corresponding organs. Using a microphone and an electronic circuit, this goal could be
easily achieved. Then, sound processing and AI algorithms take the role of interpreter to illustrates the behind
mysteries.
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Respiratory anomalies prediction: respiratory sound is also investigated by
researchers to detect respiratory disease or any abnormality in the sound [70]. In
2020, Pham, L et al. [71] firstly presented an extensive analysis of how different
factors like respiratory cycle length and time resolution affect the prediction accuracy.
Finally, they proposed a novel DL-based framework for respiratory disease detection
which performed truly well compared to available methods.

Respiratory anomalies prediction: one year later, Pham, L et al. [72] again utilized
respiratory sound as input for an inception-based deep NN to detect lung disease. In a
process called front-end feature extraction, recorded sounds from patients are firstly
converted to spectrograms that represent both spectral and temporal information.
Then, in another process called back-end classification, the spectrograms are fed into
the introduced network to detect lung diseases in patients. Finally, the result of the
experiment was definitely competitive in lung disease detection.

Detection of chronic heart failure: there are several papers that they have uti-
lized heart sounds to detect the disease and we mention one here. Gjoreski, M. et al.
[73] presented a method to detect chronic heart failure (CHF) based on heart sounds.
In their method, traditional ML and end-to-end DL are combined. The proposed
method showed bright results in discriminating healthy subjects from patients as well
as in the detection of different CHF phases.

4. Commercially available portable and home-used devices

Home-used health technology devices have recently emerged as critical tools for
monitoring people’s vital signs and health status in the modern world. The fast-
growing field of home-used and mobile health has covered the monitoring of numer-
ous human organs. They could provide massive data by continuous, recuring, or
occasional measurements that provide a wider playground for ML and DL algorithms.
That is why novel home-used devices day by day present new clues about costumers’
healthiness which were unknown and unexpected before. Moreover, most of these
devices are designed for personal and private use that can enable the company to
provide personalized results for each person, based on his/her lifestyle, medical back-
ground, and other individual information.

Here, we introduce some noteworthy commercially available products and classify
them based on their provided results into two categories: the first group is AI-
beneficiary products that provide additional information besides vital signs and the
second is raw data products that only vital signs or basic parameters. To have a glance
at our desired products to be introduced, see Figure 10.

4.1 AI-beneficiary products

basic vital signs, using different methods which have been already mentioned by
us. The duration of the measurement could be non-stop, even during sleeping, peri-
odically, several times per day, and occasionally. Clearly, the continuous measuring
devices could record more data and have a better estimation of the health situation.
Moreover, they can share the recorded big data with a cloud to analyze it utilizing AI
and provide admirable information, including health warnings, disease prediction,
and diagnosis. Here we mention some brilliant AI-based devices and their application.

12

Next-Generation Metrology



The first device to review is Oura ring [74], a 100 percent wearable device to
measure heart rate (HR), blood oxygenation (SpO2), and temperature. The ring con-
tains a long-duration battery and internal memory and is able to measure continuously
for a whole week and transfer it to the mobile application. Moreover, it can provide
some information about daily activities, workouts, sleep quality as well as the possi-
bility of limited disease, like flu, prediction. Oura ring is a talented device to use AI,
due to continuous daily and nightly measurement.

The second device is Nukute [75], which consists of two wireless wearable sensors,
a tablet computer, and a cloud application for remote sleep apnea screening and
diagnosis. The sensors record bio-signals such as breathing, blood oxygen saturation,
heart rate, and sleeping position to be algorithmically analyzed in the cloud. Using
an intuitive online user interface, the physician can view results and confirm the
diagnosis.

The next popular product is BPM Core [76], a multimodal device that measures the
systolic and diastolic blood pressures in a medically accurate manner. Blood pressure
measurement a home can also help to avoid white-coat syndrome, detect masked
hypertension, and manage nocturnal hypertension. BPM Core also includes medical-
grade ECG thanks to 3 electrodes. The data is presented lively on the device and
transferred to the mobile application, to receive instant feedback on atrial fibrillation
diagnosis. In addition, it contains a digital stethoscope beside ECG and blood pressure
meter. By placing next to the chest during a measurement, the digital stethoscope
detects the specific heart sound frequencies that correspond to the opening and
closing of the heart valves. Using these sounds as well as AI, BPM Core can detect
potential disturbances.

Muse S [77] is an innovative brain-sensing headband that monitors brain activity
during the day and provides real-time biofeedback to help refocus. It consists of EEG
sensors, an accelerometer, a gyroscope, and PPG. This smart device could provide a
kind of meditation for costumer, as feedback on brain and heart activities is recorded
by EEG, PPG, and other sensors. Using the app generates sounds of weather to help
costumer stay calm and focused.

Figure 10.
The selected products to explore, some are AI-based and some not. Here, the products are directly connected to their
corresponding measuring organ or their measurement position on body. For example, Oura ring is a special ring
which is worn on the finger and mainly measures blood oxygenation and heart rate.
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Nowadays, cardiac arrhythmias could be detected at home using long-term data
recording by commercial low-cost products. A wearable, mobile, and waterproof ECG
recording with intelligent arrhythmia detection is an ideal solution presented by
Bittium Faros [78].

IBreastExam [79] is a radiation and painless device to assess women’s breast con-
dition. This device utilizes capacitive sensing technology to detect breast lesions
earlier. It could be a talented replacement for mammography which is radiation based.
The device is fully portable but relatively expensive for home users.

Ava bracelet [80] is a dedicated device for women that tracks five physiological
signals such as breathing rate, resting pulse rate, temperature, etc. In this device, ML
algorithms are used to determine the five most fertile days of the menstrual cycle
based on this data. Luckily, women only need to wear it during sleep.

mouthLAB [81] is a device from Aidar. It is a hand-held and rapid health assess-
ment device for home users. It is capable of measuring multiple vital health parame-
ters in under 1 minute. It utilizes clouding AI algorithms to identify and predict health
status and disease progression early.

The last device in this part is PulseOn [82]. Another multimodal product that
measures heart rate optically using an optical sensor as well as ECG to screen atrial
fibrillation, a heart arrhythmia.

4.2 Raw data products

The vital sign, including heart rate, blood pressure and etc., are always essential to
know for sake of health assessment. There are plenty of commercial products whose
task is just measuring and informing results to the costumer, not any more linking to
cloud computing for further interpretation. They cannot predict disease or more
abnormalities but they are worthy to have at home to track health situations. The aim
of introducing raw data product is the topic of the chapter; “Health Risk Measure-
ment”. The result of these devices could be considered as a warning for costumer to
follow his/her own health condition. In the following, several of the commercial
products are mentioned and described as their purpose.

Butterfly [83] network is a battery-powered, compact, and portable ultrasound
product, no similar to conventional clinical sonography systems. This device is rela-
tively light and can be carried by hand, then connected to a smartphone to show the
ultrasound images. This device could be definitely beneficial in different applications
such as critical care, ambulance services, primary care and etc.

owever, the novel non-invasive techniques are rapidly growing, still, urine ana-
lyzers are mostly photoelectric-based, including different strip sensors for specific
urine components. FL401 urine analyzer [84] is a home-used portable urine analyzer
that measures glucose, bilirubin, specific gravity, ketones, protein, urobilinogen,
nitrates, leukocyte, intravascular contraction, PH, malonic acidemia, creatinine, and
urinary calcium. Each of these results could be considered as a warning alarm for the
costumer to visit health centers. Moreover, the device could transfer the data to
smartphone via Bluetooth.

Lumen [85] is the first light, hand-held and portable device, presented for accurate
measurement of body metabolism which is a critical measure to evaluate and assess
overall health status. Lumen measures CO2 concentration in a single breath using a
CO2 sensor and flow meter, then the type of fuel your (fat or carb) body uses to
produce energy is clearly indicated. The Lumen’s results are clear indicators for losing
weight and getting healthier.
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5. Emerging techniques

In recent decades, newborn medical applications have been grown and developed
by researchers to non-invasively discover impairments in our body. These new tech-
niques are still in progress but provide a bright future for disease diagnosis with help
of the current fast technology growth rate. In this part, we introduce the most talented
methods which have a high capacity to provide new opportunities in close future.

5.1 Microwave imaging

The term “microwave imaging” refers to applications that utilize electromagnetic
radiation between several hundred megahertz and several gigahertz. Many optically
semi-opaque media, like the human body, can be penetrated by this radiation,
depending on its frequency. Microwave imaging can be used in non-invasive diagnosis
to inspect body impairments [86].

In the past, this technology was a favorite choice in a variety of applications for
decades such as flight radars, marine, remote sensing, and target tracking but nowa-
days, worldwide research is devoted to imaging body parts and tissues. There are
several wise reasons to use this technique in biomedical applications: 1- microwave
sensing is a non-invasive modality. 2- Due to the advent of radio-on-a-chip (RoC) and
single-chip radars operating in the GHz band, microwave imaging hardware can be
manufactured at low prices and in compact sizes. Now, Due to these advancements,
microwave sensors are available in large arrays and are also affordable. In exciting and
optimistic words, microwave imaging has reached a point where is possible to be
home-used, portable, and low-cost (Figure 11) [86].

Classification and detection of brain abnormalities: n microwave brain imaging, an
automated method for classifying and detecting brain abnormalities like tumors is
vital to medical investigation and disease monitoring. Hossain et al. [87] have
presented a DL-based method to classify and detection of brain abnormalities. The
method has been used in a portable microwave brain imaging system. The result of
this algorithm is reliable and could be used in real-time monitoring applications.

Breast tumor classification: Breast cancer diagnosis and staging depend heavily
on the size and shape of breast tumors. In 2020, Conceição, Raquel C., et al. [88]
classified breast tumors based on their size and shape of them. Their microwave

Figure 11.
In microwave imaging, several antennas surround the organ (here brain). Microwaves are transmitted by an
antenna and receive by others. On the right side, the typical curves of scattering parameters are shown. Based on the
scattering parameters, the image of the organ is reconstructed.
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imaging prototype collected the signals using a monostatic ultra-wideband radar
(1–6 GHz) and ML algorithms were applied to the signals later.

5.2 Bio-impedance measurement

Bioelectrical impedance measurement is a low-cost, non-invasive, and portable
technique that could be used for the determination of tissue’s electrical properties at
different frequencies. In simple words to describe the principle, a tiny current in the
range of microamperes is passed through tissue, between two electrodes, and the
difference voltage of electrodes is simultaneously measured, see Figure 12. Then,
impedance and the phase can be calculated based on the current value, measured
voltage, and phase difference [89].

Breast cancer risk factor: impedance techniques are currently used in mammog-
raphy, known as electro-impedance mammography, to obtain more information
about the breast tumor. Coripuna, Rosario Lissiet Romero, et al. [90] evaluated the
importance of the electrical-conductivity index of the mammary gland for earlier
detection of breast cancer. They studied different algorithms where SVM achieved
better results. According to this study, the conductivity index plays a crucial role in
assessing local risk factors.

Classification of breast tumors: Biopsy is always a painful and invasive part of
the treatment procedure for patients who suffer from breast cancer. Al Amin et al.
[91] studied the feasibility of tumors characterization using electrical impedance
measurement and ML techniques. Basically, it is expected that the impedance of
malignant and benign tumors will change at a constant frequency due to changes in
cell morphology. They used four electrodes around the region of tumor to measure the
impedance at specific frequencies, then fed them into the ML procedure. The result
was encouraging to conduct more studies to improve the idea.

Apnea detection: one of the most common sleep-related breathing disorders is
sleep apnea which can be diagnosed at a specialized sleep clinic through a nightly sleep
study. In 2020, Van Steenkiste, et al. [92] presented a portable sleep monitoring
device that was based on the bio-impedance of the chest. In this way, they could
continuously monitor the respiration rate and utilized a two-phase Long Short-Term
Memory (LSTM) DLA for automated event detection. By using this bio-impedance-
based device there is no need for in-hospital apnea detection.

Figure 12.
Bio-impedance measurement is relatively new modality in biomedical field. It flows a very low-level current, at
specific frequency, through the body to evaluate the electrical properties of the tissue. Cells and extracellular part
show a mixture of capacitive-resistive and resistive nature, respectively. Therefore, at low frequencies, current tends
to flow through extracellular path and at higher frequencies trough cellular plus extracellular path, because the
reactance will drop at high frequencies. In this figure, the position and the number of electrodes is not restricted and
principle description is the main aim here.
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6. Pitfalls

Although DL algorithms show many promising results like disease detection or
prediction. The DL algorithms generalization, however, is still questionable. A DL
model with promising results in a specific task might not perform as expected on the
unseen data acquired under different protocols. Also, data with similar acquisition
protocols but with different noise levels might adverse the performance of the DL
algorithms. In addition, DL algorithms need large datasets for training that are not
always accessible. Also due to the data sharing policies, datasets most of the time
cannot be shared even after anonymization [93, 94].

7. Conclusion

By reviewing the past roadmap of science and technology to reach the current
point in health risk assessment, we can proudly observe the efforts of researchers and
scientists to develop new devices and algorithms which provide us vital information
about our body health and could prevent further impairments in our body. The other
fruit of these efforts is the decrement in hospitalization and a huge load drop in the
different countries’ health systems. Definitely, the role of AI can be never neglected as
the complementary element in this puzzle.

In today’s stage, despite the previous noteworthy efforts, there are still lots of
opportunities to improve the past results or introduce a new generation of techniques.

For example, portable modalities like fNIRS, ECG, and EEG are technically well-
grown but there is no end to applying new algorithms and hypotheses to explore more
abnormalities or diseases. As the commercial aspect of portable products has been
reviewed in the current chapter, we can hear a loud message about the powerful
demand in the market which could encourage to produce novel devices.

Same clinical modalities like CT, MRI, and PET are mature from a technical point
of view, but there is a wide playground for researchers to investigate images more and
apply more DL and ML approaches. Of course, this procedure is strongly ongoing by
research groups. DL and ML approaches attempt to speed up clinical imaging to
increase the throughput of the clinical imaging centers. Therefore, clinical imaging
will be more accessible and affordable. Also, DL and ML attempt to reduce the effect
of a given imaging technique like CT on a patient’s health by sacrificing close to zero
image quality.

Multimodal measurements, using several measurement techniques at the same
time, could provide more additional information which is impossible to obtain via
individual methods. In other words, researchers could utilize the results of the differ-
ent techniques to extract new information and discover hidden phenomena. Of
course, multimodal measurements have been already realized by researchers around
the world but normally at hospitals and health centers using too complicated and
costly setups. Today, there is the time to implement it in portable sizes and low-prices,
as sensor and electronic technologies are luckily enough-grown. For example fNIRS-
EEG systems are currently developed and available in market, but other different
combinations of sensors are still in progressing that can prove the role of multimodal
measurements in future of health analysis. Please refer to our “Commercially available
portable and home-used devices” section in current chapter where we mentioned few
of multimodal devices like Muse S and BPM core. We consider multimodal measure-
ment as a mid and continuous long-term goal for future of the home-used devices.
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But about the newly emerged modalities like microwave imaging and bio-
impedance measurement, technical progress must be considered as well as algorithms,
as they have already proven their ability to disease diagnosis and prediction. At the
moment, there is a long way to have fully portable, home-used, and cost-effective
microwave imager and bio-impedance meter products.
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