45,677 research outputs found

    The mechanisms of tinnitus: perspectives from human functional neuroimaging

    Get PDF
    In this review, we highlight the contribution of advances in human neuroimaging to the current understanding of central mechanisms underpinning tinnitus and explain how interpretations of neuroimaging data have been guided by animal models. The primary motivation for studying the neural substrates of tinnitus in humans has been to demonstrate objectively its representation in the central auditory system and to develop a better understanding of its diverse pathophysiology and of the functional interplay between sensory, cognitive and affective systems. The ultimate goal of neuroimaging is to identify subtypes of tinnitus in order to better inform treatment strategies. The three neural mechanisms considered in this review may provide a basis for TI classification. While human neuroimaging evidence strongly implicates the central auditory system and emotional centres in TI, evidence for the precise contribution from the three mechanisms is unclear because the data are somewhat inconsistent. We consider a number of methodological issues limiting the field of human neuroimaging and recommend approaches to overcome potential inconsistency in results arising from poorly matched participants, lack of appropriate controls and low statistical power

    Neural population coding: combining insights from microscopic and mass signals

    Get PDF
    Behavior relies on the distributed and coordinated activity of neural populations. Population activity can be measured using multi-neuron recordings and neuroimaging. Neural recordings reveal how the heterogeneity, sparseness, timing, and correlation of population activity shape information processing in local networks, whereas neuroimaging shows how long-range coupling and brain states impact on local activity and perception. To obtain an integrated perspective on neural information processing we need to combine knowledge from both levels of investigation. We review recent progress of how neural recordings, neuroimaging, and computational approaches begin to elucidate how interactions between local neural population activity and large-scale dynamics shape the structure and coding capacity of local information representations, make them state-dependent, and control distributed populations that collectively shape behavior

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems

    Visual Feature Attribution using Wasserstein GANs

    Full text link
    Attributing the pixels of an input image to a certain category is an important and well-studied problem in computer vision, with applications ranging from weakly supervised localisation to understanding hidden effects in the data. In recent years, approaches based on interpreting a previously trained neural network classifier have become the de facto state-of-the-art and are commonly used on medical as well as natural image datasets. In this paper, we discuss a limitation of these approaches which may lead to only a subset of the category specific features being detected. To address this problem we develop a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN), which does not suffer from this limitation. We show that our proposed method performs substantially better than the state-of-the-art for visual attribution on a synthetic dataset and on real 3D neuroimaging data from patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). For AD patients the method produces compellingly realistic disease effect maps which are very close to the observed effects.Comment: Accepted to CVPR 201

    Neuroprediction and A.I. in Forensic Psychiatry and Criminal Justice: A Neurolaw Perspective

    Get PDF
    Advances in the use of neuroimaging in combination with A.I., and specifically the use of machine learning techniques, have led to the development of brain-reading technologies which, in the nearby future, could have many applications, such as lie detection, neuromarketing or brain-computer interfaces. Some of these could, in principle, also be used in forensic psychiatry. The application of these methods in forensic psychiatry could, for instance, be helpful to increase the accuracy of risk assessment and to identify possible interventions. This technique could be referred to as ‘A.I. neuroprediction,’ and involves identifying potential neurocognitive markers for the prediction of recidivism. However, the future implications of this technique and the role of neuroscience and A.I. in violence risk assessment remain to be established. In this paper, we review and analyze the literature concerning the use of brain-reading A.I. for neuroprediction of violence and rearrest to identify possibilities and challenges in the future use of these techniques in the fields of forensic psychiatry and criminal justice, considering legal implications and ethical issues. The analysis suggests that additional research is required on A.I. neuroprediction techniques, and there is still a great need to understand how they can be implemented in risk assessment in the field of forensic psychiatry. Besides the alluring potential of A.I. neuroprediction, we argue that its use in criminal justice and forensic psychiatry should be subjected to thorough harms/benefits analyses not only when these technologies will be fully available, but also while they are being researched and developed

    An introduction to time-resolved decoding analysis for M/EEG

    Full text link
    The human brain is constantly processing and integrating information in order to make decisions and interact with the world, for tasks from recognizing a familiar face to playing a game of tennis. These complex cognitive processes require communication between large populations of neurons. The non-invasive neuroimaging methods of electroencephalography (EEG) and magnetoencephalography (MEG) provide population measures of neural activity with millisecond precision that allow us to study the temporal dynamics of cognitive processes. However, multi-sensor M/EEG data is inherently high dimensional, making it difficult to parse important signal from noise. Multivariate pattern analysis (MVPA) or "decoding" methods offer vast potential for understanding high-dimensional M/EEG neural data. MVPA can be used to distinguish between different conditions and map the time courses of various neural processes, from basic sensory processing to high-level cognitive processes. In this chapter, we discuss the practical aspects of performing decoding analyses on M/EEG data as well as the limitations of the method, and then we discuss some applications for understanding representational dynamics in the human brain
    • …
    corecore