3,559 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A novel mechanical analogy based battery model for SoC estimation using a multi-cell EKF

    Full text link
    The future evolution of technological systems dedicated to improve energy efficiency will strongly depend on effective and reliable Energy Storage Systems, as key components for Smart Grids, microgrids and electric mobility. Besides possible improvements in chemical materials and cells design, the Battery Management System is the most important electronic device that improves the reliability of a battery pack. In fact, a precise State of Charge (SoC) estimation allows the energy flows controller to exploit better the full capacity of each cell. In this paper, we propose an alternative definition for the SoC, explaining the rationales by a mechanical analogy. We introduce a novel cell model, conceived as a series of three electric dipoles, together with a procedure for parameters estimation relying only on voltage measures and a given current profile. The three dipoles represent the quasi-stationary, the dynamics and the istantaneous components of voltage measures. An Extended Kalman Filer (EKF) is adopted as a nonlinear state estimator. Moreover, we propose a multi-cell EKF system based on a round-robin approach to allow the same processing block to keep track of many cells at the same time. Performance tests with a prototype battery pack composed by 18 A123 cells connected in series show encouraging results.Comment: 8 page, 12 figures, 1 tabl

    Extended morphometric analysis of neuronal cells with Minkowski valuations

    Full text link
    Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore