54,014 research outputs found

    Temperature-dependent effects of TRP-type conductivity on oscillatory electrical processes in isolated dendritic compartment of hippocampalCA3 pyramidal neuron

    Get PDF
    This simulation study performed in NEURON simulation environment aimed at defining temperature-dependent effects of TRP-channels on electrical processes in the dendritic membrane of CA3 PCs. The aim is justified by characteristic thermosensitivity of the TRP-channels found in the hippocampus. The object of study was a single-compartment model of the dendritic membrane with ion channels of the same types as in earlier CA3 PC models (Migliore et al.,1995) and TRPchannels present in a hippocampal granule neuron model (Korogod & Demianenko, 2016)

    Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON

    Get PDF
    The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo

    Get PDF
    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work

    EMERGING THE EMERGENCE SOCIOLOGY: The Philosophical Framework of Agent-Based Social Studies

    Get PDF
    The structuration theory originally provided by Anthony Giddens and the advance improvement of the theory has been trying to solve the dilemma came up in the epistemological aspects of the social sciences and humanity. Social scientists apparently have to choose whether they are too sociological or too psychological. Nonetheless, in the works of the classical sociologist, Emile Durkheim, this thing has been stated long time ago. The usage of some models to construct the bottom-up theories has followed the vast of computational technology. This model is well known as the agent based modeling. This paper is giving a philosophical perspective of the agent-based social sciences, as the sociology to cope the emergent factors coming up in the sociological analysis. The framework is made by using the artificial neural network model to show how the emergent phenomena came from the complex system. Understanding the society has self-organizing (autopoietic) properties, the Kohonen’s self-organizing map is used in the paper. By the simulation examples, it can be seen obviously that the emergent phenomena in social system are seen by the sociologist apart from the qualitative framework on the atomistic sociology. In the end of the paper, it is clear that the emergence sociology is needed for sharpening the sociological analysis in the emergence sociology

    Closing the loop between neural network simulators and the OpenAI Gym

    Full text link
    Since the enormous breakthroughs in machine learning over the last decade, functional neural network models are of growing interest for many researchers in the field of computational neuroscience. One major branch of research is concerned with biologically plausible implementations of reinforcement learning, with a variety of different models developed over the recent years. However, most studies in this area are conducted with custom simulation scripts and manually implemented tasks. This makes it hard for other researchers to reproduce and build upon previous work and nearly impossible to compare the performance of different learning architectures. In this work, we present a novel approach to solve this problem, connecting benchmark tools from the field of machine learning and state-of-the-art neural network simulators from computational neuroscience. This toolchain enables researchers in both fields to make use of well-tested high-performance simulation software supporting biologically plausible neuron, synapse and network models and allows them to evaluate and compare their approach on the basis of standardized environments of varying complexity. We demonstrate the functionality of the toolchain by implementing a neuronal actor-critic architecture for reinforcement learning in the NEST simulator and successfully training it on two different environments from the OpenAI Gym
    corecore