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Abstract
Goal-directed behavior is crucial for survival in complex, dynamic environments. It re-
quires the detection of relevant sensory stimuli and the formation of separable neuronal
representations. Learning the contingencies of these sensory stimuli with innately pos-
itive or negative valent stimuli (reinforcement) forms associations, allowing the former
to cue the latter. This yields cue-based predictions to upgrade the behavioral repertoire
from reactive to anticipatory. In this thesis, the Trias of sensory integration, learning of
contingencies, and the initiation of anticipatory behavior are studied in the framework
of the fruit fly Drosophila olfactory pathway and mushroom body, a higher-order brain
center for integrating sensory input and coincidence detection using computational net-
work models representing the mushroom body architecture with varying degrees of ab-
straction. Additionally, simulations of larval locomotion were employed to investigate
how the output of the mushroom body relates to behavior and to foster comparability
with animal experiments. We showed that inhibitory feedback within the mushroom
body produces sparse stimulus representations, increasing the separability of different
sensory stimuli. This separability reduced reinforcement generalization in learning ex-
periments through the decreased overlap of stimulus representations. Furthermore, we
showed that feedback from the valence-signaling output to the reinforcement-signaling
dopaminergic neurons that innervate the mushroom body could explain experimen-
tally observed temporal dynamics of the formation of associations between sensory
cues and reinforcement. This supports the hypothesis that dopaminergic neurons en-
code the difference between predicted and received reinforcement, which in turn drives
the learning process. These dopaminergic neurons have also been argued to convey an
indirect reinforcement signal in second-order learning experiments. A new sensory cue
is paired with an already established one that activates dopaminergic neurons due to
its association with the reinforcement. We demonstrated how different pathways for
feedforward or feedback input from the mushroom body’s intrinsic or output neurons
can provide an indirect reinforcement signal to the dopaminergic neurons. Any direct
or indirect association of sensory cues with reinforcement yielded a reinforcement ex-
pectation, biasing the fly’s behavioral response towards the approach or avoidance of
the respective sensory cue. We then showed that the simulated locomotory behavior
of individual animals in a virtual environment depends on the biasing output of the
mushroom body. In conclusion, our results contribute to understanding the implemen-
tation of mechanisms for separable stimulus representations, postulated key features
of associative learning, and the link between MB output and adaptive behavior in the
mushroom body and confirm their explanatory power for animal behavior.



Zusammenfassung
Zielorientiertes Verhalten ist eine überlebenswichtige Fähigkeit in komplexen und dy-
namischen Umwelten. Notwendig dafür sind die Erfassung und separierbare neuronale
Repräsentation sensorischer Reize. Die Kontingenzen zwischen dem Auftreten sen-
sorischer Reize mit Reizen von naturgegebener positiver oder negativer Valenz (Ver-
stärker) wahrzunehmen erlaubt es Assoziationen zwischen ihnen herzustellen. Dadurch
kann der sensorische Reiz zum Hinweis auf den zu erwartenden Verstärker werden,
was antizipatorisches, statt nur reaktivem Verhalten ermöglicht. Anhand des olfak-
torischen Systems und des Pilzkörpers der Fruchtfliege Drosophila haben wir die Trias
aus sensorischenr Integration, des darauf aufbauenden Lernens von Kontingenzen und
der Generierung von Verhaltensimpulsen untersucht. Der Pilzkörper ist eine zentrale
Verarbeitungs- und Integrationsstelle multisensorischer Reize und ermöglicht die Er-
fassung von Koinzidenz die anhand von Netzwerkmodellen untersucht wurden, die
die Mechanismen im Pilzkörper auf unterschiedlichen Abstraktionsebenen abbilden.
Teilweise wurden sie mit Simulationen des Verhaltens von Drosophila Larven kom-
biniert, die vom Aktivitätsmuster der Ausgangsneurone des Pilzkörpers beeinflusst
werden um Vergleich mit Verhaltensexperimenten an echten Tieren zu erleichtern. Wir
haben gezeigt, dass Inhibition auf Netzwerkebene zu einer sparsen Reiz-Repräsentation
beitragen, die die Separierbarkeit von Reizen erhöht und den Grad der Generalisierung
in Lernexperimenten reduziert. Außerdem konnten wir zeigen, dass Feedback der
Valenz kodierenden Ausgangneurone auf dopaminerge Neurone, die die Gegenwart
eines Verstärkers enkodieren, die experimentell beobachteten Dynamiken des Erwerbs
von Assoziationen erklären kann. Dieses Ergebnis unterstützt die Hypothese, dass die
dopaminergen Neurone im Pilzkörper die Differenz zwischen erwarteter und tatsäch-
licher Verstärkung berechnen und diese Differenz den Lernvorgang motiviert. Diese
dopaminergen Neurone sind auch Kandidaten für die Vermittlung einer indirekten Ver-
stärkung in Lernexperimenten höherer Ordnung. Diese zeichnen sich durch die gemein-
same Präsentation eines Verstärkers mit einem sensorischen Reiz aus, der in der Folge
selber als Verstärker wirken kann. Wir haben gezeigt, dass verschiedene Mechanismen,
vermittelt durch die intrinsischen oder Ausgangneurone des Pilzkörpers geeignet sind
diese indirekte Verstärkung an die dopaminergen Neurone zu übertragen. Allgemein
erzeugte in unseren Studien jede Assoziation eines Reizes mit einem Verstärker eine
Verstärkungserwartung die Verhaltensimpulse in Richtung von Annäherung oder Ver-
meidung beeinflusste. Zusätzlich haben wir das Verhalten simulierter Fliegenlarven in
einer virtuellen Umgebung untersucht und festgestellt, dass die im Pilzkörper gener-
ierten Verhaltensimpulse sich direkt auf ihr tatsächliches Annäherungs- und Vermei-
dungsverhalten auswirken. Unsere Ergebnisse tragen dazu bei, die Implementierung
der postulierten Mechanismen für separierbare Reiz-Repräsentation, assoziatives Ler-
nen und den Übergang zwischen den Impulsen aus dem Pilzkörper und tatsächlichem
adaptivem Verhalten zu untersuchen und zeigt deren Fähigkeit Verhalten in Tierex-
perimenten zu erklären.
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1 INTRODUCTION

1 Introduction
Animals navigate life in complex, dynamic environments that are rich in sensory input.
Their survival depends on their ability to protect themselves from potential threats and
seek out advantageous circumstances. To be successful in these quests, they need to
process their sensory environment to identify potential sources of harm or benefit. The
innate valence of a stimulus to an animal depends on its potential to provide a benefit
or inflict harm. This can result in a behavioral preference to either approach or avoid
these stimuli. Preference, alongside motivational internal states (like satiety or fear),
the physiological capacity for behavior, and potential environmental obstacles, is one
of the determining factors of animal behavior, effectively limiting the scope of feasible
actions in any given situation.

Through experiences in their respective environments, animals can acquire addi-
tional information about the world, expanding their knowledge beyond the scope of
innate valences. Learning processes allow them to update their representation and
interpretation of the sensory environment, modifying valences or assigning them to
previously neutral sensory stimuli if they experience interactions with them as help-
ful or harmful. In many cases, the more knowledge an animal acquires, the better its
chances are of investing resources well into behavior facilitating approach or avoidance.
In learning the relationships between different stimuli, they can also acquire the ability
to predict future environmental changes. These relationships can be the occurrence
of a stimulus usually preceded by another stimulus or a particular behavior of their
own. Figure 1 provides a conceptual overview of the different elements covered in this
thesis, as well as components that are not covered in any of the chapters but are es-
sential parts of the framework of stimulus processing and learning for the initiation of
goal-directed behavior as it will be presented and discussed here. The missing elements
(innate valence and internal states) are covered in the discussion.
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1 INTRODUCTION

Figure 1: The schematic relationship between sensory integration, learning,
and the initiation of behavior. Dense multisensory input is integrated into higher-
order processing centers, where coincidences among them and with reinforcement are
detected, and associations are formed between concurrently active sensory inputs, in-
ternal states, and reactivated prior knowledge (learned or innate). The initiation of
behavior depends on the integrated output of the higher-order processing center, signal-
ing learned valence, compared against behavioral preference based on potential innate
valences. The execution of a behavioral preference can be influenced by an animal’s
abilities in the respective situation and by environmental factors.
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1 INTRODUCTION

1.1 Expanding knowledge through learning

Learning about relationships between stimuli is a prerequisite to effective goal-directed
behavior in a dynamic world. New information needs to be acquired, stored, and re-
trieved at the appropriate time. The study of these mechanisms has a long scientific
tradition. In 1885 Hermann Ebbinghaus was the first to publish a highly influential
work on the study of memory from a non-philosophical point of view [1]. He described
memory as a construct to store ...Mental states of every kind, -sensations, feelings,
ideas, - which were at one time present in consciousness...([1], page 1). He empha-
sized that these elements no longer persist in the conscious mind but are still stored
somewhere from where they can be reproduced voluntarily or involuntarily. When
integrating these concepts, he anticipated the conceptual framework of encoding, stor-
age, and retrieval, which is still used today to refer to the major building blocks of
learning and memory. These components are of interest regardless of the scientific
discipline and focus on either a theoretical and conceptual [2] or mechanistic and func-
tional perspective [3]. Across disciplines, the word memory is generally used to refer to
the storage site for encoded information. From a conceptual perspective, this means
retaining encoded relationships between cognitive elements. These cognitive elements
can represent everything relating to a previous experience [2]. On the other hand, biol-
ogy and neuroscience are concerned with the exact location of memory functions inside
the brains of their varying model organisms. Memory is studied from the perspective
of mechanisms in the synaptic and other interactions of neurons on a circuit, cellular,
or sub-cellular level [3].

Situationally appropriate retrieval of stored information from memory allows access
to knowledge about the environment that can guide decisions about behavior. Retrieval
depends on the relatedness of all cues available in the retrieval situation to what has
been encoded in memory (for a review, see[4]). The authors describe this process as
reawakening specific memory elements through sensory cues. Memory retrieval can be
based on a voluntary query or search of the stored information or happen involuntarily.
Either mechanism is triggered and guided by the present, related cues [4].

In this framework, updating existing memory with acquired sensory information
is referred to as learning. Two fundamental forms of learning can be differentiated:
Associative and non-associative learning. In non-associative learning, the response to
a single stimulus is altered after repeated or prolonged stimulation [5, 6], without any
relationship being formed with other stimuli. Sensory habituation and sensitization
constitute the two major forms of non-associative learning that elicit opposite responses
to a stimulus [5, 6]. On the other hand, associative forms of learning rely on encoding
relationships between two or more stimuli based on the contingencies of their occurrence
[7, 8]. Two forms of associative learning are generally studied in different experimental
paradigms: Operant and classical conditioning.

During operant conditioning, an association between a behavior (or the outcome
of that behavior) and a consequence is formed. As a result, the probability of the
rewarded behavior changes [9]. During classical conditioning, as originally introduced
by Ivan Pavlow [10], a naturally valent stimulus is presented together with a neutral
stimulus. The valent stimulus is often referred to as the unconditioned stimulus be-
cause it naturally causes a reaction (unconditioned response). Without prior learning,
the neutral stimulus (conditioned stimulus) does not cause any specific reaction. In
Pavlow’s original work, a dog would hear a bell (conditioned stimulus) right before food
is presented (unconditioned stimulus), which fuels saliva production (unconditioned re-
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1 INTRODUCTION

sponse). After learning the association between the two stimuli (bell and food), the
dog would respond with a conditioned saliva response when hearing the bell. The
conditioned response can be viewed as a preparation for the expected unconditioned
stimulus and may, therefore, differ from the unconditioned response [10]. Classical con-
ditioning relies on coincidence detection between two or more sensory stimuli, through
which one becomes a meaningful predictor of the other.

1.2 Efficient sensory coding to support learning

Coincidence detection for the formation of associations has been argued to take place
in higher-order processing centers (Figure 1) that receive sensory input of different
modalities such as the mushroom body (MB) in insects [11–14] or the cerebellum in
vertebrates [15–17]. Processing of sensory input is thus a prerequisite of coincidence
detection and associative learning. Sensory input is relayed across several processing
stages. A physical or chemical environmental stimulus interacts with a receptor at the
earliest stage. A physical or chemical transformation of the receptors marks stimulus
detection. It elicits a neuronal signal that is processed across various layers of relay
steps towards higher-order processing centers [18, 19]. The processing of the sensory
code throughout these layers can contribute to preparing the sensory representations
for processing in higher-order brain areas [18, 19], for example, by integrating inputs
from receptors of the same type [18, 19] and increasing efficiency and specificity of the
code [18, 19]. Both the neuronal coding space and the energy available to an organism
are limited resources. Through a transformation of dense code at the receptor periphery
into sparse representations in higher-order processing centers, sensory systems achieve
energy efficient and reliable stimulus encoding [20–22]

Any processing layer in the brain consists of a limited number of neurons, de-
termining the upper bound for the dimensionality that can be encoded. Population
sparseness refers to the representation of a stimulus across a population of neurons,
such that only a few neurons are activated by any given stimulus (Figure 1), and
different stimuli activate distinct sets of neurons [21]. A population-sparse stimulus
representation minimizes redundancy and overlap of stimulus encodings [22–24]. Tem-
poral sparseness is another relevant component of sparse coding. It is achieved when
an individual neuron responds with only a few spikes to a specific stimulus [22, 25, 26].
When an animal interacts with changes in the sensory input in a dynamic environment,
temporal sparseness allows it to encode these fluctuations efficiently [27–30].

Sparse code has been studied both in invertebrate [11, 31–34] and vertebrate species
[28, 35–38]. It can increase the separability of encoded stimuli by decreasing redun-
dancy and overlap [31, 39, 40], and supports memory formation [39–41].

1.3 The Drosophila olfactory pathway and the mushroom body

as a model to study sensory coding, learning, and adaptive

behavior

The Drosophila olfactory pathway, combined with the MB, is a popular system for
studying mechanisms of sensory processing and associative learning and the initiation
of behavior. The MB is a higher-order center for the integration of sensory input of
different modalities in larval [42, 43], and adult [44–46] Drosophila. It has also been
shown to be an important site for associative learning (larva: [42, 47, 48], adult: [49–
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1 INTRODUCTION

52]) and its output is involved in biasing behavior (larva:[47, 48], adult:[51, 53–56]).
For decades, the fruit fly Drosophila has been extensively used as a model organism

in neuroscience [57]. With its short lifecycle and cheap stock management Drosophila
is a convenient tool in labs worldwide. Over time, many genetic mutants have been
developed to study specific brain circuits and functions. Additionally, the availability of
tools for direct manipulation of neurons through light or temperature [58–60], together
with many established experimental paradigms in both larval and adult Drosophila [57,
61, 62] provide researchers with unique and powerful opportunities to design learning
experiments [57]. In recent years, more in-depth knowledge of the connectome of both
the larval [42, 43, 47, 48, 63] and adult [44, 49, 64, 65] sensory processing and learning
centers has emerged, adding to the appeal of this model organism.

1.3.1 The architecture of the Drosophila olfactory pathway and the mush-
room body

The general structure and functionality of the olfactory pathway and the MB are
retained between larval and adult Drosophila [61, 66]. Olfactory processing begins
with odorants in the air surrounding the animal that are detected by receptors and
encoded by the olfactory receptor neurons (larva:[61, 67, 68], adult:[69–71]). They
project to the antennal lobe, which is organized in glomeruli, neuropils in which the
receptor neurons synapse onto projection neurons and local interneurons. The local
interneurons innervate projection neurons within the antennal lobe (larva: [61, 72],
adult: [70, 73]), eliciting an inhibitory effect (larva: [61, 72], adult: [70, 74]). The
projection neurons relay their input onto the dendrites of MB intrinsic neurons, the
Kenyon cells (KC) (larva:[43], adult:[75, 76]).

Synapses between projection neurons and KCs are located in the calyx region of
the MB (larva:[43], adult:[75, 76]). Here, a small number of glomeruli diverges onto a
larger number of KCs (from ⇡ 21 to ⇡ 72 in the larva [43] and from ⇡ 50 to ⇡ 2000 in
the adult [46, 77, 78]). Olfactory representations in the Drosophila MB are population-
sparse with few KCs being activated by any given odor [78, 79]. The combined activity
of a set of KCs encodes the odor identity [46, 77, 78]. Their parallel axons then form
the MB lobes, where they synapse onto the MB output neurons (MBONs) (larva:[43,
80], adult:[44, 49, 75, 80]). The adult MB is divided into five lobes [44, 49], which have
been credited with different roles in learning and memory retrieval [75, 81, 82]. The
larval MB consists of only two lobes [83–85]. For an overview of the development of
the lobes in the larva, see [84, 85]).

1.3.2 Associative learning in the Drosophila mushroom body

The MB lobes are further separated into compartments, which are defined by the
MBONs that innervate them and form synapses with the KCs (larva: [43, 66], adult:
[44, 49, 65, 87]). Modulatory neurons target these synapses in a compartment-specific
manner (larva: [43, 66], adult: [44, 49, 65, 87, 88]). The modulatory neurons can
employ dopamine (DANs) or octopamine as their neurotransmitter. Depending on the
compartment, experimental protocol, and longevity of the established memory, modu-
latory neurons of either type modulate learning in the Drosophila MB. Dopamine has
been shown to be involved in reward [89, 90] and punishment learning in adult[89, 91–
93] and larval [42] Drosophila. In contrast, octopamine is involved in reward learning
in both the larva [94] and the adult [90, 92]. DANs have been studied extensively in
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PNs

DANs

RNs

Figure 2: Schematic of the
olfactory pathway and
the mushroom body in
Drosophila. Olfactory receptor
neurons (ORNs) encode receptor
activation that is relayed onto
projection neurons (PNs) in
the antennal lobe glomeruli,
innervated by local interneurons
(LN). The projection neurons
convey this information to
the mushroom body (MB)
calyx, where they synapse onto
Kenyon cells (KCs). Dopaminer-
gic neurons (DANs), conveying
reinforcement signals, innervate
distinct subcompartments of the
MB (here within the �-lobe).
The KCs project to MB output
neurons (MBONs) that inner-
vate areas downstream of the
MB. Adapted from [86].

the context of learning. Their activity encodes the presence of rewards and punish-
ments in the environment, not only in Drosophila (larva: [42], adult: [89, 91, 95]),
but also in vertebrate [96–99] species. Within the MB compartments, modulation of
the synapses between KCs and MBONs is facilitated by the activity of the respective
DANs, innervating the compartment whenever a sensory stimulus and the activity of
the modulatory neuron coincide (larva: [42, 47], adult: [50, 51, 93, 100]).

DANs have been suggested to target the synapses between the KCs and MBONs
in two ways. In the larva, DANs synapse onto the neurons on both the pre and post-
synaptic side [43]. Based on electron microscopy data obtained from the synaptic zone,
it has been suggested that DANs can cause the release of neurotransmitters in both
MB intrinsic and output neurons [43]. Additionally, they seem to provide reinforcement
signals through neuromodulatory volume release near the pre-synaptic terminals in the
KCs [43]. In the adult Drosophila MB, the presence of a specific type of dopamine
receptor in the KCs is required to form olfactory memories [101] and DANs have been
demonstrated to be pre-synaptic in connections with both KCs and MBONs in the ↵

lobe [65]. Despite a relatively small amount of synapses between these DANs and KCs
and MBONs [65]. The activity of the DANs strongly affects plasticity at the synapses
between KCs and MBONs [50, 101, 102], suggesting the additional relevance of volume
release [44, 65], as observed in the larva [43].

Plasticity at the synapses between the KCs and MBONs induces a shift in the
activity of MB output neurons when the animal is confronted with the respective
sensory cue after learning (larva: [48], adult: [50–53]). MBONs have been shown
to project to pre-motor areas (larva: [42, 48], adult: [44, 49]), and learning-induced

7



1 INTRODUCTION

plasticity in the MB has been suggested to modify the activity of neurons downstream of
the MBONs in the adult Drosophila [53, 56]. When the output of an MB compartment
that demonstrates modified activity due to learning is blocked, learned behavior can
no longer be observed [52, 103].
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1 INTRODUCTION

1.4 Organization of this thesis

Learning and memory are a complex and multifaceted collection of several interactive
processes that encompass acquisition, maintenance, updating, extinction, and some-
times even the recovery of previously extinguished information to allow for goal-directed
behavior based on stored information about the environment. Several processes are re-
quired to orchestrate the transformation of input from the external world into usable
memories with behavioral relevance. Sensory processing allows input to enter the brain,
where it needs to be represented and coupled with simultaneously active or incoming
information (Figure 1). This temporary blend of internal and external stimuli needs
to be evaluated for its anchoring points within the network of the already existing
memory to verify its relevance and determine the contexts within which it might later
be retrieved to guide behavior (Figure 1). The ability to choose the most beneficial
(anticipatory) behavior heavily depends on the situationally appropriate retrieval of
information from memory, potentially compared against behavioral tendencies origi-
nating from innate valences. The execution of an emerging behavioral tendency can
then be influenced by the animal’s abilities in the respective situation and by environ-
mental factors (Figure 1).

The emerging Trias of sensory representation, learning, and anticipatory, instead of
purely reactive behavior, is a strong formula for survival. In this thesis, I will present
four individual works that investigate the different elements of this Trias in three chap-
ters (Figure 1):

Chapter 2: Efficient sensory coding

2.1 Jürgensen, A-M., Khalili, A., Chicca, E., Indiveri, G., & Nawrot, M.
P. (2021). A neuromorphic model of olfactory processing and sparse
coding in the Drosophila larva brain. Neuromorphic Computing and
Engineering, 1(2), 024008.

Chapter 3: Circuit mechanisms of associative learning

3.1 Jürgensen, A-M., Sakagiannis, P., Schleyer, M., Gerber, B., & Nawrot,
M. P. (2022). Prediction error drives associative olfactory learning
and conditioned behavior in a spiking model of Drosophila larva.
bioRxiv, 2022-12.

3.2 Jürgensen, A-M., Schmitt, Felix J.,& Nawrot, M. P. (2023). Mini-
mal circuit motifs for second-order conditioning in the insect mush-
room body. bioRxiv, 2023-09.

Chapter 4: Adaptive behavior

4.1 Sakagiannis, P., Jürgensen, A-M., & Nawrot, M. P. (2021). A realis-
tic locomotory model of Drosophila larva for behavioral simulations.
bioRxiv, 2021-07.

In the second chapter of this thesis (Chapter 2.1), we investigated three mechanisms
for increasing population- and temporal sparseness in odor encoding in the Drosophila
larva MB. By using a spiking model of the olfactory pathway and the MB and an
implementation of the same network on neuromorphic hardware, we demonstrated
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1 INTRODUCTION

how sparse odor code is achieved efficiently and that it increases the separability of
stimuli in this system, thereby laying the grounds for the following works on learning
[104, 105].

In the third chapter, we studied mechanisms of associative learning in the larval
(Chapter 3.1) and adult (Chapter 3.2) Drosophila MB. We investigated how animals
can learn to predict upcoming reinforcement from the occurrence of sensory cues in a
classical conditioning paradigm using a spiking model of the MB circuit (Chapter 3.1).
In the same chapter, we next explored minimal circuits for second-order conditioning
(Chapter 3.2), a paradigm in which a cue, established as a reinforcement predictor
through classical conditioning, can serve as indirect reinforcement for learning associa-
tions with other sensory cues. Additionally, we introduced a tool to simulate the effects
of learned preferences on larval behavior, which allows us to test our ideas about MB
circuits for reinforcement prediction by comparing our simulation results to those of
behavioral animal experiments (Chapter 3.1).

Finally, the fourth chapter covers our locomotory model of the larva, used in 2.1 in
more depth (Chapter 4.1). It models individual larvae, controlled by architecture, that
rely on intermittent forward crawling and lateral bending at its lowest level. Active
sensing adds a second dimension to locomotory control by allowing navigation along
odor gradients. When odor preferences acquired by associative learning were added,
these preferences modified the behavior of simulated larvae.

In presenting the individual works, integrating, and discussing them, I will move
around between the circuit mechanisms of learning and their theoretical and concep-
tual underpinnings firstly because both are equally interesting to me and have always
inspired my perspective on research. Secondly, I believe that the conceptual perspec-
tive can help to remember that there is a bigger picture beyond the details and missing
pieces of knowledge about a mechanism in a particular model organism.
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2 CHAPTER: EFFICIENT SENSORY CODING

2 Chapter: Efficient sensory coding

2.1 A neuromorphic model of olfactory processing and sparse

coding in the Drosophila larva brain
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Abstract
Animal nervous systems are highly efficient in processing sensory input. The neuromorphic
computing paradigm aims at the hardware implementation of neural network computations to
support novel solutions for building brain-inspired computing systems. Here, we take inspiration
from sensory processing in the nervous system of the fruit fly larva. With its strongly limited
computational resources of <200 neurons and <1.000 synapses the larval olfactory pathway
employs fundamental computations to transform broadly tuned receptor input at the periphery
into an energy efficient sparse code in the central brain. We show how this approach allows us to
achieve sparse coding and increased separability of stimulus patterns in a spiking neural network,
validated with both software simulation and hardware emulation on mixed-signal real-time
neuromorphic hardware. We verify that feedback inhibition is the central motif to support
sparseness in the spatial domain, across the neuron population, while the combination of spike
frequency adaptation and feedback inhibition determines sparseness in the temporal domain. Our
experiments demonstrate that such small, biologically realistic neural networks, efficiently
implemented on neuromorphic hardware, can achieve parallel processing and efficient encoding of
sensory input at full temporal resolution.

1. Introduction

Neuromorphic computing [1] is a novel paradigm that aims at emulating the naturalistic, flexible structure
of animal brains on an analogous physical substrate with the potential to outperform von Neumann archi-
tectures in a range of real-world tasks [2, 3]. It can inspire novel AI solutions [4–6] and may support control
of autonomous agents by spiking neural networks [7–9]. A major challenge for brain-inspired neuromorphic
solutions is the identification of computational principles and circuit motifs in animal nervous systems that
can be utilized on neuromorphic hardware to exploit its benefits.

Drawing inspiration from neural computation in the nervous systems of insects is particularly promis-
ing for developing neuromorphic computing paradigms. With their comparatively small brains ranging from
⇡10 000 neurons in the fruit fly larva to ⇡1 million neurons in the honeybee, insects are able to solve many
formidable tasks such as the efficient recognition of relevant objects in a complex environment [10, 11], per-
ceptual decision making [12–14], or the exploration of unknown terrain and navigation [15–19]. They also
show simple cognitive abilities such as learning, or counting of objects [20–24]. At the same time, their com-
pact nervous systems are optimized for energy efficient computation with limited numbers of neurons and
synapses, making them ideally suited to meet current neuromorphic hardware limitations regarding network
size and topology. Spiking neural networks modeled after the insect brain have been shown to support efficient

© 2021 The Author(s). Published by IOP Publishing Ltd
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sensory processing [25], learning [7, 26], foraging and navigation [27–29], and counting [28]. Model studies
also include earlier neuromorphic implementations of insect-inspired computation [4, 5, 9, 30–33].

Sparse coding [34, 35] is a fundamental principle of sensory processing, both in invertebrates [36–40] and
vertebrates [41–45]. By transforming dense stimulus encoding at the receptor periphery into sparse repre-
sentations in central brain areas, the sensory systems of animals achieve energy efficient and reliable stimulus
encoding [35, 46], which increases separability of items [47 –50]. Sparse coding in neural systems has two major
components [39]. Population sparseness refers to the representation of a stimulus across the entire population
of neurons, such that only few neurons are activated by any specific stimulus and different stimuli activate
largely distinct sets of neurons. Re-coding from a dense peripheral input to a sparse code in central brain areas
supports stimulus discriminability and associative memory formation by projecting stimulus features into a
higher dimensional space [51–53]. Temporal sparseness indicates that an individual neuron responds with only
a few spikes to a specific stimulus configuration [34, 54, 55] supporting the encoding of dynamic changes in
the sensory environment [42, 56] and memory recall in dynamic input scenarios [28].

We are interested in the transformation of a densely coded input into a sparse representation within an
olfactory pathway model of the Drosophila larva. As a common feature across insect species, odor informa-
tion is processed across multiple network stages to generate a reliable sparse code of odor identity in the
mushroom body (MB) [36, 57, 58], a central brain structure serving as a hub for multi-sensory integration,
memory formation and memory recall [10, 59]. A shared characteristic of the Drosophila larva brain and the
here-used real-time neuromorphic hardware system is their relatively small network size. With this limited
capacity, computational efficiency and frugal use of the limited resources are a major constraint. Implement-
ing evolutionary-derived mechanisms from the insect brain that allow for sparse, thus more efficient stimulus
encoding on the chip could help to broaden the scope of its applications. In our network model we test the
efficiency of cellular mechanisms and network motifs in producing population and temporal sparseness and
test their implementation on the mixed-signal neuromorphic hardware DYNAP-SE [60] in comparison to a
software simulation using the Python-based spiking neural network simulator ‘Brian2’ [61].

2. Methods

2.1. Spiking neural network model
The architecture of the spiking neural network model as shown in figure 1(A) uses the exact numbers of neu-
rons in each population and the reconstructed connectivity for one hemisphere as published in the electron-
microscopic study of a single animal [62, 63]. The network consists of 21 olfactory receptor neurons (ORN) at
the periphery, 21 projection neurons and 21 local interneurons (LNs) in the antennal lobe and 72 Kenyon cells
(KCs). In each brain hemisphere there is exactly one anterior paired lateral (APL) neuron. We hypothesize that
the APL receives input from most or all mature KCs [64] included in this network model. Due to technical lim-
itations of the DYNAP-SE chip with a maximum in-degree of 64 synapses for one neuron we randomly chose
64 KCs that provide input to the APL. This choice was fixed for the model, both on the hardware network and
in the software simulation. We further hypothesize, based on evidence in the adult species, that all ORNs and
all KCs have a mechanism of cellular spike frequency adaptation (SFA).

2.2. Implementation on the DYNAP-SE neuromorphic hardware
The olfactory pathway model of the Drosophila larva was implemented using the dynamic neuromorphic
asynchronous processor (DYNAP-SE) [60] (figure 1(C)). This processor is a full-custom mixed-signal ana-
log/digital VLSI chip, which comprises analog circuits that emulate neurons and synapses with biologically
plausible neural dynamics. Given the analog nature of the circuits used, the synapses and neurons exhibit
parameter variability that is characteristic also of real neurons. The analog circuits used, implement multi-
ple aspects of neural dynamics, such as spike-frequency adaptation (implemented as a shunting inhibitory
synapse), refractory periods, exponentially decaying currents, voltage-gated excitation and shunting inhibi-
tion [60, 65]. The silicon neurons circuits, similar to their biological counterparts, produce spikes. In the chip,
these are stereotyped digital events which are routed to target synapses by a dedicated address event repre-
sentation (AER) infrastructure [66, 67]. The conductance-based synapses are current-mode circuits [65] that
produce an EPSC with biologically plausible dynamics, which are then injected into the neurons leak com-
partment. This compartment acts as a conductance block, which decreases the input current as the membrane
potential increases. One of the inhibitory synapses subtracts charge directly from the membrane capacitance
and provides a shunting inhibition mechanism [65]. All other synaptic currents are in turn summed together
and integrated in the post-synaptic neurons leak compartment.

The model (figure 1(A)) was initially developed in software and the neural architecture was then mapped
onto the mixed-signal hardware by configuring the AER routers and programming the chip digital memories
to connect the silicon neurons via their corresponding synapses. The parameters of the hardware setup were
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Figure 1. Neuromorphic spiking neural network approach. (A) Network model of the Drosophila larva olfactory pathway
including all neurons and connections implemented. One-to-one feed-forward connections between olfactory receptor neurons
(ORN, red) and projection neurons (PN, dark blue)/local interneurons (LN, light blue) and from PN to KCs. Lateral inhibition
from each LN to all PN and feedback inhibition from the APL to KCs. The number of neurons in each population is declared in
parenthesis. (B) Input pattern of the three artificial odors used and time course of the odor stimulation protocol (excluding the
warmup) with odor onset at 2 s and offset at 4 s (lower panel). The odors are characterized by their ORN activation profile and
implemented with varying degree of similarity (overlap as indicated by the shaded area). (C) Chip micro-photograph of the
DYNAP-SE device. The chip, fabricated using a standard 180 nm CMOS technology, comprises four cores with 256 adaptive
exponential integrate-and-fire neurons each. The inset shows a zoom into an individual neuron with an analog neuron circuit,
analog synapse circuits and digital memory and communication blocks. The central part of the chip contains the asynchronous
routers for transmitting spikes between individual neurons and bias generators with 12 bit current mode DACs for setting the
network parameters.

fine-tuned using the on-chip bias generator, starting from the estimates provided by the software simulation.
Computer-generated control stimuli, in the form of well defined spike trains, were provided to the chip via a
custom field programmable gate array (FPGA) board. Each neuron population was implemented on a single
core, using in total five cores and two chips. All the circuit biases of neurons belonging to different cores could
be tuned independently. The synapses from ORN to PN, PN to KC, and KC to APL were designed as excitatory
whereas the synapse from LN to PN and APL to KC were implemented as inhibitory. SFA was implemented in
the ORN and KC neuron populations.

Three separate recordings were done, one for each of the three odors with 20 trial repetitions (figure 1(B)).
Within each of the three experiments all conditions (different sparseness mechanisms enabled) were recorded
always in the same order (LN + APL + SFA, LN + SFA, LN, APL + SFA, LN + APL, SFA).

2.3. Computer simulation of the spiking neural network
The simulations were implemented in the network simulator Brian2 [61] and run on an X86 architecture on
an Ubuntu 16.04.2 Server. All neurons (figure 1(A)) were modeled as leaky integrate-and-fire neurons with
conductance-based synapses. The membrane potential vi obeys a fire-and-reset rule, being reset to the resting
potential whenever the spike threshold is reached. The reset is followed by an absolute refractory period of 2
ms, during which the neuron does not integrate inputs (table 1). The membrane potential of a neuron in a
particular neuron population (vO, vL, vP, vK, vA) is governed by the respective equation. The neuron parameters
can be found in table 1.

Cm
d
dt

vO
i = gL(EL � vO
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Table 1. Network simulation parameters.

Neuron parameters

Capacitance ORN Cm 100 pF
Capacitance PN Cm 30 pF
Capacitance LN Cm 50 pF
Capacitance APL Cm 200 pF
Leak conductance ORN gL 5 nS
Leak conductance PN and LN gL 2.5 nS
Leak conductance APL gL 5 nS
Leak potential ORN EL 60 mV
Leak potential PN and LN EL �60 mV
Leak potential KC and APL EL �60 mV
Threshold potential ORN and KC VT �35 mV
Threshold potential PN and LN VT �30 mV
Threshold potential APL VT �30 mV
Resting potential ORN and LN Vr �60 mV
Resting potential PN Vr �60 mV
Resting potential KC Vr �55 mV
Resting potential APL Vr �60 mV
Refractory time ⌧ ref 2 ms

Synaptic parameters

Excitatory potential EE 0 mV
Inhibitory potential EI �75 mV
Excitatory time constant ⌧ e 5 ms
Inhibitory time constant ⌧ i 10 ms

Synaptic weights

Weight input-ORN wORNinputORN 3 nS
Weight ORN–PN wORNPN 30 nS
Weight ORN–LN wORNLN 9 nS
Weight LN–PN wLNPN 2 nS
Weight PN–KC wPNKC 1 nS
Weight KC–APL wKCAPL 50 nS
Weight APL–KC wAPLKC 100 nS

Adaptation parameters

Adaptation time constant ⌧ Ia 1000 ms
Adaptation reversal potential EIa �90 mV

Cm
d
dt

vA
i = gL(EL � vA

i ) + gKAPL
e (EE � vA

i ) (5)

where ORNs (equation (1)) and KCs (equation (4)) are equipped with an additional spike-triggered adaptation
(equation (6)) where gIa is the adaptation conductance and ⌧ Ia is the decay time constant. With every spike gIa

is increased in ORNs and KCs by 0.1 nS and 0.05 nS, respectively.

d
dt

gIa = � gIa

⌧Ia
. (6)

Note, that the neuron model used in our computer simulations is the widely used conductance based leaky
integrate-and-fire neuron [68] with an additional adaptation conductance in ORNs and KCs. This model
does not match perfectly well the silicon neuron physically implemented on the DYNAP-SE board,
which can be modeled by a current-based adaptive exponential integrate-and-fire model [65](see
Discussion). All code for the software implementation is accessible via
https://github.com/nawrotlab/DrosophilaOlfactorySparseCoding
.

2.4. Spontaneous activity
The input to the ORNs in our network model was modeled as stochastic point process realizations. It mimicks
the sum of spontaneous receptor activation and odor driven activation of the ORNs. On the chip, each ORN
received a Poisson input to achieve a baseline firing rate ⇡5 Hz. In the simulation each ORN received excita-
tory synaptic input modeled as a gamma process (shape parameter k = 3) to generate a similar baseline rate.
The spontaneous firing rate of larval ORNs was previously measured in the range of 0.2–7.9 Hz, depending
strongly on receptor type and odor identity [69, 70]. On the chip we measured a spontaneous ORN firing
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rate of 6.2 ± 3.0 Hz. In the simulated model the average ORN baseline activity was estimated as 6.0 ± 1.4 Hz.
Thus, ORNs on chip and in the simulation exhibit a similar spontaneous activity in the upper range of the
empirical distribution.

2.5. Odor stimulation protocol
On the chip and in the computer simulation we included a warm up time (1.5 s and 0.3 s, respectively), which
was excluded from the analyses. On the chip this restored the baseline biases following odor application. In the
computer simulation this warm up period ensured that neuronal membranes and conductances were more
heterogeneous at the beginning of the experiments.

We used a set of three different odors to study the effect of odor similarity. Figure 1(B) shows the activation
profile (point process intensities) and overlap of all three odors across the 21 input channels. For each odor,
the profile indicates the ORN-type specific activation level, mimicking the fact that each ORN expresses a
genetically different receptor type. Similarity of odors is represented in the overlapping activation where odor
1 and odor 3 are distant (zero overlap), while odor 2 is constructed to have the same amount of overlap with
the two other odors. The stimulation protocol assumes a 2 s odor stimulus on top of the baseline input with
an activation rate according to figure 1(B).

2.6. Data analysis
2.6.1. Sparseness measure
Sparseness was quantified by the widely used modified version [71] of the Treves–Rolls measure [72].

S = 1 �

�
1
N

PN
i=1 ai

�2

1
N

PN
i=1 a2

i

(7)

where ai indicates either the spike count of neuron i (population sparseness, Spop), or the binned (�t = 20
ms) population spike count (temporal sparseness, Stmp) for the 2 s with odor stimulation. S assumes values
between zero and one, with high values indicating sparse responses. This measure has been repeatedly used to
quantify sparseness in insect olfactory processing [36, 47, 52, 54, 73–77]. We report the average and standard
deviation across the three odors. We then tested the effect of excluding specific sparseness mechanisms. To test
for significance of the effects of lateral inhibition and SFA, the condition with only lateral inhibition enabled
was compared with the condition with only SFA present (LN vs SFA) using a t-test for related samples. To test
the effect of feedback inhibition via the APL, the condition including all mechanisms (LN + APL + SFA) was
compared with LN + SFA. Tests were performed independently for temporal and population sparseness.

2.6.2. Activation measure
We define the additional measure of activation as

A =
1

N · k

N�

i=1

k�

j=1

�(aij) (8)

where ai,j indicates the spike count of neuron i in the time bin j and � is the Heaviside step function. Thus,
�(aij) indicates the binary response of neuron i in time bin j. To asses population activation Apop we apply
a single time bin for the complete 2 s odor stimulation time. Then Apop measures the fraction across all N
neurons that are odor-activated by at least one single spike. We quantify temporal activation Atmp by binning
the stimulus time into k = 20 bins of w = 100 ms. Thus, Atmp measures the binary response probability across
time bins for each neuron. Our definition of activation is related to the complementary measure of ‘activity
sparseness’ defined in [71]. Both measures were then averaged over all 20 trials. As results we report the average
and standard deviation across the three odors.

2.6.3. Distance measure
To assess the differences in odor distance between sparse and dense KC odor code we used the cosine distance
(equation (9)). Vectors a and b each represent the average number of spikes evoked by all 72 KCs during the
two second odor presentation across 20 independent model instances. Cosine distance between a and b was
calculated as:

Dcos = 1 �
Pn

i=1ai · bipPn
i=1a2

i ·
pPn

i=1b2
i

. (9)

2.6.4. Correlation across sparseness conditions
To test for qualitatively similar effects of the different sparseness conditions on the chip and simulation we
correlated the results across the six data points (sparseness conditions) between the chip and the simulation.
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For significance testing we generated 100 random unique permutations of the means from the simulation and
correlated these 100 data series with that of the chip (LN + APL + SFA,LN + APL, APL + SFA, LN + SFA,
LN, SFA; figure 3). The average of these 100 correlations was 0.07(sd = 0.42) for Spop and 0.01(sd = 0.52) for
Stmp. In both cases the distribution of correlations was normal, established using D’Agostino-Pearson test for
normality. The average of these 100 correlations each was used to evaluate the similarity of the effects on the
chip and in the simulation.

3. Results

The larval nervous system with its limited neural network size and low complexity lends itself to the emula-
tion on neuromorphic hardware. We analyzed a single hemisphere olfactory network model of the first instar
Drosophila larva with <200 neurons and <1000 synapses comparing an implementation on the neuromorphic
hardware DYNAP-SE [60] with a computer simulation of the same network. We were particularly interested
in the contribution of different cellular and circuit mechanisms to the transformation of a dense input pattern
at the periphery into a sparse odor representation in the MB.

3.1. Olfactory pathway model
Our spiking neural network model comprises four computational layers (figure 1(A)). Its structure, the size
of the neuron populations and their connectivity are based on the connectome of a single right hemisphere as
reconstructed from electron-microscopic data of one individual Drosophila larva MB by Eichler and colleagues
[62]. Peripheral processing is carried out by 21 ORNs, each expressing a different olfactory receptor type
[63, 78]. ORNs make one-to-one excitatory connections with 21 PNs and with 21 LNs that together con-
stitute the antennal lobe. Each LN forms inhibitory synapses onto all PNs, establishing lateral inhibition. The
PNs make divergent random connections with a total of 72 KCs, the primary cells of the MB, where each KC
receives excitatory input from 1–6 PNs. The APL receives input from all of the matured KCs [64]. All KCs with
a well-developed dendrite [62] fall into this category and those are the only ones included in our circuit model.
We therefore assume a dense convergent connectivity with essentially all presynaptic KCs (in our case 64 out of
72 due to technical limitations on the chip, see Methods). We further implemented inhibitory feedback from
the APL onto all KCs [64]. Overall, this blueprint of the olfactory network is highly similar to that in the adult
fly except for the smaller neuron numbers and reduced anatomical complexity (see Discussion). Each model
instance implemented here utilizes the exact same connectivities. We thus simulate a single individual rather
than an average animal.

3.2. Circuit motifs and cellular adaptation
Our network model utilizes different cellular and circuit mechanisms that have been suggested to support
a sparse code in the insect MB. To this end, the network topology includes three relevant motifs. First, the
LN connectivity in the antennal lobe constitutes lateral inhibition as a motif that generally enhances neural
contrast [34, 79] and that is implemented in the olfactory system of virtually all insects [36, 80–85], as well
as in computational models thereof [25, 28, 52, 86]. Second, the random connectivity from PNs to a larger
number of KCs is net divergent and sparse, expanding the dimensionality of the coding space [51, 87, 88].
Third, our model includes inhibitory feedback from the APL neuron onto all KCs. This has been shown to
directly affect KC populations sparseness in the adult fly [47, 89] (see Discussion).

At the cellular level, all neurons in the network are modeled as leaky integrate-and-fire neurons. ORNs
and KCs are equipped with a cellular SFA mechanism, a fundamental and ubiquitous mechanism in spiking
neurons [34, 90]. ORNs have been shown to adapt during ongoing stimulation in vivo, both in larval [91] and
adult [92, 93] Drosophila. The exact nature of the adaptation mechanism in the ORNs is still under investigation
[92, 94, 95]. In KCs, a strong SFA conductance has conclusively been demonstrated in the cockroach [96] and
the bee [97].

3.3. Dynamics of network response to odor stimulation
The response dynamics across all network stages to a single constant odor stimulation (figure 1(B)) with odor 1
is shown in figure 2(A) (chip) and figure 2(B) (simulation). At stimulus onset, a subset of all ORNs is activated
according to the corresponding receptor response profile (figure 1(B), top). The ORN responses are phasic-
tonic as a result of SFA with a higher firing rate at odor onset. The spike count histogram averaged across the
21 neurons of the ORN population fits the typical experimentally observed response profile observed in adult
Drosophila [74, 92]. In the larva, little is known about stimulus adaptation in the ORNs [70]. The physical
realization of SFA on chip is different from the simulation, which may partly explain the delayed response to
odor onset- and offset of some neurons and the initially slower increase of the phasic response on the chip
(figure 2(A), see Discussion). The off-response expressed in a prolonged silence of the odor-activated ORNs
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Figure 2. Dynamic network response. Network response to a stimulation with odor 1 for the chip (A) and the simulation (B).
The odor was presented for 2 s, preceded by a 2 s baseline and followed by 2 s again without odor. Warmup times are excluded
and only the time window between 1 and 5 s is shown here. Odor onset is at time = 0 and odor presence in the stimulation
protocol is indicated by the shaded area throughout. Each dot denotes a single spike event of the respective neuron during an
individual exemplary experiment. The lower panels (A) and (B) for each neuron population displays the averaged population
spike count (across 20 trials) with a bin width of 100 ms.

in the simulation is an effect of SFA: the integrated adaptation current that has reached a steady state during
the odor stimulation period now decays only slowly, acting in a hyperpolarizing fashion and thus reducing
spiking probability [52] of the ORNs. This effect is barely visible and delayed on the chip (see Discussion). At
the level of the antennal lobe both PNs (dark blue) and LNs (light blue) are excited only by the ORNs and thus
follow their phasic-tonic response behavior and exhibit an inhibited off-response (figure 2), although neither
neuron type is adaptive itself. The spatio-temporal response pattern of the PNs and LNs resembles the typical
response pattern measured in vivo in adult flies and bees [81, 98, 99], including an inhibitory off-response in
many neurons [92, 100, 101].

The KCs show very little spiking during spontaneous activity on the chip and in simulation. Only very few
KCs do respond to odor stimulation (population sparse response) with only a single or few spikes (temporally
sparse response). Spontaneous activity and response properties match well the in vivo situation as observed in
various species [36, 54, 58]. The population spike count indicates a very brief population response within the
first 100 ms, while the tonic KC response remains only slightly above the spontaneous activity level (cf [54].
Finally, the single APL driven by the excitatory KC population follows the brief phasic and weak tonic response
of the KCs.

3.4. Analysis of sparsening factors in space and time
We investigate the translation from the peripheral dense code in the ORN and PN population into a cen-
tral sparse code in the KC population, disentangling the contribution of the three fundamental biological
mechanisms: cellular adaptation (SFA), lateral inhibition in the AL, and feedback inhibition in the MB. We
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Figure 3. Mechanisms underlying population and temporal sparseness in KCs. (A) Comparison of KC population sparseness
Spop between the chip and the simulation during 2 s with odor stimulation. The data is averaged over 20 experiments and three
odors (error bars denote standard deviations across odors). Six (eight) experimental conditions were tested with a different set of
sparseness mechanisms enabled. The respective mechanisms are listed below with LN (lateral inhibition via LNs), SFA, APL
(feedback inhibition via the APL) and none (neither of the three). E.g. ‘LN + SFA’ denotes the presence of SFA and lateral
inhibition. Data for the conditions ‘APL’ and ‘none’ only exists for the simulation (grey bars). (B) Temporal sparseness Stmp was
computed for the same set of conditions. (C) Comparison of KC population activation Apop between the chip and the simulation
during the 2 s odor stimulation, averaged over 20 trials and three odors (error bars denote standard deviation across odors).
(D) Temporal activation Atmp was computed by averaging the number of 100 ms time windows in which each KC was active.

systematically varied the composition of the three mechanisms in our network, yielding five different condi-
tions (figure 3) in which either one or two mechanisms were deactivated. SFA was only deactivated at the KC
level and still present in ORNs. We did not vary the PN–KC connectivity pattern as this is identical to the
anatomical pattern reported for the individual animal that we used as a reference.

We quantified the population activation by measuring the fraction of stimulus-activated KCs across the
different conditions (see Methods) and find that it depends on the sparseness mechanisms. It is lowest in
the control condition with 20.6(28.6%) responding neurons on the chip and 16.7(22.9%) in the simulation
(figure 3(C)). Our results show that APL is the single crucial mechanism necessary for establishing a high
population sparseness in our model. All conditions that lack feedback inhibition show strongly reduced values
of Spop. Lateral inhibition can to some degree recover sparseness on the chip and in the simulation.

We now consider temporal sparseness, which again reached high values in the control condition on the
order of Stmp ⇡ 0.8 (hatched bars in figure 3(B)). Comparing the different conditions we find that APL feed-
back inhibition and SFA in the KCs have a strong supporting effect for temporal sparseness. Any condition
that involves the APL reached similar high values for Stmp. Without the APL, SFA can partially ensure tempo-
ral sparseness on the chip and in the simulation. This is also reflected in the temporal activation measure that
computes the fraction of active time bins (of 100 ms duration) for the complete 2 s stimulation time (see Meth-
ods). The results shown in figure 3(D) mirror our results in figure 3(B). In the sparse control condition KCs
are active in on average only 2.3% and 3.4% of the response bins for the chip and the simulation, respectively.

Overall, we observed the same mechanistic effects on chip and in the simulation for the different combina-
tions of activated and inactivated mechanisms (figure 3). The pattern of sparseness values across all six condi-
tions is highly and significantly correlated between the chip and the simulation results, both for Spop(r = 0.94)
and Stmp(r = 0.96) in comparison with the correlation of randomly permuted pattern of sparseness values (see
Methods) with maximum correlations of 0.91 and 0.87 for Spop and Stmp across 100 permutations, respectively.

3.5. Sparse representation supports stimulus separation
How does the encoding of different odors at the KC level compare between the sparse control condition and a
non-sparse condition? Feedback and lateral inhibition supported population sparseness in the KC population.
We thus compared the control condition to the network in which both inhibitory mechanisms were dis-
abled by quantifying the pairwise distance between KC stimulus response patterns for any two different odors.
Figure 4 shows the response rates averaged over the 2 s stimulus duration for the three different stimuli for both
chip (figures 4(A)–(C)) and simulation figures 4(D)–(F). Only a fraction of the KCs responded to any odor
(Spop > 0.8, figures 3(A) and (E)) in the sparse condition. However, when feedback and lateral inhibition are
disabled, essentially all KCs showed an odor response to any of the three odors (figures 4(C) and (F)).
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Figure 4. Response pattern overlap. Average spike frequency (over 20 trials) for Chip ((A), (B) and (C)) and simulation ((D),
(E) and (F)) in response to three different odors. The odors were presented for 2 s (for information on the experimental protocol
please refer to figure 1(B)). All panels display the overlap between the different odor representations either on PN level ((A) and
(D)), KC ((B) and (E)) and non-population-sparse KC in a condition with only SFA enabled ((C) and (F)). Overlap indicates a
low ability to differentiate between odors.

A similar result is obtained when looking at cosine distances between KC odor representations. Indepen-
dently of the odor identities, average pairwise cosine distance was considerably larger in the sparse condition
(chip: 0.39(0.2); simulation: 0.85(0.06)) than in the non-sparse (SFA only) condition (chip: 0.07(0.02); sim-
ulation: 0.31(0.09)), indicating a similar effect of population sparseness on odor discriminability on the chip
and in the simulation.

4. Discussion

In the present manuscript we addressed two major questions. First, we asked whether the re-coding from a
dense peripheral olfactory code into a sparse central brain representation of odors can be achieved in the small
spiking neural network model of Drosophila larva. To this end we tested the relevance of three fundamental
mechanisms in establishing population and temporal sparseness:

• cellular adaptation

• lateral inhibition

• feedback inhibition
Second, we explored the feasibility of applying this coding scheme on real-time analogue neuromorphic

hardware by comparing hardware implementation with software simulation at the relevant levels of stimulus
encoding and processing.

4.1. Neuromorphic implementation versus computer simulation
Our results show that the on-chip network implementation achieved the transformation from dense to sparse
coding in space and time. We obtained the same general results on the chip and in simulation albeit small
differences. What are possible factors contributing to these differences?

First, while the software simulation used identical parameters for all neurons and synapses in a given pop-
ulation, there is considerable heterogeneity across the physical hardware implementation due to device mis-
match, which particularly affects currents and conductances [4, 102, 103]. This heterogeneity is manifest e.g. in
spiking thresholds, postsynaptic current amplitudes and membrane time constants. The neuromorphic hard-
ware heterogeneity generally matches the biological heterogeneity that is typically ignored in computer-based
simulations.

Second, setting the neuron and synapse parameters is straight forward and exact in the computer simula-
tion. On the chip, however, this requires the adjustment of various biasing currents. As a result, real parameters
will differ from theoretical target parameters and across circuits, as well as after re-adjustment in the same
circuit.
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Third, we have used different neuron models in the hardware emulation and in the computer sim-
ulation. Thus there is no one-to-one correspondence of the biophysical neuron parameters in the soft-
ware (table 1) and the set points of the electronic circuits. In an effort to validate the robustness of
the architecture to the model details, we deliberately did not minimize this difference, for example by
employing hardware-matching neuron models designed to mimic the electronic circuit of the DYNAP-
SE (https://code.ini.uzh.ch/yigit/dynapse-simulator.git).

Our research goal in this study was to assess the robustness of function in a small neural network architec-
ture that is supported by three specific cellular and circuit mechanisms. To this end we tested its implemen-
tation on the DYNAP-SE neuromorphic hardware in light and despite of the various differences between the
exact computer simulation of homogeneous elements and the real-time processing on electronic hardware with
inhomogeneous devices. Taking this perspective, the differences between hardware and software implementa-
tion strengthen the conclusion that the suggested mechanisms are robust in supporting population sparse and
temporally sparse stimulus encoding.

There are a number of advantages and disadvantages in using the specific hardware solution tested here.
The fact that the DYNAP-SE [60] operates in real-time makes it suitable for the spiking control of autonomous
robots [104, 105] and renders computational speed independent of network size. Even for the small larval
network considered here (exactly 136 neurons and 833 synapses) simulations were several times slower than
real-time with 3.8 s simulation time per 1 s biological time at a resolution of 0.1 ms (single core CPU, 64 bit
PC, Ubuntu 18.04.5). Simulation time can be sped up to meet real-time demand even for large network sizes
on specialized systems [106, 107].

A challenge with the mixed-signal neuromorphic hardware was the sensitivity of the circuit bias currents
to noise and temperature changes, and the real-time nature of the experiment emulation. As each experi-
ment would require the real time evolution of the input patterns and of the network dynamics to produce its
response, this led to complex and lengthy experiments. As there were different experimental conditions, with
three different odor stimuli, each with 20 trials, a particular challenge was the time-consuming adjustment of
the SFA time constant on the chip since it required post hoc estimation of the effective time constant during
repeated spike recordings. We therefore made the a priori choice to restrict the hardware emulation experi-
ments to only six out of eight experimental conditions (figure 3). Two more conditions in which none of the
mechanisms or only the feedback inhibition via APL was active were tested in the computer simulation only
(grey bars in figure 3). Still, the variability across model instances was only slightly larger on the chip than in
the simulation (figure 3). In addition, new neuromorphic circuit designs will be able to compensate for these
drifts by using appropriate temperature compensated bias generator circuits [108].

4.2. Mechanisms and function of population sparseness
Population sparseness at the KC level has been demonstrated for a number of species in the adult stage (see
Introduction). Our model suggests that given the current knowledge of anatomical structures within the
Drosophila larva olfactory pathway it might already be implemented at this stage with similar benefits. Differ-
ent mechanisms have been suggested for the generation of population sparseness. A fundamental anatomical
basis for a sparse code is the sparse and divergent connectivity between PNs and a much larger population of
KCs [37, 52]. Each KC receives input from only a few PNs and thus establishes a projection from a lower into
a higher dimensional space, ideally suited to generate distinct activity patterns that foster associative memory
formation. Additionally, there is evidence for a low excitability of the individual KCs that require collective
input from several PNs to be activated [36, 37, 96]. Connectivity in our model is based on the exact numbers
from electron microscopic reconstructions of neurons and synapses in the right hemisphere of one individ-
ual brain [62]. We did not attempt to adjust excitability of KCs or PN::KC connection strength for optimal
population sparseness.

Feedback inhibition has repeatedly been suggested to underlie population sparseness in several animals,
including the fly larva [109]. Empirical evidence has been provided in particular in bees [100, 110] and adult
flies [47, 89]. Several modeling studies have used feedback inhibition to support a sparse KC population code
in larger adult KC populations [25, 27, 28, 111]. Indeed, our study shows that inhibitory feedback from the
single APL neuron effectively implements a sparse code in the small population of 72 KCs (figure 3(A)). We
chose to model the APL as a spiking neuron that receives input solely from KCs and inhibits KCs in a closed
loop. This decision was based on experimental evidence indicating a clear polarity of the APL with input
in the MB lobes and pre-synaptic densities in the calyx, presumably onto the KC dendrites [64]. Whether
the APL neuron generates sodium action potentials, however, is not clear in the larva [109] and has been
challenged in the adult [47]. In addition, inhibitory feedback connections within the MB have been implicated
in learning through inhibitory plasticity in bees and flies, thereby modulating the sparse KC population code
[47, 110, 111].
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As a third factor, lateral inhibition within the Drosophila antennal lobe has been shown to increase popula-
tion sparseness at the KC level [74, 112] and in a model thereof [52]. This model study showed a strong effect of
lateral inhibition on population sparseness in a network tuned to the anatomy of the adult fly. In the present lar-
val model we found a supportive effect. With lateral inhibition alone the model reached Spop ⇡ 0.6. The inter-
play of feedback inhibition and lateral inhibition boosted population sparseness to Spop ⇡ 0.8 (figure 3(A)).
This observation is different from our previous results in a network simulation modeled after the adult fly [28]
where lateral inhibition in the AL was sufficient to implement a high population sparseness and APL feedback
inhibition had a mainly supporting effect. The fact that lateral inhibition is less effective in the larval than in
the adult Drosophila model [52] is thus likely due to the one-to-one connectivity between the 21 ORNs and
21 PNs in the larva, which requires very strong excitatory synapses. This specific configuration establishes a
dominant feed-forward component in the larval olfactory pathway (figure 1(A)).

Sparse stimulus representation across the neuronal population supports minimal overlap of and correla-
tion across stimulus-specific spatial response patterns [34, 52, 89, 113, 114], which in turn benefits associative
memory formation and increases memory capacity [47, 53, 72, 115]. We confirmed an increased inter-stimulus
distance in the KC coding space on the chip and in the simulation when all sparseness mechanisms take effect.

4.3. Mechanisms and function of temporal sparseness
Temporal sparseness in the insect MB has been physiologically described in various species. It is expressed in
a highly phasic stimulus response that typically consists of only a single or very few spikes and that is tem-
porally locked to stimulus onset or to a fast transient increase in stimulus amplitude while the tonic stimulus
response is almost absent [36, 54, 58]. In our model we implemented two mechanisms that can support tem-
poral sparseness, inhibitory feedback via the spiking APL neuron and SFA. Our analysis in figure 3(B) showed
that inhibitory feedback has the strongest effect, confirming experimental [77, 116] and modeling results
[25, 27, 28, 117]. Cellular adaptation (SFA) showed a smaller but supporting effect in our network, which
is partially in line with our previous models of the adult fly [28, 52, 77] in which we showed that SFA alone
can suffice to generate high temporal sparseness.

Importantly, cellular adaptation has additional effects on stimulus coding that are not analyzed here.
Being a self-inhibiting mechanism it reduces overall spiking activity, contributing to the low spontaneous
and response rates in the KC population that has been repeatedly documented in various insect species
[36, 54, 58]. Moreover, SFA leads to a regularization of the neuron’s spike output and a reduction of the trial-
to-trial variability, effectively improving response reliability [77, 118]. Finally, SFA introduces a short-term
stimulus memory expressed in the conductance state of the excited neuron population, which decays with the
SFA time constant [52].

Temporal sparseness was influenced strongly by SFA in the KCs and by recurrent feedback inhibition. It
usually shows as longer inter-spike-intervals both in physiological data [36, 54, 100] as well as in modeling
results [28, 52, 77]. Besides the prolongation of the inter-spike-intervals over the entire duration of the exper-
iment, SFA also caused the commonly observed odor onset effect [36, 54, 58, 100, 116] in ORNs and KCs. In
our data this effect was somewhat concealed in the KCs by the overall small number of spike responses. This is
a tribute to the biological plausibility with respect to data collected from adult Drosophila, where the KC rarely
show spikes at baseline [58] and a very sparse odor response pattern [58, 119]. Due to the SFA in the ORN
population that was active in all experimental conditions there was a good degree of temporal sparseness in
the LN-only condition as well (especially on the chip). Again we chose to accept this effect as a baseline level
of sparseness to compare other conditions against. In both implementations the expected effects of SFA in the
KCs could be observed.

We have previously argued that the major functional role of temporal sparseness is the rapid and reliable
stimulus encoding in a temporally dynamic environment [28, 77]. Indeed, temporal dynamics is high in the
natural olfactory environment and depends on air movement and on animal speed, the latter being particularly
high in flying insects. As a result, adult insects during flight or locomotion may encounter a rapid on-off
stimulus scenario when passing through a thin odor filament [120–124]. It remains an open question whether
the SFA mechanism is at all present in the KCs during larval stages and electrophysiological approaches to
neural coding in the larva is scarce. Representation of high temporal stimulus dynamics is likely of minor
importance for the larva as its locomotion is slow and the natural environment suitable for larval development
such as e.g. a rotten fruit likely provides little olfactory dynamics. However, larva do perform chemotaxis and
thus are able to sample olfactory gradients.

4.4. Outlook
Our current research extends the present model towards a plastic spiking network model of the larva that can
perform associative learning and reward prediction [19, 125] inspired by recent modeling approaches in the
adult [126, 127]. Together with biologically realistic modeling of individual larva locomotion and chemotactic
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behavior [16] this will allow to reproduce behavioral [128–132] and optophysiological observations [64, 133,
134] and to generate testable hypothesis at the physiological and behavioral level. In the future this may inspire
modeling virtual larvae exploring and adapting to their virtual environment in a closed loop scenario and
the implementation of such mini brains on compact and low-power neuromorphic hardware for the spiking
control of autonomous robots [7, 28, 135, 136].
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Abstract14

Predicting reinforcement from the presence of environmental clues is an essential component15

of guiding goal-directed behavior. In insect brains, the mushroom body is central to learning16

the necessary associations between sensory signals and reinforcement. We propose a biologically17

realistic spiking network model of the Drosophila larva olfactory pathway for the association of18

odors and reinforcement to bias behavior towards approach or avoidance. We demonstrate that19

prediction error coding through the integration of currently present and expected reinforcement20

in dopaminergic neurons can serve as a driving force in learning that can, combined with a21

synaptic homeostasis mechanism, account for experimentally observed features of acquisition22

and loss of associations in the larva that depend on the intensity of odor and reinforcement and23

temporal features of their pairing. To allow direct comparisons of our simulations with behav-24

ioral data [1], we model learning-induced plasticity over the complete time course of behavioral25

experiments and simulate the locomotion of individual larvae towards or away from odor sources26

in a virtual environment.27
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Introduction28

Goal-directed behavior in dynamic situations benefits from the ability to predict future conditions29

in the environment from the occurrence of sensory clues. In insects, the mushroom body (MB) is30

the central brain structure for multi-sensory integration, involved in memory formation and recall31

[2, 3]. It is at the core of learning and retaining valuable associations between sensory inputs and32

reinforcement in the synapses between the MB intrinsic and its output neurons [4–7].33

One of the underlying mechanisms is associative learning, a process that gradually establishes a34

relationship between two previously unrelated elements. In classical conditioning, the conditioned35

sensory stimulus (CS) obtains behavioral relevance through its concurrence with the reinforcing36

unconditioned stimulus (US), an acquisition process depending dynamically on their spatiotemporal37

proximity. The temporal evolution of this process has been formalized in the Rescorla-Wagner (RW)38

model (eqn. 1) [8].39

�V = ↵ · (�US � V (t)),

V (t + �t) = V (t) + �V.

(1)

Here, a CS obtains predictive power of concurrent or successive US [8], that depends on the40

strength of the already acquired association between the CS and US V (t), allowing for anticipatory41

behavior to the expected US [9, 10]. The acquisition of this association terminates when the US is42

fully predicted. Until then, the change in associative strength �V is proportional to the di↵erence43

between the maximum associative strength (or asymptote) �US and the current associative strength44

V (t) (eqn. 1). The maximum associative strength is a property of the US, determined mainly by45

the intensity of the reinforcement. While the current associative strength V (t) is defined by the46

shared learning history of CS and US [8]. The concept of prediction error (PE) [11] is a derivative47

of the Rescorla-Wagner model [8]. The error signal equals the di↵erence between the current �US48

and the predicted value of US V (t). Over the course of the memory acquisition/training phase, the49

pace of learning, which can be formalized as the slope of the acquisition curve, decreases as the PE50

is reduced, minimizing the driving force for changes of the association [8, 11]. This di↵erence is51

multiplied with a learning rate parameter (↵), here combined for the CS and the US (eqn. 1).52

This continuous optimization of predictions, guided by the PE, could allow animals to e�ciently53

adapt their goal-directed behavior in dynamic environments. Among the most relevant associations54

to be learned are those that enable the prediction of reward or punishment. Dopaminergic neurons55

(DANs) have long been known to encode information about reward and punishment. These types of56

neurons respond to the presence of rewards and punishments in the environment, both in vertebrates57

[12–17], as well as invertebrates [18–21]. The electrical stimulation or optogenetic activation of DANs58

induces approach or avoidance both in vertebrates [22–25] and invertebrates [20, 26–32]. In adult59

[5, 6, 33, 34] and larval [20, 35, 36] Drosophila this approach or avoidance learning is facilitated by60
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the modulation of MB output synapses by DAN activity. Ultimately DANs do not only signal the61

presence of rewards or punishments but have also been suggested to encode PE in various vertebrate62

species [16, 37–40] and might have a similar function in insects [19, 20, 32, 34, 41–44].63

We utilize our spiking model of the Drosophila larva MB in one brain hemisphere that forms64

associations of odors with reinforcement to further test the hypothesis that PE coding within this65

circuit takes place in DANs that receive input from the output neurons of the MB or their down-66

stream partners [20, 45–47], that might provide feedback to the DANs. Beyond the scope of similar67

models [20, 48–51](see Discussion, section: Comparison with other MB models), we demonstrate68

that this mechanism can reproduce the experimentally observed findings on the acquisition of asso-69

ciations of odors with reinforcement in a time-resolved manner [1]. To facilitate direct qualitative70

and quantitative comparisons with animal behavioral data, we couple this model with a realistic71

locomotory model of the larva [52] that captures the e↵ects of learned associations on chemotactic72

behavior in individual animals.73

Results74

Connectome-based circuit model of the larval olfactory pathway75

The network architecture of our model (fig. 1 A) is based on the anatomy of the olfactory pathway76

in one Drosophila larva brain hemisphere [20, 29, 53, 54] (for more details see Methods, section:77

Network model). Peripheral processing is carried out by 21 olfactory receptor neurons (ORNs), each78

expressing a di↵erent olfactory receptor type [53, 55, 56]. ORNs form one-to-one excitatory synaptic79

connections with 21 projection neurons (PNs) and 21 local interneurons (LNs) in the antennal lobe80

[53]. Each LN connects with all PNs via inhibitory GABAergic synapses, establishing a motif for81

lateral inhibition within the antennal lobe. The 72 mature larval Kenyon cells (KCs) [54] are the82

excitatory principal cells of the MB. Each KC receives excitatory input from 2-6 randomly selected83

PNs [54]. The KCs are subjected to feedback inhibition, provided via the GABAergic anterior paired84

lateral (APL) neuron, which receives input from all KCs [29]. Only mature KCs, characterized by85

a fully developed dendrite, are included in this model, yielding a complete convergent synaptic KC86

>APL connectivity. The output region of the MB is organized in compartments, in which the87

KC axons converge with the dendrites of one or few MB output neurons (MBONs) [20, 54]. Our88

model assumes two MBONs from two di↵erent compartments that are representative of two di↵erent89

categories of output neurons of the MB that mediate either approach or avoidance [4–6, 33, 35, 36,90

57–59] with a single MBON each. Both MBONs receive excitatory input from all of the KCs to91

fully capture the information that is normally represented by the complete set of MBONs. Each92

compartment is also innervated by a single DAN, signaling either reward or punishment and targeting93

the KC>MBON synapses to facilitate learning (for a discussion of all simplifications compared to94

the animal brain, see Methods, section: Network model).95
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Learning through KC>MBON plasticity96

We assume that the KC>MBON synapses undergo plasticity, based on strong experimental evidence97

in larval [20, 35, 36] and adult flies [5, 6, 34]. This plasticity requires the convergence of the sensory98

pathways in the form of KC activation and of the reinforcing pathway, mediated by neuromodu-99

latory DAN signaling at the synaptic site. We employ a two-factor learning rule (eqn. 2) at each100

KC>MBON synapse (fig. 1 A,B). The first factor is expressed in the pre-synaptic KC activation by101

an odor, tagging the synapse eligible for modification. This is modeled via an exponentially decay-102

ing eligibility trace ei(t), which is set to a 1 whenever the respective KC elicits a spike (fig. 1B).103

The decay time constant determines the window of opportunity for synaptic change. The pres-104

ence of reinforcement (reward or punishment) constitutes the second factor and is signaled by the105

reward-mediating DAN+ or punishment-mediating DAN-, respectively. Spiking of the DAN provides106

a neuromodulatory reinforcement signal R(t) to the synaptic site. If a DAN spike coincides with107

positive eligibility at the synapse, the respective synaptic weight is reduced. At each synapse i, the108

reduction of synaptic weight �wi depends on the learning rate a (table S1) and is proportional to109

the amplitude of the eligibility trace ei(t) (fig. 1B):110

�wi = �a · ei(t) · R(t)  0. (2)

We introduce a synaptic homeostasis mechanism (eqn. 3) that modulates the e↵ects of plasticity111

at each KC>MBON synapse to account for the experimentally observed loss of a learned associ-112

ation when reinforcement is omitted [41, 60, 61] and to ensure continued input to both MBONs.113

With each MBON spike, the current weight wi of each respective KC>MBON synapse is increased,114

proportionally to the extent to which the weight di↵ers from its original value winit (table S1) and115

multiplied with a homeostatic regulation factor h (table S1). This mechanism serves as an imple-116

mentation for the loss of the association when the reinforcement is omitted. While reinforcement117

is present, the learning curve will either continue to rise or remain at the asymptote if already118

saturated. The interaction of the two mechanisms of learning and unlearning at the level of the119

individual KC>MBON synapses allows to include the loss of learned associations, when continued120

reinforcement is omitted (see Discussion, section: A mechanistic implementation of the RW model)121

and also ensures continued input to the MBONs, despite the reduction of input weights over the122

course of the learning process (eqn. 2). The homeostatic factor h hereby serves as an implementation123

of a time constant of this exponential process. The interaction of synaptic plasticity and homeostatic124

regulation defines the magnitude of the weight at the next simulation timestep t + �t as125

wi(t + �t) = wi(t) + �wi + (winit � wi(t)) · h. (3)

It has been shown in behavioral experiments that specific MBONs encode a behavioral tendency126

to either approach or avoid a currently perceived stimulus, depending on the acquired stimulus127

valence [4–6, 36, 57, 58]. In the naive state of our model, all KC>MBON synapses have the same128
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initial weights winit (table S1), and hence the spiking activity of both MBONs is highly similar.129

Learning alters the KC>MBON synaptic weights and thus skews the previously balanced MBON130

output. This acquired imbalance between MBON outputs biases behavior towards the approach or131

avoidance of the conditioned odor. To quantify the e↵ect of learning, we compute the behavioral132

bias BB (eqn. 4) from the firing rates of both MBONs over T = 1s as follows:133

BB =
MBON+ � MBON�

T
. (4)

Implementation of prediction error coding in the KC-MBON-DAN motif134

In the larva, many DANs and other modulatory neurons receive excitatory or inhibitory input135

from di↵erent MBONs, either in a direct manner or via one or two interneurons [20]. Based on136

this observation, we constructed our hypothetical feedback motif (for similar models see discus-137

sion section: Comparison with other MB models). In the model, DANs are activated by external138

reward/punishment signals and also receive excitatory and indirect inhibitory feedback from both139

MBONs (fig. 1A). As the initial balance between the two MBON outputs shifts over the course of140

the training process, the amount of excitatory and inhibitory feedback that DANs receive continues141

to diverge, allowing the DANs to access the model’s learning history. Ultimately DAN activation142

signals the di↵erence between the current external activation and the expected activation based143

on prior learning, implemented as the di↵erence between excitatory and inhibitory MBON>DAN144

feedback. Including this feedback leads to learning curves that saturate when the reward is fully145

predicted, and the prediction error approaches zero (fig. 2A,D). This e↵ect disappears, when the146

feedback circuit is disabled (fig. 2 A). In this case the behavioral bias quickly reaches the maximum147

value of the measure when the MBON- elicits no more spikes and can not encode further learning.148

Increasing reward intensity, learning rate or odor intensity (see Methods, section: Experimental149

protocols) foster a faster acquisition of the association and increases the maximum strength of the150

association at the same time (fig. 2 A).151

Increasing the reward intensity after a 2.5 min (black curve), or 5min (gray curve) of appetitive152

training, results in a steeper slope of the learning curve and also increases the maximum during153

training trials of 2.5min duration with increased reward intensity (fig. 2 B). Higher intensity of the154

reward results in an average DAN spike rate of 39.14Hz(std = 1.27(standard deviation)) compared155

to 33.11Hz(std = 1.34).156

Additionally, we tested for loss of the acquired association as the reduction in behavioral memory157

expression, over the course of prolonged exposure to the CS without the US, following initial memory158

acquisition [8, 62]. We test this in our model experiments by presenting the odor, previously paired159

with reward, for an extended period of time, in the absence of reinforcement. During the test160

phase and without the presence of reward to trigger synaptic KC>MBON- weight reduction, the161

extinction mechanism is no longer outweighed by learning and drives each individual weight back162

towards winit (fig. 2 C, upper panel). We also demonstrate the interaction of the learning rule with163
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this mechanism in figure S1, where the learning rate remains constant but the magnitude of the164

homeostatic regulation was manipulated to show that both mechanisms need to be in balance.165

Learned preference and behavior generalize to similar odors166

We trained our model by pairing a reward with a single odor for 4min. After the training procedure,167

we tested the behavioral bias either for the same or a di↵erent odor, following the experimental168

approach used in the larva [63]. Mimicking the experimental data, we show that the odor preference169

is highest if training odor and testing odor are identical in the case of training with 3-octanol. When170

amylacetate is used during training, 3-octanol preference is increased (fig. 3 A). Since 3-octanol171

activates a subset of the ORNs activated by amylacetate (fig. 1 D), some of which with higher rates172

than in the case of amylacetate, we also tested for generalization using a set of ORN activation173

patterns with a controlled degree of overlap (see Methods, section: Sensory input, fig. 1D) and174

show that with decreasing similarity, the generalization e↵ect to a new odor is diminished (fig. 3A).175

Figure 3 B shows the network response to 30sec stimulations with amylacetate and 3-octanol in a176

single exemplary model instance. On the level of the ORNs, 3-octanol merely activated a subset177

of the amylacetate-activated neurons. The uniqueness of the odor identities is enhanced in the KC178

population [64].179

The model reproduces temporal features in trace conditioning experiments180

Including an odor-evoked eligibility trace at the KC>MBON synapses allows the model to maintain181

the sensory odor representation for a time window, during which reinforcement will trigger synaptic182

change (fig. 1 B). The time window between odor and reward onset (0, 10, 20, 30, 40, 50, 60, 120s)183

was varied for trace conditioning experiments with a 30s presentation of odor and reward that was184

repeated three times. A small inter-stimulus-interval (ISI) of 10 to 30s leads to an increase in185

behavioral bias compared to the complete overlap of odor and reinforcement (fig. 3 C), using the186

extended window of opportunity for synaptic change triggered by each KC spike. Long ISIs do not187

lead to learning as the eligibility trace declines back to zero during this time (fig. 3C). These findings188

match observations from experiments in larvae [29, 65, 66] with the caveat that the trace in the real189

larva brain seems to extend for a slightly longer period of time, compared with our experiments.190

The model reproduces paired and unpaired associative conditioning ex-191

periments192

To test if learning, driven by prediction error, can account for learned larval behavior, we replicated193

single-trial conditioning experiments performed with larvae [1] in simulation. In these experiments,194

animals were trained with the odor amylacetate in a single trial of varying duration (1 � 8 min).195

To this end, larvae were placed on a Petri dish coated with an agar-sugar substrate and the odor in196
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two small containers for di↵usion in the air (paired training). Either before or following this train-197

ing protocol, larvae underwent a single trial without sugar and odor. Afterward, the animals were198

transferred to a new dish with two odor containers placed on di↵erent sides (one of them contained199

amylacetate, and the other one was empty). This paired training was compared with an unpaired200

protocol with separate (randomized order) presentations of amylacetate and sugar. Following the201

paired training protocol (odor and reward are presented concurrently), the animals showed a ten-202

dency to approach the previously rewarded odor, as measured by the di↵erence in the number of203

animals on each side at the end of a 3min test phase, divided by the total number of animals. Fol-204

lowing the experimental literature, we will refer to this measure as the preference index ([1] eqn. 15).205

The animals’ preference is relatively consistent across training trials of di↵erent duration. Prolonged206

paired training did not lead to an increase in preference (fig. 5 A). These experiments did not in-207

clude a test for odor preference before training, but untrained larval odor preference of odors used in208

learning experiments has been demonstrated elsewhere [67–69]. This paired training was compared209

with an unpaired protocol with separate (randomized order) presentations of amylacetate and sugar.210

Here the extent to which animals preferred amylacetate over no odor varied with the duration of211

the training trial. The longer the duration of the training, the more the preference index decreased212

from an initially high value but saturated around 2.5min (fig. 5A).213

We aimed to replicate these behavioral experiments on two levels. Firstly, we focused on the214

direct model output that reflects the strength of the acquired association between amylacetate215

and reward (behavioral bias, eqn. 4) and later also simulated behavior based on these biases. We216

simulated both the paired and unpaired training protocol (fig. 4B). While the unpaired training217

yielded almost no behavioral bias, the models that underwent the paired training show an increased218

behavioral bias, that depended on the duration of the training and saturated for longer training219

duration (fig. 4 B). The simulation results reported in figure 4B were obtained using odor-naive220

models that exhibited no odor preference, prior to training. To account for the experimental finding221

that real larvae often do have an odor preference even without any training [67–69], we readjusted222

our experiments to include a pre-training period of 10 minutes to start the conditioning experiments223

with the amylacetate-reward association already established. This adaptation of the protocol leads to224

results (fig. 4 C) that match the results obtained in real behavioral experiments (fig. 5 A). The paired225

condition in figure 4C shows that once the behavioral bias is saturated (fig. 2 A), continued pairing226

maintains the association, without further increasing it. Unpaired training on the other hand, causes227

the behavioral bias to decrease and saturate at a lower level. For a discussion of di↵erent potential228

causes of a reinforcement expectation prior to training, please refer to the discussion (Comparison of229

modeling results to experimental findings). Figure 2 A demonstrates that disabling MBON>DAN230

feedback leads to a learning curve that does not saturate but instead increases with a steep slope231

until it reaches the maximum value for the behavioral bias eqn. 4) with a MBON- rate of 0. To verify232

if this PE feedback mechanism is responsible for the di↵erence between maintenance and loss of the233

association in figure 4 C, we repeated the same experiment with disabled MBON>DAN feedback.234
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The behavioral bias overall is much higher, compared to the intact network (fig. 4 B). The maximum235

is reached before the test phase of even the shortest 1min training experiment, with no MBON-236

spikes elicited.237

Secondly, since the e↵ect of training in lab experiments is quantified behaviorally via spatially238

defined, group-level metrics (preference index and performance index (eqn. 15,eqn. 16), [1]), we239

performed behavioral simulations of the testing phase with groups of virtual larvae for both the240

paired and unpaired condition [1], allowing a straightforward comparison with the animal experi-241

ments (fig. 5A). To this end, we utilized a realistic model for the simulation of larval locomotion242

and chemotactic behavior [52] that uses the behavioral bias at the output of the MB model as243

a constant gain factor to modulate the locomotory behavior of individual larvae towards or away244

from a spatially placed odor source in a virtual arena (see Methods, section: Realistic modeling of245

larval locomotion). The resulting preference indices, acquired across groups of independently sim-246

ulated larvae (fig. 5C), can directly be compared to the experimentally obtained preference indices247

(fig. 5A). We also compare performance indices from our simulated experiments (fig. 5D) with those248

from the lab experiments (fig. 5B) and find that the model can replicate these when accounting for249

the odor preference at the beginning of the experiment.250

Discussion251

Seeking rewards and avoiding punishments by predicting change in the environment is a major252

motivator of animal behavior. Sensory clues can acquire the necessary predictive power to guide253

behavior through classical conditioning, an associative learning process potentially driven by re-254

ward/punishment PE [8, 11], as observed in vertebrates [16, 37–40]. To test the biological plausi-255

bility of the proposed PE coding motif in the larval MB and test its capacity to explain behavioral256

data we implemented a spiking network model of the olfactory pathway, coupled with a simulation257

of locomotory behavior [52]. We demonstrate that our model of PE coding results in saturating258

group-level and individual learning curves, where the slope and maximum of the learning curve are259

determined by the intensity of both the reward and the odor signal. Learning is also influenced by260

the timing of odor and reinforcement and can be extinguished if reinforcement is omitted during the261

presentation of the sensory clue. After verifying that this circuit motif enables learning as predicted262

by the PE theory, we show that it can also explain time-resolved larval behavior in conditioning263

experiments.264

A mechanistic implementation of the RW model265

A number of predictions can be derived from the phenomenological RW model [8] and tested in our266

mechanistic model thereof. We found that regardless of odor/reward intensity or the model’s learn-267

ing rate, the strength of the odor-reward association (quantified as the behavioral bias) saturates268

over time (fig. 2A), as the strength of the already acquired association V (t) approaches the maxi-269
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mum value supported by the given reinforcement input (�US) (eqn. 1). Consequently, our model’s270

acquisition curve saturates at a higher value when the intensity of the reinforcement is increased271

(fig. 2 A,B), as predicted by the RW model, in which a stronger US should result in a higher value272

of �US [8]. In our model, a higher reinforcement intensity relates to a higher input rate into the273

respective DAN (see Methods, section: Sensory input) which translates into more frequent DAN274

spikes within a given window of 1 second, used to compute the behavioral bias (eqn. 4). This defines275

the asymptote of the learning curve. According to the RW model, increasing either the intensity of276

the odor or the learning rate ↵ [8] should lead to faster acquisition of the association. In our model,277

the learning rate directly influences the increment of each respective synaptic weight �w
i, while an278

increase of the odor intensity allows for a more frequent execution of the weight update routine, by279

influencing the eligibility trace (eqn. 2).280

The RW model predicts that the omission of reward should result in the loss of the learned281

association (eqn. 1, [8]). From the equation itself, we can not infer if this loss is due to extinction282

or forgetting. Extinction, characterized by the possibility of recovery of the association, after its283

temporary loss [70], has been demonstrated in adult [71, 72] but not larval Drosophila. To retain284

the association for recovery, extinction relies on the formation of parallel memory traces for the285

acquisition and the loss of the association [41, 60]. The mechanism implemented in our model is286

overwriting the association, since the homeostatic mechanism drives the synaptic weights toward287

their initial value, thereby deleting the learned association with no chance of recovery, but only in288

the presence of olfactory input, eliciting MBON spikes. The resulting behavior during the extinction289

phase of the experiments presents itself in a similar way, while the underlying mechanism is di↵erent.290

Comparison of modeling results to experimental findings291

A variety of experiments have demonstrated group-level acquisition curves that saturate over mul-292

tiple training trials or with increasing duration of a single trial in olfactory conditioning [1, 51,293

73–75]. To replicate larval behavior in reward learning experiments [1] with varying duration of the294

learning phase (fig. 5 A,B) we trained our model with an odor and reward in a paired vs. unpaired295

fashion (fig. 4 B). Real larvae show a strong odor preference even after a very short training and296

no significant increase in their preference when trained in a paired manner for longer periods of297

time [1, 67]. Instead, the animals trained in an unpaired protocol start out with a similarly high298

odor preference, which then decreases over time [1, 67]. This behavior is very counter-intuitive since299

the coincidence of odor and reward should yield an association of those two stimuli and thus an300

increased behaviorally expressed preference for the CS [8]. To resolve this contradiction, we include301

the observation that animals might not be naive to the training odor prior to the beginning of the302

experiments in the model. In that case, the animals would enter into the experiment with an already303

established reward prediction that would be violated during unpaired training. Three scenarios lend304

themselves as plausible causes of this e↵ect: Firstly, accidental conditioning over the course of their305

lifespan during which they are raised on a food substrate while being exposed to air that carries306
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many di↵erent odorants. Alternatively, or in fact, additionally, the animals might exhibit an innate307

preference for many odors [76–78]. Finally, the presence of the reward during reward-only phases308

might lead to an association of the experimental context with that reward (previously discussed309

by Saumweber et al. [67]). The resulting reward expectation (solely based on the always present310

context), unmet during the odor-only phases could lead to a prediction error signal. All three candi-311

date explanations would yield a similar projection for the unpaired experimental protocol: A reward312

expectation acquired prior to the actual experiment would cause a violation of that expectation313

during odor-only trials of the unpaired experiments. In all three cases, the animal’s preferences314

might also generalize to a broader array of odors, leading to an overall preference for some odors, as315

observed experimentally. To test this hypothesis we pre-trained our model before simulating condi-316

tioning experiments (fig. 4 C) and observed that this allows us to reproduce the animal experiments317

(fig. 5 A,B). Including odor preference at the beginning of the experiment ensures the model not only318

behaves in accordance with the RW model [8], but also fits the animal experimental results [1]. A319

possible alternative explanation could be a sensory habituation process to the odor that might cause320

odor preferences to decrease over time, resulting in the observed patterns for unpaired learning. In321

the paired condition this e↵ect might be abolished by the continued presentation of odor and reward322

together [79].323

Thus far we have tested our model in experiments where the CS and US presentation were fully324

overlapping (paired conditions). We now consider di↵erent onset times, with the onset of the CS325

always preceding the onset of the US (fig. 3,C). For these experiments we used a shorter duration of326

30s for both CS and US presentation, repeated over three acquisition trials to mimic experimental327

conditions in larval experiments [29, 66] that used optogenetic activation of DANs as a proxy for328

sugar reward. Similar to their experiments we show that the behavioral bias clearly depends on the329

temporal delay between CS and US (fig. 3,C). Complete temporal overlap of CS and US (ISI=0)330

does not seem to expend the full potential of learning the association, instead partial overlap yields331

stronger associations due to the extended window of opportunity for synaptic change triggered by332

the odor’s eligibility trace. In our model, the eligibility trace e(t) represents a molecular process that333

maintains the odor signal locally in the KC>MBON synapses (eqn. 2). Zeng et al. [80] demonstrate334

that feedback from the serotonergic dorsal paired medial neuron onto the KCs directly influences335

the length of the KC eligibility trace, making it a candidate mechanism for associative learning with336

a delayed US. Appetitive and aversive trace conditioning experiments have been conducted with337

larvae [29, 65, 66] and adult flies and other insects [74, 81–83]. In all of these experiments where338

the CS is presented before the US demonstrate that longer inter-stimulus intervals abolish learning339

of the CS-US association when no KC odor representation persists during the reinforcement period.340

In the cases of shorter intervals, the experimental data is not entirely conclusive. Either the odor341

preference was higher for partial or no overlap, compared with complete overlap [29, 83] or highest342

for complete overlap [51, 66, 74].343

We also looked at the extent of reinforcement generalization to novel odors. Experiments have344
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shown that associations between an odor and reinforcement generalize, to a varying extent, to other345

odors, as shown in experiments [63, 84]. Previous modeling experiments have also shown that346

reinforcement generalization depends on odor similarity in adult insects [48, 85–87]. In our larval347

model, we also demonstrate both generalization to other odors, as well as a loss in strength, compared348

to the training odor (fig. 3 A). We also show that the extent of the generalization depends on the349

similarity of the training and test odor, as measured by the overlap of the input patterns (fig. 1D).350

The larval pathway with its relatively small coding space [53, 55] might be especially prone to such351

poor discriminative abilities.352

0.1 Model predictions for behavioral experiments353

Our approach targets two hypotheses: Firstly, symmetrical inhibitory and excitatory feedback from354

MBONs to DANs should yield a circuit capable of saturating learning curves as predicted by the355

RW model [8], due to PE [11] driving the learning process, which has also been suggested by356

previous models [20, 48–51]. Secondly, saturating learning curves, driven by PE should translate357

into (simulated) animal behavior, when comparing di↵erent training duration and intensities of358

reinforcement. We were able to test these hypotheses in model experiments, on the level of MB359

readout (behavioral bias, eqn. 4, fig. 2, 4)) and through the comparison of animal and simulated360

behavior of artificial larvae (fig. 5). While the simulation results fit nicely with the real larval behavior361

in an experiment with a varied training duration ([1], fig. 5), ultimately, the role of MBON>DAN362

feedback needs to be tested in behavioral animal experiments, directly manipulating this feedback.363

Some specific predictions that could be tested in such experiments are:364

• Learning curves of individual animals should saturate over time when KC>MBON feedback365

is intact.366

• When the MBON>DAN feedback is removed after some training, the learning curve should367

increase with a steeper slope and might not saturate.368

• Increasing or decreasing the intensity of the odor or the reinforcement should lead to saturation369

on a higher or lower level, respectively.370

• The removal of the KC>MBON feedback should weaken or abolish the saturation of the371

learning curve over time.372

Based on our modeling results, we support the idea that the error computation between the373

prediction and reality of reinforcement is done in the DANs and relies on MBON>DAN feedback.374

Our hypotheses for experiments are based on this assumption. Nevertheless, some saturation, that375

is not based on PE, might still occur, even if MBON input to DANs is removed. The entire MB376

circuitry consists of many more elements than our model implementation and would presumably377

have additional mechanisms to ensure homeostatic balance and continued MBON input, potentially378

leading to some weaker form of saturation in the learning pro.379
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Comparison with other MB models380

Models of the learning in the MB, based on plasticity at the MB output synapses, without PE coding,381

have been around for some time, both for Drosophila [85, 87–89] and other insects [86, 90]. In all382

of these models, plasticity is mediated by the activity of modulatory neurons (e.g., dopaminergic),383

coinciding with either KC [86, 87] or coordinated KC and MBON activity [85, 88, 89]. These models384

can perform associative learning of a stimulus, paired with reinforcement [85–89], as well as more385

complicated forms of learning such as second order conditioning [89] and matching to sample [88] or386

reinforcement generalization tasks, the extent of which depends on the stimulus similarity [85, 86].387

Additionally, some models were successfully tested in patterning tasks [85, 86], where combinations388

of stimuli are reinforced, while their individual components are not or vice versa. Models in which389

synaptic plasticity is driven not solely by the activity of modulatory neurons, but by a prediction390

error signal lend themselves to studying the evolution of learning over time (either over several391

trials, or in a continuous manner), and its dependency on the learning history. We hypothesize that392

such mechanisms for PE coding in the MB involve the modulatory DANs [19, 20, 32, 34, 41–44]393

and are based on MBON feedback to the DANs, serving as a manifestation of previous learning.394

Recently a number of modeling approaches have targeted the idea of PE coding in DANs in the adult395

Drosophila [48–51] as well as in the larval MB [20]. In these models, some form of MBON>DAN396

feedback is implemented, allowing these models to fulfill some of the predictions of the PE theory [8,397

11]. One of the most fundamental predictions is the saturation of the learning curve across time, as398

the prediction error decreases, demonstrated in a trial-based manner in some of those models [48–51]399

as well as the loss of an acquired association [20, 48–50]. Some of the previously published models400

include mechanisms for either permanent loss of the association in memory or extinction (parallel401

associations in memory). Within the MB circuitry, the formation of a parallel extinction memory402

involves an additional DAN of opposite valence [20, 48–50], whereas complete loss is implemented403

as a process of changing the KC>MBON weights in the opposite direction of the learning process404

[51, 89], as done in our model. Additionally, some of these models capture temporal dynamics405

of learning experiments to some extent by utilizing eligibility traces in the KC>MBON synapses406

[20, 50, 51], to our understanding, none have tested these predictions in continuous experiments407

with spiking dynamics. Therefore, beyond the scope of these contributions, we implemented PE408

coding mechanistically in a fully spiking network equipped with synaptic eligibility that we train409

and test in continuous experiments to allow for the assessment of dynamic change in the model’s410

odor preference. In combination with a time-continuous behavioral simulation [52] during memory411

retention tests, this allowed for straightforward comparison with larval experiments.412

Prediction error coding is not the only mechanism discussed in the literature to explain such413

phenomena in learning. Gkanias et al. tested a PE-based learning rule against a di↵erent dopamine-414

based learning rule that dos not require the presence of the CS as a reference point for expected415

reinforcement [87] in a more complex circuit model consisting of a number of interconnected micro-416

circuits. They show that both methods can produce a saturating learning curve across trials. Their417
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alternative learning rule, embedded in a multi-compartment structure of the MB can also explain418

extinction, blocking, and second order conditioning, by relying on interactions between di↵erent419

MBONs and DANs that encode di↵erent memory processes.420

Outlook421

Some experimentally observed e↵ects in insect learning can not be captured by the RW model [8]422

and are thus not targeted by our model implementation. Among them are CS and US pre-exposure423

e↵ects [91–94] that might be explained by changes either in attention to the CS or habituation to424

the CS or the US, caused by prolonged exposure prior to training, rather than changes in associative425

strength (for a review see [95]). Also interesting, but not directly predicted by the RW model [8]426

is the experimental observation of second order conditioning in adult Drosophila [96–99], where a427

second CS2 is paired with the CS, after this CS has acquired an association with the US. Through the428

CS2-CS pairing without the US, the CS2 acquires predictive power of the US. Di↵erent mechanisms429

have been proposed to be involved in causing this e↵ect [98, 100]. Among them is an excitatory430

synaptic KC>DAN connection, strengthened during first order conditioning, that would allow the431

KC odor representation to activate the DAN as a substitute for reinforcement during the CS2-CS432

pairing. Exploring this phenomenon using network models could yield valuable insights into the433

Drosophila circuit, as well as aid in our general understanding of PE coding. Insect experiments434

have provided mixed evidence for other phenomena that can be predicted from the RW model, such435

as blocking [101–104] and hints at conditioned inhibition [105–107] that would be interesting to436

investigate. Furthermore, expanding the model to include di↵erent MB output compartments would437

o↵er a perspective to explore parallel associations regarding the same stimulus [41]. This could438

enable temporary loss of the learned association, while simultaneously retaining parallel memory439

for recovery (extinction vs. forgetting). Ultimately more possible directions arise from the major440

benefit of using a spiking model, which o↵ers the potential to conduct experiments at high temporal441

resolution, instead of in a trial-based manner [20, 48–50]. In a future closed-loop approach that442

connects our continual learning MB model with the locomotory model in the full temporal resolution,443

we intend to simulate a behaving agent to investigate the temporal dynamics of adaptive behavior444

in analogy to the tracking experiments of real larva [73, 108–111].445

Methods446

Network model447

All neurons are modeled as leaky integrate-and-fire neurons with conductance-based synapses. They448

elicit a spike, whenever the threshold VT is crossed(parameters provided in table S1). Each neuronal449

membrane potential vi is reset to the resting potential Vr whenever a spike occurs, followed by an450

absolute refractory period of 2 ms, during which the neuron does not integrate any inputs. Any451
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neuron from a given population (vO,vP,vL,vK,vA,vM,vD) is governed by the respective equation452

for ORNs, PNs, LNs, KCs, APL, MBONs and DANs (eqs. (5) to (11), fig. 1 A). Depending on453

the neuron type, in addition to a leak conductance gL, the equations consist of excitatory ge and454

inhibitory synaptic input gi. In the case of the DANs, one excitatory g
M⌥D
e

(EE �v
D

i
) and inhibitory455

g
M±D

i
(EI � v

D

i
) input represent the two types of MBON feedback for the reward and punishment456

encoding DAN, respectively. An additional spike-triggered adaptation conductance was implemented457

for ORNs, KCs, MBONs, and DANs (eqn. 12, [64]), in accordance with our current knowledge of the458

adaptive nature of ORNs in the larva [112] and the adult fly [113, 114]. Adaptation in KCs has so459

far only been demonstrated in other insects [115, 116]. In the model of these neurons, the adaptation460

conductance gIa is increased with every spike and decays over time with ⌧Ia. The mechanism of461

synaptic plasticity is described in the results section (Learning through KC>MBON plasticity).462
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All code for the model implementation is accessible via463

https://github.com/nawrotlab/PEcodingDosophilaMB464

We based our circuit model on the larval connectome both in terms of connectivity as well as465

numbers of neurons in each population [20, 53, 54] and introduced simplifications to support the466

mechanic investigation of the MBON>DAN feedback circuit and its role in PE coding and excluded467

a number of connections that have been demonstrated in the larva. Due to limited availability of468
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anatomical, functional, and behavioral data most of our circuit implementation is based on the first469

instar larva [20, 53, 54], while the information on the APL connectivity within the circuit originates470

from studies on the third instar larva [29]. Behavioral experiments used for comparison with our471

simulation results were also performed with third instar larvae [1, 29, 66]. We demonstrate that our472

model based on the less developed circuit in the first instar larva is su�cient to reproduce animal473

behavior as observed in the older animals. From the anatomy of the first instar larva we excluded474

DAN>KC [54] and DAN>MBON synapses [54] that may play an additional role in learning-induced475

plasticity at KC>MBON synapses [54], the details of which are not fully known. Instead, we induce476

plasticity purely via the simulation of a neuromodulatory e↵ect of the DANs onto the KC>MBON477

synapses ([54]). We also neglect recurrent interactions among KC themselves [54]. Many of these478

interactions a↵ect KC that encode di↵erent sensory modalities, which are not included in our purely479

olfactory model. Furthermore, we simplified the connectivity between LNs and PNs [53] and between480

PNs and KCs to 2 � 6 PN inputs per KC, which excludes the set of KCs in the larva that receives481

exclusive input from only one PN [54]. This modification supported model robustness with respect482

to odor encoding within the small set of 72 KCs. Finally, from the population of ⇡ 25 larval MBONs483

we only modeled two and correspondingly adapted KC>MBON synapses to provide both MBONs484

with input from all KCs.485

Sparse odor representation486

We implemented four mechanisms supporting population- and temporal sparseness in the MB odor487

representation [64]. Population sparseness is defined as the activation of only a small subset of488

neurons by any given input [117]. In this circuit population sparseness is enhanced through lateral489

inhibition (via LNs), inhibitory APL feedback, and the divergent connectivity from PNs to a larger490

number of KCs [64]. Temporal sparseness indicates that an individual neuron responds with only a491

few spikes to a specific stimulus configuration [118–120], which supports encoding dynamic changes492

in the sensory environment [121, 122]. In our model temporal sparseness is facilitated by spike493

frequency adaptation, an adaptive process to prolonged stimulus exposure, in ORNs and KCs and494

by inhibitory feedback via the APL[64].495

Sensory input496

In the olfactory pathway of larval Drosophila any odor activates up to ⇡ 1/3 of ORNs, depending on497

its concentration [112, 123]. We implemented receptor input with stochastic point processes to ORNs498

via synapses to mimic the noise in a transduction process at the receptors. Each of the 21 receptor499

inputs is modeled according to a gamma process (shape parameter k= 3). The spontaneous firing500

rate of larval ORNs has been measured in the range of 0.2� 7.9 Hz, depending strongly on odor and501

receptor type [123, 124]. ORNs in our model exhibit an average spontaneous firing rate of 8.92Hz502

(std=0.2). We constructed realistic olfactory input across the ORN population for amylacetate and503
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3-octanol by estimating ORN spike frequency from the calcium signals measured in the receptor504

neurons [112] (dilution of 10-4 [112]), ensuring the spike rates would not exceed the rates reported505

by [123]. They showed that using an even stronger odor concentration (dilution 10-2) ORN never506

exceeded a frequency of 200Hz. Due to the lower concentration used for amylacetate and 3-octanol507

(fig. 1D) [112] in our experiments and because Kreher et al, 2005 measured only the first 0.5s508

after odor onset when the e↵ects of spike frequency in ORNs are the weakest (leading to higher509

spike rates) we decided to use a maximum of 150Hz in odor activated ORNs. After generating the510

gamma process realizations we clipped multiple spikes occurring in each time step of the simulation511

discarding all but the first spike in each time step. Similar to the odor input, the presence of either512

reward or punishment in the experimental context was implemented as input to the DAN+/DAN-.513

Regular gamma spike trains (k = 10) were generated and clipped for the odor input.514

To assess the e↵ects of odor similarity on generalization we in addition created four artificial515

odors (A,B,C,D) (fig. 1D) and quantified the pair-wise distances in ORN coding space using the516

cosine distance (eqn. 13), where vectors a and b each represent the input spike rate of two odors.517

Dcos = 1 �
P

n

i=1
ai · bipP

n

i=1
a2

i
·
pP

n

i=1
b2

i

. (13)

The cosine distance between odors A and B equals 0.21, 0.77 between odors A and C, and 0.99518

between odors A and D. The comparison of amylacetate and 3-octanol yields a distance of 0.16.519

Experimental protocols520

The experiments reported here belong to one of three categories. The first was performed to provide521

insight into the model and the e↵ects of specific circuit functions on synaptic plasticity, and prediction522

error coding. To this end, we used amylacetate as the primary odor input. We varied the intensity523

of the reward via the frequency of gamma spike train, provided as input into the DAN+ (either524

500Hz or 550Hz, resulting in an average output spike rate of 33.11/39.14Hz), and the learning rate525

↵(0.6nS or 0.8nS). Additionally, MBON>DAN feedback was either enabled or disabled (fig. 1 A).526

Experiments belonging to the second category were designed to replicate larva lab experiments527

to allow for a direct comparison with our model results. With these comparisons, we aim to validate528

the model and show to what extent our assumptions about the circuit functions allow us to recreate529

experimental data (fig. 5). Replicating lab experiments also provide more insights into the circuit530

mechanisms and o↵ers alternative interpretations of the phenomena observed in data from animal531

experiments. Our implementations of the lab experiments were set up following the general procedure532

described in the Maggot Learning Manual [125]. Regardless of the specific protocol used in di↵erent533

experiments, larvae are placed into Petri dishes in groups of 30 animals. They are allowed to move534

around freely on the substrate that contains reinforcing substances, such as sugar or bitter tastants.535

During the entire time, they are subjected to specific odorants, emitted from two small containers536

in the dish to create permanent and uniformly distributed odor exposure within the dish. In the537
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analogy of the experimental setting, in our simulated experiments, each model instance is trained538

individually through the concurrent presentation of olfactory stimulation and reward. One-minute539

intervals with only baseline ORN stimulation were included between training trials to simulate the540

time needed in the lab experiments for transferring larvae between Petri dishes. Unless otherwise541

specified and test phases refer to 3min, during which only odors are presented. All simulations were542

implemented in the network simulator Brian2 [126].543

Realistic modeling of larval locomotion544

Behavior during the testing phase of the olfactory learning experiment is simulated via the freely545

available python-based simulation platform Larvaworld (https://github.com/nawrotlab/larvaworld,546

[52]). A group of 30 virtual larvae is placed with random initial orientation around the center of547

a 100 mm diameter Petri dish and left to freely behave for 3 minutes. The previously conditioned548

odor is placed at one side of the dish, 10 mm from the arena’s boundary. Each larva features a549

bi-segmental body, supervised by a layered control architecture [52]. The basic layer of the control550

architecture is a locomotory model, capable of realistic autonomous exploration behavior. It consists551

of two coupled oscillators, one of which represents the crawling apparatus that generates forward552

velocity oscillations, resembling consecutive peristaltic strides [52]. The other oscillator generates553

alternating left and right lateral bending, manifested as oscillations of angular velocity [127]. The554

crawling and the bending oscillators are coupled via phase-locked suppression of lateral bending to555

capture the bend dependency on the stride-cycle phase during crawling (weathervaning). Finally,556

intermittent crawling is achieved by a superimposed intermittency module that generates alternating557

epochs of crawling and stationary pauses, with more headcasts for orientation during the latter [52].558

Modulation of behavior due to sensory stimulation is introduced at the second, reactive layer of559

the control architecture. An odor signal can transiently alter both, the amplitude and frequency560

of the lateral bending oscillator, which biases free exploration towards approach or avoidance along561

an olfactory chemical gradient. This modulation of behavior is directly influenced via top-down562

signaling from the third, adaptive layer of the control architecture. In our approach, the spiking563

MB model populates the adaptive layer and its learning-dependent output, defined as the behavioral564

bias BB (i.e. the di↵erence in MBON firing rates, eqn. 4), provides the top-down signal [36]. We565

formalize the gain of behavioral modulation as566

G = g · BB. (14)

which is directly proportional to the behavioral bias and the additional proportionality factor567

g = 0.5.568

A set of 10⇤30 trained MB model instances is used to generate 10 groups of 30 simulated larvae.569

The preference index and the performance index [1] for these simulations are illustrated in figure 5.570

Preference indices (Pref) are computed individually for the paired and the unpaired experiments571
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[1], based on the number of animals on each side (odor vs. empty) of the Petri dish at the end of572

the test phase.573

Pref =
countodor � countno odor

countodor + countno odor

. (15)

The Performance indices (PI) are computed from the preference indices of the paired and unpaired574

experiments [1].575

PI =
Prefpaired � Prefunpaired

2
. (16)
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[69] Birgit Michels, Sören Diegelmann, Hiromu Tanimoto, Isabell Schwenkert, Erich Buchner, and818

Bertram Gerber. “A role for Synapsin in associative learning: the Drosophila larva as a study819

case”. In: Learning & Memory 12.3 (2005), pp. 224–231. doi: 10.1101/lm.92805.820

[70] Mark E Bouton. “Context and behavioral processes in extinction”. In: Learning & memory821

11.5 (2004), pp. 485–494. doi: 10.1101/lm.78804.822

[71] Lingling Wang, Qi Yang, Binyan Lu, Lianzhang Wang, Yi Zhong, and Qian Li. “A behavioral823

paradigm to study the persistence of reward memory extinction in Drosophila”. In: Journal824

of genetics and genomics 46.12 (2019), pp. 599–601. doi: 10.1016/j.jgg.2019.11.001.825

[72] Yukinori Hirano, Kunio Ihara, Tomoko Masuda, Takuya Yamamoto, Ikuko Iwata, Aya Taka-826

hashi, Hiroko Awata, Naosuke Nakamura, Mai Takakura, Yusuke Suzuki, et al. “Shifting827

transcriptional machinery is required for long-term memory maintenance and modification828

in Drosophila mushroom bodies”. In: Nature communications 7.1 (2016), p. 13471. doi:829

10.1038/ncomms13471.830

[73] Amanda Lesar, Javan Tahir, Jason Wolk, and Marc Gershow. “Switch-like and persistent831

memory formation in individual Drosophila larvae”. In: Elife 10 (2021), e70317. doi: /10.832

7554/eLife.70317.833

[74] Tim Tully and William G Quinn. “Classical conditioning and retention in normal and mutant-834

Drosophila melanogaster”. In: Journal of Comparative Physiology A 157.2 (1985), pp. 263–835

277.836

[75] Kirsa Neuser, Jana Husse, Patrick Stock, and Bertram Gerber. “Appetitive olfactory learn-837

ing in Drosophila larvae: E↵ects of repetition, reward strength, age, gender, assay type and838

memory span”. In: Animal Behaviour 69 (4 Apr. 2005), pp. 891–898. issn: 00033472. doi:839

10.1016/j.anbehav.2004.06.013.840

[76] Dennis Mathew, Carlotta Martelli, Elizabeth Kelley-Swift, Christopher Brusalis, Marc Ger-841

show, Aravinthan DT Samuel, Thierry Emonet, and John R Carlson. “Functional diversity842

among sensory receptors in a Drosophila olfactory circuit”. In: Proceedings of the National843

Academy of Sciences 110.23 (2013), E2134–E2143. doi: 10.1073/pnas.130697611.844

25

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2022.12.21.521372doi: bioRxiv preprint 



[77] Elane Fishilevich and Leslie B Vosshall. “Genetic and functional subdivision of the Drosophila845

antennal lobe”. In: Current Biology 15.17 (2005), pp. 1548–1553. doi: 10.1016/j.cub.2005.07.846

066.847

[78] Scott A Kreher, Dennis Mathew, Junhyong Kim, and John R Carlson. “Translation of sensory848

input into behavioral output via an olfactory system”. In: Neuron 59.1 (2008), pp. 110–124.849

doi: 10.1016/j.neuron.2008.06.010.850

[79] Isabell Twick, John Anthony Lee, and Mani Ramaswami. “Olfactory habituation in Drosophila—odor851

encoding and its plasticity in the antennal lobe”. In: Progress in Brain Research 208 (2014),852

pp. 3–38. doi: 10.1016/B978-0-444-63350-7.00001-2.853

[80] Jianzhi Zeng, Xuelin Li, Renzimo Zhang, Mingyue Lv, Yipan Wang, Ke Tan, Xiju Xia, Jinxia854

Wan, Miao Jing, Xiuning Zhang, et al. “Local 5-HT signaling bi-directionally regulates the855

coincidence time window for associative learning”. In: Neuron 111.7 (2023), pp. 1118–1135.856

doi: 10.1016/j.neuron.2022.12.034.857

[81] Paul Szyszka, Christiane Demmler, Mariann Oemisch, Ludwig Sommer, Stephanie Biergans,858

Benjamin Birnbach, Ana F Silbering, and C Giovanni Galizia. “Mind the gap: olfactory trace859

conditioning in honeybees”. In: Journal of Neuroscience 31.20 (2011), pp. 7229–7239. doi:860

10.1523/JNEUROSCI.6668-10.2011.861
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Figure 1: Network mechanisms. (A) Network model of the Drosophila larva olfactory pathway
including all neurons and connections implemented. One-to-one feed-forward connections between 21
olfactory receptor neurons (ORN) and 21 projection neurons (PN)/local interneurons (LN) and from
2-6 PN to each of the 72 Kenyon cells (KC). Lateral inhibition from each LN innervates all PNs and
recurrent feedback inhibition from the anterior paired lateral (APL) neuron is provided onto all KCs.
The MB output region is organized in two distinct compartments. The upper compartment holds
the approach encoding MBON+ and is innervated by the punishment mediating DAN-, the lower
compartment holds the avoidance mediating MBON- and is innervated by the reward mediating
DAN+. Each DAN can exert a neuromodulatory e↵ect on the plastic KC>MBON synapses within
its compartment. MBONs provide excitatory and inhibitory (via gray interneurons) feedback to
the DANs. (B) Sketch of synaptic weight change at a single KC>MBON synapse with respect to
the synaptic eligibility trace elicited by KC spikes and the occurrence of reward-triggered spikes in
DAN+. Amylacetate is paired with a reward for 2s (gray shaded area). (C) To generate simulated
larval behavior in the petri dish during the test phase of the learning experiments, we utilized our
locomotory model [52], based on the behavioral bias (eqn. 4) acquired by the MB model during the
training phase. The behavioral bias is used directly as input to the locomotory model. (D) All odors
(see Methods, section: Sensory input) were used in the experiments. Naturalistic odor patterns
for amylacetate and 3-octanol as well as four artificial patterns (odorA,odorB,odorC,odorD) with
varying distances (see Methods, section: Sensory input) from odorA. Each odor activates a di↵erent
set of input neurons with a di↵erent spike rate, as indicated by the color bar.
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Figure 2: Learning with prediction errors. (A) N = 30 model instances were trained with the
odor amylacetate (CS) and reward (US, blue background). MBON>DAN feedback, the reward/odor
intensity, and the learning rate were manipulated in separate experiments. The odor preference
(behavioral bias, eqn. 4) was measured continuously in windows of 1 sec and averaged over all
model instances. (B) N = 30 model instances were trained during three trials with amylacetate
and reward (blue background). Reward intensity was either constant across the three training trials
(white curve), or enhanced during the third (gray) or the second and third trials (black). The training
was followed by a 3 min test phase with odor only (gray background). (C)N = 30 model instances
were trained with amylacetate and reward (blue background) and then underwent an extended test
phase (gray background). (D) Individual acquisition curves for N = 30 model instances (standard
experiment fig. 2A).
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Figure 3: Reward generalization and trace conditioning. (A) The behavioral bias generalizes
to odors that di↵er from the training odor after a 4min training (3min test phase). We conducted
simulation experiments with di↵erent combinations of training and testing odor, each for 10 groups
(gray circles represent the mean of a single group) of N = 30 larvae, and red lines indicate the
mean between groups. The behavioral bias is highest when the training and the testing odor are
the same. (B) Spiking activity in the network during the presentation of amylacetate (left) and
3-octanol (right) in a single naive model instance. (C) Simulated trace conditioning experiments
with odor (amylacetate) and reward. Inter-stimulus interval (ISI) indicates the time between odor
and reward onset. The black line displays the mean, gray lines the std over N = 10 groups of 30
model instances each. Conditions circled in red correspond to the conditions also used in animal
experiments [29, 66]

.
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Figure 4: Paired and unpaired learning in the MB model. (A) Schematic overview of the
paired vs. unpaired training protocol. (B) The model’s behavioral bias for training with amylacetate
and reward for N = 10 paired (dark gray, mean in red) and N = 10 unpaired (light gray, mean
in blue) experiments with groups of 30 modeled larvae each. In the unpaired condition, half of the
groups were trained with the odor preceding the reward, for the other half, the reward preceded
the odor. (C) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired
experiments with randomized order of odor and reward. Prior to the conditioning experiment the
model instances underwent a 10min pre-training period, during which odor and reward were paired.
(D) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments
with randomized order of odor and reward. The MBON>DAN feedback was disabled. Prior to the
conditioning experiment the model instances underwent a 10min pre-training.
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Figure 5: Replicating behavioral experiments with paired and unpaired training. (A)
Experimental preference indices for amylacetate for 20 groups of 30 real animals each for paired and
unpaired experiments with randomized order of odor and reward [1]. (B) Experimental performance
indices for amylacetate computed between preference in paired and unpaired real animal experiments
[1]. (C) The simulated behavior is based on the protocol in A. Simulated preference indices for
amylacetate for N = 10 paired and N = 10 unpaired experiments with varied order of odor and
reward. (D) Simulated performance indices for amylacetate computed between preference in paired
and unpaired simulation experiments.
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Figure S1: The e↵ect of the homeostatic mechanism on the learning curve. (A) N = 30
model instances were trained with the odor amylacetate (CS) and reward (US, blue background).
The odor preference (behavioral bias) was measured continuously in windows of 1 sec and averaged
over all model instances. The learning rate was the same in all three experiments, while the mag-
nitude of the homeostatic regulation h (eqn. 3,table S1) was either at its default value, at 0, or at
half or twice the magnitude of the default value.

35

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2022.12.21.521372doi: bioRxiv preprint 



Neuron Parameters

Capacitance ORN C
O
m

100pF

Capacitance PN C
P
m

30pF

Capacitance LN C
L
m

50pF

Capacitance KC C
K
m

30pF

Capacitance APL C
A
m

200pF

Capacitance MBON C
M
m

100pF

Capacitance DAN C
D
m

100pF

Leak Conductance ORN g
O

L
5nS

Leak Conductance PN g
P

L
2.5nS

Leak Conductance LN g
L

L
2.5nS

Leak Conductance KC g
K

L
5nS

Leak Conductance APL g
A

L
5nS

Leak Conductance MBON g
M

L
5nS

Leak Conductance DAN g
D

L
5nS

Leak Potential ORN E
O

L
-60mV

Leak Potential PN E
P

L
-59mV

Leak Potential LN E
L

L
-59mV

Leak Potential KC E
K

L
-55mV

Leak Potential APL E
A

L
-60mV

Leak Potential MBON E
M

L
-60mV

Leak Potential DAN E
D

L
-60mV

Threshold Potential ORN V
O

T
-35mV

Threshold Potential PN V
P

T
-30mV

Threshold Potential LN V
L

T
-30mV

Threshold Potential KC V
K

T
-35mV

Threshold Potential APL V
A

T
-30mV

Threshold Potential MBON V
M

T
-30mV

Threshold Potential DAN V
D

T
-30mV

Resting Potential ORN V
O
r

-60mV

Resting Potential PN V
P
r

-59mV

Resting Potential LN V
L
r

-59mV

Resting Potential KC V
K
r

-55mV

Resting Potential APL V
A
r

-60mV

Resting Potential MBON V
M
r

-60mV

Resting Potential DAN V
D
r

-60mV

Refractory Time ⌧ref 2ms

36

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2022.12.21.521372doi: bioRxiv preprint 



Synaptic Parameters

Excitatory Potential EE 0mV

Inhibitory Potential EI -75mV

Excitatory Time Constant ⌧e 5ms

Inhibitory Time Constant ⌧i 10ms

Plasticity Parameters

Eligibility Trace Time Constant ⌧eligibility 5s

Learning Rate ↵ 0.3nS

Synaptic Weights

Weight Input-ORN wORNinputORN 3nS

Weight ORN-PN wORNPN 10nS

Weight ORN-LN wORNLN 4nS

Weight LN-PN wLNPN 1nS

Weight PN-KC wPNKC 1nS

Weight KC-APL wKCAPL 20nS

Weight APL-KC wAPLKC 50nS

Weight KC-MBON wKCMBON 80nS

Weight Input-DAN wDANinputDAN 2.5nS

Excitatory Weight MBON-DAN wMBONDANex 4nS

Excitatory Weight MBON-local interneuron wMBONMBONLN 35nS

Inhibitory Weight local interneuron-DAN wMBONDANin 70nS

Normalization Factor KC-MBON normalizationfactor 0.0001

Adaptation Parameters

Adaptation Time Constant ⌧Ia 1000ms

Adaptation Reversal Potential EIa -90mV

Increase of Spike Frequency Adaptation Conductance ORN ORNSFA 0.1nS

Increase of Spike Frequency Adaptation Conductance KC KCSFA 0.02nS

Increase of Spike Frequency Adaptation Conductance MBON MBONSFA 0.1nS

Increase of Spike Frequency Adaptation Conductance DAN DANSFA 0.1nS

Simulation Parameters

Time Step dt 0.1ms
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Table S1: Network parameters.
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Abstract

In well-established first-order conditioning experiments, the concurrence of a sensory cue
with reinforcement forms an association, allowing the cue to predict future reinforcement.
Once a sensory cue is established as a predictor, it can also serve as indirect reinforcement,
a phenomenon referred to as second-order conditioning. In the insect mushroom body, such
associations are encoded in the plasticity of the synapses between the intrinsic and output
neurons of the mushroom body, a process mediated by the activity of dopaminergic neurons
that encode reinforcement signals. In second-order conditioning, a new sensory cue is paired
with an already established one that presumably activates dopaminergic neurons due to its
predictive power of the reinforcement. We explore minimal circuit motifs in the mushroom
body for their ability to support second-order conditioning. We found that dopaminergic
neurons can either be activated directly by the mushroom body’s intrinsic neurons or via
feedback from the output neurons via several pathways. We demonstrate that the circuit
motifs differ in their computational efficiency and robustness and suggest a particular motif
that relies on feedforward input of the mushroom body intrinsic neurons to dopaminergic
neurons as a promising additional candidate for experimental evaluation. It differentiates
well between trained and novel stimuli, demonstrating robust performance across a range of
model parameters.

Introduction
By forming associations between sensory cues and reinforcement during classical conditioning
(first-order conditioning, FOC), animals can learn to predict the emergence of environmental
factors relevant to their survival. Once a sensory cue has been established as a predictor of such
reinforcement, it can act as reinforcement in second-order conditioning (SOC). SOC has been
observed across species with experiments conducted in Drosophila [1–4] and other invertebrate
[5–8] as well as vertebrate [9–11] species. SOC experiments involve two initially neutral stimuli
(stimulus 1 and stimulus 2). Stimulus 1 is first paired directly with reinforcement during FOC,
whereby it acquires a valence as a cue for reinforcement. Afterward, stimulus 2 is paired with
stimulus 1 (SOC), causing an expansion of the acquired valence of stimulus 1 onto stimulus 2,
without stimulus 2 itself being paired with the reinforcer. Afterward, both stimuli initiate a
behavioral response based on their acquired valence.
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In Drosophila [12–15] and other insects [15–18], the mushroom body (MB) is a crucial brain
structure for learning and encoding relationships between sensory cues and reinforcement. The
Kenyon cells (KC) are the intrinsic neurons of the MB, encoding the identity of sensory inputs in
Drosophila [19–21] as well in other insects [22–25]. In both Drosophila [26, 27] and other insects [24,
25, 28, 29], they relay their output onto a much smaller number of MB output neurons (MBONs).
Plasticity at the KC>MBON synapses allows MBONs to encode the valence of a sensory cue,
according to extensive experimental evidence from Drosophila [30–35]. Neuromodulators, such
as dopamine mediate this plasticity [36–42]. In Drosophila, it has been shown that either an
inherently punishing or rewarding stimulus (electric shock, sugar) [1, 3, 4] or direct optogenetic
activation of dopaminergic neurons (DANs) [3] can be utilized to deliver a reinforcement signal
during FOC phase of such experiments to establish second-order memory later. Experiments in
Drosophila have suggested that stimulus 1 itself causes activation of DANs or enhances it after
being paired with reinforcement [3, 4, 43, 44]. This aligns with the analogous finding that DANs
in the ventral tegmental of vertebrates respond to learned cues that predict upcoming reward
[45]. The mechanism inducing synaptic plasticity during both FOC and SOC likely relies on DAN
activation. During FOC, DANs are activated directly by the reinforcer (Figure 1 A). Following this
conditioning procedure, stimulus 1 seems to indirectly activate the DANs during SOC (Figure 1 C,
[3, 4, 44]). The strength of the behaviorally expressed stimulus 1 and stimulus 2 valence after SOC
can be similarly strong [1, 3] or weaker [3, 4] for stimulus 2 .

Two different circuit mechanisms lend themselves to achieving such post-FOC activation of
DANs by stimulus 1: Firstly, a stimulus 1 representation among the KCs could serve as direct
stimulus-specific input to the DANs [46–51]. Alternatively, the input could be supplied via MBON
feedback [46, 47, 51, 52]. Their response to stimulus 1, altered by learning, could serve as a
manifestation of stimulus-specific valence.

Here, we tested possible circuit motifs that could underly SOC in the insect MB using abstract
and simplified network models inspired by the Drosophila olfactory pathway and the MB. Starting
from a basic model of the MB, we explored different circuit configurations and their capacity to
produce SOC in an olfactory learning protocol to identify promising candidates for experimental
testing. To define our solution space, we assumed that learning in the MB depends on KC>MBON
plasticity, mediated by a dopamine signal during FOC and SOC. Model circuits should be able to
produce both FOC and SOC without generalizing associations with reinforcement unspecifically
to novel stimuli. We tested all models in classical conditioning experiments and demonstrated
their ability to support FOC and SOC. Additionally, we evaluated differences in their biological
plausibility by quantifying robustness and discussing functional and anatomical evidence for the
respective circuits. We found that a particular circuit that achieves DAN activation through
excitatory KC input during SOC outperforms the other candidates and appears compatible with
the MB anatomy. We suggest this circuit motif that differs from previously reported mechanisms
[2–4] as an additional candidate for experimental tests.

Results
First-order conditioning in a basic mushroom body circuit
All models are based on rate units, each representing the activation of a single neuron. The basic
network consists of 2000 KCs, each innervating two MBONs (Figure 1 A). It has been shown that
MBONs receive inputs from many of the KCs in adult Drosophila [26, 51]. For simplicity, we
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started by modeling a complete KC>MBON connectivity. Some MBONs can be categorized as
approach or avoidance signaling [30, 33, 34, 53]. In the model, this corresponds to MBON+ (Eqn. 2)
and MBON- (Eqn. 3), respectively. Other types of MBONs were disregarded here. Initially, all
synaptic KC>MBON weights were set to the same value (table 2). A single DAN is included in the
model, which can be activated by the external input, representing a reinforcer in the environment
(Figure 1 A). KC>MBON- synapses undergo plasticity whenever trial-based KC activation, driven
by odor input, and DAN activation coincide. We employ a two-factor learning rule (Eqn. 4) at
the KC>MBON- synapses, leading to a decrease in the synaptic weights with the limitation that
they can not take on a negative value. DAN activation (Eqn. 1) is the sum of the model-specific
external input rate Ipext (table 3) that represents reinforcement and the network internal input
Ipint, provided via the different circuit mechanisms. In all equations, �!x always denotes a vector.
R represents the activity of a neuron, which can be interpreted as a spike rate of a neuron or a
vector of neurons in the case of KCs, and w denotes a synaptic weight or a vector of weights. LR

refers to learning rates.

RDAN(t) = Ipext(t) + Ipint(t) (1)

RMBON+(t) =
�!
RKC(t) ·�!wKC>MBON+(t) (2)

RMBON�(t) =
�!
RKC(t) ·�!wKC>MBON�(t) (3)

w
i

KC>MBON�(t+ 1) =

8
<

:

w
i

KC>MBON�(t)� LR · RDAN(t), if Ri

KC
(t) > 0 and

w
i

KC>MBON�(t) > (LR · RDAN(t))
w

i

KC>MBON�(t), otherwise
(4)

Candidate circuits for second-order conditioning
Using the basic circuit model (Figure 1 A) as a starting point, we implemented five different
extended versions of it (Figure 2). These models either rely on some form of KC>DAN input
(model 1, model 2) or MBON>DAN feedback (model 3, model 4, model 5) as a means to expand the
learned association of odor 1 with reinforcement to odor 2 during SOC. Unless specified otherwise,
the DAN is not spontaneously active. The equations for all models can be found in table 1.

To compare the different circuit motifs in an unbiased manner, their parameters were opti-
mized using grid search (see Methods), except the fixed parameters shared between all models
(Table 2), which were kept constant to allow better comparison between the candidate mecha-
nisms for SOC implemented in the different circuits. The goal for parameter optimization was to
identify parameter combinations for each model that yield the best learning performance in an
associative learning experiment that consisted of a combination of FOC and SOC learning trials
(Figure 1 B). In insect learning experiments, forming a direct or indirect association with reward
leads to approach behavior that can manifest in the movement toward the source of an odor or
feeding-related behavior [3, 5, 6] or the avoidance of a punishment-associated odor [4]. In our
model experiments, the successful acquisition of an association with reward was quantified as the
normalized difference between MBON output rates (RMBON+ and RMBON�), which we will refer
to as the approach bias (Eqn. 5) because MBON activity has been shown to initiate approach or
avoidance behavior [30, 33, 54].

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.11.557174doi: bioRxiv preprint 



B =
RMBON+ �RMBON�

RMBON+ +RMBON�
(5)

Model 1
Model 1 includes plastic KC>KC excitatory feedback with increments of LRKC>KC(ta-
ble 3)), triggered by pre and postsynaptic KC activation (Eqn. 8) and KC>DAN
synapses of a fixed strength (Eqn. 7).

Model 2
Model 2 expands the basic circuit with excitatory plastic synapses between KCs
and the DAN (Eqn. 10). They are each initialized with initKC>DAN (table 3)
and are increased by LRKC>DAN (table 3) when activation of the respective KC
coincides with DAN activity, yielding DAN activation (Eqn. 9).

Model 3
In model 3, network input into the DAN is implemented via feedback from both
MBONs (Eqn. 11). Inhibitory input with a fixed synaptic strength comes from
MBON-, while excitatory input is provided by the MBON+ (table 3).

Model 4
Model 4 uses a spontaneously active DAN (RDANbaseline, (table 3)) in combination
with inhibitory MBON->DAN input (Eqn. 12). Both effects regulate the DAN
activation in the absence of reward.

Model 5
In model 5, an excitatory plastic MBON+>DAN synapse (Eqn. 14) is added to
the basic circuit. When MBON+ and DAN activity coincide, the synaptic strength
is increased by LRMBON+>DAN for each DAN spike (table 3). During FOC, this
synapse is strengthened, allowing for activation of the DAN during SOC. This
allows KCs to activate the DAN (Eqn. 13).

Identifying optimal parameters for each model
All models were trained in a combined FOC and SOC protocol, where odors were used as stimuli
and tested for their approach bias first after completing FOC with odor 1 and reward, then after
completing SOC with odors 1 and 2 (Figure 1 B, Eqn. 5). Plasticity was disabled during testing to
isolate odor valence acquired during the respective training trials without the influence of the test
itself. Additionally, a novel odor 3 was included in both tests to examine any generalization of the
reward association that might have occurred during the FOC or SOC training processes. To assess
the ability of the parameters of the different circuit motifs to support SOC, we optimized each
model for the highest possible SOC performance, which translates to maximizing the approach
bias for odor 2 after three SOC trials. Additionally, we introduce several criteria the models must
fulfill to ensure that the learning effect for odor 2 is odor-specific and originates from the respective
mechanism applied during the SOC trials. These criteria are:
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• post FOC odor 1 approach bias = 1

• post FOC odor 2 approach bias = 0

• post FOC odor 3 approach bias = 0

• post SOC odor 1 approach bias = 1

• post SOC odor 3 approach bias = 0

Additionally, DAN and MBON rates should never exceed 20Hz and 50Hz, respectively, to stay
within the biologically observed range for MBONs [34] and DANs [55]. The reported DAN spike
rates are responses to an electric shock that were reported to range up to 10Hz during a 200ms
stimulation. Since the response of the DANs showed a temporal delay, we decided to use 20Hz
instead.

All parameter combinations that fulfilled the above criteria for each model were further evalu-
ated. Among all of these parameter combinations, we selected those for each model that yielded
the highest SOC performance, measured by the odor 2 approach bias after SOC. We refer to each
of these as an optimal learner. Grid search for all models 1-5 yielded several optimal learners. We
computed the average optimal learner by averaging all optimal learners within every parameter.
We argue that this average optimal learner approximates the center of all equally good parameter
combinations. Next, Euclidean distances were computed between all z-standardized optimal learn-
ers and the average optimal learner. The parameter combination with the smallest distance to the
average parameter combination in an n-dimensional z-standardized space (n=number of optimized
parameters) was selected (see Methods). We assume that parameter combinations closer to the
average can be considered biologically more plausible because their central location makes them
more robust to parameter deviations in all directions (see Discussion).

The basic learning model (Figure 1 A) fulfilled the criteria for FOC learning, but no parameter
combination could accommodate SOC, yielding no approach bias for odor 2 after SOC. There
was at least one optimal parameter combination that fulfilled the optimization criteria for each
extended candidate circuit (Figure 2, Figure 3 A). All models acquired an optimal approach bias
of 1 for odor 1 at both test times, indicating that the association of odor 1 and reward is learned
during FOC and fully retained throughout the SOC protocol. Tests with odor 3 always yielded an
approach bias of 0 for all models, indicating that the approach bias does not generalize inadmissibly
to fully disjunct odors. All models, except model 1, achieved equally good SOC performance, as
indicated by an approach bias of 0.33 for odor 2 after SOC. Model 1 only acquired a bias of 0.02.
For each model, the maximum value of SOC performance is determined by the implementation
of the compound presentation of odors 1 and 2 (see Methods). The approach bias of 0.33 for
SOC (Eqn. 5) is the highest value any model can achieve in this experiment. In the experimental
design, 50% of KCs were activated by odor 2 during SOC. Thus, only 50% of the KC>MBON-

synapses could be altered during SOC. The value of 0.33, therefore, represents the best possible
SOC performance. An additional experiment was conducted as a control where the KC activation
patterns for odors 1 and 2 were added during SOC (yielding 400 active KCs). The maximal
performance achieved by models 2-5 was 1 in this case.

In none of the models any approach bias for the disjunct, novel odor 3 was observed. Addi-
tionally, we extended the experimental protocol (Figure 1 B) with three trials of presenting odor
3 alone and without any reward after SOC and included another test. Depending on the degree
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of specificity with which the different model circuits activate the DAN, unwanted generalization
of the valence to odor 3 was observed. Models 1,2,3 outperform models 4 and 5 here (Figure 2).

Learning generalizes with increasing odor overlap
The overlap of odors 1 and 2 during training and training was varied separately (0%, 25%, 50%, 75%, 100%
overlap), encoded in the percentage of KCs jointly activated between the individually presented
odor 1 and odor 2 (see Methods). Across all models, both FOC and SOC approach biases (Eqn. 5)
increase with the overlap between odor 1 and odor 2 (Figure 3 A). Between highly overlapping
odors, the reward association generalizes. This results in an approach bias for odor 2 after FOC,
even though odor 2 was not presented during FOC (Figure 3 A). A joint presentation of odor 1 and
odor 2 during SOC then leads to an even higher approach bias for odor 2 (Figure 3 A). All models
acquire similar biases (Eqn. 5) for odor 2, depending on the degree of overlap, except model 1,
where the SOC learning effect was always lower (Figure 3 A).

Keeping odor 1 and odor 2 fully disjunct, we varied the degree of overlap between odor 3 and
either odor 1 (Figure 3 B, left) or odor 2 (Figure 3 B, right) during both tests. For all models, the
approach bias for odor 3 after FOC scaled with the overlap and reached the same value as odor 1
if fully overlapping (f Figure 3 B, dashed purple lines). Testing again after SOC yielded the same
results, thus not depicted here. When the overlap between odor 3 and odor 2 varied at both test
times, no approach bias was observed after FOC since odor 2 is not presented during the FOC
trials (results not shown). In a test after SOC, all models perform similarly concerning the upper
bound of the approach bias at the magnitude reached by odor 2 Figure 3 B, dashed orange lines).

Robustness of second-order conditioning varies across the different model
circuits
In the conditioning experiments reported thus far, all model circuits, except model 1, perform
equally well (Figure 2, Figure 3). To further differentiate between them, we next examined the
robustness of the model’s performance to variations of their parameters using three different meth-
ods.

We first quantified the percentage of optimal parameter combinations within the searched
parameter grid for each model. A real brain would likely not require a single, extremely precise
combination of physiological parameters to perform any computational task, such as SOC. Since
the parameters of our computational models are ultimately representations of neuronal or synaptic
characteristics, the stability of SOC performance across parameter combinations could hint at the
degree to which a circuit motif is biologically plausible. For each respective model, four parameters
were optimized, yielding a grid with 1004 parameter combinations. In the case of model 1, 5.9�5%
of parameter combinations were equally optimal. Model 2 yielded 6.81%, model 3 only 0.37%,
model 4 2.11% and model 5 4.29% optimal learner parameter combinations. From this perspective,
models 2, 4, and 5 thus seem more robust compared to models 1 and 3.

As an additional measure to assessing the optimal portion of the entire solution space of pos-
sible parameter combinations, we used a method for individually sampling the four-dimensional
Euclidean parameter space for each model. The four-dimensional space for each model was stan-
dardized using the range of the grid (maximum-minimum parameter value, table 3). A four-
dimensional hypersphere was positioned as the point representing the average optimal learner,
with radius=0. We then incrementally increased the radius of the hypersphere from 0 to 1 in the
standardized space with 100 linearly spaced steps and, for each increase, sampled 700 data points
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from its surface (see Methods, Hypersphere sampling). These sampled data points do not neces-
sarily correspond to data points from the set of equally optimal parameter combinations found in
the grid search for the respective model due to the step size used in the parameter optimization.
The sampled points were transformed back into their original space and then used to simulate
the respective model to examine if this parameter combination would yield FOC and SOC perfor-
mance that fit the criteria for the optimal learner. For each radius increment, we calculated the
percentage of sampled points from the hypersphere surface that exhibit the same performance as
the parameter combination used as the central point. Since the parameter space was standardized
for each model and the radii used were the same, the results can easily be compared between
the five models. We find that the models differ in their robustness to deviations of the parame-
ters from their optimal values. Model 2 strongly outperforms the other models. While models 4
and 5 are more robust than model 3, model 1 demonstrates no robustness. Our grid search for
model 1 yielded no variability in three of the four optimized parameters (initKC>KC , initKC>DAN ,
LRKC>MBON� , LRKC>KC , Table 3).

A third approach to comparing the robustness between the different model circuits is to quantify
how well they retain their FOC and SOC performance when variability is introduced into the
connectivity matrix or the strength of the KC>MBON synapses. We varied either the number
of input KCs into each MBON (Figure 5 A,B) or the strength of the synaptic connections while
retaining full connectivity (Figure 5 C,D).

We varied the number of KCs providing input to each MBON between 25% and 100% for each
model instance (N = 100 model instances) while maintaining the magnitude of the individual
weights (Table 2, initKC>MBON+/initKC>MBON�). For each model instance, a random number
of connections was drawn from a uniform distribution and applied to each MBON (MBON+,
MBON-) to select the same amount of random connections to be active. While FOC performance
remained very robust across all models 1-5 (Figure 5 A), SOC performance was significantly im-
paired in model 1 and model 3 (Figure 5 B), compared to SOC performance with full connectivity
(Figure 3 A).

Additionally, we evaluated the robustness of the learning performance when the strength of the
KC>MBON weights was varied in a range of ±5% around their default weight (Table 2). Again,
no significant differences were observed for FOC performance (Figure 5 C). SOC performance was
retained for models 2, 4, and 5 compared to the standard model with the same strength of all
synaptic weights (Figure 3 A).

While all five circuit motifs are capable of FOC (Figure 2), model 1 performs very poorly at
SOC compared to the other models (Figure 2) and also shows poor robustness (Figure 4). While
model circuits 3-5 fulfill the criteria for SOC, they differ in their robustness to reward generalization
and variations of their parameters. Model 2, which relies on feed-forward input of KCs to the DAN,
emerges as a promising candidate, in addition to the circuits that are already being explored [3,
4].

Discussion
While SOC as a phenomenon has been a target of insect learning experiments for a long time [1–3,
5, 6], the discovery of the underlying circuit mechanisms is just at its beginning [2–4]. We use
mechanistic models of different variations of a basic, abstract MB circuit inspired by Drosophila
and show that different circuit motifs, based on either KC or MBON-driven DAN activation, can
support SOC. In the following, we will discuss our results in light of experimental evidence for
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SOC in insects and the extent to which the MB anatomy supports the tested circuit motifs.

Second-order conditioning in insect experiments and models
Second-order conditioning has been demonstrated experimentally in honeybees [5, 6] and fruit flies
[1–4, 56]. The honeybee experiments measured proboscis extension as a response to conditioning
with odors and sugar. Regardless of whether the number of SOC trials was equal to [6] or 50% of
the number of FOC trials [5], the conditioned response acquired during FOC was stronger than
that acquired during SOC. In the fly experiments, a combination of odor and electric shock [1],
odor and sugar [3], or odor and optogenetic DAN activation [3] were used. The same duration of
pairing an electric shock with odor 1 and pairing odor 1 with odor 2 during SOC yielded a stronger
learning effect for FOC, compared to the SOC effect [1], as observed in bees [5, 6]. Yamada et al.
[3] used a protocol with longer FOC than SOC duration in an appetitive conditioning protocol.
This led to similarly strong FOC and SOC effects, given a long enough FOC training duration.

Potential circuit mechanisms behind SOC were investigated in some studies, conducted in
Drosophila [2–4]. Evidence for a mechanism based on MBON>DAN feedback comes from a study
that used optogenetic silencing or activation of MBONs as an indirect punishment or reward signal
for conditioning avoidance or approach of an odor, thereby circumpassing pairing of reinforcement
and stimulus 1 during FOC [2]. Yamada et al. [3] also suggest an MBON>DAN pathway across
two layers of interneurons as a mechanism for SOC. They show that a presentation of an odor
with optogenetic DAN activation can induce suppression of the response of a particular MBON
(↵1). Decreased activity of MBON-↵1 could cause disinhibition of multiple pathways via two
interneurons, leading to a net activation of DANs that encode reward during SOC. The circuit
for the disinhibition of the DAN during SOC is closely related to the motif implemented in our
model 4, which performs well at SOC but appears not to be very robust to reward generalization
onto novel odors. Likewise, in an aversive conditioning paradigm, it was demonstrated that the
output of a particular MBON, innervating the �-lobe (MBON-�1), is required during the SOC
phase of the experiment to induce a learned valence of the second odor [4]. Similarly, a single
MBON (MBON-↵’2) innervating the ↵’/�’-lobes seems to play a similar role in these lobes [4].
In summary, all of these works demonstrate the importance of MBON output pathways [2–4]
and seem to suggest MBON>DAN feedback as a candidate mechanism for SOC. For the sake of
completeness, it has to be stated that each experiment targeted specific pathways and can not rule
out the presence of different circuit motifs for SOC in other compartments.

Recent models of the adult [57, 58] or larval [47] Drosophila MB can accommodate SOC. They
all suggest KC>MBON plasticity to learn stimulus 2 during SOC via MBON activity. Either in
the form of net excitatory and inhibitory MBON>DAN feedback [47, 58] or via direct modulation
of the KC>MBON synapses by altered MBON activity [57]. None of the models allow KC input
to the DAN and thus do not test this alternative pathway.

Anatomical evidence for the tested circuit motifs
To evaluate the biological plausibility of our tested circuit motifs, we next assessed which DAN-
activation pathways are supported by anatomical evidence. KC>DAN synapses have been found
both in larval [46–48] and adult [49–51] Drosophila. Since KCs are known to be cholinergic [32] in
the adult, it has been suggested that these connections could be excitatory [46] in the larva. This
has also been confirmed in adults to affect a particular MBON (↵2↵02) [49].
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Direct and indirect connections between MBONs and DANs exist in the larva [46, 47] and the
adult [51, 52] within and between compartments [46, 47, 51, 52]. In the larva, excitatory and
inhibitory synapses have been observed [46, 47]. In the adult Drosophila MB, different MBONs
have been found to release excitatory or inhibitory transmitters [30], supporting the assumption
that here both de- and hyperpolarizing effects of MBONs on DANs might exist.

Direct KC>KC synapses have been found in large numbers in the larva [46]. According to the
transmitter released by KCs in the adult [32], they have been speculated to be excitatory [46].
In the adult, KC>KC synapses have also been demonstrated [51, 59]. KCs have been shown to
express both muscarinic [59, 60] and nicotinic [61, 62] receptors, the combination of which likely
enables both inhibitory [59, 60] and excitatory [63] synapses between them and rendering different
interactions plausible.

Limitations
Motivated by isolating SOC as the phenomenon of interest in our experiments, we decided to
reduce our circuit implementations of computational motifs to their minimum and optimize their
parameters only for FOC and SOC. This allows us to determine which circuit motifs are the most
efficient in computing SOC when optimized solely for this purpose. This approach neglects the sur-
rounding network structures in the real insect MB and thus intentionally disregards other learning
phenomena often addressed when studying the MB, such as prediction error, effects of stimulus
exposure before learning, forgetting, or extinction. Both forgetting and extinction produce the
same observable behavior in experiments, which is a decline in the response to repeated presenta-
tion of a sensory cue when reinforcement is omitted after conditioning. As opposed to forgetting,
extinction is characterized by the possibility of recovery of the association after its temporary loss
[64], has been demonstrated in adult Drosophila [65, 66]. To retain the association for recovery,
extinction requires the formation of parallel memory traces for the acquisition and the decline of
the association [67, 68]. The repeated presentation of stimulus 1 without reinforcement during
SOC should lead to the extinction of the learned association between stimulus 1 and reinforce-
ment. Across many trials, SOC and extinction learning should be competing phenomena, allowing
SOC to occur only until the extinction process has abolished the odor approach bias. While some
studies find a decline in the association between stimulus 1 and the reinforcement during SOC
in honeybees [5, 6], experiments in Drosophila report no loss of the association between stimulus
1 and reinforcement during SOC [1, 3]. For our Drosophila-inspired modeling approach, we thus
defined no loss of odor 1 approach bias between the tests following FOC and SOC as a criterion
for our parameter optimization. By optimizing the models according to this criterion, we exclude
the possibility of studying the effects of loss of an association, such as extinction or forgetting.

Additionally, the omission of mechanisms for long-term network stability in combination with
the criterion of perfect odor 1 approach bias in both tests after FOC and SOC guarantee the
complete down-regulation of all KC>MBON- synapses activated by odor 1 after three FOC trials
of arbitrary duration would not allow for experiments with more trials. Stabilizing mechanisms
for homeostasis could be introduced in a more comprehensive modeling approach, implementing
the most promising circuit motif in a more naturalistic MB model.

Aside from the narrow applicability to different learning phenomena, which is the downside of
our minimal circuit design, another limitation originates from the need to define the limits and the
step size for the model parameter grid search. The success of it depends on selecting these limits
and steps appropriately (Table 3). If ill-chosen, they could put individual models at a competitive
disadvantage by not including or over-stepping their optimum.
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Outlook
We demonstrated that several circuit mechanisms are potential candidates for SOC. While they
vary in computational efficiency and robustness, multiple models remain good candidates, compat-
ible with our knowledge of the MB anatomy. A pathway for KC-driven DAN activation emerges
as an especially promising candidate among the circuits we tested. A valuable next step would
be to integrate them into more comprehensive MB models to test how they interact with other
phenomena in learning. This could also be another angle to studying their robustness. Especially
interesting in this regard would be extinction, with its inherently interfering mechanism. SOC
relies on maintaining the stimulus 1 valence acquired during FOC throughout SOC, which drives
DAN activity. Yet, the absence of reinforcement during SOC would trigger the extinction of this
very valence. It seems possible that more than one of the circuit motifs could co-exist in different
MB compartments. Ultimately, not all MB compartments might be involved in SOC [3, 58], but
fulfill other roles in learning.

Computational models are a highly beneficial tool for investigating the circuitry underlying
SOC. Experimental validations of theoretically proposed circuit motifs would close the loop be-
tween theoretical predictions and their experimental test. However, with the available genetic
tools, it is currently impossible to solely manipulate KC>DAN or MBON>DAN synapses either
on the pre or post-synaptic side without affecting output onto other or input from other neurons
in the network. Therefore, an experimental test of our theoretical predictions is currently difficult
to achieve, underlining the importance of computational modeling.

Methods
Network Input
Odor and reward signals are provided to all models via the KCs and the DAN. Three odors are used
in the experiments. In the most simple case, each exclusively activates an independent combination
of (10%) of the 2000 KCs with a rate of 3Hz to match the levels of population sparseness and low
odor-response rates reported in KCs [20, 69, 70]. The first experiment combines the three odors
(Figure 1 D). For each model instance, odor 1 activates a combination of 200 randomly chosen KC.
KCs activated by odor 2 and odor 3 are then sequentially drawn from the combination of remaining
KCs. When odors 1 and 2 are presented together during the experiments, each component of this
compound odor activates a random 50% of the KCs, activated by each of the individual odors.
This ensures the activated KC does not exceed 10% [19]. The second experiment aims to quantify
the stability of the different circuit mechanisms against the generalization of the learned valence
onto novel odors. Therefore, a varying degree of odor similarity of odor 3 with odor 1 or odor 2
is used. Odor similarity is implemented as an overlap in activated KCs for odor 1 and odor 2. If
any given odor activates 200 KCs, an odor similarity of 50% would yield odors 1 and 2 to have an
overlap of 100 KCs. During the joint presentation of both odors, 150 KCs would be activated.

Parameter Optimization
To increase fairness in the model comparison, all parameters that were part of the grid search
were, if possible, optimized within the same boundaries and with the same step size (Table 3).
Some parameters were fixed to the same value for all models to adhere to biological constraints
(Table 2). KCs show very little spontaneous activity [20, 69, 70] and sparse activation [20, 69–71].
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MBON rates of up to 40Hz have been shown for one MBON [34]. We chose the initial weights for
all KC>MBON synapses to achieve plausible MBON rates of no higher than 50Hz. The upper
limit of the DAN rate was 20Hz to match the experimental literature [55].

A grid search was conducted for each model to optimize the free model parameters (Table 3).
All searches contained 1004 = 100 · 106 parameter combinations for testing (Table 3). The grid
searches for all models were run on the same server (X86_64 architecture, Ubuntu 20.04.3). The
simulation of the parameter combinations was distributed across 24 independent processes using
the same random seed. The resulting data were first filtered for the fulfillment of the rate criteria
for MBONs and the DAN and the performance in the FOC and SOC tests to determine all optimal
learners, which meant identifying the parameter combinations with the same coordinates in the
objective space (FOC odor 1=1, SOC odor 1=1, SOC odor 2=0.33, and SOC odor 2 0.025 for
model 1).

Hypersphere sampling
Model robustness around the most central optimal parameter combination (see Results: Identifying
the optimal parameters for each model) was assessed by testing random samples with increasing
distance to the optimal point. We sampled the points x uniformly from the surface of a 4-
dimensional hypersphere [72, Ch. 1.2.6] with radius r by drawing all four components independently
of Gaussian distributions with a standard deviation � and scaling with the norm kxk

�  1
�!
x  {Gauss(�)Gauss(�),Gauss(�)Gauss(�)}
�!
x  r ·

�!
x

k�!x k

Each sample was evaluated by the indicator function

1O(
�!
x ) :=

(
1 if �!x 2 O optimal set, optimal performance),
0 if �!x /2 O .

(6)

A parameter combination �!x is an element of the optimal set O if it shows the same performance
in the FOC and SOC tests as the central optimal parameter combination identified in the grid
search for the specific model.

The code for implementing the circuit models can be obtained at https://github.com/nawrotlab/
exploring_SOC_circuits.
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Figure 1: Experimental design for testing second-order conditioning. (A) Basic circuit
motif for first-order conditioning, consisting of 2000 Kenyon cells (green), two output neurons
(dark blue, red), and a single dopaminergic neuron (light blue). The co-occurrence of odor and
reward input elicits plasticity at the MB output synapses. (B) The experimental paradigm consists
of two phases (first and second-order conditioning). During first-order conditioning, odor 1 is
paired with a reward. Subsequently, a novel odor 2 is paired with odor 1 during second-order
conditioning. Odor valences are tested after first and second-order conditioning. (C) During
second-order conditioning, the dopaminergic neuron (light blue) is indirectly activated by the
previously trained odor 1 and paired with odor 2. We test different candidate mechanisms for
this indirect activation of the dopaminergic neuron via the Kenyon cells (green) or the mushroom
body output neurons (dark blue, red). (D) Initially, three non-overlapping odors were used in the
experiments. Odors are encoded as Kenyon cell activity patterns. The joint presentation of odor
1 and odor 2 during second-order conditioning retains a randomly chosen 50% of the individual
odor representations to maintain the same overall activation as with individually presented odors.
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Model circuit FOC SOC Generalization

Model 1 ✔ 0.05

Model 2 ✔ ✔ 0.03

Model 3 ✔ ✔ 0.00

Model 4 ✔ ✔ 0.52

Model 5 ✔ ✔ 1.00

Figure 2: Second-order conditioning in different circuit motifs. Five different circuits were
tested for their performance in first (FOC) and second-order conditioning (SOC) and the extent to
which the odor-reward association generalizes to another novel odor. All circuits are constructed
with 2000 Kenyon cells (green), two mushroom body output neurons (dark blue, red), and a single
dopaminergic neuron (light blue), targeting the synapses between Kenyon cells and mushroom
body output neurons. Additional feed-forward connections from the Kenyon cells (model 1, model
2) or feedback connections from the mushroom body output neurons onto the dopaminergic neuron
(model 3, model 4, model 5) are implemented in the different circuits.
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Figure 3: Reward generalization for overlapping training or test odors. (A) All five
models were tested for their odor approach bias (Eqn. 5) to odors 1 (purple) and 2 (orange) after
first (FOC) and second-order conditioning (SOC). The overlap between odors 1 and 2 was varied.
(B) All models were tested for their approach bias (Eqn. 5) to odor 3, after training with non-
overlapping odors 1 and 2. Overlap between odors 3 and 1 or 2 was varied, respectively. Orange
and purple dashed lines indicate each model’s FOC and SOC performance from an experiment
without odor overlap as a reference (always the first bar).
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Figure 4: Comparison of parameter robustness between models. The five models were
tested for the stability of their second-order learning performance (Eqn. 5) when their optimal
parameter combinations were collectively shifted away from their optimum, which we used as the
central starting point for a hypersphere with radius=0. We incrementally increased the radius of
the hypersphere from 0 to 1 with 100 steps in a linear fashion and sampled 700 data points from
its surface for each resulting radius.
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Figure 5: Robustness of the learning performance across variations of the KC>MBON
connectivity. (A) Mean approach biases (error bars denote standard deviations, Eqn. 5) to odors
1, 2, and 3 after first order conditioning (FOC) for N = 100 model instances with a varying number
of KC>MBON synapses, between 25% and 100%, drawn randomly from a uniform distribution.
(B) Mean approach biases (Eqn. 5) to odors 1, 2, and 3 after second-order conditioning (SOC) for
N = 100 model instances with a randomly chosen number of KC>MBON synapses, between 25%
and 100%. (C) Mean approach biases (Eqn. 5) to odors 1, 2, and 3 after first order conditioning
(FOC) for N=100 model instances with a randomly chosen initial KC>MBON weights (full con-
nectivity), varying ±5% around the default value (Table 2). (D) Mean approach biases (Eqn. 5)
to odors 1, 2, and 3 after second-order conditioning (SOC) for N = 100 model instances with a
randomly chosen initial KC>MBON weights (full connectivity), varying ±5% around the default
value (Table 2).
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Parameter Value

seed 999
trials_FOC 3
trials_SOC 3
num_KC 2000
KCbaseline 0Hz
odor_activation 3Hz
odor_FOC odor 1
odor_SOC odor 1_2
initKC>MBON+ 0.083
initKC>MBON� 0.083

Table 2: Fixed parameters shared between models.
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Parameter min max optimum

Model 1
initKC>KC 0 0 0
initKC>DAN 0.0 0.001 0.001
LRKC>MBON� 0.001 0.004 0.004
LRKC>KC 0.0 0.004 0.000162
DAN_activation 1.0 10.0 7.272727
Model 2
initKC>DAN 0.0 0.001 0.000505
LRKC>MBON� 0.001 0.004 0.00333
LRKC>DAN 0.0 0.001 0.000677
DAN_activation 1.0 10.0 5.727273
Model 3
initMBON+>DAN 0.0 1.0 0.272727
initMBON�>DAN 0.0 1.0 0.262626
LRKC>MBON� 0.001 0.004 0.003121
DAN_activation 1.0 10.0 5.00
Model 4
initMBON�>DAN 0.0 0.5 0.131313
LRKC>MBON� 0.001 0.004 0.003182
RDANbaseline 0.0 30.0 11.212121
DAN_activation 1.0 10.0 3.727273
Model 5
initMBON+>DAN 0.0 0.4 0.08008
LRKC>MBON� 0.001 0.004 0.003182
LRMBON+>DAN 0.001 0.01 0.003
DAN_activation 1.0 10.0 4.727273

Table 3: Optimized model parameters. For all models, 100 equally distributed values per
parameter between the minimum and maximum values were used to construct a regular grid of
parameter combinations.
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A realistic locomotory model of Drosophila larva
for behavioral simulations.
Panagiotis Sakagiannis1,*, Anna-Maria Jürgensen1, and Martin Paul Nawrot1

1Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Germany

The Drosophila larva is extensively used as model species in exper-
iments where behavior is recorded via tracking equipment and eval-
uated via population-level metrics. Although larva locomotion neu-
romechanics have been studied in detail, no comprehensive model
has been proposed for realistic simulations of foraging experiments
directly comparable to tracked recordings. Here we present a vir-
tual larva for simulating autonomous behavior, fitting empirical ob-
servations of spatial and temporal kinematics. We propose a trilayer
behavior-based control architecture for larva foraging, allowing to ac-
commodate increasingly complex behaviors. At the basic level, for-
ward crawling and lateral bending are generated via coupled, interfer-
ing oscillatory processes under the control of an intermittency mod-
ule, alternating between crawling bouts and pauses. Next, naviga-
tion in olfactory environments is achieved via active sensing and top-
down modulation of bending dynamics by concentration changes. Fi-
nally, adaptation at the highest level entails associative learning. We
could accurately reproduce behavioral experiments on autonomous
free exploration, chemotaxis, and odor preference testing. Inter-
individual variability is preserved across virtual larva populations al-
lowing for single animal and population studies. Our model is ideally
suited to interface with neural circuit models of sensation, memory
formation and retrieval, and spatial navigation.

larva foraging | control architecture | exploratory behavior | chemotaxis
| olfactory preference | autonomous agent

Introduction

Building virtual agents that behave indistinguishably from
living organisms is an endeavour at the interface of behav-
ioral and cognitive neuroscience, artificial intelligence and
behavior-based robotics. The pursued level of similarity to
real animal behavior defines the target level of model abstrac-
tion, which can vary from low-level detailed neuroscientific
models to high-level abstract cognitive architectures. Recent
advances in tracking equipment have allowed highly resolved
recordings of larva populations under diverse foraging condi-
tions (1–4). Here, we ask how to build virtual larvae behaving
indistinguishably from the real ones as captured by established
larva tracking protocols. To this end we suggest a layered
behavioral control architecture (Fig. 1). At the basic layer,
we propose a locomotory model that features a bisegmental
virtual larva body, coupled crawling and bending oscillators,
and crawling intermittency. Integrating previously suggested
features and novel data-driven hypothesis we compare diverse
configurations against empirical data in order to choose the
optimal locomotory model. Expanding our model to the upper
layers of the control architecture enables increasingly more
complex foraging-related behaviors (Fig. 1). In virtual larva
populations with realistic inter-individual variability we evalu-
ate model performance in simulations of several established
behavioral paradigms.

Drosophila larvae possess a fairly tractable behavioral reper-

toire that is consistent across the 4-5 days of the larval life
stages (5) and controlled by a conserved neural circuit structure
throughout development (6), making it a formidable system
for studying behavioral control and decisions (7). Most of
the larval time is dedicated to foraging the environment for
suitable nutrients while avoiding danger. Foraging consists
of a combination of more basic behaviors: crawling, turning,
digging into the substrate (8), and feeding, the latter even
including cannibalizing conspecifics in extreme cases (9). In
the absence of available food resources, larvae have to engage
in free exploration to locate food patches (10). This behav-
ior is intermittent, meaning it consists of bouts of activity
interspersed by brief pauses generated via cessation and re-
initiation of crawling (11), a property also reported for adult
fly behavior (12, 13). Salient olfactory cues can trigger chemo-
taxis during which larvae employ active sensing to navigate
along chemical gradients (14). Finally, novel odorants coupled
to food reward induce olfactory learning enabling long-term
behavioral adaptations (15–19). After reaching critical mass
for pupation, homeostatic signals switch behavior towards
food aversion, hypermobility and collaborative burrowing (20),
terminating the feeding state and leading to pupation and
metamorphosis.

Statistical regularities that govern foraging behavior have
been unveiled by analysis both at the microscale of body
kinematics and at the macroscale of larva trajectories (2, 21,
22). Crawling and turning have been in the main focus of
recent studies (10, 23, 24) whereas tracking studies of feeding
behavior remain scarce (25). Both, crawling and feeding
behavior are indisputably of oscillatory nature (23, 26, 27)
controlled by central pattern generating circuits. With respect
to turning, it is still debated whether individual turns should be
considered as discrete reorientation events that are temporally
non-overlapping with crawling bouts (10), or whether turning
occurs in an oscillatory fashion generating turns both during
crawling and during pauses (24, 28). The latter is supported by
detailed eigenshape analysis confirming that larvae rarely crawl
straight, rather forward locomotion is always accompanied by
continuous small amplitude lateral bending (29). It follows
that crawling does not exclude bending rather the two strictly
co-occur. In contrast, both feeding and crawling movements
require mouth-hook motion recruiting the same e�ector system,
thus they can be considered competing, mutually exclusive
behaviors (7, 30). Finally, it is unclear whether bending and
feeding can overlap.

Modulation of exploratory behavior under salient olfactory

Simulations were run via the Larvaworld behavioral analysis and simulation platform,
available at https://github.com/nawrotlab/larvaworld
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input during positive and negative chemotaxis has been ex-
tensively studied (14, 16, 31, 32). There is general consensus
that during appetitive chemotaxis increasing odor concentra-
tions suppress pauses and turns leading to longer lasting bouts
of activity, while turns are promoted during down gradient
navigation. Turning is biased by the detection of minor con-
centration changes during lateral bending, a process described
as active sensing (24, 28, 33). The opposite e�ect has been
reported during aversive chemotactic behavior whether due
to punishment or reward omission (34). Larva behavioral
preference under conflicting olfactory stimuli has been estab-
lished as a population-level metric in multiple settings from
quantifying the formation of memory after associative learning
(15–17, 35, 36) to detecting individual di�erences in genetically
identical larva strains (37). This sensory-driven behavioral
modulation does not seem to be a�ected by social cues, jus-
tifying the study of individual larva kinematics even during
population-level experiments (38).

Results

Kinematic analysis of larva locomotion. We start out with the
kinematic analysis of experimental larva trajectories and body
postures in order to infer and parametrize several aspects of
larva locomotion that will inform our modeling approach. Us-
ing diverse metrics that capture spatial and temporal dynamics
we specifically assess the oscillation of forward velocity during
individual peristaltic strides, the influence of this oscillation on
lateral bending, the intermittent nature of crawling, and the
inter-individual variability of a number of locomotion-related
parameters across di�erent larvae.

Color annotation of larva trajectories in Fig. 2 A illus-
trates nicely that forward locomotion consists of consecutive
steps (strides) that are characterized by an alternating in-
crease/decrease of the locomotion velocity v̂ . To characterize
this oscillation we detected all strides performed by an in-
dividual animal and verified their stereotypical structure in
terms of strude duration, resulting body displacement, and the
phase-dependence of v̂ (Fig. 2 D). Scaling both, displacement
dstr and velocity to the individual larval body-length increases
stride stereotypicality independent of larva size. This analysis
justifies an oscillatory model process (crawler, ) that generates
forward-velocity in subsequent stride cycles (crawler, Fig. 1 B)
is introduced for model comparison.

Our analysis of orientation velocity ˙̂◊or during crawling
strides reveals that it is phasically coupled to the stride
phase exhibiting an increase around 3fi

2 of the oscillatory cycle
(Fig. 2 H). This implies phasic interference of the crawling and
the lateral bending mechanism (Fig. 1 B), which is incorpo-
rated in our model (see Material and Methods). A plausible
mechanistic explanation featuring bodily interference of crawl-
ing and bending is suggested in the discussion.

Larvae transiently pause crawling before re-assuming it
resulting in sequences of concatenated strides (stridechains)
intermitted by brief crawl-pauses (Fig.2 C). We analyzed the
distributions of stridechain length and pause duration in the
experimental dataset. The limited duration of the recordings
(3’) does not allow assessment of individual di�erences there-
fore the stride chain and pause bouts over a population of 200
larvae have been pooled together. Testing power-law, exponen-
tial and log-normal distributions revealed the highest quality
of fit for the log-normal distribution for both parameters (see

A

B

Fig. 1. Behavioral control architecture for larva foraging. A: In the trilayer control
architecture the bottom layer consists of three basic sensorimotor effectors that
constitute the locomotory model. The intermediate layer features innate reactive
behavior in response to unexpected environmental stimuli. The top layer allows
for behavioral adaptation through experience. Framed areas denote more complex
behavioral modes that require subsumption of subordinate modes. Light-colored
modules are plausible extensions described in Discussion. B: The locomotory model
at the bottom layer of the architecture. Oscillatory behaviors are either phasically
coupled or mutually exclusive. Initiation/cessation of oscillation is controlled by an
intermittency module. Light-colored modules are plausible extensions described in
Discussion.

Material and Methods). In our model we propose a behav-
ioral intermittency module (Fig.1 B) that samples from the
empirically fitted model distributions and controls cessation
and re-initiation of crawling (see Material and Methods).

Behavioral architecture. Larval behavior is hierarchically
structured in the sense that simple behavioral motifs such
as crawling, bending and feeding motions can be integrated
into more complex behavioral modes such as exploration, taxis
and exploitation. It has been proposed that animal behavioral
hierarchy is reflected by the underlying neuroanatomy as a hier-
archy of nested sensorimotor loops (39). A functional modeling
paradigm that exploits this idea regards the neural system
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Fig. 2. Kinematic analysis of the Drosophila larva in locomotion. A Individual larva trajectory tracking a rear point along the midline of the animal. Trajectory color denotes
the forward velocity v̂ from 0 (red) to maximum (green). Inset focuses on the track slice analyzed in C and G. Dark green rectangle denotes a single stride described in B. B:
Sketch of a single crawling stride. The larva first stretches its head forward, anchors it to the substrate and then drags its body forward via peristaltic contraction. Scaled
stride displacement dstr is defined as the resulting displacement d scaled by the body-length l. C: Forward velocity v̂ during the 40 s track slice selected in A, inset. Green
and red markers denote the local minima and maxima used for stride annotation. Individual strides are circumscribed by vertical dashed lines. Successive strides constitute
uninterrupted stridechains (white). Epochs that do not show any strides are annotated as crawl-pauses (gray). Velocity is scaled to the larva body-length. D: Forward velocity of
head, midpoint and tail as a function of the stride cycle. All detected strides of the tracked larva have been interpolated to a stride oscillation cycle of period 2fi. Solid lines
denote the median, shaded areas the lower and upper quartiles. Velocity is scaled to the larva body-length. E: Same trajectory as in (A) now tracking the head segment. Color
denotes the orientation angular velocity ˙̂◊or from 0 (red) to maximum (green). F: Definition of bending angle ◊b and orientation angle ◊or for the original 12-segment (blue)
and the simplified 2-segment (red) larvae. G: Three angular parameters during the same track slice shown in (C). Bending angle ◊̂b, bend and orientation angular velocities ˙̂◊b,
˙̂◊or are shown. Background shadings denote left and right turning bouts. For illustration purposes only turns resulting in a change of orientation angle �◊̂or > 20¶ are shown.
H: Same as D but showing the average absolute orientation angular velocity ◊̂or during the stride cycle.

as a layered control (subsumption) architecture (40) where
low-level stereotyped reflexive and repetitive behaviors are au-
tonomously generated by localized peripheral motor circuitry
while multisynaptic loops involving more centralized neural
circuits only act as top-down modulators on the local circuits
in order to coordinate global and complex behavioral control.
The central idea is that energy-e�cient decentralized neural
control is the rule, while higher centers are recruited only when
more extensive integration is needed. Furthermore there are
only limited degrees of freedom by which higher layers can
influence local sensorimotor loops e.g. by starting/stopping or
accelerating/decelerating their autonomous function (see Dis-
cussion). Layered control architectures have been used mainly

in behavior-based robotics allowing sequential calibration and
modular integration of partial neuroscientific models under a
common framework (39, 40).

We here propose a trilayer behavioral control architecture
for Drosophila larva foraging as illustrated in Fig. 1 A. The
bottom layer comprises three basic stereotyped behaviors:
crawling, turning and feeding. Each is realized by a low-level
local sensorimotor loop between motor e�ectors and sensory
feedback - mainly proprioception and mechanoreception - and
additionally gustatory input in the case of feeding. Integra-
tion of these basic behaviors gives rise to composite behaviors.
Exploration in stimulus-free conditions requires crawling and
turning while integration of all three basic elements allows
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exploitation of a nutritious substrate. The intermediate layer
introduces salient sensory stimulation of di�erent modalities
therefore allows reactive behavior in the face of presented risks
and opportunities. Modulation of exploratory behavior under
appetitive or aversive stimulation enables coherent naviga-
tion along sensory gradients. Here, we consider odor-driven
chemotaxis as a process of active sensing in which the larva
constantly samples the odor concentration during lateral bend-
ing motions enabling odorscape navigation and odor source
discovery. At the top layer, associative learning during prior
experience biases the evaluation of recurring sensory stimuli
resulting in modulation of innate odor valence and providing
experience-dependent adaptation of navigation.

The proposed behavioral architecture is naive to the under-
lying neural mechanisms that generate the respective behav-
iors. We hereby populate the architecture with diverse con-
figurations of candidate mechanisms and explore autonomous
and integrated control exerted by each subsequent layer in
increasingly-complex behavioral simulations from exploration
to chemotaxis to adaptive learning in odor preference experi-
ments.

Locomotory model. We simplify the larva to a two-segment
body (Fig. 2 F). This abstraction allows describing the body
state at any point in time through only three parameters.
These are (i) position of a selected midpoint (Fig. 9), (ii) ab-
solute orientation of the front segment ◊or, and (iii) bending
angle ◊b between the front and rear segments. This approach
is in line with the common practice of quantifying larva bend-
ing via a single angle between one anterior and one posterior
vector, although the chosen vectors vary between study groups
(14, 34, 41). Body dynamics as analyzed in the empirical
data depends on instantaneous linear (Fig. 2 A-C) and an-
gular velocities (Fig. 2 E-G) generated through crawling and
bending respectively. Kinematic analysis on the locomotion
of these simplified real larvae allows us to realistically cali-
brate bisegmental virtual larvae resembling the real ones in
multiple spatial and temporal parameters (see Materials and
Methods). For a demonstration of the larva-body bisegmental
simplification see Video 1. The individual trajectory depicted
in Fig. 2 can be seen at its full length in Video 3, while the
slice depicted in the inset is shown in Video 4.

Locomotion of the bisegmental body is achieved via dy-
namic coupling of forward crawling and lateral body bending.
Crawling moves the midpoint along the orientation vector.
Bending reorients the front segment by rotation around the
midpoint. Forward displacement restores ◊b back to 0 by
gradually aligning the rear segment to the orientation axis.

We adopt the hypothesis that attributes alternating left-
right bending to an underlying oscillatory neural process and
compare the lateral oscillator model described by Wystrach et
al. (24) to a simple sinusoidal oscillator. This model (turner)
applies torque oscillations on the two-segment body, which acts
as a restorative torsional spring (see Materials and Methods).
The turner can be coupled to a second oscillator producing
crawling strides (crawler) in the form of linear velocity oscil-
lations as suggested by our kinematic analysis. Under the
constraints of the subsumption architecture paradigm these
e�ectors can be influenced by higher-order circuits only in a
limited number of ways. Frequency modulation and stride ini-
tiation/cessation are the only possible top-down modulations
on the crawler. Likewise, the turner can receive olfactory input

a�ecting both the frequency and the amplitude of oscillation.
To quantify the contribution of each of the locomotory

model’s components to replicating real larva kinematics we
perform a broad model comparison study across diverse model
configurations (Fig. 3). The behavioral metrics used for eval-
uation are structured in five categories covering angular and
forward motion, reorientation, spatial dispersion and stride-
cycle structure. Overall, the bisegmental is superior to the
single-segment body in capturing angular motion metrics, pre-
dominantly due to the decoupling of the bending velocity ◊̇b

from the orientation velocity ◊̇or (in the single segment body
these are considered identical). A realistic crawling oscilla-
tion allows much more accurate assessment of stride-cycle
dependent metrics compared to non-oscillatory constant-speed
forward motion (despite the lack of a velocity oscillation in
the latter case, strides might still be detected due to noise).
Finally, both oscillator coupling and crawl-intermittency con-
tribute to better fitting of the empirical data. Our final model
is represented by the far bottom right column, exhibiting the
smallest error.

The detailed structure and optimal configuration for the ba-
sic layer of the behavioral architecture as suggested by model
comparison is illustrated in Fig. 1 B, specifying the interplay
between the oscillators. Two additional features are imple-
mented based on our empirical analyses. First, the crawler and
turner are phasically coupled such that turning is suppressed
during a defined phase interval of the stride cycle, reflecting
our finding in Fig. 2 H. Second, crawler-generated chains of
concatenated strides (stridechains) are intermitted by brief
pauses during which the crawler-induced interference is lifted,
resulting in more acute turning events. The duration distribu-
tion of stridechains and pauses are fitted to the empirical data.
The pipeline for model calibration is described in detail in
Material and Methods. For a demonstration of the locomotory
model in di�erent configurations see Video 2. We note that in
the current implementation e�ectors receive no sensory input
from the environment. Sensory feedback is introduced only
at the intermediate reactive layer (Fig. 1 A) via an olfactory
sensor located at the front end of the body (head). All model
parameters are shown in Table 1.

Inter-individual di�erences are crucial for achieving realistic
population-level behavior. To capture variability across larva
we computed three crawl-related parameters, body-length l,
crawling frequency fc, and scaled stride displacement dstr

across a population of 200 experimental larvae. The univariate
and bivariate empirical distributions are illustrated in blue
in Fig. 4. When generating virtual larva populations for the
behavioral simulations we sample all three parameters from a
multivariate Gaussian distribution fitted to the empirical data.
This preserves the linear correlation structure. A generated
set of the three parameters completely defines the crawling
oscillation of an individual virtual larva. The bivariate pro-
jections are shown in red in Fig. 4 with parameters given in
Table 1 in blue.

Simulation of behavioral experiments. The layered behavioral
architecture in Fig.1 is exploited in modeling as it justifies
sequential calibration and evaluation of subsequent behavioral
layers from the bottom to the top, as for any specific behavior
to be successfully realized, only integration up to a certain
layer is required. In this section we simulate increasingly more
complex behavioral experiments using virtual larva popula-
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Fig. 3. Model comparison. A total of 32 model configurations have been tested in 3-minute free-exploration simulations of 50 virtual larvae. The controlled body either
has a single (top) or two segments (bottom). The crawler and turner modules implemented in each model are illustrated in the bottom legend (simple sinusoidal vs neural
turner oscillator and constant-speed vs analysis-fitted crawler oscillator). The oscillator coupling and crawling-intermittency mode is illustrated in the x axis (coupled vs
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based on the worst fit. The resulting global error for each model configuration is the sum of errors across the 5 evaluation categories and is reflected by the height of the
respective column.

tions. Starting from stimulus-free exploration we advance to
chemotactic navigation and finally to adaptive odor preference
experiments. Individual virtual larvae behave independently
of each other as they move through the spatial arena and
odorscape (38).

Free exploration. Larvae explore a stimulus-free environment,
dispersing in space from their starting positions. As there is
no food nor any salient odor gradient, integration of crawl-
ing and bending behaviors is su�cient. We compared free
exploration in populations of 200 virtual and real larvae re-
spectively (Video 6). Statistical evaluation showed a good
agreement of simulated and empirical data with respect to spa-
tial dispersion of larvae from their initial position (Fig. 5 A,B),
total distance traveled, time fraction allocated to crawling and
number of performed strides (Fig. 5 C). For a demonstration
of virtual and real larvae exploring a dish see Video 5 while
for a comparative assessment of their dispersion dynamics see
Video 6.

Chemotaxis. Chemotaxis describes the process of exploiting
an odor gradient in space to locate an attractive or avoid a
repelling odor source. An olfactory sensor (olfactor) placed at
the front end of the virtual body enables active sensing during
body bending and allows detection of concentration changes
that modulate turning behavior accordingly (see Methods).
To assess chemotactic behavior in our model we reconstruct
the arena and odor landscape (odorscape, see Methods) of two
behavioral experiments described in (14). In the first, larvae

are placed on the left side of the arena facing to the right.
An appetitive odor source is placed on the right side. The
virtual larvae navigate up the odor gradient approaching the
source (Fig. 6 A), reproducing the experimental observation in
Fig. 1 C in (14). In the second, both the odor source and the
virtual larvae are placed at the center of the arena. The larvae
perform localized exploration, generating trajectories across
and around the odor source. (Fig. 6 B), again replicating the
observation in Fig.1D in (14). Fig. 6 E and F show the average
time-varying odor concentration encountered by the virtual
larvae along their trajectories, replicating the estimations from
real larval tracks in (14). Two sample simulations can be seen
in Video 7.

Odor preference test. We simulate the odor preference paradigm
as described in the Maggot Learning Manual (42). Larvae are
placed at the center of a dish containing two odor sources in
opposite sides and left to freely explore. The odor concentra-
tions are Gaussian-shaped and overlapping, resulting in an
odorscape of positive and/or negative opposing gradients. Af-
ter 3 minutes the final situation is evaluated. The established
population-level metric used is the olfactory preference index
(PI), computed for the left odor as P Il = Nl≠Nr

N where Nl

and Nr is the number of larvae on the left and right side of
the dish while N is the total number of larvae.

The extend of olfactory modulation on the turning behavior
is determined by the odor-specific gain G (see Materials and
Methods). As this is measured in arbitrary units, we first
need to define a realistic value range that correlates with
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Fig. 4. Parameters of individuality: empirical and fitted distributions. Diagonal:
Histogram and kernel density estimates (KDE) for body-length l, crawling frequency
fc and mean scaled displacement per stride dstr across a population of 200 larvae in
the experimental dataset. Below: Bivariate projection of 3-dim. KDE outlined contours
for each parameter pair. Above: Red ellipses represent the bivariate projections of
the 3-dim. fitted Gaussian distributions at 0.5, 1, 2 and 3 standard deviations. In our
model this Gaussian is used to sample a parameter set for each individual larva. The
blue dots denote the empirically measured parameters.

the behaviorally measured PI. We perform a parameter-space
search independently varying the gain for left and right odors
and measuring the resulting PI in simulations of 30 larvae. The
results for a total of 252 gain combinations within a suitable
range of G œ [≠100, 100] are illustrated in Fig. 7 A. Simulation
examples for one appettitive and one aversive odor are shown
in Video 8.

In order to simulate larval group behavior in response to
an associative learning paradigm we interface our behavioral
simulation with the spiking mushroom body (MB) model intro-
duced in (43) (Fig. 7 C). It implements a biologically realistic
neural network model of the olfactory pathway according to
detailed anatomical data using leaky integrate-and-fire neu-
rons (44). The MB network undergoes associative plasticity
at the synapses between the Kenyon cells and two MB output
neurons as a result of concurrent stimulation with an odor and
a reward signal. Both, odor and reward is simulated as spike
train input to the receptor neurons and the reinforcement sig-
nalling dopaminergic neuron, respectively. The model employs
two output neurons (MB+, MB-), representing a larger num-
ber of MB compartments associated with approach/avoidance
learning respectively (45). The initially balanced firing rates
between MB+ and MB- are skewed after learning and encode
the acquired odor valence (46, 47) here defined as

MBout = MB+ ≠ MB≠

MB+ + MB≠
œ [≠1, 1].

We first trained the MB model via a classical conditioning
experiment where, in each conditioning trial, it experiences
an odor (conditioned stimulus, CS+) in combination with a
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Fig. 5. Simulation of free exploration. A: Dispersion of 200 larvae in experiment
(left) and simulation (right) during 40 seconds. Individual tracks have been transposed
to originate from the center of the arena. B: Median dispersion from origin. Shaded
area denotes first and third quartiles. C: Histograms for total number of strides, time
ratio allocated to crawling and pathlength. (arena dimensions = 500x500 mm, N =
200 larvae, experiment duration = 3 minutes)

sugar reward during 5 min, following the standard training
protocol in (42). 5 groups of 30 MB models undergo between
1 and 5 sequential conditioning trials (48). The resulting
odor valence MBout from each MB model was converted to
an odor gain G via a simple linear transformation and used
to generate a virtual larva (Fig. 7 B). Each population of 30
larvae was then tested in an odor preference simulation. The
larvae were placed on a dish in presence of the previously
rewarded odor (CS+) and a neutral odor in opposite sides
of the dish (Video 8), again following standard experimental
procedures (42). To obtain robust results we replicated the
experiment 100 times per population with a di�erent random
seed for a total of 600 simulations. The obtained preference
indexes (PI) are illustrated in Fig. 7 D. The PI increase with
increasing number of trials as well as its saturation resembles
empirical observations (48). Note that the variability of the PI
across the 100 simulations per condition is introduced solely
by the behavioral simulation and resembles that seen across
real experiments.

The current implementation only sequentially couples a
trained MB model to be tested in a behavioral simulation. In
the discussion we further elaborate on a possible extension
featuring their closed-loop integration allowing for full behav-
ioral simulations of both the training and the testing phase of
the associative learning paradigm in a virtual environment.

Discussion

Neural pathways. The neural mechanisms enabling most of
the basic behaviors have been extensively studied. Crawling
occurs via fairly stereotypical repetitive strides. Head and
tail segments initiate the stride concurrently with a ’visceral
piston’ mechanism followed by a laterally symmetric peri-
staltic wave traversing neighboring segments longitudinally
from back to front (23) (Fig. 2 B). Segmental central pattern
generators (CPGs) coupled via premotor-involving interseg-
mental short- and long-range connectivity motifs constitute
the underlying neural circuitry (26, 49, 50). Lateral bend-
ing results from asymmetric contraction of body musculature
initiated at the thoracic segments (51). Finally, feeding is
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Fig. 6. Simulation of chemotaxis. A: Experiment 1: A single odor source of 8.9 µM
peak concentration is placed on the right side of the rectangular arena creating a
chemical gradient as indicated by the color scale. Larvae are placed on the left side
facing to the right. Larvae are expected to navigate up the gradient approaching the
source. A single larva trajectory is shown. This setup mimics the first experiment
in (14). D: Experiment 2: A single odor source of 2.0 µM peak concentration is
placed at the center of the rectangular arena. Larvae are placed in close proximity
to the odor source. Larvae are expected to locally explore generating trajectories
around and across the source. A single larva trajectory is shown. This setup mimics
the second experiment in (14). C,D: The trajectories of 25 virtual larvae during the
two experiments. E,F: The odor concentration encountered by the virtual larvae as
a function of time. Red curves refer to the single larva in A and B. Gray denotes
the mean and quartiles of all 25 larvae in C and D. The simulation results fit well
to the experimental estimates of concentration sensing during larval chemotaxis in
(14). (arena dimensions = 100x60 mm, N = 30 larvae, experiment duration = 3 and
5 minutes respectively)

generated via a network of mono- and multi-synaptic senso-
rimotor loops from enteric, pharyngeal and external sensory
organs to motor neurons controlling mouth-hook movement,
head-tilt and pharyngeal pumping (27).

All three basic behaviors are autonomously generated by
local circuitry while higher brain centers modulate their ac-
tivity via descending input, mediated by dopamine, seroto-
nine, achetylocholine, octopamine and other neurotransmitters
(27, 52–56). It has been suggested that the transition between
exploration and exploitation (feeding) is acutely induced via
dopaminergic signaling (57) while their long-term balance is
regulated via hugin-mediated homeostatic neuromodulation
(58). Identification of sensory pathways towards motor e�ec-
tor neuropiles further elucidates the role of interoception in
behavioral modulation (59).

The neural mechanisms that underlie olfactory modulation
of the basic locomotory behavior are also under intense in-
vestigation. Chemotactic approach and avoidance to innately
valenced odors has been attributed to a predominantly innate
pathway involving the antennal lobe (AL) and its direct pro-
jection to the lateral horn (LH), both in the larva (56) and in
the adult fly (60–62). Modulation of learned odors strongly
involves top-down control by the MB in juvenile (45, 55) and
adult (31) stages. Both pathways have similar modulating
e�ects on foraging behavior and are likely integrated in a

premotor network downstream of the AL (16, 63). In the sen-
sorimotor loop, descending pathways involving the LH control
cessation of crawling, possibly triggering sharper reorientation
when navigating down-gradient, facilitating chemotaxis (64).
Finally, the internal homeostatic state (e.g. starvation vs.
satiation) regulates behavior via neuromodulatory transmitter
release at multiple levels, including AL, LH and MB (56).

Existing computational models. Crawling and bending mech-
anisms have been successfully captured in previous computa-
tional models. CPG models of segmentally repeated paired
excitatory and inhibitory (EI) neuronal rate units, standing for
average EI population activity, can autonomously generate for-
ward and backward crawling, possibly involving proprioceptive
feedback (65, 66) and the contribution of the visceral-piston
mechanism to the peristaltic cycle has been assessed in a
biomechanical model (67). The hereby adopted, continuous
oscillatory lateral bending process has been implemented as
a pair of bilateral mutually inhibitory EI circuits (24). The
idea has been elaborated in a neuromuscular model generating
autonomous forward / backward crawling and turning as well
as their interplay during free exploration in a 12-segment larva
body by modeling segmental localized reflexes and substrate
frictional forces and assuming empirically informed axial and
transverse oscillatory frequencies (68). Chemotaxis has also
been modeled computationally either in stochastic transition
models assuming discrete behavioral states of crawling (runs)
and turning (head-casts) (69) or by introducing olfactory mod-
ulatory input on the underlying locomotory circuit (24, 68).

We propose here that modeling locomotion as coupled
intermittent oscillatory processes (Fig. 1 B) is adequate for
generating realistic larva kinematics as these are captured via
larva tracking. This locomotory model e�ciently summarizes
the underlying CPG activities into global linear and angular
velocity oscillations (23, 26) and accurately reproduced a num-
ber of experimental observations. It is therefore well suited
for the bottom layer of the proposed behavioral architecture
(Fig. 1). The latter though allows for a modular approach,
where the level of abstraction can be chosen independently
for each individual module as exemplified by combining this
locomotory model with a spiking neural network that captures
plasticity in a central brain neuropile (MB) at the top layer.
It follows that the proposed control architecture a�ords any
substitution of the currently selected oscillator modules by one
of the aforementioned more-detailed neuromechanical models
if a higher degree of biological realism is pursued.

Crawl-bend interference. Crawling includes mouth hook mo-
tion. Specifically, the first phase of a crawling stride consists
of concurrent forward motion of head and tail segments, aided
by a ’visceral pistoning’ mechanism that generates forward
displacement of the gut. Subsequently, the mouth hooks an-
chor the head to the substrate so that the second phase of
peristaltic motion can drag all other segments forward as well,
completing the stride (23). Crawling and bending partially re-
cruit the same e�ector neural circuitry and body musculature
at least at the level of the thorax. Peristaltic motion during
crawling includes sequential symmetric bilateral contraction
of all segments while bending occurs due to asymmetric uni-
lateral contraction of the thoracic segments. This partial
e�ector overlap could result in interference between the two
processes. Indeed here we report an increase of orientation
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velocity during a specific phase of the stride cycle (Fig. 2 H),
synchronous to an increase of head forward velocity (Fig. 2 D).
The latter coincides with the stride phase when the head is not
anchored to the substrate and therefore free to move laterally.
When applying attenuation of lateral bending outside a phase
interval [ fi

2 , fi] of the stride cycle we managed to accurately
reproduce the empirical relation (Fig. 8 A).

A reasonable hypothesis would then be that the asymmetric
thoracic contraction generating lateral bending is only possi-
ble while the head is not anchored to the substrate therefore
during a specific phase interval of the stride cycle. We suggest
that crawling phasically interferes with lateral bending because
of these bodily constraints. A consequence of the proposed
hypothesis is that the amplitude of turns generated during
crawl-pauses is larger in comparison to those generated dur-
ing crawling because during pauses the crawling interference
to lateral bending is lifted. We postulate that it is exactly
this phenomenon that dominates the description of larva ex-
ploration as a Levy-walk with non-overlapping straight runs
and reorientation events, where the minor orientation changes
taking place during crawling are neglected (10, 70). We note
that in the implemented model the turner neural oscillation is
not inhibited at all during crawling strides as we consider this
merely a bodily interference, although the resulting torque
might eventually not be applied to the body depending on the
stride-cycle phase.

Behavioral intermittency. Larval locomotion is intermittent
meaning that crawling runs are transiently intermitted by

brief pauses. The spatial dynamics of these alternating states
have been studied in the context of motion ecology. During
free exploration, power-law distributed runs, in line with Levy-
walk theoretical models (10, 70) and di�usion-like kinematics
have been reported (32) while the speed-curvature power-law
relationship has been disputed (71–74). Regarding the tem-
poral dynamics of intermittency, the duration distributions
of activity and inactivity bouts captured via larva-tracking
recordings have been studied. More specifically, the duration
of inactivity bouts has been reported to follow a power-law
while that of activity bouts a log-normal distribution (11),
partly in line with findings in adult-fly studies (12, 13). In all
these studies micro-movements like feeding and lateral bend-
ing could not be detected due to technical constraints. Thus,
the reported inactivity and activity bouts can be regarded as
crawl-pauses and crawl-runs respectively, the duration of the
latter being equivalent to our discretized stridechain-length
metric.

Our analysis reveals that both distributions are approx-
imated best by log-normal distributions (Fig.8,B). The log-
normal stridechain distribution is in line with previous findings,
while the log-normal pause distribution diverges from a previ-
ously reported power-law (11). This might be attributed to
the short, 3-minute duration of the recordings in the present
study contrary to the long, up to one hour recordings used in
the latter.

Computational models of behavioral intermittency are
scarce. A recent study presented a simple binary-neuron
model exhibiting state transitions between power-law and non
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Fig. 7. Simulation of innate odor preference. A: A total of 252 simulations are shown with the resulting Preference Index for different gains of the left and right odor. On
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power-law regimes via self-limiting neuronal avalanches and
proposed a plausible underlying mechanism that explains ini-
tiation/cessation of crawling (11). In the current model we
remain agnostic to the intermittency generative process and
simply sample pause duration and stidechain length from the
empirically fitted distributions. Further neuroanatomical ev-
idence of the underlying circuits is needed to elucidate the
neural mechanism of intermittent crawling.

Architecture extensions. The here adopted subsumption ar-
chitecture paradigm is mainly used in behavior-based robotics
(75) and is supported as a theoretical framework for the descrip-
tion of the nervous system of living organisms (39). According
to this, neural control of behavior consists of nested sensori-
motor loops where more stereotyped reflexive behaviors are
autonomously generated by localized neural circuitry at a
faster timescale without recruiting more centralized resources.
Once there is need for more extensive integration, e.g. in
order to react suitably to unexpected sensory stimulation,
slower multisynaptic loops enable higher centers to modulate
local circuits achieving more coordinated global behavioral
control. In other words, the nervous system is considered a
multilayered control architecture within which higher layers
subsume their subordinate layers into comprehensive behav-
ioral modes. The main idea governing this paradigm is that
there are only limited degrees of freedom in which higher layers
can influence the lower ones e.g. by initiation/cessation or
acceleration/deceleration of their autonomous function.

The modularity of the proposed architecture facilitates
further extensions capturing novel aspects of the body, the
nervous system, the metabolism or the environment as shown
in Fig.1, allowing for more refined or more complex behavioral
patterns. We here summarize some plausible extensions.

Feeding. Despite their central role in foraging, feeding mecha-
nisms have not been modeled computationally nor has their
integration with the exploratory circuitry in the context of sub-
strate exploitation. Feeding behavior also consists of repetitive
stereotypical movements of the head, mouth hook and inges-
tive muscles (27). Every cycle is an intertwined sensorimotor
loop under instantaneous feedback from the environment and
slower regulation by higher self-regulatory centers. In adult
flies successive feeding movements are organized in intermit-
tent feeding bouts, interspersed by locomotory or idle periods
(76). Although detection of larval feeding motions in free-
foraging conditions is technically di�cult due to their small
amplitude, it is reasonable to assume these are also structured
in intermittent bouts. The frequency of this repetitive motion
has been reported to vary at least from 1 to 2.5 Hz. There-
fore feeding behavior can be implemented as a third oscillator
(feeder). Top-down modulation a�ecting initiation/cessation
and oscillation frequency can be assumed, similar to crawl-
ing while sensory feedback can be implemented as recurrent
modulation depending on successful ingestion.

Considering oscillator coupling, crawling and feeding cycles
partially compete for control of the same e�ectors as they
both recruit the head and mouth muscles. It has been re-
ported that the number of mouth hook motions over a given
duration of foraging does not di�er between rover and sitter
larva phenotypes and is not correlated to the amount of food
ingested, although rovers crawl more and feed less than sitters
(30). Therefore an individual mouth hook motion can equally

be part of either a crawling or a feeding cycle. The conclusion
drawn is that individual crawling and feeding cycles are com-
peting mutually exclusive behavioral motifs meaning crawling
and feeding bouts can alternate but do not overlap. Conversely
there is no empirical evidence on the potential coupling of
feeding and bending motions. Integration of the feeder in the
current locomotory model is illustrated in Fig.1 B.

Multimodal sensory feedback. Sensory feedback from the environ-
ment can be extended to other modalities beyond olfaction.
Mechanosensation can be implemented via additional touch
sensors around the body contour. This will allow detection
and behavioral modulation by conspecific contact (collisions)
(77) and external mechanosensory stimulation driving star-
tle/evasion (hunch/bend) (78) or navigation along wind gradi-
ents (anemotaxis) (79). Accordingly, temperature and light
sensors could allow thermotaxis (80–82) and phototaxis (83).
The respective environmental sensory gradients can be Gaus-
sian as in the case of odorscapes or linear along a certain arena
axis. Behavioral modulation can be either summed up across
modalities or separately applied to the bending, crawling and
feeding e�ectors. Integration of additional sensory modalities
is illustrated in Fig.1 A.

Olfactory learning in closed loop behavioral simulations. We have
shown an open-loop simulation of the classical conditioning
paradigm (Fig. 7 B-D) reproducing a basic experimental result
in the fruit fly larva (36). This modeling approach can be
extended in multiple ways. First, the larva demonstrates a
number of interesting learning abilities/features that require
synaptic and circuit mechanisms such as di�erential condition-
ing (15, 16, 36), extinction learning (84), and relief learning
(35, 45, 48, 85). Interfacing neural network simulations of
these mechanisms with our behavioral model allows to directly
compare virtual and empirical behavioral experiments, both
for the typical group assays and for individual animals. Sec-
ond, while information about odor concentration is provided
via olfactory sensing, direct input from a feeder module could
provide the reward stimulus that activates the dopaminergic
pahtway required for synaptic plasticity the mushroom body
(45, 86). This would further allow realistic foraging scenarios
with food depletion and competition. Closing the loop from
active sensing to associative memory formation and behavioral
control requires to synchronize a (spiking) neural network at
the adaptive layer with the sensory (reactive layer) and loco-
motor modules (basic layer). This will enable the simulation of
virtual larva experiencing spatial and temporal dynamics in a
virtual environment or on a robotic platform (87). Such model
approaches will allow to test model hypotheses on sensory-
motor integration and to infer predictions for experimental
interventions such as optogenetic stimulation (45) or genetic
manipulations (88–91).

Materials and Methods

Dataset description. The larva-tracking dataset was obtained
by M.Schleyer and J. Thoener at the Leipzig Institute of
Neurobiology (https://doi.org/10.12751/g-node.5e1ifd). It
consists of 200 third-instar larvae tracked at a framerate of
16 Hz for 3 minutes while exploring a non-nutritious substrate.
12 points are detected along the longitudinal axis of each larva.
Detected collisions have been excluded and the data has been
filtered with a first-order butterworth low-pass filter with a
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cuto� frequency of 2 Hz in order to decrease tracking-related
noise but retain the behaviorally relevant crawling frequency
of ¥ 1.5 Hz. The e�ect of inadequate and excessive filtering is
illustrated in Video 9.

All data processing and all simulations were performed
using the Larvaworld behavioral analysis and simulation plat-
form programmed in python. We made Larvaworld freely
available at https://github.com/nawrotlab/larvaworld. In
Larvaworld, simulated and empirical data are treated in-
distinguishably, meaning that the exact same analysis pipeline
and behavioral metrics are applied in both.

Parameter Symbol Value Unit

PHYSICS linear damping 1 -
angular damping 2.5 -

BODY

length l 4.325* mm
front/rear ratio 5/6 -
spring constant k 0.02

bend correction coefficient 1.4 -

TURNER

initial activation 20 -
activation range [10,40] -

0.5 -
torque coefficient 0.4 -

0.15 -

CRAWLER
frequency 1.428* Hz

0.225* -
0.1 -

INTERFERENCE interference-free phase interval [π/2, π] -
attenuation ratio 0.1 -

INTERMITTENCY
pause duration

range [0.1 - 2] sec

distribution -1.2, 0.7 -

stridechain length range [1 - 41] # strides
distribution 1.4, 1 -

zl

za

r2-seg

bc

At

Arange

noiseinput nA

ct

noiseoutput nt

fc

stride displacement scaled dstr

noiseoutput nc

Prange

cat

prange

lognormal(m
p
, s

p
)

srange

lognormal(ms, ss)

Table 1. Model parameters. Red values: hard coded; green values:

fitted from empirical data; blue values: collectively sampled from

an empirically fitted multivariate Gaussian distribution (Fig. 4) for

which mean values are shown here.

Model definition and calibration.

Crawler oscillator. Crawling behavior is modeled as an oscillatory
process. Each oscillation generates a cycle of forward velocity
v increase-decrease resulting in displacement of the larva along
the axis of its front-segment, simplistically modeling the result
of exactly one peristaltic stride. An analytically tractable
curve is fitted to the average empirical velocity curve measured
during strides (Fig. 2 D):

vú = dstr · fc · (0.6 cos (� ≠ �max) + 1) [1]

where dstr is the displacement per stride, scaled to the lar-
val body-length l, fc being the crawling frequency and � the
instantaneous phase of the oscillation iterating from 0 to 2fi
during an oscillatory cycle. �max = fi is the phase where the
maximum velocity occurs. The equation ensures a constant
dstr despite fc changes. Gaussian noise is applied so that
v = N (vú, nC · vú).nC is selected so that the variance across
strides fits the empirical observations (Fig. 8 A,top). The 3
parameters (l,dstr and fc) defining the velocity curve are sam-
pled from empirical data, retaining their paired correlations
(Fig. 4). The oscillatory process can only be halted/initiated
at the start of a cycle meaning that once a stride is initiated
it will be completed.

To calibrate �max in the stride cycle, a sliding window
analysis was performed (data not shown). dstr was computed
for all possible �max in windows of the reference stride duration

f≠1
c , selecting the one displaying the minimum variance for

displacement, which results in more stereotypical strides.

Turner oscillator. The lateral oscillator model described in (24)
assumes an underlying oscillatory process driving alternating
bending to the left and right side. The oscillator consists of two
mutually inhibiting components (L vs R) that quickly settle in
antiphase, while adaptation ensures that periodic transitions
occur. The system is driven by external activation At. The
baseline activation At = 20 was held constant as in the original
implementation (24), resulting in an average 0.3 Hz oscillation
frequency. Perturbations of this external drive cause transient
changes in both amplitude and frequency, up to transient
loss of oscillation. This feature is exploited during olfactory
modulation (see Olfactory sensor). Turner activity is the
instantaneous di�erence in the firing rates �f = (fL ≠ fR)
and is scaled by a coe�cient ct to generate the oscillating
torque T = ct · �f . This is applied to the body which is
modeled as a torsional spring of restorative spring constant k,
causing lateral bending ◊b. The angular velocity is attenuated
by angular damping ratio z. It holds that :

◊̈or = T ≠ z · ◊̇or ≠ k · ◊b [2]
Gaussian noise is applied to both the input activation

At = N
!
Aú

t , nA · A
ú
t

"
and the output turner activity �f =

N
!
�fú, nT · �fú

"
.

In its original implementation the model deliberately ne-
glects two aspects of the real turning behavior of the larva.
First there is no distinction between bending ◊̇b and orienta-
tion ◊̇or angular velocities. Second there is no correction of the
bending angle ◊b due to forward motion. We tackle the first
via the bisegmental body so that ◊̇b between the front and rear
vector is distinct from the front vector’s ◊̇or. Regarding the
second, we introduce a simple linear bending-angle correction
as the rear vector is aligned to the front vector’s orientation
during forward motion, according to the equation :

◊Õ
b =

;
◊b · (1 ≠ d/dmax), if 0 Æ d < dmax

0, if d Ø dmax

dmax = l
2bc

[3]

where d is the linear displacement during a timestep, b and
bÕ are the original and corrected bending angles, l is the body
length and bc is the bend correction coe�cient which has been
fitted from the empirical data. In Fig. 8 E the resulting �◊b

correction during individual strides is plotted in relation to ◊b

at the beginning of the stride. The fitted linear curves show
close matching of empirical and simulated findings.

To calibrate the turner oscillator we need to determine
5 parameters, namely the torque coe�cient ct, the angular
damping ratio z, the restorative spring constant k and the noise
ratios nA, nT . To this end we analyze the angular dynamics
of a population of 200 larvae and compute the distribution
of 3 empirical metrics, namely bending angle ◊̂b, bend and
orientation angular velocities ˙̂◊b, ˙̂◊or. In order to find optimal
parameter combinations providing the best fit of simulated
and empirical distributions a two-step parameter space search
is performed :

• We first evaluate the function of the isolated turner oscil-
lator, in autonomous runs. We constrain the parameter

10 | Sakagiannis et al.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451470doi: bioRxiv preprint 



A

D

B C

E

Fig. 8. Model calibration A variety of behavioral metrics are used to optimize the locomotory model’s fit to empirical data. Here the final calibrated model is assessed in a
3-minute simulation of free exploration using a population of 200 virtual larvae. The simulated data (red) are compared to empirical data (blue) from a 3-minute free exploration
experiment of 200 real larvae. Data are pooled across individuals in each population. A: Crawl-bend interference. Mean scaled forward velocity (top) and orientation velocity
◊̇or (bottom) during strides. All detected strides across the entire populations have been interpolated to a common stride cycle from 0 to 2fi. Shaded areas denote first and
third quartiles. Dashed green lines show the cycle interval boundaries of unconstrained angular motion. Outside the boundaries angular motion is attenuated due to crawler
interference. B: Bout distribution. Dots describe the cumulative probability density over logarithmic bins for the length of stridechains and the duration of crawl-pauses. Lines
indicate the distribution with the lowest Kolmogorov-Smirnov distance among the best fitting power-law, exponential and log-normal distributions. Stridechain length and pause
duration are best approximated by log-normal distributions. C: Distribution of front and rear segment orientation change �◊orf

,�◊orr during individual strides. D: Bend
correction due to forward motion : Scatterplot of the bending angle change �◊b over individual strides relevant to ◊b at the beginning of the stride. Lines denote the fitted linear
curve for real and virtual larvae. E: Histograms of angular metrics using the optimal set of turner-relevant parameters as determined by the calibration process. The three
metrics shown are bending angle ◊b, bending and orientation angular velocities ◊̇b, ◊̇or .

space by selecting parameter combinations that fit the
range of the empirical metrics (first and fourth quartiles
within the empirical lower and higher halfs) without ◊b

overshooting the maximum allowed fi (data not shown).

• We then evaluate the turner-crawler integration in free
exploration simulations of virtual larva populations op-
timizing for best fit to the empirical distributions. The
results of the optimal parameter set is shown in Fig. 8 D.

Crawler-turner coupling. In order to reproduce bending behavior
during strides we define a phase interval Prange during which
the turner is free to exhibit its full e�ect on the body. Outside
this interval, the torque T generated by the turner is atten-
uated by a scalar coe�cient cat before being applied to the
body, according to the equation :

T =
;

T, if pc in Prange

cat · T, otherwise

where pc is the instantaneous phase of the crawling stride.
We calibrate the two parameters Prange and cat so that the

average orientation angular velocity ◊̇or during the stride cycle
fits the empirically measured. The results for Prange = [ fi

2 , fi]
and cat = 0.1 are shown in Fig. 8 A,bottom. Furthermore the
orientation change during individual strides for the front �◊or

and rear �◊orr segments fits well to empirical measurements
(Fig. 8 C).

Olfactory sensor. Olfaction is introduced in the second layer of
the control architecture allowing chemotactic behavior. The
olfactory sensor is located at the front end of the virtual larva
therefore any reorientation and/or displacement influences
sensory input. As in (14) we assume that olfactory perception
Ao relates to changes in odor concentration C according to the

Weber-Fechner law, meaning that �Ao ≥ ln �C. We further
add a decay term that slowly resets Ao back to 0. The rate of
change is given by the equation :

Ȧo = ≠Ao · co +
ÿ

i

Gi · Ċi

Ci
with ≠ 1 Æ Ao Æ 1 [4]

where co = 1 is the olfactory decay coe�cient, Gi is the
gain for odor i and Ci the respective odor concentration. Per-
ceived olfactory stimulation Ao modulates the turner activation
At from its baseline value At = 20 within a suitable range
Arange = [At

min, At
max] = [10, 40] :

At = Āt + Ao

!
At

lim ≠ Āt

"
[5]

where At
lim =

;
At

max ifAo Ø 0
At

min ifAo Æ 0
[6]

Parameter definition.

Segmentation and angular metrics. To specify the body segmen-
tation providing the most suitable contact/rotation point for
the definition of the correlated empirical bending ˙̂◊b and ori-
entation ˙̂◊or angular velocities we analyse their relationship
in a subset of 40 larvae. Tracking of 12 midline points allows
computation of the absolute orientation of 11 body-segments
and the respective 10 angles ◊1≠10 between successive body
segments (Fig. 2 F). We define ◊̂or as the head-segment orien-
tation because this defines the movement orientation of the
animal. We ask how ˙̂◊or results from the bending of the body
as this is captured by the 10 angular velocities ◊̇1≠10. The
regression analysis depicted in Fig. 9 B shows as expected
that ˙̂◊or depends primarily on the front angular velocities
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Fig. 9. Segmentation and velocity definition. A: Forward velocity definition. 24
candidate velocity metrics are compared for use in stride annotation of 3-minute tracks
of a population of 20 larvae. For each candidate the mean coefficient of variation of
temporal duration cvt and spatial displacement cvs of the annotated strides is shown.
The centroid velocity vcen provides the most temporally and spatially stereotypical
strides, therefore it is selected as the reference forward velocity for stride annotation
and model fitting. vcen : centroid velocity, v1 ≠ v12 : 1st-12th point’s velocity,
vc

2 ≠ vc
12 : 2nd-12th point’s component velocity parallel to the front segment’s orien-

tation vector. B: Regression analysis of individual and cumulative angular velocities
◊̇i=1≠10 to orientation angular velocity ˙̂◊or . When considered individually, ◊̇2 best
predicts reorientation with the ◊̇1 and ◊̇3 following. When considered cumulatively the
anterior 5 ◊̇i allow optimal prediction of reorientation velocity. C: Correlation analysis

of the sum of all possible ◊̇i combinations to ˙̂◊or . The sum
5q

i=1
◊̇i shows the highest

correlation therefore we define ◊̂b =
5q

i=1
◊i as shown in A. For illustration purposes

only the 5 highest correlations are shown.

while this dependence decays as we move towards the rear
segments, in line with previous studies (41). Timeshift anal-
ysis also shows that the front 3 angles change concurrently
while angles further down the midline are increasingly lagging
behind (data not shown). The correlation analysis depicted in
Fig. 9 C shows that the sum of the front 5 angular velocities
best correlates to ˙̂◊or. In other words the cumulative body
bend of the front 5 segments best predicts head reorientation.
Therefore we define the reorientation-relevant bending angle
as ◊̂b =

q5
i=1 ◊i (Fig. 2 F). The remaining 5 angles between

the rear body-segments can safely be neglected as they do
not contribute to reorientation. This analysis results in a
segmentation of the body in a front and a rear segments of
length ratio 5:6. The segmentation process is demonstrated in
Video 1.

Forward velocity. To define forward velocity we need to choose
which midline-point is most suitable to track and which veloc-
ity metric to use for defining the start and end of a stride. To
this end we perform stride annotation of 3-minute tracks of a
population of 20 larvae using each of 24 candidate instanta-
neous velocity metrics, namely the velocities of the 12 points,
the component velocities of the rearest 11 points parallel to
their front segment’s absolute orientation and finally the cen-
troid velocity. To compare the candidate metrics we compute
the spatial cvs and temporal cvt coe�cient of variation of the
annotated strides for each larva to assess how variant their time
duration and displacement is. We finally compute the mean
cvs and cvt across individuals. In Fig. 9 A the spatiotemporal
stride variance is shown for each candidate metric. We choose
the metric that provides the minimal spatial and temporal
stride variance, assuming that strides of an individual larva are
more or less stereotypical in both duration and displacement
(23). Our study reveals that the centroid velocity is the most
suitable metric for stride annotation. All spatial metrics are
therefore computed via this point’s displacement.

The instantaneous body-length of an individual larva fluc-
tuates due to subsequent stretching and contraction during
crawling. Its histogram is well fitted by a Gaussian distribu-
tion (data not shown). Therefore individual larva length l
was computed as the median of the midline length across time
(total length of the line connecting all 12 midline points). All
spatial parameters, including displacement and velocity, are
scaled to this body-length.

To analyze the temporal dynamics of crawling we perform
spectogram analysis of the linear velocity. The dominant
frequency fc across a plausible range of 0.75 to 2.5 Hz is
defined as the crawling frequency. We use the inverse of this
frequency f≠1

c as a reference for the expected stride duration
during stride annotation.

Epoch annotation. Strides are annotated using the forward ve-
locity v timeseries, under a number of constraints (Fig. 2
C):

• Each stride epoch is contained between two v local min-
ima.

• The v local maxima contained in the epoch needs to be
higher than the mean.

• The duration of the epoch needs to be between 0.6 and
1.6 times the reference stride duration tstr = f≠1

c , where
fc the crawling frequency.This allows individual strides
to temporally vary without overlapping so that adjacent
strides can be concatenated in stridechains.

Stridechains are defined as uninterrupted sequences of suc-
cessive strides (Fig. 2 C). Stridechain length equals the number
of concatenated strides and is a discrete metric equivalent to
crawl-run duration. Pauses are defined as epochs containing
no strides. After stride annotation the resulting displacement
due to each individual stride is computed for each larva and
divided by the larva’s body-length (Fig.2 A-C). The individual
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distributions are well fitted by Gaussians (data not shown).
Therefore stride displacement dstr is defined as the average
scaled displacement per stride for each larva.

Turn epochs are contained between pairs of successive sign
changes of orientation angular velocity ˙◊or. For each epoch
the turning angle ◊turn is defined as the absolute total change
of orientation angle �◊or (Fig. 2 G).

Supplementary videos. Here we provide the supplementary
videos cited in the text. Videos can be played by clicking on
the image frame.

Video 1. Bisegmental larva-body simplification The first video shows the original

larva body as recorded by the tracker. 12 points are tracked along its longitudinal axis

defining 11 segments while 22 points constitute the body contour. In the second

video the body contour is dropped. In the third video an artificial rectangular contour

is added for each body segment. In the last video the body-midline is segmented into

2 segments. The absolute head orientation angle ◊̂or is preserved while the single

bending angle between the 2 segmentw is defined as ◊̂b =
q5

i=1
◊i

Video 2. Locomotory model for Drosophila larva The function of the locomotory

model in Fig. 1 B is illustrated by gradually integrating its 4 modules (crawler, turner,

oscillator-coupling, crawling-intermittency). In each of the 6 videos the implemented

modules are shown in the inset.
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5 DISCUSSION

5 Discussion

This thesis comprises four manuscripts in three chapters that examine different aspects
of the Trias of stimulus representation (Chapter 2.1), the formation of associations
(Chapters 3.1, 3.2) and the initiation of anticipatory behavior in the insect MB
(Chapters 3.1, 4.1), that we studied in computational models of the Drosophila
olfactory pathway and MB with varying levels of abstraction and on different substrates
(Chapters 2.1, 3.1, 3.2). Additionally, we used a locomotory model of the Drosophila
larva body as a virtual agent in simulated experiments (Chapters 3.1, 4.1).

In a spiking network of the larval olfactory pathway and MB, we showed that both
population and temporal sparseness can be achieved via feedback inhibition within the
MB. Temporal sparseness can also be increased by spike frequency adaptation. We then
successfully verified the robustness of these mechanisms by additionally implementing
them on neuromorphic hardware. The Drosophila MB has been investigated extensively
as a model for associative learning (larva: [42, 43, 47, 48, 94, 106], adult: [49–51,
53, 56, 87, 100, 107]), and population sparseness has been shown to increase pattern
separation by decreasing overlap [22–24], which can be beneficial for learning [108–
110]. In implementing mechanisms for increasing the sparseness of odor representations
suggested playing a role in the insect antennal lobe and MB (lateral inhibition: [31,
111–114], feedback inhibition: [40, 115], spike-frequency adaptation: [116, 117]) and
demonstrating that they enhance odor separability in this system, we investigated an
important feature underlying efficient learning in the MB (Chapter 2.1). Additionally,
we showed that increased distance between odor patterns prevents the Drosophila larva
MB from generalizing between odors in a reward-learning experiment using a spiking
network (Chapter 3.1).

The formation of associations between sensory inputs in the insect MB depends on
detecting their coincidence [11–14]. In a spiking network of the Drosophila larva MB,
we showed that this concept of coincidence detection at the synapses between KCs and
MBONs can be extended in time by implementing an eligibility trace at the plastic
synapses, creating a time window for the integration of sensory input and reinforcement
(Chapter 3.1). Experimental evidence from the larval MB hints at the presence of such
a trace [47, 118, 119]. We further investigated the temporal dynamics of associative
learning, given prolonged simultaneous sensory input and reinforcement encoded by
DANs. DANs play an essential role in the formation of associations in the MB and
have been argued to respond to reinforcement, depending on the learning history in
vertebrates [99, 120–123]. A similar role has been discussed in the Drosophila literature
[42, 89, 91]. We implemented a feedback mechanism giving the reinforcement-mediating
DANs access to the learning history and demonstrated that this affects the acquisition
of associations in the MB by decreasing the driving force in the learning process; as the
pairing of an odor with reinforcement continues, a mechanism referred to as prediction
error (Chapter 3.1). This mechanism could explain the temporal dynamics observed
in larval learning experiments (Chapter 3.1). Once associations of sensory stimuli with
reinforcement are formed, the sensory stimuli can also serve as indirect reinforcement,
a phenomenon referred to as second-order conditioning, which has also been discussed
to be mediated by the DANs [124–126]. We explored mechanisms for DAN-mediated
second-order conditioning in the MB using minimal rate models inspired by the adult
Drosophila MB and suggest multiple biologically plausible feedback and feed-forward
computational motifs for second-order conditioning (Chapter 3.2).
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5 DISCUSSION

While computational models of the insect MB have been used successfully by us
and many others to investigate the different mechanisms of learning in the insect MB
[42, 108, 127–135] the difficulty of comparing MB readout with animal behavior in
experiments remains an issue. We used a locomotory model of the larval Drosophila
body to bridge this gap and allow direct comparisons between simulated and animal
experiments with high temporal resolution (Chapters 3.1, 4.1). The virtual agent
representing a single animal consists of a two-segmental body that combines forward
movement with bending behavior, which characterizes active sensing. We showed that
one of the influences on the agent’s behavior is the MB readout, which represents the
result of learning processes, directly affecting their movements towards or away from
an odor source (Chapters 3.1, 4.1).

5.1 Mushroom body readout

In the learning MB models in this thesis (Chapters 3.1, 3.2), the difference between the
output spikes or rates, respectively, of two MBONs was used to compute a behavioral
tendency for approach or avoidance. Traditionally, most Drosophila MBONs have
been viewed as approach or avoidance signaling, depending on their compartmental
localization with different types of modulatory neurons (larva: [43, 66], adult:[44, 51,
53–55, 65, 88]). Approach and avoidance of stimuli is the observed and quantified
measure of learning in the experiments that inspired the modeling work in this thesis.
While serving its purpose in these modeling experiments, viewing the MB output as
merely signaling either one of these opposite behaviors might be overly simplified,
considering the complex integration and association processes occurring in the MB
based on sensory input of different modalities that are integrated into the MB, as has
been shown in adult [44–46, 136] and larval Drosophila [42, 43], as well as other insect
species [137–139].

Throughout the literature, the labels valence and preference are used fairly inconsis-
tently. Here, I will use them according to the following definitions:

Valence is the specific value of a stimulus to an animal that can either be
positive, negative, or neutral. Valence can refer to an innate or learned property.
Innate valence is based on the natural relevance of the stimulus to an animal (e.g. food)

Preference is an animal’s tendency to bias its actions when confronted with a
sensory stimulus/cue. It is an often behaviorally expressed indicator of the valence of
the respective stimulus.

5.1.1 Mushroom body projections to pre-motor areas

Following the integration of multisensory external and potentially internal input and
learning, the output of the MB has been shown to be involved in initiating behav-
ior in Drosophila [51–53, 56] and the cockroach [140]. Additionally, Hancock et al.
[52] showed that blocking �1 MBON output abolishes specifically learned behavior.
MBONs project to pre-motor areas, as demonstrated in Drosophila (larva: [42, 48],
adult: [44, 49]) and the cockroach [141, 142]. Plasticity at the synapses between the
KCs and MBONs induces a shift in the activity of MBONs in response to a learned

110



5 DISCUSSION

sensory cue (larva: [48], adult: [50–53]) and it has been suggested that this would
also affect the activity of MBON downstream partners [53, 56]. MBONs in the adult
Drosophila have been shown to be glutamatergic, GABAergic or cholinergic [44, 53]
and innervate different compartments, depending on the transmitter they employ [44].
The general principle in the connectivity downstream of the MBONs seems to be con-
vergence onto common targets [44], while some few MBONs have been demonstrated
to innervate other MBONs [49]. Most MBON downstream partners are located in the
same few regions [44]. Concerning motor control and the initiation of behavior, the
central complex and the lateral horn (LH) are especially relevant MBON targets [44].
The central complex is innervated by MBONs directly or via interneurons [44] and is
a highly relevant region for directed locomotion in Drosophila [143].

5.2 Using computational models to study learning in the mush-

room body

Neuroscience research investigates, among other things, which structure or circuit in
the brain is responsible for which function and potentially the underlying mechanism.
One of the tools used in this is models. The modeling approach can be driven either by a
bottom-up or top-down perspective. Bottom-up approaches are inspired by knowledge
about structures, such as the connectome of a brain region. They allow us to test
hypotheses about the localization of a particular function or even its exact mechanism.
On the other hand, top-down models seek to explore potential circuits or mechanisms
behind observable phenomena. They allow for a more explorative perspective and can
generate hypotheses for experimental testing.

Another way of categorizing types of models can be their level of abstraction. This
can range from purely mathematical models designed to capture relationships between
variables to circuit models of varying degrees of richness of details. An example of the
first type would be the Rescorla-Wagner model [144], an old yet influential model of
associative learning. The advantage of such models is that they can offer direction and
a framework that overarches species and scientific disciplines. They can contribute to
identifying the biological implementation of their conceptual components (Chapter 3.1).
More detailed models of neurons and circuits (Chapters 3.1, 3.2) can range from rate
models that reduce each neuronal unit to its output rate to including the morphology of
individual neurons (for an overview, see [145]). The level choice depends on the specific
question targeted, as a more naturalistic model is likely more difficult to interpret, a
consideration of the computational resources required, and the knowledge about the
neurons/circuits in question. For example, a very detailed type of model that considers
the characteristics of different types of ion channels requires a lot more detailed prior
knowledge about the neuron characteristics to yield meaningful results. It stands to
reason that sometimes, a more abstract and simple model could be the better choice.

When using a type of model that includes the process of integration of input into
neurons, the timing of spikes can be extracted. This is possible whenever the mem-
brane voltage is recorded and threshold crossings are interpreted as spike events. This
applies to many different spiking neuron models, from complex Hodgkin-Huxley type
models [145] to more simple integrate-and-fire type neurons [145]. The evolution of the
membrane potential, as a response to external or network input and (to a varying ex-
tent) neuron-internal changes, can be read out. This allows the capture of a spike train
at high temporal resolution. Rate models, on the other hand, bypass this integration
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process and rely on neuron units that receive and output only a rate. Often, they can
have great explanatory power for effects regarding the circuit or external input. Since
the information about the timing of spikes is not captured, they don’t allow the study
of effects with high fluctuation. They are also, to some extent, blind to phenomena of
spike-timing, like adaptation or bursting.

Overall, different types of models are very valuable tools in neuroscience, making
different circuit elements easily accessible for readout to generate or test hypotheses.
Both bottom-up and top-down approaches can contribute helpful insights. An ad-
ditional advantage is that computational models allow for very clean and controlled
experiments. To fully exploit their potential, they have to be combined with experimen-
tal approaches that provide models with relevant underlying anatomical and functional
data or test the model predictions generated in an artificially reduced and constrained
circuit in the complete animal brain.

5.2.1 Behavioral measures of Drosophila learning

One of the challenges of transferring knowledge between modeling and animal exper-
iments is the different types of learning measures used. Adult and larval Drosophila
in their normal life outside a lab are confronted with different levels of challenges and
environmental complexity. While the adult fly, as a flying insect, lives in a higher
dimensional world than the larva, it is also faced with a broader range of tasks. It
needs to locate food, mates, and egg-laying sites and perform a range of behaviors
at these locations [61]. The larva, on the other hand, spends this entire phase of the
Drosohila life span on its food source (the egg-laying site), and its main focus is on
feeding [61]. In learning experiments, flies are usually trained to learn the positive or
negative valence of a stimulus. Thus, behavioral measures of this valence focus on a
resulting behavioral preference towards approach or avoidance of these stimuli.

In most olfactory learning experiments conducted with larvae, the animals are ex-
posed to odors inside a covered petri dish layered with a rewarding food [146] or pun-
ishing salt [147] substrate. During a test phase, they are allowed to move around in
another dish freely, given a choice between a trained vs. untrained odor on each side in
the standard protocol [146, 147] or the trained vs. no odor [148]. After a given amount
of time, the number of larvae on each side is compared. These protocols assume that
the animals tend to orient their heads towards a previously rewarded odor source and
then move towards it and vice versa for punished odors. When an attractive odor is
detectable in the air, foraging consists of a combination of crawling and turning [149].
Larvae employ active sensing to navigate along chemical gradients [150] towards an
odor source. Their forward locomotion is accompanied by lateral bending [151] for
active sensing and tracking the gradient. Moving towards an appetitive odor source,
accompanied by an increase in odor concentration, suppresses bending and turning
[150, 152, 153]. This leads to a straighter, faster movement toward the odor sources
and increases the number of animals on the respective side of the dish. The opposite
is true for an aversive odor source.

In most experiments conducted with adult flies, electric shock was used as punish-
ment. Tully and Quinn first developed the punishing protocol [154] and it has been
used continuously since then, even though the mechanical implementations have been
updated [155]. The protocols feature odors in an airstream in combination with pulses
of electric shock. Appetitive conditioning protocols use water in thirsty animals [95] or
sugar, following a protocol as introduced by Tempel et al. [156]. Preference is usually
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quantified in a T-maze setup, presenting a reinforced training odor on one side and
another odor, never paired with reinforcement on the other side. The T-maze, as a
setup for testing preference, easily allows quantification of this preference by counting
the number of animals on either side. Aside from locomotory behavior, the extension
(or retraction) of the proboscis, which is a part of the animal’s feeding behavior, was
established as an indicator of odor preference [157] but seems rarely used.

5.2.2 Comparing measures of preference between model and animal ex-
periments

Preference, as measured in behavioral experiments, is thus not directly comparable
with the typically used MBON output reported in modeling studies of insect MBs [42,
108, 127–134]. While some Drosophila lab experiments report a measure of preference
directly at the MB output by quantifying the activity of MBONs (larva: [48], adult:
[50–53]), often the model MB readout has to be compared to animal behavior. Chap-
ters 3.1 and 4.1 present one method for doing that by linking the simulated MB output
with the locomotory control architecture of a virtual larval agent that accounts for the
odor preference, as read out from the MBONs, when initiating locomotory behavior in
a virtual petri-dish that resembles the test environment in larval lab experiments [146,
147]. Similar simulations of behavior have been used by others to enhance comparabil-
ity with experiments of Drosophila behavior in learning experiments (larva: [132, 158],
adult: [135]). The larva, with its robust body, also lends itself to implementation in
robotics beyond just virtual agents [159]. Adding the component of a physical substrate
to agent behavior can make the integration of environmental stimuli and the learning
process even more realistic and enforce the synchronization of the MB learning and
agent behavior temporal resolution. If the sensors and the materials are well chosen,
robots can add a more realistic level of sensory feedback about both the environment
and their own body [159, 160] compared to a virtual agent. Additionally, passive dy-
namics can add another layer of complexity to the larval body and create more robust
and naturalistic behavior in the physical world [161].
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In the following, I will, among other things, discuss three additional components
relevant to the framework of stimulus representation (Chapter 2.1), learning (Chapters
3.1, 3.2), and the initiation of anticipatory behavior (Chapters 3.1, 4.1 ) that are
not covered in these chapters. These components are highlighted in red in Figure 2
and refer to the influence of innate valence of stimuli and that of internal states on the
three components of the Trias.

Figure 3: The role of innate valence and internal state on the proposed
relationship between sensory integration, learning, and the initiation of be-
havior. Dense multisensory input is integrated into higher-order processing centers,
where coincidences among them and with reinforcement are detected, and associations
are formed between concurrently active sensory inputs, internal states, and reacti-
vated prior knowledge (learned or innate). The initiation of behavior depends on the
integrated output of the higher-order processing center, signaling learned valence, com-
pared against behavioral preferences based on potential innate valences. The execution
of a behavioral preference can be influenced by an animal’s abilities in the respective
situation and by environmental factors. Colored in red are the motif components not
included in this thesis’s three chapters.
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5.3 The influence of internal states

Internal states can modify sensory integration and learning in the MB and thus also
influence the MB output [107, 162–164]. Internal states such as hunger or fear repre-
sent strong motivational forces in animal behavior. In the �-lobe of the MB in adult
Drosophila, hunger has been shown to modify the synapses between the KCs and the
MBONs in olfactory learning by altering the KC odor response in the presence of sugar
after fasting [162] and potentiating synaptic transmission [162] through an increased
salience of a sugar reward after fasting. Siju et al. [163] varied the hunger state of
adult Dsosophila between two starved and a single fed condition and observed mod-
ulation of the sugar response of DANs in some compartments. The state variation
between mated and virgin also modulates learning at the synapses between the KCs
and MBONs [107, 163]. Mating increased the response of DANs innervating the MB
to pheromones [107, 163], as well as enabling pheromone-triggered activation of the
�
01-MBONs. Overall, there is evidence that both behavioral and intrinsic motivational

states influence sensory integration and learning in the MB on multiple levels.

5.4 The integration of innate and learned valences

Both in larval [165–168] and adult [169] Drosophila many odors appear to have some
innate positive or negative valence. Such innate valences lead to preferences that
have been shown to initiate behavior (larva: [48, 167], adult: [169, 170]). This could
potentially affect learning processes and behavior initiation on different levels. Firstly,
the formation of an association between reinforcement and an odor that has an innate
valence might differ from the formation of an association with a neutral odor. It seems
important to understand how the innate valence of a stimulus might affect the dynamics
of the acquisition of a reinforcement association with it, as well as how associative
learning modifies the innate valence of a given stimulus. Secondly, an innate odor
valence might influence the behavioral preference generated by the MB downstream of
the associative learning process and thus affect the actual initiation of the respective
behavior. Determining the site of the integration of an innate and learned valence of
a stimulus is thus a relevant question that targets whether or not innate and learned
valence is encoded in separate pathways and, if so, where they converge.

5.4.1 Encoding of innate valence in the lateral horn

It has been argued that innate valences of stimuli might be encoded in the LH [169,
171–173] and suggested that the integration of innate and learned valences takes place
downstream of the MB at a point of convergence between the MB and the LH pathways
(larva:[48], adult: [169, 173]). Both types of valences are likely encoded in different
pathways in larval [43, 48, 61, 63] and adult [174, 175] Drosophila. In the olfactory
system, projection neurons project to both the MB and the LH in a divergent manner
(larva: [43, 61], adult: [76, 174, 176, 177]). Amin et al. [176] described a potential
motif for representing innate valence among the LH neurons. Some types of receptors
are very specific to biologically highly relevant stimuli, such as pheromones, as shown
in adult Drosophila [175, 178, 179]. They might lay grounds for particular hard-wired
connections to the LH, allowing the LH to encode their innate valence. Additionally,
glomeruli in the antennal lobe are distinctly activated by either aversive or attractive
odors in adult Drosophila [180]. While some LH neurons are broadly tuned, some
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respond specifically to a particular type of projection neuron from the antennal lobe,
potentially transferring the encoded valence to the LH [173]. These authors show that
the representations of innately positively and negatively valent odors are clearly seg-
regated among the LH neurons [173]. The valence encoded in the activation pattern
of the antennal lobe glomeruli would not persist in the MB due to the random con-
nectivity between the antennal lobe projection neurons and the MB intrinsic neurons
[46]. However, recently, the postulated strict roles of the MB and the LH in encoding
learned vs. innate valence, respectively, have been challenged by the observation that
context-dependent memory might be mediated by neurons in the LH, independently
of the MB [181]. Furthermore, the MB has been shown to be involved in some specific
innate behavioral preferences in adult Drosophila [164, 182, 183].

5.4.2 Sites of integration

Eschbach et al. [48] studied the MB output region in the larva and found a convergence
of the MB and LH pathway onto neurons downstream of the MB output neurons, which
they, therefore, term convergence neurons. They investigate different MB output neu-
rons that either promote or suppress turning behavior and find inhibitory interactions
between those encoding different behavioral preferences, as well as synapses of these
MBONs, onto LH neurons and vice versa. Additionally, they more closely examined a
particular convergence neuron and found that it receives both functionally excitatory
and inhibitory feedback from MB output neurons, encoding approach and avoidance,
respectively, and input from the LH [48]. They also found that an innately positive odor
causes activation of this particular convergence neuron, even in the absence of MB in-
put [48]. They argued that these convergence neurons might be the location of innate
and learned valence integration and demonstrated that their optogenetic activation
could suppress turning and foster crawling behavior [48]. In the adult, a convergence
pathway has been found in some LH output neurons [44, 169]. These neurons receive
input from projection neurons in the antennal lobe, as well as from particular MBONs
[44, 169]. The authors demonstrate that these LH output neurons are relevant for en-
coding innate valence and necessary for memory retrieval and behavior after training
[169].

The involvement of DANs in the integration of innate and learned valences has
recently been investigated in larval [48] and adult [184] Drosophila. Huang et al. [184]
showed that DANs that are activated by punishment are also activated by odors that
elicit innate avoidance behavior in their experiments. Inspired by this observation, they
demonstrate that these dopaminergic neurons integrate innate and learned valences of
odors. The dopaminergic teaching signal for plasticity at the synapses between MB
intrinsic and output neurons is thus modified by the intrinsic valence of odors used
in learning experiments [184]. In the larva, connections between convergence neurons
and dopaminergic neurons have been found. Some of these connections are indirect via
interneurons [48].

5.4.3 The bi-directional interaction between innate and learned valence

Many odors are innately valent in Drosophila (larva: [165, 166, 185], adult: [180, 185,
186]), and an innate valence might affect learning about associations with that stimulus,
as well as learning might alter the innate valence of it. Saumweber et al. [167] showed
that the strength of the innate behavioral preference in larvae can vary between odors.
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When comparing the preference for different odors against the same control order
after learning, they found that for some odors, the strength of the innate preference
influenced the preference after learning. For these odors, higher innate preference
caused a higher preference after learning [167]. In the case of another combination
of odors with different innate valences, the larvae showed a similar preference after
training for both odors compared to the same control odor, respectively [167]. Their
experiments also revealed that while odors differ in the degree of innate preference they
elicit, this preference also depends on odor concentration, which can shift the relative
innate preference between two odors [167]. Few learning experiments in Drosophila
directly targeted the change of behaviorally expressed stimulus preference over the
time course of the experiment. In the larva, it has been shown that pairing with
reinforcement can enhance the innate valence of odors [167], while pairing an innately
attractive odor with punishment could reverse the odor valence in adult Drosophila
[154]. While direct tests of this are scarce, other studies show differences in MBON
output before and after training, indicating a change in the preference during learning
[50–52, 56]. Behaviorally expressed preferences in the larva can also be enhanced [187–
190] or shifted [189, 190] concerning what we can assume about their innate preferences
[165–168]. The direction depends on the type of reinforcement used.

5.5 Conclusion

In the manuscripts that comprise this thesis, we covered different aspects of the Trias
of sensory representation, learning, and anticipatory behavior. Using the Drosophila
olfactory pathway and the MB, we contributed to understanding the mechanisms and
relevance of sparse sensory representations (Chapter 2.1), key features of associative
learning, such as coincidence detection and prediction error (Chapters 3.1, 3.2), as
well as the link between MB output, behavioral preference, and adaptive behavior
(Chapters 3.1, 4.1). The discussion covered two main areas in which the models
used in these manuscripts fall short of capturing relevant components of generating a
behavioral preference: The integration of internal states and innate valences.

The exclusion of innate stimulus valences from the processing and learning frame-
work causes difficulties in the comparability with behavioral experiments, especially
when studying the temporal dynamics of the acquisition of associations, and has pro-
duced some initially unexpected results because the animals seem not to be naive at
the beginning of the experiments (Chapter 3.1).

Likewise, internal states are missing here but have been shown to influence learning
in the MB [107, 162–164]. It is rare for models of MB learning to include internal states
[132]. Jiang et al. [132] included fluctuations in the activity of DANs in their network
that represent transitions between different internal states [162, 163]. They show that
this allows for associations between such states and sensory stimuli that can co-exist
with other learned associations between stimuli and reinforcement. This suggests that
accounting for varying states might be a valuable addition to models to reproduce more
realistic animal behavior.
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5.6 Towards comprehensive circuit models for parallel valence

representation and integration

Stimuli of innate valence (larva: [48, 167], adult: [169, 170]) or that acquired through
associative learning (larva: [43, 66], adult:[44, 51, 53–55, 65, 88]) elicit a range of
approach or avoidance behaviors in Drosophila. Associative learning comprises various
processes, such as acquisition, maintenance, forgetting on different timescales, and
extinction learning, which requires associations to be retained for potential recovery.
Some of these phenomena, such as the loss of an association [144, 191–194] either
due to extinction or forgetting, higher order conditioning without a decline in the
association [124, 195], or the association of a single stimulus with positive and negative
reinforcement [93, 196] appear contradictory and would likely be mutually exclusive if
encoded within a single valance representation. The coexistence of these phenomena
hints at the existence of multiple, parallel innate and learned valence representations.

Consequently, the LH and MB output circuitry must retain multiple valences in par-
allel. Their integration is required momentarily to initiate behavior. The temporary
blend of sensory stimuli and contextual information at retrieval presumably determines
the exact combination of valence representations. The highly parallel, compartmental-
ized output circuitry of the MB enables the different compartments to encode different
valences [48, 50–53]. The combined output across multiple compartments yields an
additive effect on behaviorally expressed valence [53], attributed to the combination of
excitatory and inhibitory neurotransmitters employed by MB output neurons encoding
opposing valences [197, 198]. In combination with interactions between MBONs of dif-
ferent compartments [44, 51, 88] and inter-compartment interactions between MBONs
and modulatory neurons [42, 44, 49], several mechanisms emerge that might contribute
to an integration of different learned valences at the output of the MB. A candidate
mechanism for integrating innate and learned valence is the convergence of the LH
and MB pathways [44, 48, 169] as the activity of their convergence neurons has been
shown to initiate behavior [48, 169]. Additionally, dopaminergic neurons are activated
by reinforcement and odors that elicit innate avoidance behavior [184] and connections
between convergence neurons and dopaminergic neurons have been found in the larva
[48].

To date, models of learning in the MB have mostly simplified the underlying cir-
cuit structure and viewed its output as a unified valence, resulting in a preference for
approach or avoidance[104, 128–131, 134]. Few have explored more diverse output cir-
cuits [132, 135] to enable parallel representations in a more variable and interconnected
output circuitry but ignore the LH pathway and the role of innate valence. Building on
this, the development of more comprehensive models that consider the parallel MB and
LH output circuitry and their convergence emerge as a promising continuation of prior
research to investigate further the mechanisms underlying the initiation of behavior.
Using computational circuit models, the different components of the MB and LH out-
put circuitry could be queried continuously throughout a learning process to provide
simultaneous insights into parallel valence representations and their interactions and
integration at retrieval.
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