259 research outputs found

    3D printed neuromorphic sensing systems

    Get PDF
    Thanks to the high energy efficiency, neuromorphic devices are spotlighted recently by mimicking the calculation principle of the human brain through the parallel computation and the memory function. Various bio-inspired \u27in-memory computing\u27 (IMC) devices were developed during the past decades, such as synaptic transistors for artificial synapses. By integrating with specific sensors, neuromorphic sensing systems are achievable with the bio-inspired signal perception function. A signal perception process is possible by a combination of stimuli sensing, signal conversion/transmission, and signal processing. However, most neuromorphic sensing systems were demonstrated without signal conversion/transmission functions. Therefore, those cannot fully mimic the function provides by the sensory neuron in the biological system. This thesis aims to design a neuromorphic sensing system with a complete function as biological sensory neurons. To reach such a target, 3D printed sensors, electrical oscillators, and synaptic transistors were developed as functions of artificial receptors, artificial neurons, and artificial synapses, respectively. Moreover, since the 3D printing technology has demonstrated a facile process due to fast prototyping, the proposed 3D neuromorphic sensing system was designed as a 3D integrated structure and fabricated by 3D printing technologies. A novel multi-axis robot 3D printing system was also utilized to increase the fabrication efficiency with the capability of printing on vertical and tilted surfaces seamlessly. Furthermore, the developed 3D neuromorphic system was easily adapted to the application of tactile sensing. A portable neuromorphic system was integrated with a tactile sensing system for the intelligent tactile sensing application of the humanoid robot. Finally, the bio-inspired reflex arc for the unconscious response was also demonstrated by training the neuromorphic tactile sensing system

    Circuit motifs for sensory integration, learning, and the initiation of adaptive behavior in Drosophila

    Get PDF
    Goal-directed behavior is crucial for survival in complex, dynamic environments. It requires the detection of relevant sensory stimuli and the formation of separable neuronal representations. Learning the contingencies of these sensory stimuli with innately positive or negative valent stimuli (reinforcement) forms associations, allowing the former to cue the latter. This yields cue-based predictions to upgrade the behavioral repertoire from reactive to anticipatory. In this thesis, the Trias of sensory integration, learning of contingencies, and the initiation of anticipatory behavior are studied in the framework of the fruit fly Drosophila olfactory pathway and mushroom body, a higher-order brain center for integrating sensory input and coincidence detection using computational network models representing the mushroom body architecture with varying degrees of abstraction. Additionally, simulations of larval locomotion were employed to investigate how the output of the mushroom body relates to behavior and to foster comparability with animal experiments. We showed that inhibitory feedback within the mushroom body produces sparse stimulus representations, increasing the separability of different sensory stimuli. This separability reduced reinforcement generalization in learning experiments through the decreased overlap of stimulus representations. Furthermore, we showed that feedback from the valence-signaling output to the reinforcement-signaling dopaminergic neurons that innervate the mushroom body could explain experimentally observed temporal dynamics of the formation of associations between sensory cues and reinforcement. This supports the hypothesis that dopaminergic neurons encode the difference between predicted and received reinforcement, which in turn drives the learning process. These dopaminergic neurons have also been argued to convey an indirect reinforcement signal in second-order learning experiments. A new sensory cue is paired with an already established one that activates dopaminergic neurons due to its association with the reinforcement. We demonstrated how different pathways for feedforward or feedback input from the mushroom body’s intrinsic or output neurons can provide an indirect reinforcement signal to the dopaminergic neurons. Any direct or indirect association of sensory cues with reinforcement yielded a reinforcement expectation, biasing the fly’s behavioral response towards the approach or avoidance of the respective sensory cue. We then showed that the simulated locomotory behavior of individual animals in a virtual environment depends on the biasing output of the mushroom body. In conclusion, our results contribute to understanding the implementation of mechanisms for separable stimulus representations, postulated key features of associative learning, and the link between MB output and adaptive behavior in the mushroom body and confirm their explanatory power for animal behavior

    Modeling the Bat Spatial Navigation System: A Neuromorphic VLSI Approach

    Get PDF
    Autonomously navigating robots have long been a tough challenge facing engineers. The recent push to develop micro-aerial vehicles for practical military, civilian, and industrial use has added a significant power and time constraint to the challenge. In contrast, animals, from insects to humans, have been navigating successfully for millennia using a wide range of variants of the ultra-low-power computational system known as the brain. For this reason, we look to biological systems to inspire a solution suitable for autonomously navigating micro-aerial vehicles. In this dissertation, the focus is on studying the neurobiological structures involved in mammalian spatial navigation. The mammalian brain areas widely believed to contribute directly to navigation tasks are the Head Direction Cells, Grid Cells and Place Cells found in the post-subiculum, the medial entorhinal cortex, and the hippocampus, respectively. In addition to studying the neurobiological structures involved in navigation, we investigate various neural models that seek to explain the operation of these structures and adapt them to neuromorphic VLSI circuits and systems. We choose the neuromorphic approach for our systems because we are interested in understanding the interaction between the real-time, physical implementation of the algorithms and the real-world problem (robot and environment). By utilizing both analog and asynchronous digital circuits to mimic similar computations in neural systems, we envision very low power VLSI implementations suitable for providing practical solutions for spatial navigation in micro-aerial vehicles

    Magnetic Cellular Nonlinear Network with Spin Wave Bus for Image Processing

    Full text link
    We describe and analyze a cellular nonlinear network based on magnetic nanostructures for image processing. The network consists of magneto-electric cells integrated onto a common ferromagnetic film - spin wave bus. The magneto-electric cell is an artificial two-phase multiferroic structure comprising piezoelectric and ferromagnetic materials. A bit of information is assigned to the cell's magnetic polarization, which can be controlled by the applied voltage. The information exchange among the cells is via the spin waves propagating in the spin wave bus. Each cell changes its state as a combined effect of two: the magneto-electric coupling and the interaction with the spin waves. The distinct feature of the network with spin wave bus is the ability to control the inter-cell communication by an external global parameter - magnetic field. The latter makes possible to realize different image processing functions on the same template without rewiring or reconfiguration. We present the results of numerical simulations illustrating image filtering, erosion, dilation, horizontal and vertical line detection, inversion and edge detection accomplished on one template by the proper choice of the strength and direction of the external magnetic field. We also present numerical assets on the major network parameters such as cell density, power dissipation and functional throughput, and compare them with the parameters projected for other nano-architectures such as CMOL-CrossNet, Quantum Dot Cellular Automata, and Quantum Dot Image Processor. Potentially, the utilization of spin waves phenomena at the nanometer scale may provide a route to low-power consuming and functional logic circuits for special task data processing

    Applications of Silicon Retinas: from Neuroscience to Computer Vision

    Full text link
    Traditional visual sensor technology is firmly rooted in the concept of sequences of image frames. The sequence of stroboscopic images in these "frame cameras" is very different compared to the information running from the retina to the visual cortex. While conventional cameras have improved in the direction of smaller pixels and higher frame rates, the basics of image acquisition have remained the same. Event-based vision sensors were originally known as "silicon retinas" but are now widely called "event cameras." They are a new type of vision sensors that take inspiration from the mechanisms developed by nature for the mammalian retina and suggest a different way of perceiving the world. As in the neural system, the sensed information is encoded in a train of spikes, or so-called events, comparable to the action potential generated in the nerve. Event-based sensors produce sparse and asynchronous output that represents in- formative changes in the scene. These sensors have advantages in terms of fast response, low latency, high dynamic range, and sparse output. All these char- acteristics are appealing for computer vision and robotic applications, increasing the interest in this kind of sensor. However, since the sensor’s output is very dif- ferent, algorithms applied for frames need to be rethought and re-adapted. This thesis focuses on several applications of event cameras in scientific scenarios. It aims to identify where they can make the difference compared to frame cam- eras. The presented applications use the Dynamic Vision Sensor (event camera developed by the Sensors Group of the Institute of Neuroinformatics, University of Zurich and ETH). To explore some applications in more extreme situations, the first chapters of the thesis focus on the characterization of several advanced versions of the standard DVS. The low light condition represents a challenging situation for every vision sensor. Taking inspiration from standard Complementary Metal Oxide Semiconductor (CMOS) technology, the DVS pixel performances in a low light scenario can be improved, increasing sensitivity and quantum efficiency, by using back-side illumination. This thesis characterizes the so-called Back Side Illumination DAVIS (BSI DAVIS) camera and shows results from its application in calcium imaging of neural activity. The BSI DAVIS has shown better performance in the low light scene due to its high Quantum Efficiency (QE) of 93% and proved to be the best type of technology for microscopy application. The BSI DAVIS allows detecting fast dynamic changes in neural fluorescent imaging using the green fluorescent calcium indicator GCaMP6f. Event camera advances have pushed the exploration of event-based cameras in computer vision tasks. Chapters of this thesis focus on two of the most active research areas in computer vision: human pose estimation and hand gesture classification. Both chapters report the datasets collected to achieve the task, fulfilling the continuous need for data for this kind of new technology. The Dynamic Vision Sensor Human Pose dataset (DHP19) is an extensive collection of 33 whole-body human actions from 17 subjects. The chapter presents the first benchmark neural network model for 3D pose estimation using DHP19. The network archives a mean error of less than 8 mm in the 3D space, which is comparable with frame-based Human Pose Estimation (HPE) methods using frames. The gesture classification chapter reports an application running on a mobile device and explores future developments in the direction of embedded portable low power devices for online processing. The sparse output from the sensor suggests using a small model with a reduced number of parameters and low power consumption. The thesis also describes pilot results from two other scientific imaging applica- tions for raindrop size measurement and laser speckle analysis presented in the appendices

    Motion representation with spiking neural networks for grasping and manipulation

    Get PDF
    Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalische Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusammenarbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit der Forschung an humanoiden und biologisch inspirierten Robotern werden komplexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwickelt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassischen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen. Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Dennoch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzentrieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologischen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike- basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanismen des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kommunikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromorpher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen ermöglichen. In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss- teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funktionalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parametrische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematische Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeordnet. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschiedene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die Bewegung kann entweder als Funktion modelliert oder durch Imitation der menschlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssysteme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat und keine ungültigen Konfigurationen enthält. Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschiedene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kombiniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzeptionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun- gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kombiniert unter Verwendung eines Zielsignals. Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif- bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewegung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung. Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, parametrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Primitive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist, dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfangreichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für verschiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor- primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomotion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Framework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis- basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis- che Nachbildung eines biologischen Systems, das vollständig mit SNNs implementiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber liefern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und wie diese in der Robotik angewendet werden können. Modellfreie Bewegungssteuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und flexibler machen
    corecore