1,569 research outputs found

    Neural-Kalman Schemes for Non-Stationary Channel Tracking and Learning

    Get PDF
    This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM), a widely-used method of data transmission in wireless communications, when abrupt changes occur in the channel. In highly mobile applications, new dynamics appear that might make channel tracking non-stationary, e.g. channels might vary with location, and location rapidly varies with time. Simple examples might be the di erent channel dynamics a train receiver faces when it is close to a station vs. crossing a bridge vs. entering a tunnel, or a car receiver in a route that grows more tra c-dense. Some of these dynamics can be modelled as channel taps dying or being reborn, and so tap birth-death detection is of the essence. In order to improve the quality of communications, we delved into mathematical methods to detect such abrupt changes in the channel, such as the mathematical areas of Sequential Analysis/ Abrupt Change Detection and Random Set Theory (RST), as well as the engineering advances in Neural Network schemes. This knowledge helped us nd a solution to the problem of abrupt change detection by informing and inspiring the creation of low-complexity implementations for real-world channel tracking. In particular, two such novel trackers were created: the Simpli- ed Maximum A Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF) schemes. The SMAP is a computationally inexpensive, threshold-based abrupt-change detector. It applies the three following heuristics for tap birth-death detection: a) detect death if the tap gain jumps into approximately zero (memoryless detection); b) detect death if the tap gain has slowly converged into approximately zero (memory detection); c) detect birth if the tap gain is far from zero. The precise parameters for these three simple rules can be approximated with simple theoretical derivations and then ne-tuned through extensive simulations. The status detector for each tap using only these three computationally inexpensive threshold comparisons achieves an error reduction matching that of a close-to-perfect path death/birth detection, as shown in simulations. This estimator was shown to greatly reduce channel tracking error in the target Signal-to-Noise Ratio (SNR) range at a very small computational cost, thus outperforming previously known systems. The underlying RST framework for the SMAP was then extended to combined death/birth and SNR detection when SNR is dynamical and may drift. We analyzed how di erent quasi-ideal SNR detectors a ect the SMAP-enhanced Kalman tracker's performance. Simulations showed SMAP is robust to SNR drift in simulations, although it was also shown to bene t from an accurate SNR detection. The core idea behind the second novel tracker, NNKFs, is similar to the SMAP, but now the tap birth/death detection will be performed via an arti cial neuronal network (NN). Simulations show that the proposed NNKF estimator provides extremely good performance, practically identical to a detector with 100% accuracy. These proposed Neural-Kalman schemes can work as novel trackers for multipath channels, since they are robust to wide variations in the probabilities of tap birth and death. Such robustness suggests a single, low-complexity NNKF could be reusable over di erent tap indices and communication environments. Furthermore, a di erent kind of abrupt change was proposed and analyzed: energy shifts from one channel tap to adjacent taps (partial tap lateral hops). This Thesis also discusses how to model, detect and track such changes, providing a geometric justi cation for this and additional non-stationary dynamics in vehicular situations, such as road scenarios where re ections on trucks and vans are involved, or the visual appearance/disappearance of drone swarms. An extensive literature review of empirically-backed abrupt-change dynamics in channel modelling/measuring campaigns is included. For this generalized framework of abrupt channel changes that includes partial tap lateral hopping, a neural detector for lateral hops with large energy transfers is introduced. Simulation results suggest the proposed NN architecture might be a feasible lateral hop detector, suitable for integration in NNKF schemes. Finally, the newly found understanding of abrupt changes and the interactions between Kalman lters and neural networks is leveraged to analyze the neural consequences of abrupt changes and brie y sketch a novel, abrupt-change-derived stochastic model for neural intelligence, extract some neuro nancial consequences of unstereotyped abrupt dynamics, and propose a new portfolio-building mechanism in nance: Highly Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs). Some communication-engineering-relevant topics, such as a Bayesian stochastic stereotyper for hopping Linear Gauss-Markov (LGM) models, are discussed in the process. The forecasting problem in the presence of expert disagreements is illustrated with a hopping LGM model and a novel structure for a Bayesian stereotyper is introduced that might eventually solve such problems through bio-inspired, neuroscienti cally-backed mechanisms, like dreaming and surprise (biological Neural-Kalman). A generalized framework for abrupt changes and expert disagreements was introduced with the novel concept of Neural-Kalman Phenomena. This Thesis suggests mathematical (Neural-Kalman Problem Category Conjecture), neuro-evolutionary and social reasons why Neural-Kalman Phenomena might exist and found signi cant evidence for their existence in the areas of neuroscience and nance. Apart from providing speci c examples, practical guidelines and historical (out)performance for some HLABAFEO investing portfolios, this multidisciplinary research suggests that a Neural- Kalman architecture for ever granular stereotyping providing a practical solution for continual learning in the presence of unstereotyped abrupt dynamics would be extremely useful in communications and other continual learning tasks.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretaria: Ana García Armada.- Vocal: José Antonio Portilla Figuera

    Spatial Wireless Channel Prediction under Location Uncertainty

    Full text link
    Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties.\textcolor{blue}{{} }In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel

    Analytical Modeling of a Communication Channel Based on Subthreshold Stimulation of Neurobiological Networks

    Get PDF
    The emergence of wearable and implantable machines manufactured artificially or synthesized biologically opens up a new horizon for patient-centered health services such as medical treatment, health monitoring, and rehabilitation with minimized costs and maximized popularity when provided remotely via the Internet. In particular, a swarm of machines at the scale of a single cell down to the nanoscale can be deployed in the body by the non-invasive or minimally invasive operation (e.g., swallowing and injection respectively) to perform various tasks. However, an individual machine is only able to perform basic tasks so it needs to exchange data with the others and outside world through an efficient and reliable communication infrastructure to coordinate and aggregate their functionalities. We introduce in this thesis Neuronal Communication (NC) as a novel paradigm for utilizing the nervous system \emph{in vivo} as a communication medium to transmit artificial data across the body. NC features body-wide communication coverage while it demands zero investment cost on the infrastructure, does not rely on any external energy source, and exposes the body to zero electromagnetic radiation. n addition, unlike many conventional body area networking techniques, NC is able to provide communication among manufactured electronic machines and biologically engineered ones at the same time. We provide a detailed discussion of the theoretical and practical aspects of designing and implementing distinct paradigms of NC. We also discuss NC future perspectives and open challenges. Adviser: Massimiliano Pierobo

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization
    • …
    corecore