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Abstract

This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM), a

widely-used method of data transmission in wireless communications, when abrupt changes occur

in the channel. In highly mobile applications, new dynamics appear that might make channel

tracking non-stationary, e.g. channels might vary with location, and location rapidly varies with

time. Simple examples might be the di�erent channel dynamics a train receiver faces when it is

close to a station vs. crossing a bridge vs. entering a tunnel, or a car receiver in a route that

grows more tra�c-dense. Some of these dynamics can be modelled as channel taps dying or being

reborn, and so tap birth-death detection is of the essence.

In order to improve the quality of communications, we delved into mathematical methods to

detect such abrupt changes in the channel, such as the mathematical areas of Sequential Analy-

sis/Abrupt Change Detection and Random Set Theory (RST), as well as the engineering advances

in Neural Network schemes. This knowledge helped us �nd a solution to the problem of abrupt

change detection by informing and inspiring the creation of low-complexity implementations for

real-world channel tracking. In particular, two such novel trackers were created: the Simpli-

�ed Maximum A Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF)

schemes.

The SMAP is a computationally inexpensive, threshold-based abrupt-change detector. It ap-

plies the three following heuristics for tap birth-death detection: a) detect death if the tap gain

jumps into approximately zero (memoryless detection); b) detect death if the tap gain has slowly

converged into approximately zero (memory detection); c) detect birth if the tap gain is far from

zero.

The precise parameters for these three simple rules can be approximated with simple theoret-

ical derivations and then �ne-tuned through extensive simulations. The status detector for each

tap using only these three computationally inexpensive threshold comparisons achieves an error

reduction matching that of a close-to-perfect path death/birth detection, as shown in simulations.

This estimator was shown to greatly reduce channel tracking error in the target Signal-to-Noise

Ratio (SNR) range at a very small computational cost, thus outperforming previously known sys-

tems. The underlying RST framework for the SMAP was then extended to combined death/birth

and SNR detection when SNR is dynamical and may drift. We analyzed how di�erent quasi-ideal

SNR detectors a�ect the SMAP-enhanced Kalman tracker's performance. Simulations showed

SMAP is robust to SNR drift in simulations, although it was also shown to bene�t from an accu-

rate SNR detection.

The core idea behind the second novel tracker, NNKFs, is similar to the SMAP, but now the tap

birth/death detection will be performed via an arti�cial neuronal network (NN). Simulations show

that the proposed NNKF estimator provides extremely good performance, practically identical to
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a detector with 100% accuracy.

These proposed Neural-Kalman schemes can work as novel trackers for multipath channels,

since they are robust to wide variations in the probabilities of tap birth and death. Such ro-

bustness suggests a single, low-complexity NNKF could be reusable over di�erent tap indices and

communication environments.

Furthermore, a di�erent kind of abrupt change was proposed and analyzed: energy shifts from

one channel tap to adjacent taps (partial tap lateral hops). This Thesis also discusses how to

model, detect and track such changes, providing a geometric justi�cation for this and additional

non-stationary dynamics in vehicular situations, such as road scenarios where re�ections on trucks

and vans are involved, or the visual appearance/disappearance of drone swarms. An extensive

literature review of empirically-backed abrupt-change dynamics in channel modelling/measuring

campaigns is included.

For this generalized framework of abrupt channel changes that includes partial tap lateral

hopping, a neural detector for lateral hops with large energy transfers is introduced. Simulation

results suggest the proposed NN architecture might be a feasible lateral hop detector, suitable for

integration in NNKF schemes.

Finally, the newly found understanding of abrupt changes and the interactions between Kalman

�lters and neural networks is leveraged to analyze the neural consequences of abrupt changes

and brie�y sketch a novel, abrupt-change-derived stochastic model for neural intelligence, ex-

tract some neuro�nancial consequences of unstereotyped abrupt dynamics, and propose a new

portfolio-building mechanism in �nance: Highly Leveraged Abrupt Bets Against Failing Experts

(HLABAFEOs). Some communication-engineering-relevant topics, such as a Bayesian stochastic

stereotyper for hopping Linear Gauss-Markov (LGM) models, are discussed in the process.

The forecasting problem in the presence of expert disagreements is illustrated with a hopping

LGM model and a novel structure for a Bayesian stereotyper is introduced that might eventually

solve such problems through bio-inspired, neuroscienti�cally-backed mechanisms, like dreaming

and surprise (biological Neural-Kalman). A generalized framework for abrupt changes and expert

disagreements was introduced with the novel concept of Neural-Kalman Phenomena. This Thesis

suggests mathematical (Neural-Kalman Problem Category Conjecture), neuro-evolutionary and

social reasons why Neural-Kalman Phenomena might exist and found signi�cant evidence for their

existence in the areas of neuroscience and �nance.

Apart from providing speci�c examples, practical guidelines and historical (out)performance

for some HLABAFEO investing portfolios, this multidisciplinary research suggests that a Neural-

Kalman architecture for ever granular stereotyping providing a practical solution for continual

learning in the presence of unstereotyped abrupt dynamics would be extremely useful in commu-

nications and other continual learning tasks.
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Chapter 1

Introduction

This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM),

a widely-used method of data transmission in wireless communications, when abrupt changes occur

in the channel. In order to improve the quality of communications, we will delve into mathematical

methods to detect such abrupt changes in the channel.

1.1 Why Are Abrupt Changes Important?

"When experts are wrong, it's often because they're experts on an earlier version of the world."

[Graham, 2014] In these words written by serial entrepreneur & essayist Paul Graham, we grasp

our �rst intuition of an abrupt change: a change that suddenly renders expert opinions wrong,

despite the fact that those experts (whether human or machine systems) used to be right before

the change.

It's not di�cult to �nd examples of abrupt changes that made previously succesful expert

frameworks obsolete or in need of a serious update. Among human social a�airs, the sudden

outbreak of a pandemic, an economic event (sudden in�ation, sudden stop in international trade

or any other Black Swan [Taleb, 2007]), the sudden outbreak of war or the invention of a game-

changing weapon [Betts, 1987] force an update on social, economic and geopolitical expectations.

This notion also applies to purely technical systems, especially when those systems are required

to produce a correct 'worldview' (in the form of predictions) so they can take the right course of

action. An example of such technical system is a pacemaker. The human user's life depends on

the pacemaker correctly predicting whether the heart will stop beating or not.

When the heart is not beating, the pacemaker needs to be careful not to overreact. But if

the user really had a heart attack, the pacemaker needs to detect such abrupt change and make

it beat again. Similar crucial examples can be found in many other applications in biomedicine,

chemical plants, etc. and, more generally, across signal processing, pattern recognition and time

series analysis.

While in the previous intuition-forming examples we've mentioned changes that arguably were

noticeable due to their large magnitudes, abrupt changes don't require large magnitudes to be

considered as such. In fact, many performance-relevant changes are low-magnitude in the tracked

metric either in an initial stage (the �rst 100 patients in a pandemic that will a�ect billions) or

over the whole lifespan of the change (a small but crucial di�erence in average temperature in a

chemical process).

3
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This topic of unquestionable interest also bears relevance to communication channels, particu-

larly non-stationary communication channels, such as those involving fast-moving vehicles where

communication paths can get hidden or reappear.

In such channels, the wireless environment might change abruptly, rendering the expectations

based on immediately previous channel tracking obsolete. This might be caused, e.g. by the

appearance or disappearance of channel taps due to sudden shadowing or new re�ection paths.

The correct detection of abrupt changes in such cases is crucial to avoid performance degradation.

1.2 Non-Stationarity and Abrupt Changes in Communica-

tion Channels

In highly mobile applications, new dynamics appear that might make channel tracking non-

stationary [Matolak, 2014, Wu, 2012], e.g. channels might vary with location, and location rapidly

varies with time. Simple examples might be the di�erent channel dynamics a train receiver faces

when it is close to a station vs. crossing a bridge vs. entering a tunnel [He et al., 2016]. A similar

example is a car receiver in a route that grows more tra�c-dense [Hassan et al., 2020]. Such non-

stationary examples can be modeled in some cases as abrupt changes in statistical properties of the

underlying stochastic dynamic [Wu, 2012]. Although the methods and conclusions of this Thesis

can be generalized to other problems in communication engineering, this Thesis will focus on such

non-stationarity/abrupt changes in the context of vehicular OFDM communication channels.

Why is this problem currently relevant? Because the incessant growth in wireless commu-

nication demand, including new scenarios such as high-speed rail (HSR) [Guo et al., 2017], is

increasing requirements for communication technologies. Orthogonal Frequency-Division Multi-

plexing (OFDM) has become the base for many of them, including Long-Term Evolution (LTE)

systems, and it has also been put forward as a prime candidate in broadband data networks for

high-mobility applications [Sheng et al., 2017]. OFDM's advantages include frequency diversity

and a manageable complexity [Tse and Viswanath, 2005]. Therefore, in the wake of the 5G mobile

generation and its deployment in several countries, OFDM has been considered in the �rst re-

lease of 5G New Radio (5G-NR) [Dahlman et al., 2020]. Vehicular applications usually require the

tracking of time-variant channels. Kalman �ltering (KF) and its many adaptions and extensions

[Grewal and Andrews, 2015] have been proposed for such task. KF's advantage is its optimality

as an estimator for linear problems: it minimizes the mean-squared estimation error for a lin-

ear stochastic system using noisy linear sensors. Thus, when a channel tracking problem can be

modeled as approximately linear, the KF is the optimal solution to the linear problem. How-

ever, this approximation is not always valid. More powerful channel tracking techniques will be

demanded as mobile communications spread into more dynamic channels, such as those of high-

speed railways [He et al., 2016] in rugged terrain [Chen et al., 2015] or Unmanned Aerial Vehicles

(UAVs) [Matolak and Sun, 2015] in suburban/ hilly terrain environments [Sun and Matolak, 2017].

In these situations, random intermittent multipath components (MPCs) appear, rendering the lin-

ear approximation for tap dynamics invalid: phenomena such as the appearance of a new tap or the

disappearance of a previous tap [Mahler et al., 2017] are catastrophic for estimation performance

when KF-based techniques are used. Tap birth-death conditions can be reconciled with linearity

during non-birth, non-death periods by using the framework of Random Set Theory (RST) mod-

els. This makes it possible to use powerful RST-based estimators. In [Angelosante et al., 2007],
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[Angelosante et al., 2009], three such possible estimators were compared. However, they required

an impracticable computational cost for any practical applications.

1.3 Motivation, Goals and Contributions

Kalman �lters in a wide variety of variants and implementations have been proposed to improve

channel tracking in wireless systems, particularly OFDM systems. Unfortunately, such �lters have

been shown to degrade catastrophically in performance in the presence of abrupt changes, such as

those appearing in birth/death dynamics and fast drift of path contributions to taps.

Our main goal in the current research is analyze how such abrupt changes can be detected

and mitigated by analyzing the body of work reserch in the Theory of Abrupt Changes (a self-

sustained branch of mathematics), Random Set Theory (another branch of mathematics) and

recent developments in Neural Networks, then devise and implement novel solutions to this problem

in OFDM channel tracking, obtain performance metrics in communication simulations coded in

Matlab, and evaluate their feasibility for practical implementation in real-world scenarios. As

such, the solutions we create must be low-complexity; an optimal or asymptotically optimal high-

complexity algorithm that doesn't �t this description wouldn't do the job in the real world.

Once we have successfully found novel, low-complexity solutions to abrupt change dynamics in

OFDM communications, we will leverage our experience by re�ecting on the nature of the problem

and extracting relevant lessons to communication engineering, as well as other engineering and

non-engineering problems.

Thus, our research intends to ful�ll the following goals:

1. Carefully choose a channel for OFDM transmission that is suitable for the purposes of testing

detection schemes for abrupt change dynamics.

2. Choose and implement a suitable Kalman �ltering scheme for the purpose of tracking taps

in the context of OFDM channel tracking.

3. Critically review the current literature in the mathematical areas of Sequential Analysis/Abrupt

Change Detection and Random Set Theory, as well as the engineering advances in Neural

Network schemes, to the extent that knowledge in such areas can help us �nd a solution to the

problem of abrupt change detection, either directly through known algorithms or indirectly

by informing and inspiring the creation of low-complexity implementations for real-world

channel tracking.

4. Devise novel channel trackers that exploit the advantages of Kalman �ltering while preventing

degradation in the face of abrupt changes, thus providing superior performance in channel

tracking. Such trackers must necessarily be low-complexity for applicability to real-world

communication purposes.

In particular, we intend to devise novel trackers for tap birth/death detection, as well as

combined Signal-to-Noise Ratio (SNR) change and birth/death dynamics in OFDM systems,

and novel trackers for lateral half-tap hops, i.e. path-related energy contributions that switch

abruptly from one tap to an adjacent tap. Again, such novel trackers need to be low-

complexity and provide superior performance.

5. Obtain performance metrics for our proposed trackers through Matlab simulations.
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6. Critically review the performance, complexity and feasibility of our proposed solutions.

7. Propose a generalized mathematical framework to help problem-solvers think about tractable

abrupt change dynamics in communication engineering, as well as other engineering and non-

engineering problems where abrupt changes in tracked magnitudes might appear.

1.3.1 Research Contributions

A suitable channel model for OFDM transmission (Goal 1) and its corresponding Kalman tracker

(Goal 2) were implemented in order to test novel channel trackers against. After a critical review

of the literature (Goal. 3), two such novel trackers were created: the Simpli�ed Maximum A

Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF) schemes (Goal

4). Moreover, other related schemes were designed and implemented: a combined Quasi-Ideal

SNR Detector (QISD)/SMAP scheme; and a neural detector for lateral hops. Those schemes were

simulated in Matlab to obtain performance metrics (Goal 5) and their performance, complexity

and feasibility were critically reviewed (Goal 6).

The contributions ful�lling the �rst 6 goals correspond to the following works:

� Méndez-Romero, D. and Fernández-Getino García, M. J. (2018). Simpler Multipath Detec-

tion for Vehicular OFDM Channel Tracking. IEEE Transactions on Vehicular Technology,

67(11):10752-10759.

Results: A computationally inexpensive, threshold-based abrupt-change detector called

Simpli�ed Maximum A Posteriori (SMAP) is presented. Simulations show this estimator

greatly reduces channel tracking error in the target SNR range at a very small computa-

tional cost, thus outperforming previously known systems.

� Méndez-Romero, D., Fernández-Getino Garcia, M. J., Tonello, A. M., and Dobre, O. A.

(2020). Neural-Network-Switched Kalman Filters as Novel Trackers for Multipath Channels.

In 2020 IEEE International Conference on Communications Workshops (ICC Workshops)

[7-11 June 2020], pages 1-5, Dublin, Ireland. IEEE.

Results: Neural-Network-Switched Kalman Filters (NNKFs) are proposed as novel trackers

for multipath channels. The core idea is similar to the SMAP switch in the previous paper,

but now the tap birth/death detection will be performed via an arti�cial neuronal network

(NNs).

The proposed Neural-Kalman scheme is robust to wide variations in the probabilities of tap

birth and death. Such robustness suggests a single, low-complexity NNKF could be reusable

over di�erent tap indices and communication environments.

� Méndez-Romero, D. and Fernández-Getino García, M. J. (2020). Death/Birth and SNR

Detection for Vehicular Kalman Channel Trackers. In 2020 IEEE 20th Mediterranean Elec-

trotechnical Conference (MELECON) [16-18 June 2020], pages 104-108, Palermo, Italy. IEEE.

Results: This paper considers combined death/birth and SNR detection when SNR is dy-

namical and may drift. Simulation results compared di�erent schemes combining SNR de-

tection and SMAP and suggest that SMAP, while being robust to SNR drift, bene�ts from

an accurate SNR detection.
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� Méndez-Romero, D., Fernández-Getino Garcia, M. J. (2022). Neural-Kalman Channel Track-

ers and Partial-Tap Hop Detection (in preparation)

Results: This paper proposes a di�erent kind of abrupt change: energy shifts from one

tap to adjacent taps (partial tap lateral hops) and discusses how to model, detect and track

such changes. A geometric justi�cation for this and additional non-stationary dynamics

is provided. A neural detector for lateral hops with large energy transfers is introduced.

Simulation results suggest the proposed NN architecture might be a feasible lateral hop

detector, suitable for integration in NNKF schemes.

The ambitious 7th goal, namely, �a generalized mathematical framework to help problem-solvers

think about tractable abrupt change dynamics in (...) engineering and non-engineering problems�,

was addressed by analyzing the abrupt-change detection problem from di�erent perspectives: a

generalized mathematical perspective (Neural-Kalman Problem Category Conjecture), a neurosci-

enti�c perspective (bio-inspired AI mechanisms for the Changepoint - Oddball - Reversal model)

and a neuro�nancial perspective (Neural-Kalman Market Hypothesis, Neural-Kalman Phenom-

ena and Highly Leveraged Bets Against Failing Expert Opinions). The combination of all three

perspectives1 provide valuable insights for Communications Engineering, among other areas.

The contributions ful�lling this last goal correspond to the following works:

� Méndez-Romero, D., Fernández-Getino Garcia, M. J. (2022). Neural-Kalman Conjecture

and Market Hypothesis (in preparation)

� Méndez-Romero, D., Fernández-Getino Garcia, M. J. (2022). Bets Against Failing Experts:

Neuro�nancial Consequences of Unstereotyped Abrupt Dynamics (in preparation)

1.4 Structure of this Thesis

This paper is organized as follows.

Part I describes the contextual basics of the considered communications, exposes the problem

of abrupt changes and provides a critical analysis of the state-of-the-art solutions proposed by

other authors.

� Chapter 2 describes OFDM techniques and discusses channel models in the OFDM context.

� Chapter 3 describes the integration of Kalman Filtering (KF) in channel tracking schemes so

as to enhance OFDM communications provided that channels are stationary (i.e. not subject

to abrupt changes).

� In Chapter 4, di�erent solutions are reviewed for abrupt change detection either in commu-

nications (Random Set Theory, Particle Filters) or in other areas (Threshold-Based Online

Changepoint Detection, Advanced Sequential Analysis).

Once the problem and its context has been fully described in Part I, new proposals are introduced

to solve the problem of abrupt changes in communications, as well as the consequences that abrupt

changes themselves might have for neural intelligence.

1The multidisciplinary approach to the 7th goal of this Thesis led me to translate a 303-page treatise on Rational
Economics [Voskuil, 2020] and critically review its logical consistency with its author. This e�ort was instrumen-
tal in my creation of the Neural-Kalman Phenomena concept; therefore, this commercially available translation
[Voskuil and Taaki, ] was included as a research merit for this Thesis on Engineering despite its rational-economic
nature.
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� Chapter 5 proposes a simpli�ed framework for the channel tap birth-death problem and

derives a computationally inexpensive, threshold-based estimator: the Simpli�ed Maximum

a Posteriori (SMAP) abrupt-change detector.

� Chapter 6 extends the RST channel models in Chapter 5 to abrupt increases/decreases of

SNR for combined death/birth & SNR detection.

� Chapter 7 presents Neural-Network-Switched Kalman Filters (NNKFs) as novel trackers for

multipath channels.

� Chapter 8 proposes a di�erent kind of abrupt change: energy shifts from one tap to adjacent

taps (partial tap lateral hops). A novel channel model for lateral partial-hop dynamics is

presented, as well as a neural detector to help track such changes.

� In Chapter 9, we leverage our newly found understanding of abrupt changes and the inter-

actions between Kalman �lters and neural networks to analyze the neural consequences of

abrupt changes and brie�y sketch a novel, abrupt-change-derived stochastic model for neu-

ral intelligence, extract some neuro�nancial consequences of unstereotyped abrupt dynam-

ics, and propose a new portfolio-building mechanism in �nance: Highly Leveraged Abrupt

Bets Against Failing Experts (HLABAFEOs). We discuss some communication-engineering-

relevant topics in the process, such as a Bayesian stochastic stereotyper for hopping Linear

Gauss-Markov (LGM) models.

� Finally, Chapter 10 sums up our work and provides our conclusions and some guidelines for

future work to expand knowledge in this research area.



Chapter 2

OFDM System & Channel Models

Orthogonal Frequency-Division Multiplexing (OFDM) is a method of modulating digital data on

multiple carrier frequencies. OFDM has become a popular system for broadband digital commu-

nication, used in applications such as digital television, digital audio broadcasting, Asymmetric

Digital Subscriber Line (ADSL) Internet access, wireless networks, communications networks by

conventional electrical cables (Powerline Communications), as well as fourth generation (4G) and

�fth generation (5G) mobile communications [Dahlman et al., 2020].

2.1 Intuitive Grasp of OFDM

OFDM is a frequency division multiplexing technique used as a digital multicarrier modulation

method. In this technique, a large number of orthogonal subcarrier signals, with a small distance

between them, are used to transmit the data in several parallel data streams (sometimes called

channels). In that sense, two images can describe the di�erence between an OFDM system and

the traditional simple communication system. As can be seen in �gure 2.1, if the traditional

communication has been carried out with a single carrier signal that will carry all the information

(resembling the single and mighty jet of a faucet), an OFDM system is more similar to the multiple

jets produced by shower head or di�user head. When comparing models, it must be assumed that

the �ow rate of the tap and the shower are approximately identical, although in the case of the

shower/OFDM it is divided into several trickles/subcarriers.

Each subcarrier is modulated with a conventional modulation scheme, such as Quadrature Am-

plitude Modulation (QAM) or Phase Shift Keying (PSK), at a low symbol rate (which does not

prevent the total �ow of the shower from being equal to or similar to that of the tap). The main

advantage of OFDM over single-carrier systems is its ability to withstand very di�cult channel

conditions (for example, high-frequency attenuation in a long copper conductor, narrow-band in-

terference, and frequency-selective fading due to to the multipath character of the channel) without

complex equalization �lters. Channel matching is simpli�ed because OFDM can be thought of as

using multiple narrowband signals with slow modulation instead of one broadband signal with

fast modulation. The low symbol rate makes it feasible to use a guard interval between symbols,

which makes it possible to eliminate the InterSymbol Interference (ISI) and to use echoes and time

spreading to obtain a diversity gain, that is, an improvement in the Signal-to-Noise Ratio (SNR).

This mechanism also facilitates the design of single-frequency networks in which several adjacent

transmitters send the same signal simultaneously on the same frequency, since signals from multi-

9
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Figure 2.1: Digital implementation of a baseband OFDM system. Adapted from
[Edfors et al., 1996].

ple distant transmitters can be combined constructively, rather than interfering as they typically

would in the case of a traditional single-carrier system. In this sense, OFDM can be combined

with other forms of spatial diversity, such as antenna arrays and MIMO channels, as realized in

the IEEE802.11 wireless LAN standard.

2.2 Generic Modelling for OFDM Systems

The idea behind OFDM is the division of the available spectrum in several subchannels (that

we will call subchannels, channels or subcarriers in this document). Once you have narrow-band

channels, you can bene�t from the fact that each of them faces �at fading, which eases equalization.

To get a high spectral e�ciency, subchannels' frequency responses are orthogonal in frecuency (as

its own name, Orthogonal-Frequency Division Multiplexing, suggests). This means that whichever

frequency a subchannel peaks, adjacent subchannels have a local bottom.

We will introduce the generic modelling for OFDM systems in its continuous-time version in

the �rst place, and later in its discrete-time version.

We will make several starting assumptions:

� A cyclic pre�x (CP) is used.

� The impulse response of the channel is shorter than the length of the CP.

� Transmitter and receiver are perfectly synchronized.

� Channel noise is white, additive, and Gaussian.

� Fading is slow enough to be considered constant over the interval of one OFDM symbol.

Please notice that these assumptions are simpli�cations of the problem, e.g. in reality, the channel

estimate is more accurate for the beginning of the OFDM symbol than for the end, but it is a

common approximation to consider the fading to be constant in a �rst approach to the problem.

�Every model is wrong, some models are useful�, and this generic OFDM model is certainly very

useful.
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Figure 2.2: Baseband OFDM system model. Adapted from [Edfors et al., 1996].

The system in �gure 2.1, which digitally implements OFDM in baseband, allows the parallel

transmission of a set of N M -ary symbols. Such symbols could have been formed from the data

stream (which can be simulated as a random binary stream).

After what is known as a mapper in the English literature (which could be translated as an

applicator), the binary stream (M -PSK or M -QAM) is converted from serial to parallel, so that

we will get a set of N complex numbers xk.

Thus, the data xk are coded into N carriers by applying the Inverse Discrete Fourier Transform

(IDFT), so that the complex values a_{k} are obtained. This signal enters a serializer that

copies the last L samples as a preamble or cyclic pre�x1. The result is the OFDM symbol to be

transmitted.

On the receiver, the steps are followed in reverse. Thus, the cyclic extension is �rst extracted,

then the resulting signal is demodulated by applying the Discrete Fourier Transform (DFT).

Performing a complete theoretical analysis of an OFDM system is very di�cult. It is easier to

use simpli�ed models that allow us a simpler analysis without great loss of resolution. Simpli�ed

models are usually classi�ed according to whether they are continuous-time or discrete-time.

2.3 Continuous-Time Model

Let us study the ideal OFDM case, that is, a continuous OFDM that does not use modulation

or demodulation2. Let us break it down case by case, starting with the waveforms used at the

transmitter and moving module by module to the receiver. The baseband model is shown in Fig.

2.2.

Before we begin, let us formalize the concept of orthogonality. Suppose we have a set of signals

�, where �p is the pth element. Signals are said to be orthogonal if their integral over a period

satis�es this condition:

b�

a

�p(t)�
�
q(t)dt =

8<
:1 if p = q

0 if p 6= q
(2.1)

1The insertion of the cyclic pre�x is commonly accepted in order to avoid ISI and preserve the orthogonality
between the subchannels.

2That is the approach of [Edfors et al., 1996], which we follow closely in this section.
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Figure 2.3: Two orthogonal signals, cos(2�x) and cos(4�x); and their product, whose integral over
the fundamental period is zero, as per the graphic proof.

Some typical examples of orthogonal signals are combinations of sines and cosines. Figure 2.3

shows a pair of orthogonal signals with graphic proof of their orthogonality.

Once the concept of orthogonality has been clari�ed, let us analyze how the signals are trans-

formed throughout each stage of the continuous model of the OFDM system.

2.3.1 Transmitter

Assuming an OFDM system with N subcarriers, a bandwidth of W Hz and a symbol length of T

seconds, of which Tcp is the length of the cyclic pre�x; the transmitter uses the waveforms indicated

in the following equation [Edfors et al., 1996]:

�k(t) =

8<
:

1p
T�Tcp

ej2�
W
N
k(t�Tcp) if t 2 [0; T ]

0 otherwise
(2.2)

where T = N=W + Tcp. Please note �k(t) = �k(t+N=W ) where t lies within the cyclic pre�x

[0, Tcp]. Given that �k(t) is a rectangular pulse coded in the carrier frequency kW=N , the usual

interpretation for OFDM states it uses N subcarriers, and each of them transmits a low bit rate.

The waveforms �k(t) are used in the modulation and the transmitted baseband signal for OFDM

symbol index l is

sl(t) =

N�1X
k=0

xk;l�k(t� lT ) (2.3)

where x0;l; x1;l; :::; xN�1;l are complex numbers of a set of signal constellation points. When

an in�nite sequence of OFDM symbols is transmitted, the transmitter output is a juxtaposition of

individual OFDM symbols:

s(t) =

1X
l=1

sl(t) =

1X
l=1

N�1X
k=0

xk;l�k(t� lT ) (2.4)
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2.3.2 Physical channel

If we assume that the support of the impulse response3 g(� ; t) of the physical channel is restricted

to the interval � 2 [0; Tcp], that is, to the length of the cyclic pre�x, the received signal becomes:

r(t) = (g � s)(t) =
Tcp�

0

g(� ; t)s(t� �)d� + ~n(t) (2.5)

where ~n(t) is a complex Gaussian white additive channel noise.

2.3.3 Receiver

The OFDM receiver is composed of a �lter bank, adapted to the last part [Tcp; T ] of the waveforms

�k(t) of the transmitter, that is,

 k(t) =

8<
:�

�
k(T � t) if t 2 [0; T � Tcp]

0 otherwise
(2.6)

E�ectively, this means that the cyclic pre�x is removed in the receiver. Since the cyclic pre�x

contains all of the ISI of the previous symbol, the sampled output of the receiver's �lter bank does

not contain any ISI. Therefore, we can ignore the time index l when computing the sampled output

of the kth matched �lter. From the equalities (2.4), (2.5) and (2.6), we get

yk = (r �  k)(t)jt=T =

1�

�1

r(t) k(T � t)dt =

=

T�

Tcp

(

Tcp�

0

g(� ; t)[

N�1X
k0=0

xk0�k0(t� �)]d�)'�k(t)dt+
T�

Tcp

~n(T � t)��k(t)dt (2.7)

Here we incorporate the approximation that the channel is �xed (quasi-constant) over the

interval of an OFDM symbol, and denote it with g(�), which gives us:

yk =

N�1X
k0=0

xk0

T�

Tcp

(

Tcp�

0

g(�)�k0(t� �)d�)��k(t)dt+
T�

Tcp

~n(T � t)��k(t)dt (2.8)

The integration intervals are Tcp < t < T y 0 < � < Tcp, which implies 0 < t� � < T and the

inner integral can be written as:

Tcp�

0

g(�)�k0(t� �)d� =

Tcp�

0

g(�)
ej2�k

0(t���Tcp)W=Np
T � Tcp

d� =

=
ej2�k

0(t�Tcp)W=Np
T � Tcp

Tcp�

0

g(�)e�j2�k
0�W=Nd� (2.9)

3The impulse response could be time-variant.
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Figure 2.4: The continuous-time OFDM system, interpreted as parallel Gaussian channels.

where Tcp < t < T: The last part of the expression (2.9) is the channel's frequency response,

sampled at frequency f = k0W=N; that is, thek0th carrier frequency:

hk0 = G(k0
W

N
) =

Tcp�

0

g(�)e�j2�k
0�W=Nd� (2.10)

where G(f) is the Fourier transform of g(�). Using this notation, and following at all times

the theoretical derivation presented in [Edfors et al., 1996], the receiver �lter bank output can be

simpli�ed to:

yk =

N�1X
k0=0

xk0
ej2�k

0(t�Tcp)W=Np
T � Tcp

hk0�
�
k(t)dt+

T�

Tcp

~n(T � t)��k(t)dt =
N�1X
k0=0

xk0hk0

T�

Tcp

�k0(t)�
�
k(t)dt+ nk

(2.11)

where nk =
� T
Tcp

~n(T � t)��k(t)dt. Since the �lters �k(t) in the transmitter are orthogonal4,

T�

Tcp

�k0(t)�
�
k(t)dt =

T�

Tcp

ej2�k
0(t�Tcp)W=Np
T � Tcp

e�j2�k
0(t�Tcp)W=Np
T � Tcp

dt = �[k � k0] (2.12)

where �[k] is the Kronecker delta function [Oppenheim et al., 1997], we can simplify equation

(2.12) to get:

yk = hkxk + nk (2.13)

where nk is the additive white Gaussian noise.

The advantage of a cyclic pre�x is twofold: it avoids the ISI (since it acts as a guard space) and

the ICI (since it maintains the orthogonality of the subcarriers). If we re-introduce the time index

l, we can now see the OFDM system as a set of parallel Gaussian channels, according to Figure

2.4.

2.4 Discrete-Time Model

Another way to approach the (simpli�ed) modeling of an OFDM system is by considering all

its stages in discrete time. Unlike the continuous-time model, the modulation and demodulation

are replaced by discrete transforms (IDFT and DFT) and the channel e�ect will be computed

4For the de�nition of orthogonality, see equation (2.1).
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by discrete-time convolution. The cyclic pre�x operates in the same way in this system and the

calculations can be performed analogously. The main di�erence is that all integrals are replaced

by summations.

A discrete-time OFDM system model is shown in Figure (2.4).

From the receiver's point of view, using a longer cyclic pre�x than the channel will transform

the linear convolution of the channel into a cyclic convolution. If we use the symbol ��� to denote

cyclic convolution, we can write the entire OFDM system as:

y
l
= DFT(IDFT(xl)� g

l
+ ~nl = DFT(IDFT(xl)� g

l
+ nl (2.14)

where y
l
contains the N received data points, xl the N transmitted points of the constellation,

g the impulse response of the channel (padded with zeroes to make it N -long), and ~nl the noise of

the channel. Since channel noise is assumed white and Gaussian, the term nl = DFT(~nl) represents

uncorrelated Gaussian noise. Furthermore, we can take advantage of the result that the DFT of

two signals to which a cyclic convolution is applied is equivalent to the product of their respective

DFTs. Denoting element-by-element multiplication by ���, the above expression can be written as:

y
l
= xl �DFT(gl)+ nl = xl � hl + nl (2.15)

where hl = DFT(g
l
) is the frequency response of the channel. Thus, the above equation

represents the same type of parallel Gaussian channels as the one obtained in the previous section

for the continuous-time model. The only di�erence is that the channel attenuations hl are given

by the N -point DFT of the discrete-time channel, instead of the sampled frequency response that

appeared in (2.10).

2.5 Tap Death-Birth Dynamics in Ideal Channels

2.5.1 Distinction between paths and taps

Suppose we transmit a waveform that's bandlimited to W. That means its baseband equivalent is

limited to W/2 and can be represented by [Oppenheim et al., 1997]:

xb(t) =
X
n

x[n] � sinc(Wt� n) (2.16)

where x[n] is given by xb(n=W ) y sinc(t) = sin(�t)=(�t).

Suppose that, for a short time, the channel consists of N invariant paths. Each of these paths

has a gain ai and a delay �i. The number of paths N is �nite (imagine we could physically force

such situation with N totally isolated/independent circuits). How many taps are there?

The number of taps depends on two properties: 1) the sampling frequency at the receiver (and,

therefore, the transmission bandwidth), and 2) the delay spread:

Td
:
= maxi;j j�i(t)� �j(t)j (2.17)

For higher transmit bandwidth (or, alternatively, higher receive sample rate), higher number

of taps. In fact, for a non-zero Td and an arbitrarily high transmission bandwidth W , arbitrarily

high numbers of taps can be obtained. Hence, hundreds of taps can be obtained in Ultra-wideband
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(UWB) communications (the exact number also depends on the area served, in the form of �delay

spread�).

Therefore, depending on the transmission, you can have 3 taps or 300 taps on the same channel,

even though you might still have the same (�nite) N physical paths. Each of these physical paths

can also contribute to more than one tap. In e�ect, let us visualize each of these paths as a sinc

function. Each path will contribute energy to several taps; obviously, its main contribution will

be provided to the tap that is closest to the top of the sinc function. However, since the sinc isn't

zero at all points outside that tap, it will continue to make minor contributions to subsequent taps.

This �multi-contribution� will be less important if a raised cosine is used instead of a sinc, due to

its lower permanence in time.

Once the distinction between trajectory (path) and channel tap is made, previous works such as

[Angelosante et al., 2007, Angelosante et al., 2009] might seem a bit confusing and strange. What,

exactly, was �being born� or �dying�? And what physical sense does that have? Virtually all tap

variation is due to phase changes (which occur in a matter of ms); and only a part of that variation

is due to a path not contributing to one tap and contributing more to another tap (this change

happens in a matter of seconds). The changes in amplitude, produced by the birth and death of

paths, seem to correspond more to a scale of seconds than to one of ms.

However, in the next few pages we will provide evidence that taps do indeed die and come back

to life very frequently in real-world situations.

2.5.2 Statistical model of taps

The Rayleigh model is totally random, that is, autocorrelation Rl[n] = 0. Therefore, it is not

suitable for modeling taps that should have a very high autocorrelation from Kalman instant to

Kalman instant.

Another option is to use the Rician model, which assumes the line-of-sight (specular) path is

large and has a known magnitude, while there are also many other independent (Rayleigh-like)

paths. In this case, hl[m] can be modeled as (eq. 2.54 in [Tse and Viswanath, 2005]):

hl[m] =

r
�

�+ 1
� �l � ej� +

r
�

�+ 1
Nc(0; �

2
l ) (2.18)

If we compute the autocorrelation of the tap, we obtain (for all n 6= 0):

Rl[n] , Efh�l [m]hl[m+ n]g = �

�+ 1
�2l (2.19)

Let us normalize �l = 1. What autocorrelation could we expect from a Rician model? For

� = 10 dB = 10, Rl[n] = 0:91. Thus, one tap would have an autocorrelation of 0.91, while the

other taps would have an autocorrelation of 0. In our work (and those co-authored by Biglieri),

we are using autocorrelations of 0.999 for all taps.

2.5.3 Taps in a Rician channel

What do we need to fully characterize a reasonably simpli�ed channel model? According to the

measurements that I have found, the channel in HSR scenarios is approximately of the Rician type,

that is, each tap would be given by [Tse and Viswanath, 2005]:
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hl[m] =

r
�

�+ 1
�le

j� +

r
1

�+ 1
CN (0; �2l ) (2.20)

Thus, to characterize the channel, at least during sections of signi�cant length and uniform

behavior, we would need for each tap: the Rice factor (called cR, K or � in the literature) and the

average energy of each tap, �2l . In the Zhengxi measurements, consistent results were obtained

with Rice factors of mean µ�=6 dB and ��=2 dB. It is our understanding that this would allow

the channel to be characterized for the �rst time (that is, if we do not have previous references:

information relative to its value at previous instants) and that, furthermore, it can be assumed for

most applications that this channel remains stationary during short enough periods of time.

We can write that for any researcher there are two possibilities:

a) Maintain the assumption that the Rice system is static in the very short run.

b) Keep the assumption that the Rice system is stationary in a wide sense (WSS) but not

static.

Option a) could make sense if the objective of the investigation is not to track each tap.

However, since our primary goal is to track the linear drift of each tap (using Kalman) and the

non-linear jumps of the channel (using an appropriate abrupt change detection system), we would

prefer option b) and therefore we'd need to choose how to model the drift of the Rice system.

2.5.3.1 Drift model for the Rician Channel

The small short-term changes of the Rice channel will be called �Rice drift� from this point on.

There are two parameters associated with Rice drift that are very important for mobile communi-

cations and particularly for this research:

1) Level crossing rate: the level crossing rate, N�(r), describes how many times per second

a stochastic process �(t) crosses on average a given signal level r from top to bottom (or vice

versa). During World War II, Mr. Rice obtained the integral expression to calculate it. In 1948

he obtained the particular expression for the rate of level crossings in Rice processes [Rice, 1948]:

N�(r) =

r
�

2�
� p�(r) (2.21)

for r � 0, where � is a shorthand approximation of the negative curvature of the mean auto-

correlation functions at the origin. This equation is Pätzold's (2.119) [Pätzold, 2011].

2) Fade duration: the fade duration, T��(r), is the expected value of the duration of the time

intervals in which the stochastic process �(t) is below a signal level r. It comes to be something

similar to an inverse of the rate of level crossings, but with a much more complex expression. For

Rice processes, it can be calculated with a very complicated integral:

T�-(r) =

r
2�

�
� e

r2

2�2
0

rI0(
r�
�20
)
�

r�

0

xe
� r2

2�2
0 I0(

x�

�20
)dx (2.22)

for r � 0, which corresponds to equation (2.123) in [Pätzold, 2011]. This integral expression

can only be evaluated numerically.

In practice, since these expressions are very complicated, for all the purposes of this line of

research researchers could generate Rice channels with the required parameters N� and T�� by

means of their synthesis and subsequent �ne-tuning. Thus, instead of presenting exact theoretical
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parameters, they would present the corresponding approximate sample parameters (% of time

under a certain threshold level during long simulations, etc.).

It can be proved that both parameters depend exclusively on the �rst term of the autocorrelation

function of the Rice process (section 3.4.3 of [Pätzold, 2011]) and, furthermore, that for low r the

average duration of fading is approximately proportional to r (equation 3.78 of [Pätzold, 2011]).

2.5.4 Probability of tap non-birth and non-death

In the recent technical literature, abrupt changes where a tap disappears (gets very close to zero)

or re-appears (gets away from zero) are usually characterized by parameters P00, or probability of

non-birth (i.e. probability of staying approximately at zero), and P11, or probability of non-death

(i.e. probability of staying away from zero), as will be shown in full detail in the empirical research

summarized in Section 2.6. This information can also be presented through the probability of

birth, Pbirth:

Pbirth = 1� P00 (2.23)

and the probability of death, Pdeath:

Pdeath = 1� P11 (2.24)

Such parameters can be easily connected toN� and T��, as will be shown in the next Subsection.

2.5.4.1 How N� and T�� relate to Pbirth and Pdeath

If we make the approximation that the threshold level r is so low as to consider that it is only

within that threshold when the path has died, the parameters of Section 2.5.3 can be easily related

to the probabilities of birth and death of the tap.

For a given r, the mean fade duration would be related to the birth probability by:

1

Pbirth
= T�� (2.25)

Symmetric models, i.e. Pbirth=Pdeath, can be found in the literature (e.g. [Angelosante et al., 2007,

Angelosante et al., 2009]). However, a more precise approximation for Pdeath could be reached via

this equation:

1

Pdeath
= T�+ (2.26)

where T�+ is the average connecting time interval, i.e. the expected value of the length of the

time intervals in which the stochastic process �(t) is above a given level r. Thus,

T�+(r) =
F�+(r)

N�(r)
(2.27)

where F�+(r) = Pf�(t) > rg is called the complementary cumulative distribution function

[Pätzold, 2011].



CHAPTER 2. OFDM SYSTEM & CHANNEL MODELS 19

Figure 2.5: Explicit persistence process (Fig. 2 in [Matolak, 2008]).

2.6 Empirical Tap Death-Birth Dynamics in Vehicular Com-

munications

On the basis of di�erent measurement campaigns on highways in the United States and Germany,

several authors have developed empirical channel models with so-called �persistence processes� (i.e.

the birth and death of channel taps) within the framework of intervehicular communications (V2V)

[Hassan et al., 2020, Wu, 2012, Matolak and Wu, 2008]. In addition, they have published all kinds

of parameters for these models, including the birth and death probabilities of each tap for di�erent

frequencies, bandwidths and channel types. In this section, the analyzed models and the feasibility

of birth and death detection systems for them are studied.

2.6.1 Persistence processes

The idea that the taps have a "life time" or a �nite "life cycle" ("MPC lifetime") or, equivalently,

the idea of including a function z(k) with values 0 or 1, which acts as a switch on a tap, so that

taps can be born or die, appears in [Chong et al., 2005]. We have not found any previous reference,

so it could be the �rst paper that uses it; [Matolak, 2014] doesn't cite any earlier reference for the

concept of MPC lifetimes, either.

These birth and death processes were called �persistence processes�, assigned a z(k) function

and modeled as discrete-time Markov chains [Sen and Matolak, 2008, Matolak and Wu, 2008].

2.6.2 Empirical probabilities of tap birth and death

Matolak, Sen and Wu published [Wu et al., 2010] the transition probabilities (birth-death) of each

tap for di�erent bandwidths and situations, in the framework of V2V communication channels.

These parameters had been obtained from measurements under actual driving conditions on US

highways (e.g. the I-71 highway from Cleveland to Ohio) [Matolak, 2008]. Birth/death odds

depend on tap index; high-index taps have a much more intense birth/death dynamic than low-

index taps; an example can be seen in �gure 2.6, which reproduces �g. 5 of [Matolak, 2008].
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Figure 2.6: Measured persistence processes, i.e. tap birth and death in real-world channels
[Matolak, 2008].

A detailed study with probabilities of birth and death for f=5 GHz can be found in [Wu et al., 2010].

It considers 5 di�erent scenarios: 1) Urban-Antenna outside the car (UOC); 2) Urban-Antenna

inside the car (UIC); 3) Small City (Small City, S); 4) Highway-Low Tra�c Density (OLT); and 5)

Highway-High Tra�c Density (OHT). Figures 2.7 and 2.8 show tables published in these studies.

As you can see, all the necessary parameters to simulate a birth/death dynamic are presented,

including the empirical transition probabilities for each tap.

Note that the transition probabilities are not symmetric (Pbirth 6= Pdeath), that the probability

of death is higher at a higher tap index, and that the transition probabilities are sometimes

much higher (P > 0:20) than those used in theoretical models such as [Angelosante et al., 2007,

Angelosante et al., 2009], which are adopted in the simulations of this Thesis (typically, P = 0:05).

Therefore, in some cases, abrupt dynamics have been proven to be even more important than some

theoretical models assumed.

2.6.2.1 Applicability to MIMO

In the last couple of years, a similar procedure has been applied to data from roads in Cologne (Ger-

many). The corresponding probabilities of birth and death have been published in [Hassan et al., 2020].

Fig. 2.9 shows the resulting empirical channel model; the odds of abrupt changes are given as P11

(probability of non-death) and P00 (probability of non-birth). Again, we can see that abrupt

dynamics depend on tap index.

Same authors have also analyzed MIMO channels ([Hassan et al., 2021]). In the case of MIMO

(MT �MR antennas), transition probabilities can be applied to the MT �MR equivalent SISO

channels, perhaps also incorporating information about the correlation between those channels.
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Figure 2.7: Probabilities of non-birth and non-death for each inactive or active tap, respectively
[Matolak, 2008].
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Figure 2.8: Probabilities of non-birth and non-death for di�erent vehicular settings
[Wu et al., 2010]
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Figure 2.9: Empirical channel model. Among its parameters, non-birth and non-death odds for
each tap [Hassan et al., 2020].

2.6.2.2 Higher-order and inhomogenous Markov models

Wu, author of [Wu et al., 2010, Wu, 2012], �rst studied a homogeneous (i.e., stationary: transition

probabilities did not change over time) �rst-order Markov chain and published the transition prob-

abilities (birth-death) of each tap for di�erent bandwidths and situations, within the framework

of V2V communication channels. Later he decided to try more complicated models: higher-order

Markov models, non-homogeneous (i.e., non-stationary) Markov models and, on the other hand,

Markov models that included strong correlations between taps; as an example of what could cause

these correlations, in his thesis [Wu, 2012] he talks about:

when large objects (buildings, trucks, etc.) cause multiple adjacent taps to be �on� or

�o�� at the same time. Thus, a more realistic persistence Markov model should incor-

porate correlations especially for large channel bandwidth (or small delay resolutions).

After testing di�erent models and comparing them with measurements based on entropy measures,

he concluded that the 2nd order Markov model was practically optimal for modeling the persistence

of taps and, in case a complexity was admissible higher, the Markov model with correlations could

be used to obtain maximum �delity.

Note that, in the case of non-homogeneous Markov models, it might make sense to use some

kind of intelligent system that tries to stereotype the birth/death dynamics in real time5.

However, all published transition probabilities found in this literature review refer to the sim-

plest Markov model (i.e., 1st order and with no correlations).

2.6.2.3 Unsolvable Subcomponents and Delay Drift

Some of the V2V papers referred above (e.g. [Matolak, 2014]) mention the fact that in each tap

there are non-solvable subcomponents that are combined by complex addition. There is also some

chatter that, over approx. 1 second, delay drift can cause a tap to pass to the neighboring tap.

This happens too slowly to be a problem in most applications [Matolak, 2014].

5To deal with such particularly di�cult channel tasks, this Thesis presents a novel proposal for a Bayesian
stereotyper in Section 9.4.
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Later in this Thesis, a novel model for tap subcomponents will be presented (Chapter 8),

whereby tap subcomponents will be able to �hop� laterally to adjacent taps, i.e. change tap index.

No in-depth description for such possible subcomponents or lateral hopping has been found

in the cited studies (for a formal de�nition of subcomponents and lateral hopping, see Section

8.1; for a geometric justi�cation why such lateral dynamics would exist, see Subsection 8.1.1).

Finally, it should be added that in models such as Saleh-Valenzuela [Saleh and Valenzuela, 1987],

the dynamics of a cluster can sometimes be resolved without the di�erent taps included being

resolvable ([Zhang, 2016], p. 27/44). For channel tracking purposes, our aim is not to resolve each

individual tap subcomponent, but the channel-relevant e�ects of hopping dynamics: it might be

the case that some subcomponent delay drift/lateral hopping dynamics could be resolvable without

the individual subcomponents themselves being resolvable.

2.6.3 Main Takeaways from our Empirical Literature Review

� There are empirical models of the birth/death of taps.

� The most widely used model is a �rst-order Markov model like the one considered by An-

gelosante et al. and adopted by this Thesis.

� There are more complex Markov models.

� The dynamics of birth/death in intervehicular communications are very important. Indeed,

they have been demonstrated in di�erent measurement campaigns and they have a signi�-

cantly higher intensity than that assumed in some theoretical works, especially for high-index

taps.

� Mentions have been found of the correlation in the birth/death of adjacent taps (because

they share the same re�ector, such as a large truck or a building), but this literature review

has found no explicit models of �partial tap lateral hopping�.



Chapter 3

Kalman Filtering for Channel

Tracking

3.1 What Is a Kalman Filter?

The Kalman �lter (KF), also known as Linear Quadratic Estimator (LQE) is a statistically optimal

estimator for the linear quadratic problem, that is, to estimate the instantaneous state of a dynamic

linear system with a function of quadratic cost1, using measures linearly related to the state but

corrupted by white noise.

It is one of the greatest advancements in the history of statistical estimation theory and possibly

the most important discovery of the 20th century in this �eld [Grewal and Andrews, 2015]. It is a

mathematical tool, implementable as a computer program, which constitutes a complete statistical

characterization of an estimation problem.

Therefore, at a practical level it is not just an estimator, since it propagates the entire proba-

bility distribution of the variables that it has to estimate; in other words, it fully characterizes the

current state of knowledge of the dynamical system [Chui and Chen, 2017], including the in�uence

of all past measurements.

It was �rst introduced in [Kalman, 1960] by Rudolf E. Kálmán2, who is considered one of

the main developers of the underlying theory, and soon this invention became popular among

engineering faculties [Grewal and Andrews, 2015].

3.1.1 Applications and intuitive explanation of the algorithm

The Kalman �lter has numerous applications in technology. A common application is for the

guidance, navigation and control of vehicles [Marchthaler and Dingler, 2017], speci�cally aircraft

and spacecraft. Another frequent use case is target detection in radar applications [Kim, 2011].

Furthermore, the Kalman �lter is a widely applied concept in time series analysis, as it is used in

�elds such as signal processing and econometrics [Grewal and Andrews, 2015]. Kalman �lters are

1The typical estimation problem is Linear Quadratic Gaussian (LQG). In that case, the dynamical systems are
linear, the cost functions applied to the estimation quality are quadratic and, as an added condition, the random
processes are Gaussian.

2Kálmán was born in Hungary; the correct way to write this Hungarian surname is with two accents. To refer
to the Kalman �lter, we will use the anglicized version (without accents) of the surname, as it is the most common
in technical literature.

25
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also one of the main topics in robotic motion planning and control, and are sometimes included in

path optimization algorithms [Grewal and Andrews, 2015].

The algorithm works in a two-stage process: a predictive one and an update one. In the pre-

dictive stage, the Kalman �lter produces estimates of the current state variables as well as their

uncertainties. Once the next measurement (necessarily corrupted by some random error or noise)

has been obtained, these estimates are updated using a weighted average, with more weight given

to estimates with greater certainty. Due to the recursive nature of the algorithm, it can work in

real time using only the current input measurements and the previously computed state and its un-

certainty matrix; you don't need any additional information from the past [Chui and Chen, 2017].

3.1.2 The basic equation

The equations from which the Kalman �ltering manuals are based are excessively complex for a

�rst explanation; fortunately, often (and certainly in the case we are concerned with in the tracking

tasks in this PhD Thesis), the state transition matrix disappears, and you can come up with the

following, much easier, equation to start with:

x̂k(+) = (I�Kk)x̂k(�) +Kkzk (3.1)

where

x̂k(+) The estimate of the signal x at time tk after incorporating the information of a new

reading (i.e. the posterior estimate, a.k.a. the estimate conditioned by the reading zk).

It is represented by a random vector of dimensions n� 1.

Kk The Kalman gain matrix at time tk, with dimensions n� l.
I The identity matrix

x̂k(�) The estimate of the signal x at time tk before incorporating the information of a new

reading (i.e. the prior estimate, unconditioned by the reading zk). It is represented by

a random vector of dimensions n� 1.

zk The reading (i.e. measurement) obtained at time tk, represented as a random vector

with size l � 1.

Remember that the subscripts k and k � 1 refer to the epoch (the time instant). For example, in

our case, they will represent discrete-time intervals, so that tk = tk�1+ � , for all k > 0 and a given

time interval � .

Although the variables in equation (3.1) are random vectors and matrices, there are often situ-

ations where scalar values need to be estimated based on scalar-valued measurements. Speci�cally,

that will be our case in this PhD Thesis. Recall that, in the current work, bold notation indicates

randomness and underlining indicates that the element is a vector (such as zk), while uppercase

and unitalicized (such as Kk) denote matrices3. To obtain the scalar form of the equation (3.1),

we will use the corresponding variables without underlining and in italics, such as zk and �k
4, so

3For any questions about notation, you can consult the extensive list of symbols on �Mathematical Notation�
and, in particular, the section �Kalman �ltering� .

4Do not confuse the Latin letter ka (k) and the Greek letter kappa (�). The symbol K denoting the Kalman
gain matrix is the uppercase kappa (with a dash above it). Therefore, the scalar Kalman gain will always be �

(lowercase kappa with a dash above it). In the current work, to avoid confusion, K will never be used with any
other meaning. The notation of the dash above is used exclusively because it is common in the literature, cf.
[Anderson and Moore, 1979, Brown and Hwang, 2012, Catlin, 1989, Gelb et al., 1974].
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that we'll write:

x̂k(+)=(1� �k) � x̂k(�) + �k � zk (3.2)

Our goal is to �nd x̂k(+), the updated estimate of the �signal�5 xk . Furthermore, the algorithm

can be applied online, that is, by recursively �nding the estimate for each subsequent instant (i.e.

the estimate for the state at the kth instant for each subsequent k). Note that zk is the value of

the measurement, but the measurement is neither perfectly accurate nor perfectly distortion-free

(otherwise we would not need the Kalman �lter). The measurement value is typically distributed

assuming a Gaussian error. We are also familiar with x̂k(�), often called the a priori estimation,

or prior estimation; in reality, it is the prediction of the signal calculated at the previous instant.

Therefore, from the expression to the right of the equality in equation (3.2), the only unknown

component is the Kalman gain, �k. The Kalman �lter needs to calculate the Kalman gain which

is, so to speak, the trustworthiness the �lter grants to each of its sources of information: one such

source of information would be the measurement (i.e. the readings it receives in each instant) and

another source of information would be the underlying theoretical model (e.g. the equation that

would theoretically govern a magnitude to be estimated, such as a single tap gain in a multipath

channel.

To better understand how the Kalman �lter works, just think what would happen if we assume

the following starting condition: �k = 0:5. In such a case, the scalar equation (3.2) would take the

trivial form:

x̂k(+)=0:5 � x̂k(�) + 0:5 � zk (3.3)

The estimate for xk made after receiving the reading zk would be the average of both the

reading and the prediction made in tk�1 (based on previous readings and information about the

underlying theoretical model of the evolution of x). This can be interpreted as follows: as we have

no experience with these sources of information, we do not consider any more reliable than the

other, but rather we combine them to obtain the average. No doubt this is a very reasonable initial

decision; in fact, mathematically optimal in the linear-quadratic case.

As the Kalman �lter gains experience, i.e. as it works with these two information sources and

learns which one is more reliable, it �nds the optimal weighting factor to combine these information

at each subsequent instant. In addition, as we already indicated in the previous section, the Kalman

�lter can remember a little bit, the most important thing, the essential thing, about past instants.

In mathematical terms, it propagates the probability distribution of the variable(s) to estimate.

In the following sections, the linear estimation problem and its optimal solution based on the

Kalman �lter will be presented using a rigorous mathematical approach.

3.2 Statement of the Linear Estimation Problem

The problem is how to estimate the state of a linear stochastic system using measurements that

are linear functions of the state. We assume that stochastic systems can be represented by channel

5Strictly speaking, what we are estimating might be any magnitude, e.g. speed, position within a map, height
and position of an aircraft or, as will be our case and get explained soon, any channel tap gain within OFDM
communications. In Estimation Theory, the physical nature of the magnitude is not considered, but only its mathe-
matical nature: for nomenclature purposes, everything is �signals�. Our ignorance about the signal is mathematically
represented as the randomness of the signal, hence the bold notation of xk.
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generation (plant6) and measurement models according to the following equations (3.4) and (3.7)

in discrete time. Important note: for any questions about the notation, consult the section on

�Kalman �ltering� in the �List of symbols� located immediately after the Index of this PhD Thesis.

3.2.1 Plant model

xk = �k�1xk�1 +wk�1 (3.4)

where

xk The signal x at time tk, represented as a random vector with size n� 1.

�k�1 The state transition matrix of the (discrete) dynamic linear system at time tk�1, with

dimensions n� n.

xk�1 The signal x at time tk�1, represented as a random vector with size n� 1.

wk�1 The process noise w at time tk�1, represented as a random vector with size r � 1.

Plant noise (sometimes called process noise) w is assumed to be a zero-mean Gaussian process;

therefore, each realization of that process is a random vector7. In addition, we will assume that the

process and plant noises are uncorrelated (E


wkv

T
j

�
= 0 for all k and j). Process x is a stochastic

process whose realizations xk are random vectors. The initial value x0 is a Gaussian variable with

known mean x0 and known covariance matrix P0.

3.2.1.1 Scalar equation for the plant model

By simply setting n = 1 and r = 1, the random vectors for the signal and the process noise, as well

as the state transition matrix, would become scalars and the model collapses into the following

scalar plant model8:

xk = 'k�1xk�1 +wk�1 (3.5)

where

xk The signal x at time tk, represented as a (scalar) random variable.

'k�1 The state transition (scalar) variable for the (discrete) dynamic linear system at time

tk�1.

xk�1 The signal x at time tk�1, represented as a (scalar) random variable.

wk�1 The process noise w at time tk�1, represented as a (scalar) random variable.

The simplest application of Kalman �ltering is obtained when the plant model has a constant

scalar transition 'k = '.

6Kalman �lters were initially used to estimate states in industrial plants, such as chemical plants. That's why
the underlying generating model is called 'plant' model. In our case, this 'plant' model is a channel generator.

7In this PhD Thesis, bold always indicates randomness (cf. �List of symbols�).
8The reasoning is applicable to both real and complex random variables.
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3.2.2 Measurement model

zk = Hkxk + vk (3.6)

where

zk The measurement z at time tk, represented as a random vector with size l � 1.

Hk The measurement sensitivity matrix, which de�nes the linear relationship between the

state of the dynamical system and the measurements that can be made at time tk. It

has dimensions l � n.
xk The signal x at time tk, represented as a random vector with size n� 1.

vk The measurement noise v at time tk, represented as a random vector with size l � 1.

The measurement noise vk is a zero-mean Gaussian random vector that represents the error pro-

duced by an imperfect measurement subject to distortions.

3.2.2.1 Scalar equation for the observation model

Again, by simply setting n = 1 y l = 1, we can state the following scalar measurement model:

zk = hkxk + vk (3.7)

siendo

zk The measurement z at time tk, represented as a (scalar) random variable.

hk The (scalar) value for the sensitivity of the measurement.

xk The signal x at time tk, represented as a (scalar) random variable.

vk The measurement noise v at time tk, represented as a (scalar) random variable.

The simplest application of Kalman �ltering is obtained when the measurement model has a scalar,

constant measurement sensitivity hk = h.

3.2.3 Equations for plant noise

E hwki = 0 (3.8)

E


wkw

T
i

�
= �(k � i)Qk (3.9)

where �(k� i) is the Kronecker delta function (a scalar) and Qk is the covariance matrix (with

size n� n) of the process noise used in the system state dynamics.

In simple words, this means that we require that the process w to be zero-mean (mean is a zero

vector) and realizations wk of the process w at each instant tk are uncorrelated with each other

(although at each time tk, there may be a non-zero correlation between di�erent elements of the

random vector wk, as required by Qk).

The simplest case is obtained when the process noise covariance matrix does not vary over time;

in that case, Qk = Q: If we are working with scalar equations (according to the transformation

described in the previous sections), the simplest case occurs when �w;k, the noise variance of the

process, is constant: �w;k = �w.
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3.2.4 Equations for observation noise

E hvki = 0 (3.10)

E


vkv

T
i

�
= �(k � i)Rk (3.11)

where �(k� i) is the Kronecker delta function (a scalar) and Rk is the covariance matrix (with

size l � l) of the observation or measurement noise.

Again, in simple words this means that we require the process v to be zero-mean (i.e. mean is

a zero vector) and realizations vk of the process v at each instant tk are uncorrelated with each

other (although at each time tk, there may be a non-zero correlation between di�erent elements of

the random vector vk, as required by Rk).

The simplest case is obtained when the observation noise covariance matrix does not vary over

time; in that case, Rk = R: If we are working with scalar equations (according to the transformation

described in the previous sections), the simplest case occurs when �v;k, the noise variance of the

observation, is constant: �v;k = �v.

3.2.5 Optimization goal

With the models proposed in the previous sections, the objective of the Kalman �lter will be to

�nd an estimate of the n-state vector xk; that estimate will be represented as x̂k and will be a

linear function of the readings or measurements zi;..., zk that minimizes the mean square error:

E[xk � x̂k]TM[xk � x̂k] (3.12)

where M is any nonnegative, de�nite, symmetric weighting matrix.

3.3 Solution to the Linear Estimation Problem

It can be shown [Grewal and Andrews, 2015] that the linear estimation problem raised in the

previous sections is solved using the Kalman estimator in discrete time, a procedure that can be

implemented by computer and consists of the following basic steps:

1. Error covariance extrapolation

2. State estimate gets updated with the new reading

3. Error covariance update

4. Computation of the Kalman gain

In the following sections, each stage will be described as well as the computations and param-

eters involved.

3.3.1 Step One: Error covariance extrapolation

The Kalman �lter is based on a covariance matrix, P, which stores information about the un-

certainty of the estimates, the degree of "insecurity" that the Kalman �lter itself computes to

'feel' about its own estimates (predictions). This uncertainty will increase, for example, if the

new readings lead to the assumption that previous estimates (predictions) were more wrong than

expected.
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The �rst �ltering step is the extrapolation of Pk�1(+), which is the covariance of the posterior

estimation error at time tk�1, and update it (by incorporating the expired time) to obtain Pk(�),
that is, the covariance of the prior estimation error at time tk. In this context, prior (or a priori)

and posterior (or a posteriori) mean before (respectively after) incorporating the information

related to the reading at a given time. The computation can be done using the following equation:

Pk(�) = �k�1Pk�1(+)�T
k�1 +Qk�1 (3.13)

where

Pk(�) A priori value of the covariance matrix of estimation uncertainty at time tk, with size

n� n.

�k�1 State transition matrix at time tk�1, with size n� n.

Pk�1(+) A posteriori value of the covariance matrix of estimation uncertainty at time tk, with

size n� n.

Qk�1 Covariance matrix for the process noise w at time tk�1, with size n� n.

3.3.2 Step Two: State estimate update

In this step, the state estimate gets updated by incorporating the information of the last reading

(the measurement at the current time instant). To do so, we �rst have to compute the Kalman gain,

Kk, which gives us, so to speak, the weighting factor (reliability) of each source of information. To

compute Kk, several variables are used: Pk(�) (computed in step 1), Hk and Rk, via the following

equation [Grewal and Andrews, 2015]:

Kk = Pk(�)HT
k [HkPk(�)HT

k + Rk]
�1 (3.14)

where

Kk Kalman gain matrix at time tk, with size n� l.

Pk(�) A priori error covariance matrix at time tk, with size n� n.

Hk Measurement sensitivity matrix, which de�nes the linear relationship between the state

of the dynamic system and the measurements that can be made at time tk. Its size is

l � n.

Rk Noise covariance matrix for measurement noise v at time tk, with size l � l.

3.3.3 Step Three: Covariance error update

Since Kk has already been computed in step 2 and Pk(�) was computed in step 1, we can

update the error covariance matrix (the prediction uncertainty) using the following equation

[Grewal and Andrews, 2015]:

Pk(+) = [I�KkHk]Pk(�) (3.15)
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Figure 3.1: Block diagram for the linear system, the measurement and the discrete KF. Adapted
from [Grewal and Andrews, 2015].

The parameters in this equation have already been de�ned in previous sections. It is interesting

to note that the factor that updates the matrix P is sometimes denoted by K1
k = I � KkHk and

generates a projection that is orthogonal to the Kalman gain.9

3.3.4 Step Four: Estimation and recursion

In this step, successive values for x̂k(+) are computed recursively using the computed values for Kk

(from step 3), the given initial estimate x̂0, and the input data zk
10, using the following equation:

x̂k(+) = x̂k(�) +Kk[zk �Hkx̂k(�)] (3.16)

By iteratively performing steps 1 to 4 for each instant, an online estimate is obtained using

Kalman �ltering. Figure 3.1 shows a block diagram of the linear system, the measurement and the

discrete Kalman �lter.

3.4 Treatment of Measurement Vectors with Uncorrelated

Errors as Scalars

In many (if not most) applications with measurement vectors z, the corresponding measurement

noise covariance matrix R is a diagonal matrix, which means that the individual components of

vk are uncorrelated. For those applications, it is advantageous to consider the components of

z as independent scalar measurements rather than vector measurements. In this manner, two

important advantages are obtained: a much shorter computation time (the number of arithmetic

computations is signi�cantly less) and a greater numerical precision (by avoiding rounding in matrix

inversions).

The implementation of the �lter, in those cases, would require l iterations of the update equa-

tions with the new observation, using the rows of H as measurement �matrices� (in reality, of

9In a way, Kalman �ltering is as if one were to create a product space with two projections: one projection
is �what can be known about the actual state from the measure�; the other projection would be �what cannot be
known about the real state from the measurement, but from the model�. The �rst projection would be K1

kx̂k(�)

and the second projection would be Kkzk; and their sum would be x̂k(+).
10Note that z is random as measured by random (Gaussian) noise, but in the Kalman �lter the vector z is already

known to us. Bold only emphasizes that it contains random noise.
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dimension 1, and, therefore, scalars) and the diagonal elements of R as the corresponding (scalar)

measurement noise variance.

In that sense, such a matrix �lter would be equivalent to a bank of scalar �lters, each of

which could be implemented independently as if doing Kalman tracking of totally unrelated scalar

variables (mathematically they are). The plant and noise model associated with each �lter would

be given by the equivalent scalar equations (3.5) and (3.7) that we derived in the previous sections.

In the framework of this Thesis, matrix-scalar reduction will be useful when we want to follow

multipath channels. If we assume that the gain of each path can be considered independent in its

evolution, the Kalman tracking can be done by means of a bank of Kalman �lters, each of which

will follow one of the paths (or, to be more precise, taps) of the channel.

3.5 Kalman Filter Applications in OFDM Channel Tracking

Kalman �ltering applied to channel tracking in OFDM systems has been proposed in the tech-

nical literature through multiple and diverse approaches. Below we brie�y present some of these

applications.

3.5.1 KF tracking outperformance vs. training-sequence-based estimate

A novel channel estimation and tracking method for OFDM wireless systems based on pilots and

Kalman �ltering was proposed in [Yuanjin, 2003]. This paper looked at coherent burst OFDM

systems, such as those adopted by the IEEE 802.11a (802.11g) and ETSI HiperLAN/2 standards,

using a Kalman �ltering algorithm to overcome the AWGN and ICI, as well as pilots to track

variations in the impulse response of the channel (including a pilot-based phase compensation

system). This technique was simulated in a channel with Rayleigh fading and a 5.0 GHz 802.11

wireless LAN system. The entire algorithm could be processed in real time with signi�cantly

better performance than the channel estimation method (without KF) based on training sequences

or pilots.

3.5.2 KF for tracking subchannels over time according to Jakes model

When the Doppler frequency is known, KF is widely used for tracking [Barbieri et al., 2009,

El Husseini et al., 2019, Kashyap et al., 2017]. An auto-regressive (AR) model is assumed for the

transition dynamics, and the parameters are chosen either based on a Doppler dependent model,

e.g., Jakes model or by �tting the parameters to the data [Pratik et al., 2021].

In [Chen and Zhang, 2004] and later in [Zhang and Chen, 2004], an attempt was made to op-

timize a method unrelated to Kalman �ltering: MMSE channel estimation applied to time of

frequency. This technique did not address time-domain dynamics, which the authors solved by

presenting a KF method for time- and frequency-selective fading channels. Based on an autoregres-

sive model of the Jakes model, MMSE estimation in the frequency domain was combined with KF

tracking of subchannel dynamics over time. This two-stage system o�ered comparable performance

to a much more complicated joint-Kalman (time-frequency) estimator. The authors concluded that

the good performance derived from this simpli�cation of the system could be due to the fact that

the time and frequency components of the Jakes model presented in [Van De Beek et al., 1995]

and [Chen and Liu, 2000] were of a separable nature.
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3.5.3 An application of the predictive character of KF

A very original use of KF appears in [Simeone and Spagnolini, 2004]. It is an adaptive pilot pattern

for OFDM systems. The underlying idea is that adapting the link across fading channels based on

information (available at the receiver) about the state of the channel increases the spectral e�ciency

and reliability of the link. Typically, that adaptation has referred to power, adaptive modulation,

etc. The authors propose that the placement of the pilot subcarriers in the time-frequency grid

is also adapted to the prediction that, by means of a Kalman �lter (speci�cally, the calculation

of the error covariance matrix), is obtained from the error of the channel estimate. Thus, based

on the Kalman prediction of the foreseeable error, the number of pilot subcarriers that guarantees

a su�ciently reliable channel estimate based on the Quality of Service (QoS) requirements can

be minimized. The simulations showed the e�ciency of the algorithm with respect to a periodic

re-training.

3.5.4 The limits of KF: theory vs. practice

Published simulations are not always practical for implementation on real systems. The Kalman

�lter proposed in [Al-Na�ouri, 2007] makes collective use of the data and channel constraints inher-

ent in the communications problem, with the disadvantage that this entails excessive computational

cost. That is, other approaches focus on a subset of the possible constraints (the statistical proper-

ties of the channel, the pilots, etc.) while [Al-Na�ouri, 2007] used all the constraints and integrated

them into a Kalman �lter (a forward-backward KF, although a simpli�ed implementation is also

proposed as a forward-type KF) that essentially makes a potentially unlimited number of recursive

approximations that improve accuracy. Speci�cally, the simulations showed that more signal pro-

cessing always produced better performance in terms of Bit Error Rate (BER). This work shows

us that, theoretically, by means of Kalman �ltering, unexpected11 improvements can be achieved

in exchange, albeit, for a computational cost totally outside the range that can be implemented in

current practice.

3.5.5 Combining KF with other powerful algorithms

Some of the most interesting KF techniques are those that are proposed in combination with

some other algorithm that has shown its power separately in previous works. Thus, for example,

in [Kim et al., 2005], it is proposed to use a QR decomposition algorithm (QRD)12 adapted to

MIMO-OFDM, the QRD-M algorithm, having veri�ed the power of QR decomposition in channel

estimation and data joint detection for CDMA in a previous study. The decision rule of Maxi-

mum Likelihood (ML) based on the QRD corresponds to a complete search in a tree, a search

whose computational complexity can be reduced considerably by combining it with the algorithm

M. The Kalman �lter is used for the joint estimation of channel coe�cients in a similar way

to [Komninakis et al., 2002]. The QRD-M stage uses the channel estimate calculated during the

previous symbol interval, that is, the prediction that in this PFC we denote with x̂k(�). Sim-

ulations showed that this combined QRD-M-KF system outperformed other techniques and had

11Unexpected to the extent that the Kalman �lter is optimal in linear estimation problems, and it is not obvious
that there are linear relationships between aspects as diverse as the correlation between frequency and time or the
�nite alphabet of symbols (to name two examples used) and the best estimate.

12In linear algebra, the QR decomposition or factorization of a matrix is its decomposition as the product of an
orthogonal matrix Q by a triangular upper R. The QR decomposition is often used to solve the linear least squares
problem and is the basis of the QR algorithm used for computing the vectors and eigenvalues of a matrix.
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signi�cantly lower computational cost, especially for larger constellations and a higher number of

transmitting antennas. Furthermore, it was robust even for large (normalized) Doppler delays. In

summary, by combining KF with another proven algorithm, the authors achieved a good candidate

for implementation in MIMO-OFDM systems.

Another combination with the KF is presented in [Banelli et al., 2007]. In this case, data-

assisted Kalman tracking is performed for channel estimation in Doppler-a�ected OFDM systems.

The Kalman �lter is used to estimate the (fast) variation of the channel from one OFDM symbol

to another, taking advantage of information from a Basis Expansion Model (BEM). The Kalman

�lter estimate is iteratively re�ned by the aid of pilots and/or data in Pilot Symbol Assisted

Modulation (PSAM) [Jiménez et al., 2019], whether real or virtual (V-PSAM). In this way, by

combining KF and PSAM, it is possible to improve the global BER, although the authors suggest

that this technique could be further studied.

These studies suggest that combining KF with other proven techniques can lead to signi�cant

improvements in BER.

3.5.6 Unknown-parameter channels and trend channels

The most common applications of KF are based on autoregressive or very similar models (such as

BEM) that approximate13 well-de�ned channel models such as Jakes or Rayleigh.

A peculiar case is that in which the channel model is not perfectly characterized. For example,

an attempt is made in [Han et al., 2004] to estimate fast-fading channels for OFDM using a Mod-

i�ed Kalman Filter (MKF), but although the channel can be described using an autoregressive

(AR) process, its parameters are unknown and it is proposed to estimate the parameters of the AR

process by minimizing the Mean Square Error (MSE). The result is that the simulated channels

are random walks and the performance of the MKF is comparable to that of the KF that does

know the parameters of the AR process. In practice, this means that KF can be used even when

there is uncertainty about the fading parameter (or Doppler frequency).

Instead, in [Shu et al., 2014], the typical autoregressive model is discarded in favor of an inte-

grated random walk model.14. Their simulations support the idea that, in this case, the resulting

one-path KF outperforms the KFs based on autoregressive models proposed in the literature, such

as some of those explained above.

3.5.7 Practical conclusions

From the background review in the literature, the following practical conclusions can be drawn:

� The application of KF to OFDM systems can improve channel estimation and re-

duce BER. Among the studies cited, for example, simulations of [Kashyap et al., 2017,

Yuanjin, 2003, Chen and Zhang, 2004, Al-Na�ouri, 2007, Kim et al., 2005, Banelli et al., 2007,

Shu et al., 2014] demonstrate improvements in channel estimation and reductions in bit er-

ror rate. In the case of [Simeone and Spagnolini, 2004], the improvement consists of meeting

the QoS conditions with the minimum number of pilots, and in [Han et al., 2004] the added

13The process for creating these models typically consists of synthesizing the desired model with a �lter and
then obtaining the process noise variance (or covariance matrix, if applicable) from the Yule-Walker equation as
described, among others, in [Porat, 2008].

14�Integrated random walk� means that the speed plot is a random walk. The plot of the position (that is, the
graph of the complex amplitude of the subchannel) is the integral of the speed, the integral of the random walk.
Therefore, the complex amplitude is not a random walk, but rather shows trends.
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improvement of being able to work with unknown Doppler fading/frequency channels is pre-

sented.

� The typical proposal consists of applying KF to the monitoring of the temporal vari-

ation of the subchannels. Although there are numerous di�erent proposals to apply KF to

OFDM, practically all of them (including all the papers explained above) use KF to take ad-

vantage of time-domain correlation, independently of, or combined with, other systems that

take advantage of time-domain correlation. the frequency domain. In that sense, some of the

most interesting proposals combine KF with other proven techniques, as in [Kim et al., 2005]

with QR decomposition, or as pilot assistance (PSAM) in [Banelli et al., 2007].

� Simpli�cation of matrix KF using a bank of scalar Kalman �lters may be accurate

under certain circumstances. Using scalar Kalman �lters for each subchannel is equivalent to

assuming that the time evolution of each subchannel is uncorrelated with that of the other

subchannels. In [Shu et al., 2014] it is shown that, when the temporal variation is slow or

moderate, an estimate of the multipath complex amplitude of the channel can be obtained

using the integrated Random Walking (RW) model. The proposed singlepath RW-KF �lter

bank is shown to be as e�cient as the exact RW-KF (that is, the joint multipath RW-KF)

and outperforms the KFs based on autoregressive models proposed in the literature. This

supports our decision (explained later) to perform the multipath simulations according to

uncorrelated singlepath Gauss-Markov models.

Therefore, the intention to analyze Kalman �ltering in OFDM systems (�ltering that aims to

improve channel estimation and tracking, taking advantage of the correlation of each subchannel

in the time domain, and simplifying the matrix KF by means of Kalman �lter banks scalars),

�ts perfectly with current knowledge and the most recent proposals published in the technical

literature. Furthermore, the popularity and strength of the KF underscore the need to study

how it behaves in non-stationary environments; it is also worth noting the paucity of detailed

studies on how the birth and death of paths a�ect KF: only [Angelosante et al., 2007] and our

own work [Méndez-Romero, 2015] have shown KF degrades catastrophically in the presence of tap

birth/death dynamics.



Chapter 4

Abrupt Channel Tracking

Since the purpose of this Thesis is the enhancement of wireless communications by better tracking

channels when they change abruptly (a problem we might call abrupt channel tracking), we need

to review the di�erent solutions for abrupt change detection proposed either for communications

or in other areas.

We will start by providing a historical overview of the Theory of Abrupt Changes and other

abrupt-change detection methods (Section 4.1), followed by an intuitive explanation of Random

Set Theory (RST) and RST-based solutions for abrupt channel tracking (Section 4.2). Then we

will focus on classical (threshold-based) online changepoint detection algorithms (Section 4.3);

while mostly developed in the 20th century, they will give us some ideas about how to develop our

own threshold-based solutions for abrupt channel tracking. Finally, other recent developments and

advanced online changepoint detection algorithms will be explored in Section 4.4.

4.1 Historical Overview of Abrupt Change Detection

4.1.1 Early research

Interest in on-line change detection �rst arose in the area of quality control: control charts were

introduced in [Shewhart, 1931] and cumulative sum charts in [Page, 1954]. The study of slow, drift-

like changes in system states, systematized in Kalman's development of Kalman �lters, advanced

in parallel to the study of abrupt changes.

Regarding abrupt changes, two main classes of statistical problem statements emerged: the

Bayesian and non-Bayesian approaches.

The �rst Bayesian abrupt change detection problem was an on-line quality control problem

stated in [Girshick and Rubin, 1952]. The �rst optimality results concerning Bayesian change

detection algorithms were obtained in [Shiryaev, 1961, Shiryaev, 1963, Shiryaev, 1965].

On the other hand, the �rst investigation of non-Bayesian abrupt change detection algorithms

was made in [Page, 1954]. Cumulative sum algorithms were proven to be asymptotically optimal

in [Lorden, 1971].

4.1.2 Theory of Abrupt Changes

Apart from its �rst applications in quality control [Shewhart, 1931], these methods found an early

application in the analysis of biomedical signals such as electroencephalograms, where many con-

37
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tributions to the problem of automatic segmentations of signals were made [Jones et al., 1970,

Borodkin and Mottl, 1976, Mathieu, 1976, Sanderson et al., 1980]. Segmentation algorithms aided

in geophysical signal processing, e.g., diagraphy [Basseville and Benveniste, 1983] and seismology

[Nikiforov and Tikhonov, 1986], and introduced the �rst step towards continuous speech recogni-

tion in [Andre-Obrecht, 1988].

Bayesian and non-Bayesian algorithms were described in detail in [Basseville and Nikiforov, 1993],

the essential late 20th century compendium for abrupt-change detection techniques. This com-

pendium was updated in [Tartakovsky et al., 2014] and expanded upon in [Tartakovsky, 2019].

Another important work is [Brodsky, 2016], where not only retrospective and sequential change-

point analysis is performed, but also two novel methods are introduced: early change-point detec-

tion (i.e. detection of a change that begins gradually) and a method to detect structural changes;

these change detection methods are shown to be either optimal or asymptotically optimal and can

be successfully applied to �nancial time series (e.g. early detection of periods of higher volatility

in stock exchanges).

4.1.3 State of the art

Interestingly, machine learning (ML) techniques weren't included in the early papers nor in the most

recent textbooks. The development of Neural Networks (NN) and related e�cient ML algorithms

arguably has the potential to revolutionize the detection of abrupt changes, provided that such

abrupt changes can be trained beforehand � since abrupt changes sometimes deal with unknown

future distributions, the solid mathematical framework behind the self-sustained area of Sequential

Analysis, as the sequential detection of abrupt changes is sometimes called, is in heavy demand

and irreplaceable.

More recent developments in online change-point detection, including particle �ltering, message

passing, machine learning, variational learning and advanced sequential learning, are discussed in

Section 4.4.

4.1.4 Taleb's Incerto

No historical overview of abrupt changes can be complete if we don't mention Taleb's Incerto

[Taleb, 2012, Taleb, 2007, Taleb, 2001, Taleb, 2018, Taleb, 2020] and its via-negativa/non-predictive

view of stochastical problems as the best risk management approach [Taleb, 2012, Taleb, 2020], as

well as its main idea that Black Swans (i.e. model incompleteness with very relevant rare e�ects on

performance) are the main drivers of performance degradation in what he called "Extremistan", as

opposed to "Mediocristan" (ergodic environments where average error matters more than a huge

single-point error) [Taleb, 2007, Taleb, 2001, Taleb, 2012]. This categorization of problems can be

traced back to multifractal geometry [Mandelbrot and Hudson, 2008].

Most systems considered in the current Thesis aren't �nancial non-ergodic applications with

risk of ruin1, but communication channels where, although there might be a jump between two

states, the relevant metric is an average over time, whether tracking error or BER, i.e. our com-

munication systems usually live in "Mediocristan". However, channel tracking schemes must allow

for a potential future where Ultra-Reliable Low Latency Communications (URLLC) become stan-

dard for widespread applications, including autonomous vehicle communications (which might

1Actually, we will brie�y consider �nancial non-ergodic applications with risk of ruin in Chapter 9.
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occasionally require ultra-low-latency remote driving) or military drone swarms; URLLC are sub-

ject to the engineering equivalent for risk of ruin, and Extremistan stochastics such as Extreme

Value Theory (EVT) and channel models based on the Generalized Pareto Distribution (GPD)

arise [Mehrnia and Coleri, 2022]. Extremistan e�ects and their relevance to abrupt changes are

discussed in Appendix Subsection B.3.4.

4.1.5 Random-Set Theory

A recent branch of maths, Random Set Theory, has been proposed to tackle several problems in

communications and signal processing. Particle �lters for random set models have been proposed

for multi-track tracking, estimation using imprecise measurements and calibration of tracking sys-

tems [Ristic, 2013], as well as detection of di�erent voices in multi-user speech and detection of

tap birth-death in multipath channel tracking. Random Set models were discussed in Section 4.2.

The main disadvantage of Random Set models is that they lead to very di�cult-to-handle

integrals that require particle �ltering to solve. Particle �lters (Subsection 4.4.1) involve a huge

computational cost that's unfeasible in real conditions for some applications. Thus, a simpli�cation

was required.

4.2 Random Set Theory for Channel Tracking

In the previous chapter, we studied the Kalman �lter, which is the optimal estimator in Gaus-

sian, linear problems. What happens when the problem involves non-linear evolutions (i.e. non-

stationarity through �jumps�? In such non-stationary environments, the Kalman �lter loses its op-

timality. In the �eld of communications, the non-stationarity of the channel due to abrupt changes

causes the channel estimation based on Kalman �ltering to lose performance. Performance can be

degraded catastrophically in such non-stationary conditions, as shown in [Méndez-Romero, 2015].

One of the approaches proposed to track non-stationary channels in OFDM, when such non-

stationarity corresponds to the appearance and disappearance of new paths, is based on Random

Set Theory (RST) [Jiménez et al., 2020]. This chapter explains what Random Set Theory is, how

it has been introduced in di�erent environments associated with Telecommunications Engineering,

and, speci�cally, how it can help track non-stationary channels in OFDM environments.

4.2.1 Concept and history of Random Set Theory

Random sets are random elements that take values as subsets of some space, serving as general

mathematical models for observations whose values are sets, as well as for irregular geometric

patterns. Random sets generate the traditional concept of ordinary random points/vectors.

Let's explain it in a more understandable way. f3; �; 7:23g is a set of three real numbers.

Similarly, a set of vectors can be de�ned without di�culty. Actually, a set can be de�ned in any

space of elements by simply taking one or more of those elements. Now, just as you can de�ne a

random variable that takes a real number as its value, e.g., a r.v. x that takes real values following

a uniform probability distribution U[0; 1], and just as a random entity y can be de�ned that takes

a vector as its value (and in that case we speak of a "random vector"), generalized probabilities

can also be de�ned on any other type of sets, and then such sets can be called �random sets�.

In fact, the usual random variables in communications (such as those that take values in R, in

C or in Cn, are just a speci�c type of random sets, just like the natural numbers or the intervals
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of Rn are concrete examples of sets.

Think, for example, of a set where not only each element is random but also the number of

elements itself; for example, the set of paths2 of a multipath channel. Not only do we not know the

complex gain associated with each path, but we may also not know if there are two, three, or four

active paths at any given time. The natural way to model this is by a random set where the number

of elements is random (and so is the value of each element). This is the type of generalized random

set that can be applied for non-stationary channel tracking and other communication engineering

problems.

Considering the fact that they are such a natural generalization of the concepts of probability

and statistics applied to the usual random variables (and especially to random vectors), it is

perhaps surprising that, although they have been used since the middle of the 20th century (for

example, for statistical sampling designs in [Hájek, 1981], statistical geometry in [Kendall, 1974],

and statistics in [Robbins, 1944]), its �rst formalized treatment (as random sets are understood

today3) was not done until 1975 in [Mathéron, 1975].

In the foreword to Mathéron's book on random sets, G. Watson expressed his view of statistics

in these words [Mathéron, 1975]:

�Modern statistics must be de�ned as the applications of computers and mathemat-

ics to data analysis. It must grow as new types of data are considered and as computing

technology advances.�

That quote is perhaps the best way to express what has been happening (and possibly will continue

to happen in the future) around the relationship between random sets and engineering. Thus, out

of sheer necessity, engineering (and �nance, etc.) have had to resort to advances in mathematics

to �nd new solutions in data analysis and this, in turn, has propelled mathematical research into

Random Set Theory, with important recent contributions in [Molchanov, 2017].

4.2.2 Incorporation of Finite Set Statistics to multi-target tracking

Random Set Theory was �rst applied to telecommunications to solve multitarget tracking problems,

becoming popular as Finite Set Statistics (or FISST, from FInite Set STatistics) with the excellent

work by Mahler, Goodman and Nguyen [Goodman et al., 2013].

After all, Random Set Theory is nothing more than a probability theory of sets (for all our

purposes, we can consider them �nite) that exhibit randomness not only in each of the elements,

but also in the number of elements [Biglieri et al., 2012]; thus, they make up the ideal mathematical

setting to study problems in which not only do we not know which element is there, but we also do

not know how many elements there are. This approach is common in radar problems (you don't

know who the targets are, but sometimes you don't know how many targets there are and how many

signals are red herrings), and also, as we will see in the next section, in wireless communications

problems.

Applying the mathematical techniques developed in [Goodman et al., 2013], once a posterior

density function f(Hpjy1:p) is obtained in the entire set space (for example, the plane/case where

2There is a distinction between taps and paths. Paths can contribute to di�erent taps, as explained in 2.5.
However, for the purposes of the intuitive explanation in this Section, they will be treated as the same concept, as
some RST authors do.

3Although Kolmogorov already treated random sets in [Kolmogorov, 1950], [Mathéron, 1975] is credited with
their �rst formalized treatment as random variables in locally compact separable Hausdor� spaces. For more details
on Mathéron's original contributions, please refer to [Molchanov, 2005].
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there is one target, and for the planes/cases where there are two, three, four, �ve targets, etc.),

conditioned to the samples obtained, a pair of Bayesian estimators can be de�ned, the so-called

Global Maximum A Posteriori (GMAP) estimators: GMAP-I (or �Marginal Multi-Target Estima-

tor�) and GMAP-II (or �Joint Multi-Target Estimator�). The di�erence between them lies in the

fact that GMAP-I is a two-stage estimator in which the cardinality of the set is �rst estimated

(that is, �rst it is decided whether there are 3 objectives or 7; and, later, it is decided which targets

those 3 or 7 are), while GMAP-II performs the estimation in a single stage.

The practical implementation of these algorithms in radar applications involves the program-

ming of particle �lters. In general, they are very computationally expensive but that is not too

much of a problem in some military applications, at least compared to what is common in wireless

communications. Bear in mind that it is not the same to learn, with a one second delay, how many

enemies there are and where they are (especially if there is no technological alternative that does

it before and better), than to delay any communication between a base station and a mobile by

an additional second, for instance.

Other military applications without a direct translation in the �eld of communications are those

related to mapping all the possible positions of the enemy, taking into account the inaccuracy of the

underlying probabilistic model [Ristic, 2011]. The same idea has merit in wireless communications,

namely: the randomization of the stochastic model used, in order to incorporate the uncertainty

about the starting hypothesis.

4.2.3 RST for OFDM Channel Tracking

The application of RST to multi-target tracking problems aroused the interest of Biglieri and Lops,

who decided to apply the same ideas to wireless communication problems. First they applied it to

the problem of multi-user detection:

In mobile multiple-access communications, not only the lo cation of active users,

but also their number varies with time. In typical analyses, multiuser detection theory

has been developed under the assumption that the number of active users is constant

and known at the receiver, and coincides with the maximum number of users entitled

to access the system. This assumption is often overly pessimistic, since many users

might be inactive at any given time, and detection under the assumption of a number

of users larger than the real one may impair performance.

� [Biglieri and Lops, 2006]

The authors therefore decide to resort to RST because it makes no practical sense to assume that all

users are active at the same time. (This contrasts with the practical utility of resorting to RST in

OFDM channel tracking problems, where the advantage is another: to avoid the great degradation

that occurs in Kalman �ltering when there are birth and death paths). Later, the authors turned

their sights on another aspect of communications: tracking on multipath channels and, with the

team expanded to a new author (Angelosante), managed to create an RST model for tracking

multipath in OFDM [Angelosante et al., 2007] and in MIMO-OFDM [Angelosante et al., 2009].

The RST model for multipath tracking is not trivial in complexity. The reader who wants to get

started with these techniques can �nd a detailed exposition and with a guide of recommendations

in Appendix A. The basic idea is to de�ne random sets of elements with two �dimensions�4: one

4The term �dimension� is used here in an explanatory manner and without any rigor. The terms �facets�, �sides�
or, in a much more rigorous way, �projections� could be used as synonyms.
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dimension is the tap index, a number which de�nes it as tap (tap 1, tap 5, etc.); the other dimension

is the value of the complex gain (e.g. 0:8 + 0:2i). A very intuitive way to understand the problem

is to imagine some good portions of cured cheese; these portions, cut into cubes5 or slices6, can

be placed one after the other. Thus, we could speak of a �rst cheese or �rst tap, a �fth cheese or

�fth tap, etc. Inside each piece of cheese, there is a hole; exactly one hole. That hole represents

the point in R or C, respectively, that coincides with the true tap gain at a given instant. For the

thought experiment to succeed, the slices must not be folded and must only have a single hole.

In front of the cheese slices there is a person with his eyes covered, which is us (the estimator!);

just by feeling for a few seconds with gloved �ngers, we have to detect, by gloved touch, the

location of those holes. Unfortunately, because we do not have much time and gloved touch isn't

very reliable, our situation is precarious: we have to decide on a strategy to follow, where to touch

�rst, and what conclusions to draw.

And that is where the di�erent possible estimators come into play when applying RST. One

could, for example, think of touching the center of the slice �rst, to detect if that slice or path has

the hole right in the center (zero gain, i.e. idle path). Or, on the contrary, you could think of �rst

touching the place where you remember the hole was in the previous instant, anticipating that now

it is not very far from there. You can decide �rst which taps are dead (which slices have the hole

right in the middle), or maybe you can decide �rst how many taps are dead (quickly tapping all

the slices without noticing their order), etc.

These are, explained in a very easy and intuitive way7, the di�erent estimation techniques

available. If one quickly touches all the slices without noticing their order (their tap index),

for example, one is calculating the �rst stage of the GMAP-I estimator (the second consists of

calculating the location of the holes in each slice). The mathematical expression of this estimator

has the following form:

GMAP-I:

8<
:n̂p = arg maxnp20;:::;Lmax

fnpjy1:p(np;y1:p);bHp = arg maxHp:jHpj=n̂pfHpjy1:p(Hp;y1:p);
(4.1)

where the details of the parameters can be consulted in Appendix A. As can be seen, these are

quite convoluted expressions. This convoluted character is probably one of the biggest shortcomings

of RST, as it is a signi�cant barrier for unfamiliar engineers.

�What is the optimal solution?�, the reader might ask. The GMAP-III estimator, a technique

proposed in [Angelosante et al., 2007]. Following the allegory of the cheese slices, it would consist

of feeling the center of the slices and establishing which of the slices have the hole in the center

(e.g. slice 2 and slice 4). Afterwards, one concentrates on feeling the remaining slices (the other

paths) to locate the hole (calculating the true gain from probability densities). The mathematical

expression is:

GMAP-III :

8<
:
\�(Hp) = arg max�(Hp)f�(Hp)jY1:p

(�(Hp)jY1:p),ehp = �
R
2j\�(Hp)j

hpfhpjY1:p
(hpjY1:p)dhp

(4.2)

where

5If they are strip-shaped, it is easier to see the real line. They are ideal for imagining real-valued tap gains.
6A su�ciently large slice is the ideal metaphor for the complex plane or a bounded portion of it.
7For a full, formal derivation of GMAP estimators, see Appendix A.
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f�(Hp)jY1:p
(�(Hp)jY1:p) =

�
�0(Hp)

f(HpjY1:p)�Hp (4.3)

and the de�nition of each parameter can be consulted in the next Subsection. The main

advantage of applying RST (with respect to the pre-existing alternatives) lies in the fact that

simulations in [Angelosante et al., 2007, Angelosante et al., 2009] showed a great advantage of their

estimation with respect to the unmodi�ed Kalman �lter and with respect to LS estimation. For a

more detailed discussion, see Appendix A.

4.3 Threshold-Based Online Changepoint Detection

4.3.1 Elementary algorithms

Let us consider a sequence of independent random variables (yk) with a probability density p�(y)

depending upon only one scalar parameter. Before the unknown change time t0, the parameter �

is equal to 0, and after the change it is equal to �1 6= �0. Our goal is to detect and estimate this

change in the parameter.

This problem statement is usually accompanied with some other assumptions, such as the

Gaussian nature of the sequence (e.g. detection of a change in the mean of an independent Gaussian

sequence) or assuming that the parameter �0 before change is known.

The classical, closed-form solutions for such problem statements considered in this section are

based on the concept of log-likelihood ratio, i.e. the logarithm of the likelihood ratio, de�ned by:

s(y) = ln
p�1(y)

p�0(y)
(4.4)

where ln denotes the natural logarithm. Typically, you'd expect �1 to be the value of � in

the ranges where p�1(y) > p�0(y), and viceversa. This is the key statistical property of this ratio,

which is very important in mathematical statistics. More formally, let E�0 [s] and E�1 [s] denote the

expectations of the log-likehood ratio under the distributions p�0 and p�1 . Then, E�0 [s] < 0 and

E�1 [s] > 0. In other words, you can detect a change in the parameter � as a change in the sign of

the mean value of the log-likelihood ratio.

4.3.1.1 Su�cient statistic

Given a random sample (X1; X2; :::; Xn) from a statistical population with a theoretical dis-

tribution in a parametric family fF�j� 2 �g; a statistic T (X1; X2; :::; Xn) is called 'su�cient'

if the sample distribution, conditional to the value for the statistic T , does not depend on �

[García and Vélez, 2012].

The log-likehood ratio for the observations yj to yk:

si = ln
p�1(yi)

p�0(yi)
(4.5)

is the su�cient statistic [Basseville and Nikiforov, 1993] for elementary changepoint detection

problems.
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4.3.2 Shewart control chart

The idea of using Shewart control charts emerged in quality control (continuous inspection). The

Shewart control chart is basically a sliding window algorithm, i.e. a moving-average control chart.

The size of the window (the size of the samples taken) N is �xed. At the end of each sample we

have to decide between the two following hypotheses about the parameter �:

8<
:H0 � = �0

H1 � = �1
(4.6)

As long as the decision is taken in favour of no change/no defect in quality control (i.e. the null

hypothesis H0), new samples are taken and tested. Sampling/production would be stopped after

a change/defect is detected (i.e. the hypothesis H1).

How do we take a decision? For a �xed sample size N , the optimal decision rule d is given by

[Basseville and Nikiforov, 1993]:

d =

8<
:0 if SN1 < h; H0 is chosen

1 if SN1 < h; H1 is chosen

where

Skj =

kX
i=j

si (4.7)

4.3.3 Geometric Moving Average algorithm

The Geometric Moving Average (GMA) algorithm is based on two ideas: the fact that a change in

the parameter is re�ected as a change in the sign of the mean value of the log-likelihood ratio, and

the idea of weighting observations exponentially. The GMA decision function can be rewritten in

a recursive manner as [Basseville and Nikiforov, 1993]:

gk = (1� �)gk�1 + �sk (4.8)

where g0 = 0 and the coe�cient � acts as a forgetting factor.

4.3.4 Finite Moving Average algorithm

The Finite Moving Average (FMA) algorithm replaces the exponential forgetting operation in Eq.

4.8 by a �nite memory one [Nikiforov and Tikhonov, 1986]. Thus, a �nite set of weights i is now

required:

gk =

NX
i=0

iln
p�1(yk�i)

p�0(yk�i)
(4.9)

This algorithm requires tuning some parameters, namely the size N of the sliding window,

the weights i, which are any weights for causal �lters, and the threshold h that determines the

stopping rule: ta = minfk : gk � hg.
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4.3.5 CUSUM algorithm

The CUmulative SUM (CUSUM) algorithm, �rst proposed in [Page, 1954], can be obtained through

di�erent derivations, leading to slightly di�erent presentations. Two of those derivations follow.

4.3.5.1 Derivation of the CUSUM algorithm as typical change behaviour detector

The typical behaviour of the log-likehood ratio Sk shows a negative drift before change and a

positive drift before change [Basseville and Nikiforov, 1993]. Therefore, the corresponding rule

is based on comparing the di�erence between the value of the log-likehood ratio and its current

minimum value, to a threshold:

gk = Sk �mk � h (4.10)

where

Sk =

kX
i=1

si (4.11)

si = ln
p�1(yi)

p�0(yi)
(4.12)

mk = min1�j�kSj (4.13)

The stopping condition would be

ta = minfk : Sk � mk + hg (4.14)

or equivalently, in the case of change in the mean of a Gaussian sequence, as an integrator

compared to an adaptive threshold [Basseville and Nikiforov, 1993].

4.3.5.2 CUSUM as a repeated SPRT

[Page, 1954] derived the CUSUM algorithm by using the repeated testing of two simple hypotheses:

8<
:H0 � = �0

H1 � = �1
(4.15)

with the aid of the Sequential Probability Ratio Test (SPRT). Full derivations can be found in

[Page, 1954, Basseville and Nikiforov, 1993]. The resulting decision rule can be recursively written

as

gk = (gk�1 + sk)
+ (4.16)

where (x)+ = sup(0; x), or equivalently as

gk = (Sk�Nk+1)
+ (4.17)

where
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Nk = Nk�1 � 1fgk�1>0g + 1 (4.18)

and 1fxg is the indicator of event x, and ta is de�ned as

ta = minfk : gk � hg (4.19)

The CUSUM algorithm can thus be seen as a randomly-sized sliding-window algorithm.

4.3.6 Bayes-type algorithms

Abrupt change detection algorithms can be derived with a Bayesian approach in which a priori

information about the distribution of the change time is available, e.g. for the abrupt-change time

t0. A full derivation can be found in [Girshick and Rubin, 1952, Basseville and Nikiforov, 1993].

The main idea: deciding that a change has occured when the prior probability of a change exceeds

a conveniently chosen threshold. For example, the application of this Bayesian approach to a

change in mean, where mean values �0, �1 and constant variance �2 are known, would lead to the

following decision function:

gk = ln(�+ egk�1)� ln(1� �) + ln
p�1(yk)

p�0(yk)
(4.20)

The tuning parameters of this Bayes-type algorithm are the prior probability � of a change, the

initial probability � implicit in g0, and the threshold h [Basseville and Nikiforov, 1993].

4.3.7 Unknown parameter after change

Abrupt-change detection algorithms exist for the case where the parameter �1 after change is

unknown, while �0is known.

4.3.7.1 �2-CUSUM algorithm

Let us consider the problem of detecting a change in the mean of a Gaussian sequence with known

variance �2, in the special case where the distribution F (�) = F (�) is concentrated on two points,

�0 � v and �0 + v. The stopping time can be proven [Tartakovsky et al., 2014] to be given by Eq.

4.19, where

gk = max1�j�k[ln cosh(b �S
k
j )�

b2

2
(k � j + 1)] (4.21)

where b = v=�.

4.3.7.2 Generalized Likelihood Ratio algorithm

The Generalized Likelihood Ratio (GLR) algorithm exploits prior information about the parameter

� after change. If a minimum magnitud vm of the changes in the parameter � is known, then the

following decision function can be derived [Basseville and Nikiforov, 1993]:

gk = max1�j�ksup�1S
k
j (�1) (4.22)
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For the previous example of change in the mean of an independent Gaussian sequence, if we

assume vm = 0, then the following decision function can be derived:

gk = max1�j�k

kX
i=j

[
�vj(yi � �0)

�2
� �v2j

2�2
] (4.23)

�vj =
1

k � j + 1

kX
i=j

(yi � �0) (4.24)

4.4 Recent Developments in Online Change-Point Detection

4.4.1 Particle Filters

Particle �ltering (PF), also known as Sequential Monte Carlo (SMC) uses a set of particles (sam-

ples) to represent the posterior distribution of a stochastic process given the noisy and/or partial

observations. Particle �lter techniques provide a well-established methodology for generating sam-

ples from the required distribution without requiring assumptions about the state-space model

or the state distributions. In signal processing, a popular genetic particle �ltering method called

'bootstrap �lter' was �rst proposed in [Gordon et al., 1993]; this method is easy to implement and

particularly �exible, since it does not require any assumption about that state-space or the noise

of the system.

An excellent tutorial on particle �ltering is [Arulampalam et al., 2002]. PF has been proposed

for the kind of abrupt change detections studied in this Thesis, under the name �Jump Markov Lin-

ear Systems�, in [Doucet et al., 2001]. Random Set Theory models for abrupt change detection in

channel tracking have been proposed to be solved through particle �ltering [Angelosante et al., 2007,

Angelosante et al., 2009]. Unfortunately, the computational cost of such methods is too high

[Méndez-Romero and Fernández-Getino García, 2018].

An excellent resource for particle �ltering in the Random-Set-Theoretical context is [Vihola, 2004]

and, for the most advanced particle-�ltering applications over random sets, [Ristic, 2013]. A formal

derivation of GMAP estimators, including the application of RST particle �lters in the channel

tracking problem with tap birth/death dynamics, is provided in Appendix Section A.3.

4.4.2 Message Passing

The intuition behind message passing [Adams and Mackay, 2007] is computing the exact Bayesian

probability that the last change-point happened long ago or recently. To be more precise, it con-

siders the history of change-points up to time t is a binary sequence, e.g. c1:t = 1; 0; 0; 1; 0; 1; 1,

where the value 1 indicates an abrupt change in the corresponding time step. Thus, a random

variable Rt = minn 2 N : Ct�n+1 = 1 can be de�ned in order to describe the time since the last

change-point, which takes values between 1 to t. The algorithm assumes the probability of the next

change-point can be inferred from history, and so it can generate an accurate distribution of the next

unseen datum in the sequence, given only data already observed [Adams and Mackay, 2007]. Prob-

abilities are updated after each sample in a manner resembling particle �ltering. Unfortunately, the

computational complexity and memory requirements of the complete message passing algorithm

increase linearly with time t [Liakoni et al., 2021], which reduces its applicability to the tracking

problem analyzed in this Thesis. However, it might be useful, in combination with other schemes,
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in the context of unstereotyped dynamics such as those described in Section 9.4, particularly if a

surprise mechanism is considered, such as the �Bayes Surprise Factor� [Liakoni et al., 2021].

4.4.3 Machine Learning

Our �rst proposal to solve the abrupt-change detection in the tap birth-death problem was a simpli-

�ed framework [Méndez-Romero and Fernández-Getino García, 2018] that combined the insights

from Random Set Theory and Kalman �ltering with a set of thresholds. We called this proposal

the "Simpli�ed Maximum a Posteriori" or SMAP approach (see Chapter 5) and can be considered

a threshold-based machine-learning approach.

The advent of neural networks opens new possibilities and challenges (Subsection 7.2.1). They

can be explored by combining NN detectors of tap birth and death with Kalman �lters for chan-

nel tracking [Mendez-Romero et al., 2020]. The result, called "Neural-Network-Switched Kalman

Filters", is described in detail in Chapter 7.

4.4.4 Variational Learning

Variational learning, also known as variational Bayesian methods [Beal, 2003], intends to construct

an analytical approximation to the posterior probability of the set of unobserved variables (param-

eters and latent variables), given the data. Both types of unobserved variables (namely, parameters

and latent variables) are treated as random variables.

By analytical approximation, a formula is meant that usually consists of a product of well-

known probability distributions; such a formula is an approximation. This approximation has

the basic property that it is a factorized distribution, i.e. a product of two or more independent

distributions over disjoint subsets of the unobserved variables.

Mathematical manipulations on this approximation help identify the probability distributions of

the factors, and mutually dependent formulas for the parameters of these distributions. The actual

values of these parameters are computed numerically, through an alternating iterative procedure.

Variational learning can be combined with a surprise mechanism, such as the �Bayes Surprise

Factor� [Liakoni et al., 2021], for learning in volatile environments (see also Section 9.4).

4.4.5 Advanced Sequential Analysis

The Theory of Abrupt Change Detection in [Nikiforov and Tikhonov, 1986] has been further devel-

oped in recent years [Brodsky, 2016], particularly in the so-called �Change Detection and Isolation�

[Pergamenchtchikov et al., 2022] problem. That is, the scenario where the quickest change detec-

tion problem is generalized to the case of multiple post-change hypotheses (diagnosis), which can

be formulated as joint change detection and identi�cation.

Multihypothesis CUSUM-type and SR-type procedures with some minimax optimality proper-

ties are proposed by [Tartakovsky et al., 2014]. Some proposals are based on the assumption that

the prior distribution of the change point is geometric also in the i.i.d. case. For non-i.i.d. data and

composite post-change hypotheses, a general non-Bayesian asymptotic multistream change detec-

tion identi�cation theory (minimax and pointwise) was proposed in [Pergamenchtchikov et al., 2022].

These methods are mathematically optimal but, from an engineering point of view, computationally

unfeasible for the channel tracking problems central to this Thesis. Nevertheless, for well-de�ned

abrupt change problems where solutions are not required to be computationally inexpensive (such
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as some problems explained in Chapter 9), these methods should be considered. An example

of their power: the ability to detect COVID-19 in Italy much earlier than standard methods

[Pergamenchtchikov et al., 2022].

4.5 Chapter Summary

Di�erent solutions are reviewed for abrupt change detection either in communications (Random

Set Theory, Particle Filters) as well as in general cases (Threshold-Based Online Changepoint De-

tection, Advanced Sequential Analysis). For the channel tracking problem central to this Thesis,

this review concludes a lower-complexity abrupt change detection algorithm is needed for practi-

cal channel tracking applications. Nevertheless, threshold-based methods might inspire one such

algorithm (see Section 5.4) and some advanced methods might also be useful for advanced channel

tracking problems and generous complexity budgets (see Section 9.4).
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Chapter 5

Simpli�ed Maximum A Posteriori

Multipath Detection

This Thesis' primary goal is to track channels with signi�cant tap birth/death dynamics1 through

computationally feasible (i.e. computationally inexpensive) mechanisms. Thus, instead of us-

ing computationally expensive, Random-Set-Theory-based (RST) particle �ltering2, this Thesis

proposes to use a switched Kalman �ltering3 (KF) system with computationally inexpensive tap

birth/death detectors.

To be more precise, the proposed tracking scheme is a KF bank with pre-connected switches.

The purpose of those switches is the activation/deactivation of stationary tracking (KF) as a new

tap is born or dies. Thus, those switches need to be controlled by a tap birth/death detection

mechanism (Fig. 5.1). This Thesis proposes two such mechanisms:

� A threshold-based system called 'Simpli�ed Maximum a Posteriori' (SMAP), which is de-

scribed in this Chapter 5.

� A trained Neural Network (NN) system that receives feedback from the KF bank; this com-

bined system, called Neural-Network-switched Kalman Filtering (NNKF), is described in

Chapter 7.

Both systems could be potentially extended to include detection of other kind of abrupt changes,

such as abrupt changes in Signal-to-Noise Ratio (SNR) or abrupt lateral shifts in tap energy.

An extension of the SMAP system detecting abrupt changes in SNR is proposed in Chapter 6;

abrupt changes in partial tap components (lateral partial tap hopping) are proposed, modelled and

geometrically justi�ed in Chapter 8, which also includes a discussion of potential NNKF solutions

for them.

5.1 Statement of the Problem

We consider an OFDM system employing N orthogonal subcarriers, transmitting OFDM symbols

with a time duration Tsymb and a sampling Tsamp. It is assumed there is no out-of-band interference.

1For a discussion of tap birth/death dynamics, see Sections 2.5 and 2.6.
2For a discussion of Random-Set-Theory-based solutions, see Section 4.2.
3Kalman �lters for channel tracking are described in Chapter 3.
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Figure 5.1: Tap birth/death tracking schemes using SMAP (top) and NNKF (bottom).

Each subcarrier is used both for data transmission (through data blocks of �xed length Minf ) and

for pilot symbols enabling channel estimation. Each data block is preceded by K pilot symbols, so

that the �rst K sent symbols are pilot symbols used to estimate the channel (by averaging over K);

this channel estimation will be considered �valid� and will be used for the whole subsequent Minf -

symbol data block transmission. Channel changes will be tracked only once every estimation period

Test = (K +Minf ) � Tsymb, since a certain channel stationarity within each estimation period can

be assumed due to its coherence time and, accordingly, channel changes can be reasonably modeled

as occurring at the beginning of each estimation period.

If k = f1; :::;Kg is the pilot symbol index in the pth estimation period, then the received signal,

which is the input for channel estimation, can be given in vector form as:

yp;k = Dp;kFphp + zp;k (5.1)

where yp;k = [yp;1;k; :::; yp;N;k]
T , each yp;n;k (for n = f1; :::; Ng) represents the nth subcarrier

observation sample at time tp;k = (p � 1) � Test + (k � 1) � Tsymb; Dp;k = diag(dp;1;k; :::; dp;N;k);

with dp;n;k the training data on the nth pilot subcarrier at time tp;k; zp;k = [zp;1;k; :::; zp;N;k],

with zp;n;k representing the zero-mean complex Gaussian additive noise having variance �2z ; if l =

f1; :::; L(pTest)g and L(pTest) is the number of active taps, then hp = [h1(pTest); :::; hL(pTest)(pTest)]
T ,

with hl(pTest) the complex gain of the lth tap at time p, which, as previously explained, will be

assumed constant for the duration of the estimation period; and

fFpgn;l = e
�j2�n�

�l(pTest)

NTsamp (5.2)

where �l(pTest) is the delay of the lth tap during the pth interval.

Clearly, since each data block is preceded by K pilot symbols, the received signal including

reception of all K pilot symbols will be the matrix Yp = [yp;1; :::;yp;K ]. A guard time, named

cyclic pre�x, TCP is reserved between OFDM symbol transmissions, so that Tsymb = NTsamp+TCP .

It is assumed that the multipath delay spread is smaller than TCP .

Moreover, the active tap gains are assumed to follow an underlying Linear Gauss-Markov

(LGM) model (see Subsection 5.3.1), so that, if a
(l)
p is to represent the lth tap gain at time p

provided that lth tap is active, then the probability density function for a
(l)
p would be given by

both following equations:

f(a
(l)
1 ) = N (a

(l)
1 ; 0; �2hl) (5.3)
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f(a(l)p ja(l)p�1) = N (a(l)p ;�a
(l)
p�1; (1� �2)�2hl) (5.4)

where �2hl is the average energy of the lth tap and � is the temporal self-correlation of each

active tap gain. However, notice that, if the lth tap is not active (because it has �died�), then

hl(pTest)=0, i.e. tap gain equals zero. Each active tap has a probability Pdeath of becoming

inactive; each inactive tap has a probability Pbirth of becoming active.

The problem under consideration can now be formulated as follows: given the observations

(1), determine a computationally inexpensive causal estimator ĥp for hp, relying upon fY1:pg.
Since �computationally inexpensive� may be too vague a term, a slightly di�erent, more precise

formulation of the problem would be: determine the simplest causal estimator for hp exploiting

tap self-correlation to the extent of getting most of the theoretically maximum possible reduction

in Channel Tracking Mean Squared Error (CTMSE), de�ned as:

CTMSE , jj
X
p

ĥp � hpjj22 (5.5)

5.2 Birth-Death Dynamics in Realistic Channels

Several measurement campaigns have found evidence for, and quanti�ed, abrupt change events in

real communication scenarios, as well as realistic abrupt change models and the theoretical under-

pinning of abrupt changes in mobile radio [Hassan et al., 2020, Hassan et al., 2021, Matolak, 2008,

Sen and Matolak, 2008, Wu et al., 2010] channels. Thus, tap birth-death dynamics are a realistic

feature of some non-stationary channels, such as those in vehicle-to-vehicle (V2V) communications.

For a detailed survey of such works, see Section 2.6.

5.3 Channel Tracking

5.3.1 Linear Gauss-Markov (LGM) models

Currently, the digital nature of modulation and demodulation, as well as the ease of simulation

with matrix-based algorithms (such as those of the MATLAB program), make the use of the

discrete-time model the ideal solution for simulations of OFDM systems. In this Chapter, we have

used a model similar to the one in Chapter 2, but with a few more simpli�cations that would allow

us to focus more closely on the key aspects to be tested.

In particular, the Linear Gauss-Markov (LGM) channel model will be used. LGM constitutes

the probabilistic model underlying the Kalman �lter and is therefore of central importance in

recent developments around channel tracking in OFDM (including the current Thesis).

5.3.1.1 De�nition and brief theoretical explanation

Consider the scalar state variables4 x1, x2, ..., xt, xt+1, where bold indicates that they are random

variables, and consider that z1, z2, ..., zt, zt+1 are the sequence of corresponding observations. As

in hidden Markov models, conditional independences (see Figure 5.2) state that past and future

states are uncorrelated given the current state, xt, at time t. This means that if, for example, we

4The linear Gauss-Markov model can, of course, also be applied to vectors and complex one-dimensional state
variables. The reasoning would be analogous and its derivation would trivially follow from the presented derivation.
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Figura 5.2: Independence diagram in a Markov model

know the value of x2, then no information about x1 could help us reason what value x3 should

have.

Then fxtg follows a linear Gauss-Markov model if:

xt+1 = �xt + � (5.6)

where

� is a scalar parameter (in our case, a real-valued constant); and

� is a random variable of errors, with mean E(�) = 0 and V ar(�) = �2� . Furthermore,

typically (and also for all practical purposes of this paper) the error is assumed to

follow a normal distribution: � � N(0; �2� ).

Let us now consider a channel with several paths and we will see how to use this expression. For a

given time5 p, let us denote the gain of the kth tap by h
(k)
p . We want the tap gain to vary with a

given speed with respect to what it was at time p� 1. A linear Gauss-Markov model that satis�es

this condition would have the form:

h(k)p = �h
(k)
p�1 + � (5.7)

where � is a scalar parameter and the error would follow a normal distribution � � N(0; �2� )

with variance �2� , which will be a measure of how fast the channel varies. The parameters

used in our own simulations6, as well as in various reference papers [Angelosante et al., 2007,

Angelosante et al., 2009], are: � = 0:999 and �� = (1 � �2)�2h, where �2h is the mean energy of a

single tap.

Depending on the goal of the model, you could initialize h
(k)
1 to a given value (e.g. h

(k)
1 = 0)

or you could randomize your initial value. In such a case, for example, the kth path gain at time

p could follow the following distributions:

h
(k)
1 � N (0; �2h) (5.8)

h(k)p jh(k)p�1 � N (�h
(k)
p�1; (1� �2)�2h) (5.9)

Note that the Gauss-Markov model is a very rough approximation to the real behavior of any

physical channel, to the point that it is always possible to obtain gain values jh(k)p j >1, which repre-
sent a channel that ampli�es the signal instead of being lossy. Obviously, the usual physical channels

5The notation �time p� or �time tp� is used interchangeably to refer to the same brief time interval.
6Our simulations in [Méndez-Romero, 2015] also included other values, namely � = f0:9; 0:95; 0:99g:
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do not amplify. Depending on the parameters, that situation can be made relatively unlikely, but

this anomaly shows that the advantage of the linear Gauss-Markov model is not that it realisti-

cally models the usual physical channels (it doesn't); its power lies in the fact that the Kalman

�lter provides the mathematically optimal solution for estimating Gaussian and linear channels.

Therefore, when comparing the performance of a Kalman �lter with that of a new algorithm, it

makes sense to rely, even if partially, on the linear Gauss-Markov model (as the most favorable

extreme or �quasi-optimal� scenario for the Kalman �lter). This is the implicit reason for using lin-

ear Gauss-Markov that emerges from the works [Angelosante et al., 2007, Angelosante et al., 2009]

that compare standard Kalman �ltering with di�erent methods, such as those resulting from ap-

plying Finite Random Set Theory.

In summary, for the purposes of this Chapter we will consider a LGM model where all taps are

active and they follow Eq. (5.3) and (5.4). These LGM models have been previously used in the

literature (e.g. in [Angelosante et al., 2007, Angelosante et al., 2009]) and they make it possible to

derive a computationally inexpensive, optimal estimation through Kalman �ltering. However, they

are ideal channels whose behaviour may or may not approximate speci�c real channels. In this

regard, a severe disadvantage is that, since they are perfectly linear, they don't allow for jumps.

5.3.2 KF-based approaches

Under a LGM model, a KF-based approach can be easily implemented. Kalman �ltering is an

algorithm weighting optimally two information sources: a theoretical one (in our case, the LGM

channel model) and another one based on noisy measurements. The Least-Squares (LS) channel

estimation, âLSp , can be interpreted as a noisy measurement of the true channel ap = [a
(1)
p ; :::; a

(L)
p ]T :

up , âLSp = ap + vp (5.10)

where vp = [v
(1)
p ; :::; v

(L)
p ]T is the measurement noise and up = [u

(1)
p ; :::; u

(L)
p ]T will be used for

ease of notation. Since tap independence is being assumed, this translates into L scalar equations.

Thus, a bank of independent Kalman �lters could be used to track the whole channel, whereby

each Kalman �lter would receive the LS-estimated tap gain and would compute the corresponding

KF tap estimation, and also the expected tap gain at time p+1, the so-called Kalman prediction,

û
(l)
p (�) . This KF approach is optimal when non-linearities are absent. However, the disappearance

and reapparance of taps (i.e. the real channel �jumping� in a way the perfect LGM model cannot

�t) introduce a severe nonlinear distortion and KF performance degrades catastrophically.

5.3.3 RST-based approaches

RST-based approaches have proven that, under birth-death conditions, a very good estimator is

the so-called GMAP-III, which essentially adds a death-birth detector before the KF step. Thus,

you �rst detect which taps are active, and then you estimate active taps' gains. The GMAP-III

estimator was proposed in [Angelosante et al., 2007] with the following de�nition:

GMAP-III :

8<
:
\�(Hp) = arg max�(Hp)f�(Hp)jY1:p

(�(Hp)jY1:p),ehp = �
R
2j\�(Hp)j

hpfhpjY1:p
(hpjY1:p)dhp

(5.11)

where
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Figure 5.3: A bank of tap death/birth detectors as switches for single-tap KF.

f�(Hp)jY1:p
(�(Hp)jY1:p) =

�
�0(Hp)

f(HpjY1:p)�Hp (5.12)

(For details on notation, see the full derivation of GMAP estimators in Appendix A). However,

death-birth detection under the RST framework can be di�cult to handle and computationally

prohibitive; in [Angelosante et al., 2007], death-birth detection is done through a 10,000-particle

�lter that approximates Eq. (5.11). A much simpler, suboptimal estimator is required. Such

an estimator will be proposed in Section 5.4, but, �rstly, a measurement of its quality will be

introduced in the following Subsection.

5.3.4 Measuring the quality of simpler estimators

Our objective is to reduce CTMSE as de�ned in Eq. (5.5). What is the theoretically maximum

possible reduction in CTMSE when using some given birth-death information?

First, let us consider Fig. 5.3 to see how tap birth-death information could be used in practice.

Following the notation for Eq. (5.10), Fig. 5.3 starts with the LS channel estimation, âLSp , having

its individual tap components extracted and fed into individual tap birth-death detectors. These

detectors are like switches and are represented as such in Fig. 5.3: on birth detection, the ith LS

tap estimation is fed into the ith KF, which starts tracking (thus, û
(i)
p (+) is the ith estimated tap

gain); on death detection, however, the ith estimated tap gain is put to zero until the next time

the ith tap is detected to be reborn. Since the problems of birth-death detection, on the one hand,

and active-tap tracking, on the other hand, are separable in nature, the maximum reduction in

CTMSE is obtained when, for each tap, an optimal birth-death detector is connected to a KF.

Now, let us suppose perfect information on the active/inactive status of each tap was available.

What would the theoretically maximum possible reduction in CTMSE be when using this perfect

birth-death information? Death-birth detectors would then be always right, and looking into this

ideal case, henceforth the Ideal Switching System (ISS), could provide useful information about

the problem and the quality of di�erent solutions to it.

Thus, the ISS is the system drawn in Fig. 5.3 when death/birth detectors detect 100% of

births and 100% of deaths, with no false birth/death detection. It is also possible to easily de�ne

an x%-degraded Ideal Switching System (IIS-x%), which is a switching system detecting x% of

births and x% of deaths, with no false birth/death detection. These degraded ISS were simulated

for the problem at hand (for more details, see Section 5.5) and Table 5.1 shows the % reduction
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Table 5.1: % reduction in CTMSE for di�erently degraded ISS vs. LS estimation.
SNR [dB] IIS IIS-99.9% IIS-99.5% IIS-99%

8.5 72.84 72.46 69.35 66.52
11 70.16 68.86 64.81 59.14
13.5 65.40 63.75 56.81 45.77
16 56.93 53.83 40.59 23.77
18.5 41.81 35.29 8.72 -16.40

Figure 5.4: CTMSE performance of LS vs. ISS and di�erent x%-degraded ISS

(vs. the LS method, i.e., no KF) these near-optimal ISS devices could achieve, as measured in

CTMSE, for di�erent SNR values. A quick look at Table 5.1 makes it possible to conclude that

ISS performance in terms of CTMSE degrades signi�cantly even with minor reductions in the % of

birth/death detections. For higher SNR, the degradation is so catastrophic that the conventional

LS estimation performs better than a slightly degraded ISS (e.g. a 99%-ISS, negative value in

the bottom-right corner of Table 5.1). Do note, however, that the degraded ISS greatly improves

estimation over conventional LS estimation for low-to-medium SNR levels.

These conclusions are also backed by Fig. 5.4, which plots the degraded systems' performance

in terms of CTMSE. This kind of plots let us establish a natural measure for an estimator's �tness

in the context of the previously de�ned problem. Some estimator could be, for example, better than

ISS-97% and worse than ISS-98%, meaning that it would be slightly better than a degraded ISS

where detectors detected 97% of births and 97% of deaths, but not as good as a system detecting

98% of both.

.

5.4 Simpli�ed Maximum A Posteriori (SMAP) Estimator

A Bayesian-inspired estimator of hp can be de�ned by using KF in combination with the three

following heuristics for tap birth-death detection:
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1. detect death if the tap gain jumps into approx. zero;

2. detect death if the tap gain has slowly converged into approx. zero;

3. detect birth if the tap gain is far from zero.

The precise parameters for these three simple rules can be either obtained empirically (massive

simulations) or approximated with simple theoretical derivations as explained in the three following

subsections.

5.4.1 Memoryless detection of large leaps into a narrow, zero-centered

range

When the lth tap is dead, its true gain is, by de�nition, zero. Thus, the observed gain is just the

(Gaussian) noise. Hence, tap gain measurement u
(l)
p follows a Gaussian distribution:

u(l)p jl is dead � N(0; �2v(l)) (5.13)

where �2
v(l)

is the variance of tap (measurement) noise v
(l)
p . On the other hand, if lth tap is

active, then its gain follows a Gaussian centered on the previously expected gain, û
(l)
p (�), the

Kalman prediction computed at time p� 1 (this is a feature of KF). For the purposes of tracking

problems like the one in consideration, it has been found that �2
v(l)

makes a good approximation

for the corresponding variance. Thus,

u(l)p jl is alive � N(û(l)p (�); �2v(l)) (5.14)

Let us assume that the tap was alive at time p � 1. Then, either tap death happens at time

p (with prior probability Pdeath) or the tap will still be alive (with prior probability 1 � Pdeath).
Thus, a maximum a posteriori criterium leads to detecting �death� whenever

Pdeath � f(u(l)p jl is dead) > f(u(l)p jl is alive) � (1� Pdeath) (5.15)

where the events �l is dead/alive� mean that the lth tap is dead/alive, respectively. Note that

this detector compares two scaled Gaussian pdfs, so an equivalent expression to Eq. (5.15) would

be:

Pdeath � 1p
2��2

v(l)

� e
�

(u
(l)
p )2

2�2

v(l) >
1p

2��2
v(l)

� e
�

(u
(l)
p �û

(l)
p (�))2

2�2

v(l) � (1� Pdeath) (5.16)

By taking logarithms and simple rearrangement, two other equivalent expressions can be found:

ln(
Pdeath

1� Pdeath )�
(u

(l)
p )2

2�2
v(l)

> � (u
(l)
p � û(l)p (�))2

2�2
v(l)

(5.17)

ln(
Pdeath

1� Pdeath ) >
û
(l)
p (�)� 2u

(l)
p û

(l)
p (�)

2�2
v(l)

(5.18)
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5.4.2 Memory detection of a sequence at a close range of zero

Let the active tap gain be close to zero (but active, so never exactly zero!) at time p; since large

leaps are highly improbable [Peebles Jr, 2001] as Gaussian outliers, let's assume that tap gain will

always stay close to zero at time p + 1. (This is a reasonable assumption if done only for very

short sequences, typically 2 or 3 succesive samples). Thus, the active tap is assumed to be close to

zero, continously active and static, and the observed tap gain is assumed to be just measurement

noise (a reasonable assumption when tap gain is very close to zero). Under these assumptions, the

probability of having a sequence of length s at any range qB � �v from zero, such that the tap is

continously active and fjzpj; :::; jzp+sjg < qB � �v, is:

(1� Pdeath)s � (1� 2Q(qB))
s (5.19)

where Q(� ) is the Q-function and qB is any arbitrary threshold consistent with the aforemen-

tioned assumptions. Eq. (5.19) follows directly from the properties of the Gaussian distribution

[Peebles Jr, 2001]. On the other hand, the probability of a tap dying right before the sequence or

during the sequence (and not being reborn afterwards) would be:

sX
i=0

(1� Pdeath)i � Pdeath � (1� Pbirth)s�i (5.20)

Thus, if the system is continuously monitoring the presence of sequences in this range, tap

death can be decided following a simpli�ed maximum a posteriori criterium whenever:

sX
i=0

(1� Pdeath)i � Pdeath � (1� Pbirth)s�i > (1� Pdeath)s � (1� 2Q(qB))
s (5.21)

Thus, after setting a single appropiate threshold qB not too far from zero and a short enough se-

quence length s, tap death can be decided trivially when an (s+1)-long sequence fju(l)p j; :::; ju(l)p+sjg <
qB � �v has been detected.

For example, if a sequence monitor for qB = �2
v(l)

=3 and s = 2 is set up, then this detector

would decide �dead� after a 2-long sequence fju(l)p j; :::; ju(l)p+sjg < qB � �v(l) = �3
v(l)

=3 per Eq. (5.21).

If assumptions are reasonable and hold true, the probability of having made the wrong decision

can be shown [Méndez-Romero and Fernández-Getino García, 2018] to be:

Perr =
(1� Pdeath)s � (1� 2Q(qB))

s

Paux + (1� Pdeath)s � (1� 2Q(qB))s
(5.22)

where

Paux =

sX
i=0

(1� Pdeath)i � Pdeath � (1� Pbirth)s�i (5.23)

5.4.3 Birth detection

Birth detection could easily be implemented as a threshold detector that decides �alive� whenever

ju(l)p j > qC � �v(l) , for a certain qC . Even if Perr per Eq. (5.22) were too high (close to 0.5), a very

sensitive birth detector (a very low qC) would correct potential errors very early. Thus, detecting a

tap birth is a correct decision not only when a new tap is created, but also when a tap was wrongly

detected as �dead�.
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Let's assume our birth detection happens immediately after having decided �tap is dead� in the

scenario described in Subsection 4.2. Since Perr in Eq. (5.22) is the probability of that previous

decision having been wrong, and since noise can make an LS estimate of a dead tap deviate outside

a qC range from zero with a probability 2Q(qC), then the probability of correcting a previous error

would be:

Pcorr = Perr � (1� Pdeath) � 2Q(qC) (5.24)

On the other hand, a new tap could have been created (with probability Pbirth) if the previous

decision (�dead tap�) was right (with probability 1 � Perr). For simplicity purposes, let's assume

that newly created taps start at ju(l)p+1j > qC � �v(l) . Thus, the probability of correctly detecting a

new birth would be:

Pbirth det = (1� Perr) � Pbirth (5.25)

A birth decision would be wrong if the tap was erroneously detected as dead at time p but it

has recently become dead at time p + 1 and noise puts it outside the detection limits, or when it

was correctly detected as dead at time p and is still dead, but noise makes the observation sample

shoot outside the detection limits:

Pfalse det = Perr � Pdeath � 2Q(qC) + (1� Perr) � (1� Pbirth) � 2Q(qC) (5.26)

Thus, a simpli�ed maximum a posteriori criterium would decide �birth� whenever:

Pcorr + Pbirth det > Pfalse det (5.27)

These expressions looks cumbersome but, in fact, you only need them to obtain any appropiate

qC for which Eq. (5.26) holds true. Once a single appropiate threshold qC is set, tap birth can

be decided trivially when ju(l)p j > qC � �v(l) has been detected. When birth is detected, the KF is

restarted and the �rst estimate is the LS estimate.

The system resulting from the three detection heuristics shown above and a connected KF block

is called [Méndez-Romero and Fernández-Getino García, 2018] �Simpli�ed Maximum a Posteriori�

(SMAP) estimator.

5.4.4 Practical optimization issues

SMAP parameters fqig need to be optimized for each speci�c SNR level (or each speci�c set of SNR

levels) to make full use of the SNR estimate provided by the QISD. Several optimization strategies

were attempted: our experience suggests that the search space is dense with local minima (in the

sense of local environments making gradient-descent algorithms stop). Thus, algorithms similar to

gradient descent are unsuitable. Instead, we recommend the following optimization Search Steps

(SS) for each SNR level:

� SS1: qi values are randomly initialized following a normal distribution over the space where

SMAP assumptions are mostly reasonable, then CTMSE for the SMAP+KF scheme is com-

puted and the NSS best values are chosen. NSS is a parameter to be chosen taking the scope

of the simulation (i.e. number of random initializations, parameter diversity) into account,

e. g. NSS = 4 for 50,000 random initializations.
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� SS2:qi values are randomly initialized following a normal distribution centered on the NSS

best SS1 values, but with a fraction (e.g. a quarter) of the variance.

� SS3: values are randomly initialized following a normal distribution centered on the NSS

best SS2 values, but variance will be a fraction of each central parameter, e.g. N ([qA qB qC ];

[0:1qA 0:1qB 0:1qC ]).

The aforementioned illustrative values for NSS and variances are heuristics backed by extensive

simulations. Due to the random nature of the search, it may happen that the best parameters for

an SNR level work better at a di�erent SNR level than its own optimized parameter set does. To

avoid this �better-�nder� e�ect, a �nal step (SS4) can be added whereby each SNR level is tested

with all optimal parameter sets, including those for other SNR levels.

5.5 Simulation Results

A system with Np = 3 pilot subcarriers is considered, with K = 8 pilot symbols per subcarrier

before data transmission. The average energy per pilot symbol, �2s , is uniform, and a BPSK

modulation scheme is assumed. Channel assumptions include a uniform multipath delay pro�le,

multipath spread smaller than the guard time, and uncorrelated path gains. The overall channel

energy is normalized to one. OFDM symbols were transmitted through a channel with Lmax = 3,

Pbirth = 0:05 and Pdeath = 0:05. Threshold parameter values qA = 0:23, qB = 0:30 and qC = 0:62

were obtained through simulation-based MSE optimization for s = 1 and form the basis for the

simulation results shown here. Note that this prior optimization is always performed o�ine and,

thus, it does not increase online computational complexity. This channel was then tracked for

200,000 estimations periods (2 � 105 � Test). Individual paths were assumed to have the same

average energy �2h over long periods and � = 0:999. This choice of parameters makes it possible

to compare the performance of the SMAP vs. the computationally heavier methods outlined in

[Angelosante et al., 2007] and the KF system advocated in [Yuanjin, 2003].

Fig. 5.5 shows the performance (in terms of CTMSE, as per (5:5)) of our proposed SMAP

estimation vs. a scenario with perfect information (ISS), almost perfect information (ISS-99%)

and a KF system. It can be seen that the SMAP estimator is very similar in performance to

ISS-99%. This means the SMAP estimator gets most of the reduction attainable by an ISS, but

with a trivially low computational cost, for low-to-medium SNR.

A measurement of SMAP's robustness in the face of model uncertainty can be provided by

setting random thresholds qA, qB and qC extracted from Gaussians centered on the previously

determined optimal values. Fig. 5:6 shows simulation results for several standard deviation �

values, e.g. �% = 40% means SMAP is not used now with optimal thresholds, but rather with

several di�erent random threshold triplets taken from Gaussians: qC � N (0:62; � = 0:62 � 0:40 =

0:248), etc. In this particular simulation, 10 such random triplets were extracted for each � and

SNR level. It is apparent from Fig. 5:6 that large deviations result in smaller changes in CTMSE,

especially when compared to bare Kalman. Thus, the use of a SMAP structure is shown to be a

larger contributor to error reduction than the use of perfect thresholds in that SMAP structure.

This low sensitivity to threshold deviations means SMAP is robust to some extent when facing

some uncertainty in model parameters.

Fig. 5:7 shows the bit-error-rate (BER) performance of SMAP vs. the ideal system (ISS)

and a KF system. This considers all samples when at least one path is active (channel energy
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Figure 5.5: Average CTMSE performance of proposed SMAP vs. ideal systems and KF
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Figure 5.6: Average CTMSE performance of SMAP with di�erently-deviated random thresholds
vs. KF and optimal-threshold SMAP
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Figure 5.7: BER performance of proposed SMAP vs. ideal system (ISS) and KF

at least 5% of average channel energy), thus ignoring samples when all channel taps are zero and

communication must be unfeasible. It must be noted that BER values were obtained without

considering any channel coding scheme which would improve system performance. Results are

unambiguous: the BER curve for SMAP matches the one for the ideal system (ISS) and both of

them have a signi�cant positive gap vs. bare KF.

Now let us take a closer look at Figs. 5.8-5.9, which show the estimated path gain in SMAP

and KF systems, respectively, for a signal-to-noise ratio SNR , �2s=�
2
z = 15 dB. These �gures

support the thesis, already advanced in [Angelosante et al., 2007], that a KF operating on Lmax

paths su�ers from a transient e�ect from tap death/birth. The proposed SMAP estimation adapts

more quickly to those non-linearities. This superior performance when a tap disappears or a new

tap is born can also be seen for SNR = 9 dB in Figs. 5.10-5.11 and for SNR = 21 dB in Figs.

5.12-5.13.

Moreover, this superior performance does not come at the expense of a prohibitively high

computational cost. On the contrary, the status detector for each tap uses only the three compu-

tationally inexpensive threshold comparisons outlined in Section 5.4 to achieve an error reduction

matching that of a close-to-perfect path death/birth detection (ISS-99%).

5.6 Conclusions

A simpli�ed framework for the birth-death nonlinearity problem has been introduced. A computa-

tionally inexpensive, threshold-based estimator was derived. Simulations have shown this estimator

greatly reduces channel tracking error in the target SNR range at a very small computational cost,

thus outperforming previously known systems.
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Figure 5.8: SMAP estimation for L=3, SNR=15 dB.

Figure 5.9: KF estimation for L=3, SNR=15 dB.



CHAPTER 5. SIMPLIFIED MAXIMUM A POSTERIORI MULTIPATH DETECTION 65

Figure 5.10: SMAP estimation for L=3, SNR=9 dB.

Figure 5.11: KF estimation for L=3, SNR=9 dB.
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Figure 5.12: SMAP estimation for L=3, SNR=21 dB.

Figure 5.13: KF estimation for L=3, SNR=21 dB.



Chapter 6

Death/Birth & SNR Detection for

Kalman Trackers

In previous chapters, we have analized some techniques for detection of death/ birth change-points

in non-stationary channels, such as those emerging in fast-moving vehicular environments. The

framework of Random Set Theory (RST) made it possible to use powerful RST-based Particle Fil-

tering (PF) estimators (see Section 4.2 and Appendix A), such as those in [Angelosante et al., 2007,

Angelosante et al., 2009]. However, they required an impracticable computational cost for any

practical applications.

A simpler algorithm was derived in Chapter 5, the so-called Simpli�ed Maximum a Poste-

riori (SMAP) death/birth detector [Méndez-Romero and Fernández-Getino García, 2018], based

on three heuristics with dynamic threshold rules. However, both the SMAP and RST-based PF

proposals failed to consider a scenario where SNR levels drifted abruptly.

This chapter extends the RST framework to combined death/birth and SNR detection when

SNR is dynamical and may drift. Additionally, it analyzes how di�erent quasi-ideal SNR de-

tectors [Méndez-Romero and Fernández-Getino García, 2020] a�ect the SMAP-enhanced Kalman

tracker's performance.

6.1 An RST Model for Abrupt SNR Changes

Consider a Tapped-Delay-Line (TDL) channel model with Kmax possible, randomly alternating

SNR levels and up to Lmax di�erent equispaced1 path delays. Let us thus assume that SNR may

change during transmission between a �nite number (Kmax) of known levels. Then, the multipath

channel can be denoted by the H(k;l)
p , the following singleton-or-empty random set:

H(k;l)
p =

8<
:f;g if path (k; l) absent

fh(k;l)p g = f[SNR(k)
p ; l; a

(l)
p ]T g if path (k; l) present

(6.1)

where path (k; l) means the lth path, under the condition that all active paths are subject to

SNR(k) at time p; and a
(l)
p is the lth multipath gain at time p. The multipath channel state at

time p is completely described by

1If path delays are not equispaced, the analysis is somewhat more complex, but equally feasible.
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Hp =

Kmax[
k=1

Lmax[
l=1

H(k;l)
p (6.2)

which is a random set on the hybrid space f1; :::;Kmaxg�f1; :::; Lmaxg�C. Please notice that
we can de�ne the projections of Hp onto f1; :::;Kmaxg, onto f1; :::; Lmaxg and onto C, respectively:

�(Hp) =
[

(k;l):H
(k;l)
p 6=;

fSNR(k)
p g (6.3)

�0(Hp) =
[

k2�(Hp);l:H
(k;l)
p 6=;

flg (6.4)

�00(Hp) =
[

k2�(Hp);l:�0(Hp)

fa(l)p g (6.5)

If Up denotes the set of paths whose parameter SNR is unmodi�ed from time p� 1 to time p,

i.e. �(Up) � �(Hp�1) andMp is the set of newly modi�ed paths (i.e. �(Hp�1) \ �(Mp) = ;), we
thus have

Hp = Up [Mp (6.6)

Similarly, we can de�ne a set of surviving paths, Sp, such that �0(Sp) � �0(Hp�1), and a set of

newly born paths Bp such that �0(Hp�1) \ �0(Bp) = ;. Thus,

Hp = (Up [Mp) \ (Sp [ Bp) =
= (Up \ Sp) [ (Up \ Bp) [ (Mp \ Sp) [ (Mp \ Bp)

(6.7)

On the basis of this newly de�ned framework, a problem can be characterized by de�ning the

probability of transition between the four joining subsets in (7).

Please notice that if the probability of transition from Up to Mp is 0, the problem reduces

to one where SNR and the probability of tap birth or death, Pbirth=death, are constant, as in

[Angelosante et al., 2009, Méndez-Romero and Fernández-Getino García, 2018], solvable with a Rao-

Blackwellized Particle Filter (RBPF) (see Appendix Section A.3). In the style of GMAP-III

[Angelosante et al., 2007], we hereby propose the following three-step estimator for the general

problem:

8>>><
>>>:
\�(Hp) = argmaxHp

f(�(Hp)jY1:p);
\�0(Hp) = argmaxHp

f(�0(Hp)jY1:p;\�(Hp));

~hp =
�
R
2j\�0(Hp)

hpf(hpjY1:p;\�(Hp))dhp

(6.8)

where

f(�(Hp)jY1:p) =
�
�0(Hp)��00(Hp)

f(HpjY1:p)�Hp (6.9)

f(�0(Hp)jY1:p; �(Hp)) =

�
�00(Hp)

f(HpjY1:p;\�(Hp))�Hp (6.10)

The operation performed in Eqs. (6.9) and (6.10) using the di�erential �Hp are set integrations
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Figure 6.1: Block diagram for the proposed channel estimation scheme.

in the sense speci�ed in [Goodman et al., 2013].

This estimator amounts to �rst estimating the SNR level at time p, then estimating the identities

of the active paths at time p, and then estimating the gains for those active paths deemed active,

while inactive paths will be estimated to have zero gain.

The practical implementation of this structure is dependent on the speci�c problem. A gen-

eralized practical implementation is out of the scope of this paper, though it may be suggested

that advanced estimation techniques, possibly involving particle �lters and/or neural networks,

could be used. In the balance of this paper, we will assume that the three steps are somewhat

separable problems in nature: the �rst step will be considered to be solved with quasi-ideal SNR

estimators/detectors (QISDs), eventually based on additional information (like track location and

speed in HSR); the second step will be performed with the Simpli�ed MAP (SMAP) algorithm

proposed in [Méndez-Romero and Fernández-Getino García, 2018] (see Chapter 5); and the third

step will be performed in a Kalman �lter (KF) bank. A simpli�ed block diagram for this scheme

is shown in Fig. 6.1.

6.1.1 Quasi-Ideal SNR Estimators

In Subsection 5.3.4, the Ideal Switching System (ISS) was de�ned as a system where �death/birth

detectors detect 100% of births and 100% of deaths, with no false birth/death detection�. It was

argued that an x%-degraded Ideal Switching System (IISx%) could be easily de�ned as �a switching

system detecting x% of births and x% of deaths, with no false detection�. Such a degraded ideal

system could also be called �quasi-ideal�.

This concept can be extended to SNR detection. Thus, considering two SNR levels (low,

around s dB; and high, around s+�s dB) we can de�ne an Ideal SNR Detector (ISD) where SNR

detectors detect 100% of SNR updrifts (i.e. SNR drifting from low to high level) and 100% of SNR

downdrifts (i.e. SNR drifting from high to low level), with no false SNR drift detection. (When the

probabilities of SNR updrift and SNR downdrift are symmetric, those probabilities will be denoted

by Pswitch.) It can similarly be argued that an x% Quasi-Ideal SNR Detector (QISD-x%) could

be easily de�ned as a system detecting x% of updrifts and x% of deaths, with no false birth/death

detection.

Please note this concept can be trivially extended to n > 2 SNR levels. If the SNR division is

granular enough, they should properly be called �Quasi-Ideal SNR Estimators� (QISE).

Morever, to study the QISE/QISD+SMAP+KF scheme introduced here, it is realistic to con-

sider QISEs/QISDs whose detection is not instantaneous, but has a short delay (5-20 time instants).
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6.1.2 Simpli�ed MAP thresholds

As shown in Fig. 6.1, the QISD will feed the SNR level estimate into a Simpli�ed Maximum

a Posteriori (SMAP) death/birth detector. Such detector makes use of 3 detection heuristics

[Méndez-Romero and Fernández-Getino García, 2018]: a) memoryless detection of large leaps into

a narrow, zero-centered range; b) memory detection of a sequence at a close range of zero; and c)

birth detection. These heuristics are based on dynamical thresholds that can be �ne-tuned through

the help of a set of parameters: qA; qB ; qC . For example, the SMAP heuristic for large leaps into

death (zero) leads to detecting �death� whenever Pdeath � f(u(l)p jl is dead) > f(u
(l)
p jl is alive) � (1�

Pdeath) where u
(l)
p is the Least-Squares-estimated tap gain and the events �l is dead/alive� mean

that the lth path is dead/alive, respectively. Since this detector is comparing two scaled Gaussian

pdfs, an equivalent expression to Eq. (5.15) would be:

Pdeath � 1p
2��2

v(l)

� e
�

(u
(l)
p )2

2�2

v(l) >
1p
2��2A

� e�
(u

(l)
p �û

(l)
p (�))2

2�2
A � (1� Pdeath) (6.11)

where �A = qA �
q
�2
v(l)

+ (1� �2)�2h. For more details, refer to Section 5.4.

6.2 Higher-Dimensional SMAP

The SMAP can be applied to higher-dimensional tracking problems, such as tracking problems

in Rn, n > 2; or Cn, n 2 N. Such tracking problems may occur not just in communications,

but also in other engineering2 and non-engineering3 applications. The simplest way to apply the

SMAP method to higher-dimensional problems is by searching for the optimal SMAP thresholds

qA; qB ; qC over the whole higher-dimensional space.

Of course, depending on the speci�c problem, it might also make sense to �nd explicit ad-

hoc equations for the memoryless detection of large leaps into a narrow, zero-centered range; the

memory detection of a sequence at a close range of zero; and birth detection, respectively. Such

derivations could be inspired by the heuristics in Section 5.4 or closely follow the SMAP derivations

in the current PhD Thesis, and then the optimal SMAP-like thresholds would be searched for over

the whole higher-dimensional space.

6.3 Simulation Results

The OFDM system under consideration has Np = 5 pilot subcarriers and K = 8 pilot symbols

per subcarrier. The average energy per pilot symbol, �2s , is assumed to be uniform and the overall

channel energy is normalized to one. A BPSK modulation is used. The channel is assumed

to have a uniform multipath delay pro�le, multipath spread smaller than the guard time, and

uncorrelated path gains. 106 OFDM symbols were transmitted through a channel with Lmax = 5

and Pbirth=death = 0:05. Individual paths were assumed to have the same average energy �2h over

long periods and � = 0:999. Channel SNR was assumed to experience a sudden switch (from a

high SNR level into a low SNR level, or viceversa) with probability Pswitch = 0:01. Between high

and low SNR, a di�erence �SNR = 6 dB was considered.

2See Subsection 4.1 for a historical overview of abrupt change problems in engineering.
3Such as neuro�nance. Refer to Chapter 9 for neuro�nancial consequences of unstereotyped abrupt dynamics.
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Parameter SNR = 9 dB SNR = 15 dB

qA 1.3543 0.8065
qB 1.6103 1.3427
qC 2.8823 3.1613
�A 0.1448 0.0533

Table 6.1: Optimized SMAP parameter values for SNR={9,15} dB

Each tap is tracked with a combined scheme consisting of a SNR detector, a birth/death SMAP

detector, and a KF. We consider the following QISD accuracies for the SNR detection step: 90, 95,

99 and 100%, with a detection delay of 5, 8, 15 and 20 time instants, respectively. For comparison

purposes, we also consider the ideal case of perfect, instantaneous SNR detection (ISD), as a lower

bound.

The tap birth/death detection is performed with the SMAP parameters optimized according

to steps SS1-3, with 50,000 random initializations, NSS = 4 and 6,500 subsequent randomizations

for each set. SS4 was intentionally omitted to show the �better-�nder� e�ect (see Subsection 5.4.4)

in the results. The optimized parameter values for selected SNRs are shown in Table 6.1.

Fig. 6.2 shows the performance of such combined QISD+SMAP+KF schemes for several SNR

values. Please notice that each scheme was simulated in a bilevel SNR environment. All SNR

values < 15 were considered to be �low� and to switch to a 6dB-higher SNR with probability

Pswitch.

Several conclusions are evident: KF with no birth/death detection performs catastrophically

worse than any SMAP scheme. Even when no SNR detection is available (�No QISD�), the

SMAP+KF performance is surprisingly robust to SNR drift; this is especially evident at SNR=13

dB, where the �better-�nder� e�ect (see 5.4.4) takes place. While the e�ect of an accurate SNR

detection is muted in the easier scenario (high SNR), channel tracking does bene�ts from it at

low SNR (see �No QISD� has higher MSE at SNR={9,11} dB in Fig. 6.2). Consequently, after

considering both the lapses of high and low SNR, overall CTMSE is reduced (up to 10%, according

to our results) when any of the QISD schemes are used.

Figs. 6.3 and 6.4 explain why: di�erences in assumed noise (KF's prediction error variance)

make birth/death detection fail when the �baseline� SNR estimate (provided by QISD) happens

to be false (Fig. 6.4), generating a slow KF climb or descent (higher MSE). This is the same

behaviour underlying KF's catastrophic performance in the face of abrupt tap gain changes (Fig.

6.3) when no SMAP is used.

It is important to remark that all QISD schemes, no matter whether slow and highly accurate or

fast and not so accurate, show a similar performance to each other and to the ideal, instantaneous

case (ISD). This suggests there is a pronounced trade-o� between SNR accuracy and detection

delay that can be exploited during SNR detection design.

6.4 Conclusions

A new RST framework for combined death/birth and SNR detection has been introduced; this

framework is fully compatible with the SMAP+KF solution introduced in Chapter 5. Some

SMAP optimization issues were tackled. Simulation results compared di�erent QISD+SMAP+KF

schemes and suggest that SMAP+KF, while being robust to SNR drift, bene�ts from an accurate

SNR detection. Fig. 6.5 provides a visual summary of SNR/SMAP detectors for Kalman trackers.
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Figure 6.2: Channel Tracking Mean Squared Error vs. Signal-To-Noise Ratio (SNR) for di�erent
SNR and birth/death detection schemes.

Figure 6.3: Kalman tracker with and without birth/death detector for SNR = 15 dB.
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Figure 6.4: Kalman tracker with birth/death detector when SNR detection is correct (9 dB) and
incorrect (15 dB).

The information contained in this Chapter 6 may be useful when designing SNR trackers with

death/birth detectors for practical smart mobility applications.
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Figure 6.5: SNR/SMAP for Kalman trackers



Chapter 7

Neural-Network-Switched Kalman

Filters

This Chapter introduces Neural-Network-Switched Kalman Filters (NNKFs) as novel trackers for

multipath channels. The core idea is similar to the SMAP switch (Chapter 5), but now the tap

birth/death detection will be performed via an arti�cial neuronal network (NNs).

A discussion of the required Neural-Kalman architecture (combining trainable, low-complexity

neural networks with Kalman �lters) is presented, as well as simulations showing an excellent

performance.

The signi�cance of this proposal goes beyond tap birth/death detection. The NNKF architec-

ture is a neural abrupt change detector that could be expanded to any trainable non-stationarity,

i.e. not just tap birth/death, but also more complex non-stationary models that might be de-

veloped in the future. An instance of more complex abrupt tap dynamics will be proposed and

analyzed in Chapter 8.

7.1 Neural Networks

A neural network (or, more properly, an arti�cial neural network) is a series of algorithms that

endeavors to recognize underlying relationships in a set of data through a process that mimics the

way the human brain operates, i.e. it is inspired by the structure of biological neural networks in the

brain [Shalev-Shwartz and Ben-David, 2014, Russell et al., 2020]. In this sense, neural networks

refer to systems of neurons, either organic (see Fig. 7.1) or arti�cial in nature.

An arti�cial neural network is based on a collection of connected units or nodes called arti�cial

neurons, whose connections, like the synapses in a biological brain, can transmit a signal to other

neurons. Thus, it can be described as a directed graph (see Fig. 7.2) whose nodes correspond

to neurons and edges correspond to links between them [Shalev-Shwartz and Ben-David, 2014].

That is, each arti�cial neuron/node receives signals and then processes them and can send output

signals to neurons/nodes connected to it. Signals (real numbers) travel from the leftmost layer

(the input layer, see ), to the rightmost layer (the output layer). The middle layer(s) are called

hidden layer(s), since the neurons in these layers are neither inputs nor outputs.

The design of the input and output layers is sometimes very intuitive, e.g. if the neuron has to

decide whether an object in an image is a �dog�, and the image is a 64 by 64 greyscale image, then
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Figure 7.1: A biological neuron as a signal processing system.

we'd have 4,096=64Ö64 input neurons, with the intensities scaled appropriately between 0 and 1.

The output layer will contain just a single neuron, with output values of less than 0.5 indicating

"input image is not a dog", and values greater than 0.5 indicating "input image is a dog".

In this Thesis, neural networks will be used for the purpose of identifying abrupt changes, e.g.

when a new tap is born (goes from the �inactive� state to the �active� state) or dies.

Learning with neural networks was proposed in the mid-20th century. Learning with NNs pro-

vides an e�ective learning paradigm that, in the recent decades, has been shown to achieve cutting-

edge performance on several learning tasks [Russell et al., 2020, Shalev-Shwartz and Ben-David, 2014].

7.1.1 Feedforward vs. recurrent neural networks

This Thesis will consider neural networks where the output from one layer is used as input to the

next layer, the so-called feedforward neural networks. This means the signal is always fed forward,

never fed back.

Other models of arti�cial neural networks exist in which feedback loops are possible, the so-

called Recurrent Neural Networks (RNNs). Some of our referenced papers use this type of archi-

tecture, where neurons �re for some limited duration of time, before becoming quiescent, and that

�ring can stimulate other neurons. Thus, these other neurons may �re a little while later, also for

a limited duration and that causes still more neurons to �re, creating a cascade of neurons �ring.

Loops don't cause problems in such a model, since a neuron's output only a�ects its input at some

later time, not instantaneously. This kind of NNs do not suit our purposes, so this Thesis will

focus on feedforward NNs.

Formally, a feedforward NN [Shalev-Shwartz and Ben-David, 2014] is described by a directed

acyclic graph, G = (V;E), and a weight function over the edges, w : E ! R. Nodes of the graph
correspond to neurons (see Fig. 7.2). Each single neuron is modeled as a simple scalar function,

� : R! R, called the activation function of the neuron. An intuitive explanation of this function,
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Figure 7.2: An arti�cial neural network

as well as a list of potential functions that can be used as activation functions in NN-aided learning

tasks, is provided in Section 7.1.1.2.

As mentioned above, neural networks are typically assumed to be organized in layers. This

simpli�es the description [Shalev-Shwartz and Ben-David, 2014] of the calculation performed by

the network. Layered organization implies that the set of nodes can be decomposed into a union

of (nonempty) disjoint subsets:

V = ]Tt=0Vt (7.1)

such that every edge in E connects some node in Vt�1 to some node in Vt, for some t 2 f0; :::; Tg,
where T is the number of layers in the network (excluding the input layer, V0), also known as depth

of the network.

7.1.1.1 Layers

There are three types of layers: the input layer V0, the hidden layers V1; :::; VT�1, and the top layer

VT .

The input layer contains n + 1 neurons, where n is the number of inputs; the �rst n neurons

simply output their input xi, i 2 f0; :::; ng, and the last neuron in V0 is a constant neuron which

always outputs 1.

In simple estimation problems such as deciding whether a tap is active or inactive, the output

layer would contain a single neuron whose output is the output of the network. However, some

channel tracking problems might require more complex outputs.
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Let us denote by vt;i the ith neuron of the tth layer. When the network is fed with the input

vector x, the output of vt;i will be denoted by ot;i(x).

In order to understand how the network's output can be computed in a layer-by-layer manner

[Shalev-Shwartz and Ben-David, 2014], let us suppose we already know the outputs of the neurons

at layer t, i.e. we have already computed them. Then, we can compute the outputs at layer t+ 1

with the following method. First, we �x some vt+1 2 Vt+1. When the network is fed with the

input vector x, the input to vt+1;j will be given by:

at+1;j(x) =
X

r:(vt;r;vt+1;j)2E

w((vt;r; vt+1;j))ot;r(x) (7.2)

and the output will be

ot+1;j(x) = �(at+1;j(x)) (7.3)

In other words, the input to vt+1;j is a weighted sum of the outputs of the neurons in Vt that

are connected to vt+1;j . Such weighted sum is determined by the weight function w. Finally, the

activation function � is applied on the neuron's input to determine its output.

7.1.1.2 Activation function

The role of the Activation Function is to derive output from a set of input values fed to a node (or

a layer). The primary role of the Activation Function is to transform the summed weighted input

from the node into an output value to be fed to the next hidden layer or as output.

An Activation Function decides whether a neuron should be activated or not, i.e. it will decide

whether the neuron's input to the network is important or not in the process of prediction using

simpler mathematical operations. Thus, the purpose of an activation function is to add non-

linearity to the neural network.

Let's consider a neural network working without the activation functions. In that case, every

neuron would only be performing a linear transformation on the inputs using the weights and

biases. Such neural network would be simpler, but learning any complex task would be impossible,

since that model would be just a linear regression model: all layers (no matter how many hidden

layers we add) would behave in the same way because the composition of two linear functions is a

linear function itself.

There are three types of activation functions: binary step functions, linear activation functions

and non-linear activation functions.

Binary Step Function

f(x) =

8<
:0 for x < 0

1 for x � 0
(7.4)

Disadvantage: The gradient of the step function is zero. This causes a hindrance in the back-

propagation process. Since neural networks require backpropagation (gradient-descent) for opti-

mization, this is an issue.

Linear Activation Function

f(x) = x (7.5)
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Figure 7.3: Neural-Network-switched Kalman Filter (NNKF).

Non-Linear Activation Functions

� Sigmoid/Logistic

f(x) =
1

1 + e�x
(7.6)

� Hyperbolic Tangent

f(x) =
(ex � e�x)
(ex + e�x)

(7.7)

� Recti�ed Linear Unit (ReLU)

f(x) = max(0; x) (7.8)

� Leaky ReLU Function

f(x) = max(0:1x; x) (7.9)

� Parametric ReLU Function

f(x) = max(ax; x) (7.10)

� Exponential Linear Units (ELU) Function

f(x) =

8<
:x for x � 0

�(ex � 1) for x < 0
(7.11)

� SoftMax, Swish, Gaussian Error Linear Unit (GELU), Scaled Exponential Linear Unit (SELU),

etc.

7.2 NNKFs as Novel Trackers for Multipath Channels

Proposals like SMAP [Méndez-Romero and Fernández-Getino García, 2018] and PF-solvable esti-

mators such as GMAP-III [Angelosante et al., 2007] have previously suggested that the tracking

problem is separable in nature: you can estimate which taps are active at a given time and then

estimate the value for those taps deemed active in two separate steps. Following the same philoso-

phy, it is hereby proposed to use a neural network (NN) as birth/death detector for each tap; this

This NN would switch on the Kalman �lter when the tap is active and it would switch it o� in

case of death (Fig. 7.3).
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Figure 7.4: Proposed NN tap birth/death detector.

7.2.1 Neural Architecture for NNKF Tracking

The whole tracking scheme is shown in Fig. 7.3, while the detailed 6 x 4 x 2 neural network is

shown in Fig. 7.4, where <(�) and =(�) denote the real and imaginary parts of the complex channel

tap gains, respectively. The speci�c dimensions of the NN are not �xed; they must be decided

according to the speci�c problem (this is somehow similar to the parameter s in SMAP, which

was not �xed either). For most applications, however, the dimension of the input layer can be

reasonably expected to remain very low.

The inputs to the neural network are the LS estimates for the lth tap gain at times fp;p�1; p�2g;
these LS estimates are separated into their real and imaginary parts. This information is used to

decide whether there is a dead tap or an active tap in a way that optimizes CTMSE. To do so, the

NN birth/death detector needs to be trained with a reasonable amount of labeled noisy tap gain

samples.

7.2.1.1 Network Design Decisions

Network design decisions such as the dimensionality of inputs were made through an iterative pro-

cess of prototyping a suitable design, looking at its performance and trained weights and extracting

conclusions.

For example, a 6 x 4 x 2 network design was initially simulated (in a short, preliminary

simulation resembling the conditions in Subsection 7.2.4, but using real-valued taps instead of

complex-valued taps, as a proof of concept). This design received all 6 latest real-valued tap

samples, fĥLSp ; ĥLSp�1; :::; ĥ
LS
p�6g, instead of just 3. Matrix W represents the values for the weights1

w((vt;r; vt+1;j)) after the network was trained with a training dataset:

W '

2
66664

0:57 �2:32 �1:34 0:05 �0:39 �0:48
5:93 7:15 2:70 0:45 0:12 0:40

7:93 0:47 0:01 �0:16 0:01 0:14

8:89 0:87 0:23 0:15 �0:17 0:11

3
77775 (7.12)

As can be seen, the highest values of the matrix (that is, the highest weights) are found in

1For simplicity, the inputs associated to the constant neuron aren't included in W .
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Figure 7.5: The sigmoid/logistic function.

the �rst 3 columns, and especially the �rst 2. This result was to be expected; for the purposes of

knowing whether the tap has died, it is more important to know ĥLSp ; ĥLSp�1 than ĥ
LS
p�5; ĥ

LS
p�6.

This suggested the complexity of the NN could be reduced by using a con�guration of fewer

neurons. By this process we eventually reached the 3 x 4 x 2 network, which was proven to have

the same performance as larger sizes, for real-valued taps, and the 6 x 4 x 2 network shown in Fig.

7.4 for complex-valued taps.

Such preliminary simulations also helped discard inputs fed back from the Kalman �lter itself

(e.g. Kalman estimates in previous epochs), since they didn't provide any improvement in terms

of performance.

7.2.1.2 Choice of activation function

The sigmoid/logistic function has been chosen as activation function. Its equation is (7.6). Its

characteristic S shape, which is shown in Fig 7.5, provides a smooth gradient, i.e., prevents jumps

in output values.

7.2.2 Scheme complexity

The proposed tap birth/death detector is low-complexity. It requires a very low number of neurons

(e.g. 12 in Fig. 7.4) for each complex tap. Thus, its complexity grows linearly with the number of

taps. In this regards, it is similar to SMAP and di�erent from particle-�lter-based methods, where

birth/death detection is made for all taps in a single step.

Nevertheless, unlike SMAP, there are several trade-o�s you could make when working with the

proposed NN switch. For example, you could use either fewer inputs or more of them dependending

on the required success rate. This could take the form of using only the real part of the gain (and

ignoring the imaginary part) or using only the LS estimate at times fp; p� 1g instead of a longer

sequence.

We hasten to add that the proposed system shown in Fig. 7.4, while low-complexity, shows a

perfect detection record when measured in terms of CTMSE for the simulations in Section 7.2.4.

This suggests the proposed scheme may provide an excellent trade-o� between complexity and
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detection precision for real applications.

7.2.3 Covering the KF's eyes before death

For this scheme to work properly, it is important to decide what the KF should do at times of

death and at times of life. This proposal advocates a strategy which could be described as �covering

the KF's eyes before death�, in a similar manner to covering a young child's eyes so they do not

get traumatised by a shocking view. In fact, if the KF were to process dead tap gains following

the standard algorithm, it would get �traumatised� and its estimates would get distorted by non-

linear transitions. Therefore, it is proposed that the standard algorithm should be put on hold

during death: the KF's prediction variance should not be modi�ed until the tap is activated again.

Similarly, once the tap is reborn, the KF should modify its previous predictions to match the new

tap gain and avoid distorsions.

7.2.4 Simulation results

A system with Np = 10 pilot subcarriers is considered, with K = 8 pilot symbols per subcarrier.

The pilot symbols have equal average energy, �2s , and a BPSK modulation scheme is used. The

channel follows a LGM model and is assumed to have a uniform multipath delay pro�le, multipath

spread smaller than the guard time, and no path gain correlation across di�erent paths. The overall

channel energy is normalized to one. 2:4 � 105 OFDM symbols are transmitted through a channel

with Lmax = 10, Pbirth = 0:05 and Pdeath = 0:05. This amounts to 5 active taps on average.

Individual paths are assumed to have the same average energy �2h over long periods and � = 0:999.

This choice of parameters makes it possible to compare the performance of the NNKF tracker

(shown in Fig. 7.4, trained with samples over 70,000 estimation periods) to the computationally

heavier methods outlined in [Angelosante et al., 2007], the KF system advocated in [Yuanjin, 2003]

and the SMAP system in [Méndez-Romero and Fernández-Getino García, 2018].

Fig. 7.6 shows the precision (in terms of active/inactive tap detection mistakes) of the proposed

NN in comparison to a ISS and a degraded ISS. Please notice that not all detection mistakes have

the same e�ect on CTMSE. The ISS-99% fails to detect birth and death in 1% of the cases, but

sometimes that means a small MSE error (because the tap gain wrongly detected as dead is close

to zero, even though not zero), but a greater MSE error under di�erent circumstances (e. g., when

tap gain is wrongly detected, while being far from zero).

Fig. 7.7 shows the performance (CTMSE, as given in Eq. (5.5)) of our proposed NN birth/death

detector + KF estimation vs. LS estimation and scenarios with perfect information (ISS), almost

perfect information (ISS-99%) and a conventional stand-alone KF system with no birth/death

detector.

It is evident that the NN+KF estimator provides much better performance when compared to

ISS-99% and practically identical to ISS-100% (as shown in Table 7.1). In other words: unlike ISS-

99%, the proposed NN's detection errors contribute almost zero to CTMSE. The NN's detection

errors are minor in terms of CTMSE.

This is especially remarkable in view of the fact that the weights for the NN are not directly

optimized for the MSE reduction, but for the birth/death detection.

This means that the NN+KF estimator achieves the tracking error reduction attainable by

perfect death/alive tap state information. Please notice that, due to its very low computational
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Figure 7.6: Tap activity detection precision [%] for NN and two degraded ISS.

SNR [dB] CTMSE for NNKF CTMSE for ISS-100%

9 107.9868 107.9868
12 63.5261 63.5261
15 38.6655 38.6655
18 21.9729 21.9729
21 12.5579 12.5579

Table 7.1: CTMSE for NNKF and ISS-100% in di�erent SNR environments.

cost (as discussed in Subsection 7.2.2), an NN detection bank would be suitable for real applications

over the entire SNR range of interest.

7.2.4.1 Sensitivity analysis

To gauge how sensitive vs. assumed death/birth probability the proposed Neural-Kalman scheme

is, simulations were repeated for mistrained NNs, i.e. some neural networks were trained for

Pbirth = Pdeath = P values that were di�erent from those of the actual channel they would need

to track.

In the �rst such sensitivity simulation, NNs were trained with a training sequence generated

with P = f0:025; 0:05; 0:10g, then the NNKF had to track a channel where Pbirth = Pdeath = 10%.

Results are shown in Table 7.2 and Fig. 7.8. Despite being trained on di�erent P values, all three

NNs had excellent tap status detection precision.

In a second sensitivity simulation, NNs were trained with a training sequence generated with

P = f0:025; 0:05; 0:10g, then the NNKF had to track a channel where Pbirth = Pdeath = 2:5%.

Results are shown in Table 7.2 and Fig. 7.8. Again, all three NNs had excellent tap status detection

precision despite training on di�erent P values. No large consistent e�ect is discernible; while only

small di�erences in performance appear, and they could be reasonably expected to occur due to

the randomness in the simulation runs. There is no clear pattern of degradation across both

simulations.
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Figure 7.7: Tracking precision (CTMSE) for 3 schemes (NNKF, LS, KF) and 2 ISS.

Figure 7.8: Tap activity detection precision [%] for NNs trained for di�erent P , then tested for
P = 10%.
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SNR [dB] P=2.5% P=5% P=10%

9 97.81 98.43 97.95
12 99.18 99.03 99.02
15 99.21 99.13 99.11
18 99.66 99.56 99.50
21 99.55 99.81 99.85

Table 7.2: Tap activity detection precision [%] over a test sequence with Pbirth = Pdeath = 10%
when NNs are trained with a training sequence generated with Pbirth = Pdeath = P .

Figure 7.9: Tap activity detection precision [%] for NNs trained for di�erent P , then tested for
P = 2:5%.

Therefore, the proposed Neural-Kalman scheme is robust to variations in P .

This statement is relevant for the practical implementation of NNKFs. Empirical channel

models [Matolak, 2008, Wu et al., 2010, Hassan et al., 2020] include wide variations in Pbirth and

Pdeath across di�erent taps (see Subsection 2.6.2). Thus, the fact that a single, trained NN could

detect death and birth over taps with wide ranges of P suggests such an NNKF (a single, low-

complexity scheme) could be reusable over di�erent tap indices and communication environments.

7.3 Later Developments

After the publication of the NNKF proposal in [Mendez-Romero et al., 2020], several other papers

have proposed related Neural-Kalman schemes [Revach et al., 2022, Pratik et al., 2021]. One of

them, described in the following Subsection, is the Neural-Kalman RNN Hypernetwork.
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SNR [dB] P=2.5% P=5% P=10%

9 97.27 97.72 98.14
12 98.40 98.86 98.55
15 99.19 99.27 99.27
18 99.38 99.51 99.45
21 99.67 99.73 99.67

Table 7.3: Tap activity detection precision [%] over a test sequence with Pbirth = Pdeath = 10%
when NNs are trained with a training sequence generated with Pbirth = Pdeath = P .

7.3.1 A Neural-Kalman RNN Hypernetwork

[Pratik et al., 2021] proposes a Hypernetwork Kalman Filter (HKF) for tracking applications with

multiple di�erent dynamics. The problem at hand is channel tracking in time varying channels.

Authors recognise that Kalman �ltering is the standard tool, but in Kalman proposals, the under-

lying dynamics of the channel is known, therefore the Kalman parameters can be matched to the

dynamics. They assume a multiDoppler scenario where the Doppler is not known a priori.

In this work, Kalman updates are not modeled by an NN, and the model is causal. Instead of

keeping a bank of Kalman �lters and choosing one based on approximating the actual dynamics,

HKF (which combines generalization power of Kalman �lters with expressive power of neural

networks) adapts itself to each dynamics based on the observed sequence. On the Clustered Delay

Line, Type B (CDL-B) channel model, [Pratik et al., 2021] shows that the HKF can be used for

tracking the channel over a wide range of Doppler values, matching Kalman �lter performance

with genie Doppler information. At high Doppler values, it achieves around 2dB gain over genie

Kalman �lter. The HKF generalizes well to unseen Doppler, SNR values and pilot patterns unlike

Long Short-Term Memory (LSTM), which su�ers from severe performance degradation.

The prediction is still done by Kalman, thereby enjoying robustness and generalization of

Kalman. However, Kalman parameters are updated at each time using an RNN based on the

process history. The RNN models the KF parameters in terms of residual around the mean set of

parameters j. In other words, the Kalman base parameters are �xed to �, and the RNN provides

corrections.

7.4 Conclusions

The proposed low-complexity NN-switched KF trackers outperform all previously known multipath

channel tracking systems for OFDM communications, provided that tap birth/death phenomena

are present. Moreover, its performance in terms of CTMSE is identical to that of the ideal case

(ISS) where perfect knowledge of tap activations is available (see Fig. 7.10).

The proposed Neural-Kalman scheme is robust to wide variations in Pbirth= Pdeath. In the

context of the empirical probabilities of tap birth and death studied in Section 2.6, such robust-

ness suggests a single, low-complexity NNKF could be reusable over di�erent tap indices and

communication environments.



CHAPTER 7. NEURAL-NETWORK-SWITCHED KALMAN FILTERS 87

Figure 7.10: Neural detectors for Kalman trackers



Chapter 8

Partial Tap Components and Lateral

Hop Detection

In previous chapters, we have proposed a simpli�ed framework for the channel tap birth-death

problem and computationally inexpensive estimators, namely the SMAP and the NNKF abrupt-

change channel trackers (Chapters 5 and 7, respectively).

Are there any other abrupt changes, apart from tap birth/death, that we should detect to

improve channel tracking performance? Indeed. This Chapter proposes a di�erent kind of abrupt

change: energy shifts from one tap to adjacent taps (partial tap lateral hops) and discusses how

to model, detect and track such changes.

8.1 A Novel Channel Model for Lateral Partial-Tap Hop Dy-

namics

Consider a channel with Lmax possible taps, such that tap index k 2 f1; 2; :::; Lmaxg: Consider a set
of known partial tap components (PTC), that we might also indistinctly call semitaps, half-taps,

sub-taps or simply partial taps, whose addition at the associated tap index k will determine the

energy of the tap [Matolak, 2014]. We will denote each active PTC by:

c(k;d)p = [k; g(k;d)p ] (8.1)

where d 2 f1; 2; :::; Dmaxg is an index to identify the di�erent partial taps in a single whole

tap, Dmax would be the total maximum quantity of partial taps in a single whole tap, p 2 N is

the time interval index (from now on, �epoch� or simply �time�) and g
(k;d)
p 2 R would be the power

contributed by the partial tap.

For some indexes k, p, d, the associated partial tap might be inactive. To account for that

possibility, we can de�ne the following singleton-or-void random set [Vihola, 2004]:

C(k;d)p =

8<
:f;g if partial tap (k; d) isn't active at time pn

c
(k;d)
p

o
= f[k; g(k;d)p ]T g if partial tap (k; d) is active at time p

(8.2)

A cautious reader will probably have noticed that we can now relate the partial-tap random sets

to the whole-tap random sets H(k)
p (used e.g. in Chapters 5, 6 and 7), by the following equations:

88
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H(k)
p =

Dmax[
d=1

C(k;d)p (8.3)

Hp =

Lmax[
k=1

H(k)
p =

Lmax[
k=1

Dmax[
d=1

C(k;d)p (8.4)

In previous chapters, we have considered taps could die and be reborn. Similarly, these partial

taps feature a speci�c property: they can hop from one tap to an adjacent tap.

To describe this mathematically, we can de�ne the relationship 0 (�partial-tap left-hop�) as:

C(k;d)p 0 C(k�1;d0)p+1 ()
8<
:C

(k�1;d0)
p+1 = c

(k�1;d0)
p = [k; ag

(k;d0)
p ]

C(k;d)p+1 = ;
(8.5)

where a2 R; a � 1 is the (potential) power increase factor resulting from a relatively shorter

path to the receiver, k > 1 and d0 is any suitable partial tap index such that C(k�1;d0)p = ;.
In simple words, we have de�ned a lateral hop that is associated to a shorter path to the receiver

(thus increasing the contributed partial tap power); this partial tap hop requires an empty subtap

at the destination1, and that's why C(k;d0)p = ;. The nomenclature C(k;d)p 0 C(k�1;d0)p+1 means the

subtap C(k;d)p hopped to the adjacent left tap index, k � 1, at the next epoch, p + 1, thus leaving

its former position void, C(k;d)p = ;.
Similarly, we can de�ne the relationship 1 (�partial-tap right-hop�) as:

C(k;d)p 1 C(k+1;d0)p+1 ()
8<
:C

(k+1;d0)
p+1 = c

(k+1;d0)
p = [k; a�1 � g(k;d0)p ]

C(k;d)p+1 = ;
(8.6)

where a2 R; a > 1 is the power increase factor resulting from a relatively longer path to the

receiver, k < Lmax and d0 is any suitable partial tap index such that C(k;d0)p = ;.
In simple words, we have de�ned a lateral hop that is associated to a longer path to the receiver

(thus reducing the contributed partial tap power); this partial tap hop requires an empty subtap at

the destination, and that's why C(k;d0)p = ;. The nomenclature C(k;d)p 1 C(k�1;d0)p+1 means the subtap

C(k;d)p hopped to the adjacent left tap index, k+1, at the next epoch, p+1, thus leaving its former

position void, C(k;d)p = ;.
Finally, for a speci�c subtap C(k;d)p , we could de�ne the probability of lateral hop for each

direction as Plh = P (C(k;d)p 0 C(k�1;d0)p+1 ) for the left-hop and Prh = P (C(k;d)p 1 C(k+1;d0)p+1 ) for the

right-hop, and the total probability of lateral hop as:

Ph = Plh + Prh = P (C(k;d)p 0 C(k�1;d0)p+1 ) + P (C(k;d)p 1 C(k+1;d0)p+1 ) (8.7)

8.1.1 Geometric Justi�cation for Partial-Tap Dynamics

Why consider di�erent partial tap components in a single tap, instead of the tap as a whole?

Because we might expect di�erent physical paths to contribute to the same tap; as either the

transmitter, the receiver or a set of obstacles around them move (relatively to each other), those

physical paths might change. They might get shortened or lengthened and, as a consequence, those

partical tap components might �jump� to an adjacent tap, i.e. they might change tap index. The

1This shouldn't cause any loss of generality, since Dmax can be chosen from an unbounded set.



CHAPTER 8. PARTIAL TAP COMPONENTS AND LATERAL HOP DETECTION 90

result would be a reduction in the energy contributed to the former tap and an increase in the

energy contributed to the new tap by this modi�ed physical path [Zhang, 2016].

Furthermore, we can identify �ve di�erent, geometrically-justi�ed tap dynamics involving either

full or partial taps in birth-death or hop dynamics:

1. Uncorrelated (sub)tap birth-death dynamics due to the appearance/disappearance of

a re�ecting obstacle, such as a truck in the same highway you are driving your car (the

receiver) in. Once the truck appears on the road, a new tap is born [Hassan et al., 2020].

Once the truck exits the highway, the tap disappears [Hassan et al., 2020]. We can detect

this birth/death dynamics through the SMAP and NNKF methods explained in Chapters 5

and 7.

It might happen that two di�erent trucks contribute two additive subtaps to the same tap

index; in that case, we would have an abrupt fall (but not disappearance) of the tap once one

of the trucks exits the highway; though not mathematically optimal, this can be reasonably

expected to be dealt with non-catastrophically through the KF. However, a mathematical

optimal solution (outside the scope of this Thesis) would involve a partial-tap channel model

with partial-tap birth/death dynamics.

2. Correlated (sub)tap birth-death dynamics due to the appearance / disappearance of

a re�ecting obstacle. Here we can identify two di�erent sources of correlation: correlated

birth/death and post-death correlation.

For correlated birth/death, consider a very large truck as a re�ecting obstacle in the high-

way (see Fig. 8.1); the truck is large enough for several adjacent taps to appear at once

[Hassan et al., 2020]. After the large truck exists the highway, all the associated taps disap-

pear at the same time. A model that assumes uncorrelated birth/death for each tap is not

suitable for this phenomenon.

For post-death correlation, consider the multipath component [Rodríguez-Piñeiro et al., 2021b]

dynamics in channels where Unmanned Aerial Vehicles (UAVs, commonly known as drones)

are involved, either as transmitters/receivers [Rodríguez-Piñeiro et al., 2021a] or as inter-

fering obstacles. Fig. 8.2 shows one such scenario: an interfering drone swarm (A) gets

transitorily shadowed by a building (B). Once it reappears (back to A), (sub)taps correlated

to pre-shadowing (sub)taps will reappear. Therefore, such a moving, re�ecting obstacle can

cause correlated (sub)tap birth-death dynamics.

3. Gradual tap drift. Taps (i.e. echoes) aren't really a solid object. Power is assumed to be

continuous, i.e. delivered by an in�nite number of rays [Tse and Viswanath, 2005]. Taps are

a mathematical abstraction resulting from the integration of such assumed in�nite number

of rays. However, this set of rays/paths does not always get identically divided at the same

delay boundary between taps (see Fig. 8.3); there might be some gradual drift to one side,

thus delivering slightly more power to an adjacent tap and slightly less power to the tap they

are moving away from.

4. Lateral (sub)tap hop dynamics. Consider base station-vehicle communications on a

highway, similarly to the scenarios in [Hassan et al., 2020, Matolak, 2008, Wu et al., 2010,

Hassan et al., 2021], in such a way that there is a tap associated with the LOS and one or

more taps are associated with re�ections on other vehicles. The closer an interfering vehicle is
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Figure 8.1: A truck in a highway is a re�ecting obstacle that can cause correlated (sub)tap birth-
death dynamics.

to the receiver vehicle, the more the echo path will resemble the LOS (see height trajectories

getting closer in path length as the interfering red vehicles get closer to the orange receiver

van in Fig. 8.4).

Let us focus on a scenario with LOS and (at least) two taps associated with re�ections in

tall vehicles (vans, buses or trucks) placed in the extreme right and left lanes (Fig. 8.5).

Therefore, as the interfering vehicle gets closer to the receiver, the closer the tap of such

re�ecting vehicle will get to the LOS-associated tap (by hops to the left, i.e. to lower tap

indexes, see Fig. 8.6).

If the tap index is already occupied by another tap, the hopping (sub)tap will add energy

on top of the existing tap (Fig. 8.7). Once the interfering vehicle reaches the (receiver)

vehicle, the re�ected path becomes about as short as the LOS, i.e. the re�ection-associated

subtap hops onto the LOS-associated subtap (Fig. 8.8). This example shows how the relative

movement of re�ectors creates lateral (sub)tap hop dynamics.

5. Unstereotyped dynamics. Some dynamics e�ects might occur as combinations of the

previous phenomena or more extreme versions of them. Is there any way to track a channel

that is changing abruptly with dynamics that don't �t your previous models? See Section

9.4 for some potential mechanisms to learn such dynamics in real time.

8.2 NNKF Tracking of Channel with Lateral Partial-Tap Hop

Dynamics

This Section proposes a neural detector [Shalev-Shwartz and Ben-David, 2014] for lateral hops.

Simulations will show this NN detector can detect partial-tap hops in the assumed value ranges.

Some potential schemes for practical implementation in wireless systems are discussed.

8.2.1 Partial-Tap Hop Dynamics

Consider the channel model in Section 8.1. The design task at hand would be detecting large,

abrupt transfers of energy from a tap index to adjacent tap indexes. For simplicity, a symmetric

model is considered, i.e. Plh = P (C(k;d)p 0 C(k�1;d0)p+1 ) = P (C(k;d)p 1 C(k+1;d0)p+1 ) = Prh and no power

increase/decrease during hops, i.e. a = 1. Furthermore, it will be assumed that, at any epoch p, a

partial tap with g
(k;d)
p 2 (gmin; gmax) exists and might hop with probability Ph = Plh + Prh.
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Figure 8.2: A drone swarm transitorily shadowed by a building is a re�ecting obstacle that can
cause correlated (sub)tap birth-death dynamics.

Figure 8.3: Gradual tap drift. Slow relative movements cause gradual drift.
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Figure 8.4: Height trajectories of LOS and vehicle re�ections on the road.

8.2.2 A Neural Detector for Lateral Hops

A neural detector for such partial-tap hop dynamics is shown in Fig. 8.9. The inputs to the neural

network are the LS estimates for the source tap (lsth) gain and the target tap (ltth) gain at times

fp;p� 1; p� 2g; these LS estimates are separated into their real and imaginary parts, represented

as <(�) and =(�), respectively. This information is used to decide whether there has been a large

energy transfer between taps ('hop' vs. 'no hop'). To do so, the NN birth/death detector needs

to be trained with a reasonable amount of labeled noisy tap gain samples. Since not all energy

transfers are of interest, lateral hops that produce a small increase of energy in the target tap will

be labeled as 'no hop', i.e.:

hop() r =
g
(ks;d)
p�1

jjhktp jj2
> qhop (8.8)

for a chosen threshold qhop 2 R, qhop > 0. For other NN design guidelines, refer to the similar

design task in Subsection 7.2.1.

8.2.3 Simulations

A system with Np = 10 pilot subcarriers is considered, with K = 8 pilot symbols per subcarrier.

The pilot symbols have equal average energy, �2s , and a BPSK modulation scheme is used. The

channel follows a LGM model and is assumed to have a uniform multipath delay pro�le, multipath

spread smaller than the guard time, and no path gain correlation across di�erent paths. The

overall channel energy is normalized to one. 2:4 � 105 OFDM symbols are transmitted through a

channel with Plh = Prh = 0:05. Individual paths are assumed to have the same average energy �2h
over long periods and � = 0:999. Samples for NN training and performance testing were labeled

as 'hop' only when the hop increased target tap energy by more than 25%, i.e. qhop = 0:25.

8.2.3.1 Simulation results

Simulation results are shown in Fig. 8.10, where hopping tap energy is represented as � for better

legibility. Numerical values are shown in Table 8.1. The proposed NN provides a high detection
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Figure 8.5: Taps in a highway situation: a LOS path (green), re�ections over a long vehicle (blue
and red taps) and a re�ected path on a vehicle further behind (yellow tap).
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Figure 8.6: Lateral (sub)tap hopping in a highway situation: as the left vehicle advances (rel-
atively), the yellow path becomes as short as the red one, i.e. the yellow tap hops onto the
left-adjacent tap.
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Figure 8.7: Lateral (sub)tap hopping in a highway situation: as the left vehicle keeps advancing
(relatively), the yellow path becomes as short as the blue one, i.e. the yellow subtap hops onto the
blue subtap.
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Figure 8.8: Lateral (sub)tap hopping in a highway situation: as the left vehicle reaches the red
vehicle (receiver), the yellow path becomes about as short as the LOS, i.e. the yellow subtap hops
onto the green subtap.
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Figure 8.9: A neural detector for lateral hops
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Figure 8.10: Lateral hop detection with NN for di�erent energy transfer sizes � := g
(k;d)
p

SNR g
(k;d)
p 2 (0:8; 0:9) g

(k;d)
p 2 (0:7; 0:8) g

(k;d)
p 2 (0:5; 0:6)

9 97.36 97.30 97.30
12 97.74 97.70 97.46
15 98.00 97.61 97.94
18 98.21 97.97 98.16
21 98.46 98.46 98.27

Table 8.1: Neural detection precision for lateral hopping status

precision for the hop/no-hop classi�cation task. Precision is signi�cantly higher for high SNRs.

While there is signi�cant variation due to the randomness inherent in each simulation run, hop/no-

hop classi�cation is performed with high precision in all simulated energy transfer sizes with a slight

decrease in performance as energy transfer sizes get reduced.

Simulation results suggest the proposed NN architecture might be a feasible lateral hop detector,

suitable for integration in NNKF schemes.

8.3 Potential NNKF Integration

While the design of tracking schemes for speci�c lateral hopping applications goes beyond the

purposes of this Thesis, the simulation results in this Chapter support future research in this area.

In particular, the neural detector in this Chapter might be coupled with KF to create a tracking

Neural-Kalman scheme with potentially superior performance in speci�c applications. Such a

design could include both tap death/birth detection [Mendez-Romero et al., 2020] and lateral hop

detection.
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8.4 Conclusions

A novel channel model for lateral partial-tap hop dynamics (subtap hopping) was developed, i.e.

instead of considering just the death/birth of the whole tap, we considered a single tap could

be interpreted as the sum of smaller components, called subtaps or partial taps, that could hop

to adjacent tap indexes. We have provided a geometric justi�cation for this and additional non-

stationary dynamics (Subsection 8.1.1). Finally, we have designed a neural detector for lateral

hops with large energy transfers. Simulation results suggest the proposed NN architecture might

be a feasible lateral hop detector, suitable for integration into NNKF schemes.



Chapter 9

Unstereotyped Abrupt Dynamics

and Neural-Kalman Phenomena

In previous chapters, abrupt changes and the interactions between Kalman �lters and neural net-

works have been reviewed, and the SMAP and NNKF schemes have been proposed to track channels

under tap birth/death dynamics. In this Chapter, we leverage our newly found understanding of

abrupt changes and Neural-Kalman schemes to analyze the neural consequences of unstereotyped

abrupt changes.

Communication-engineering-relevant topics will be discussed in the process, including a Bayesian

stereotyper for hopping LGM models that uses bio-inspired, neuroscienti�cally-backed mechanisms

(dreaming, surprise), but such estimation methods will be presented through the prism of �nance,

where unstereotyped abrupt dynamics can be generalized into remarkable theoretical results.

In particular, a novel Neural-Kalman framework will be proposed to describe how market

participants react to failing expert opinions and how to outperform them through a new invest-

ing strategy. Moreover, this Chapter will formalize the concept of Neural-Kalman Phenomena

and suggest mathematical, neuro-evolutionary and social reasons why Neural-Kalman Phenomena

might exist.

Let us begin by describing a disagreement between two �nancial experts.

9.1 Expert Disagreements

In early 2021, two prestigious economists, Lawrence H. Summers and Paul Krugman, held op-

posite views on US President Biden's huge stimulus program, including massive infrastructure

spending and sending $1,400 checks to most Americans in order to restart the economy after the

�rst Covid pandemic waves. Summers thought the economy would overheat and in�ation would

skyrocket within months [Summers, 2021, Princeton Bendheim Center for Finance, 2021]. Krug-

man thought this stimulus program made sense and in�ation wouldn't rise to dangerous levels

[Princeton Bendheim Center for Finance, 2021].

Both experts are smart and knowledgeable; yet one of these expert opinions would necessarily

fail soon afterwards.

If Summers were to be right, in�ation expectations would soon become unanchored and the Fed

would be forced to raise interest rates in order to combat in�ation, possibly causing a hard landing

101
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(a recession) in the process [Summers, 2021]. This would impact asset valuations, including stock

market valuations. High-growth tech stocks would be particularly a�ected through lower sales,

lower margins, lower earnings, lower short-term growth, higher costs and higher discount rates

[Blanchard and Johnson, 2017, de Pablo López, 2001, Authers, 2021]. Thus, if Summers were to

be right, high-growth tech stock prices would fall [Authers, 2021, Dale, 2021]. However, if Krugman

were to be right, there would be no recession, no high in�ation and no need to panic1.

As this example shows, detecting failing expert opinions early is crucial for investing. It literally

means money.

Furthermore, when applied to non-�nancial consequential matters, such as the emergence of

large-scale wars or highly disabling pandemic viruses, it means not just money, but also health and

survival.

This chapter will provide a Neural-Kalman framework to understand how market participants

react to failing expert opinions and how to outperform them under certain circumstances.

9.2 A Hopping LGM Model for In�ation Forecasting

We can represent the underlying mental model for anchored2 (Krugman) vs. unanchored (Sum-

mers) in�ation through a very simple LGM model, so that, if CPIp is to represent the 3-month

seasonally-adjusted (SAR) consumer-price index (CPI) in�ation rate at quarter p provided that

the 'transitory, anchored' in�ation mental model holds true, then the probability density function

for CPIp would be given by the following equations:

CPIp = �LR +�CPIp (9.1)

f(�CPIpj�CPIp�1) = N (�CPIp;� ��CPIp�1; (1� �2)�2CPIanch) (9.2)

where �LR is long-run in�ation rate target3, �CPIp is the CPI in�ation gap vs. �LR, �
2
CPIanch

is the average energy of the CPI in�ation gap (vs. �LR) when in�ation expectations are anchored

and � < 1 is the temporal self-correlation of quarterly SAR CPI gap data. This would approximate

Krugman's 'transitory in�ation' hypothesis.

On the other hand, an ever increasing in�ation à la Summers could be simplistically modelled

by the following equation:

CPIp = �peak +�CPIp (9.3)

f(�CPIpj�CPIp�1) = N (�CPIp;� ��CPIp�1; (1� �2)�2CPIunanch) (9.4)

where �peak is the expected short-term (crisis) peak in�ation rate 4, �CPIp is the CPI in�ation

1This simpli�ed model of asset valuations includes only considerations around liquidity (including in�a-
tion/interest rates). Please notice this is an oversimpli�cation that hides non-liquidity-driven risk. A collapse in
liquidity was a su�cient condition for the end of the asset price boom, but not a necessary condition. Black Swans
could have ended it prematurely (see Appendix Subsection B.3.4). As per legendary investor Jeremy Grantham's
view: �A spike in in�ation [leading to higher interest rates] may be su�cient, but it is not necessary, to crack this
market.� [Grantham, 2021]

2For a detailed explanation of anchoring, see Appendix, Subsection B.3.3.
3The long-run target assumed achievable does not necessarily and will not generally match the long-run empirical

average in�ation rate.
4This could alternatively be replaced by an ever increasing expected peak rate �(p) that grows either linearly or
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gap vs. �peak, �
2
CPIunanch

is the average energy of the CPI in�ation gap (vs. �peak) when in�ation

expectations are unanchored and � < 1 is the temporal self-correlation of quarterly SAR CPI gap

data. This would approximate Summers's 'not-that-transitory in�ation' hypothesis.

To better illustrate the model, in the Krugman vs. Summer debate, some approximate numbers

would be �LR = 4% (a long-term in�ation �gure Krugman himself had previously defended as

benign for the economy [Krugman, 2013]) and, for �peak, a subjective estimate of the 'in�ation

pain threshold5' at which the Fed would be forced to cause a recession e.g. �peak = 10%. Other

forecasting models, such as the one approximating Bank of England's forecasts for the UK in the

February '21 - August '22 period (see Fig.9.1), would be more optimistic and closer to �LR = 2%.

Assuming in�ation data is noisy, a KF algorithm could be used to update the current in�ation

estimation ^CPIp at epoch p, as well as predictions for the short term. Forecast in�ation for epoch

p+ n, n 2 N, as forecast at epoch p, would be given by:

CPIp+njp = �+ ( ^CPIp � �) � �n (9.5)

where � would respectively mean �LR (anchored in�ation) or �peak (unanchored in�ation),

respectively.

Our hopping LGM model is convenient for 5 reasons:

1. It is exactly the same model we have been using for channel taps in the previous chapters,

so it is straightforward to apply KFs, NNs and our proposed NNKF scheme.

2. It actually has a good overlap with some expert forecasts (e.g. BoE's in Fig. 9.1).

3. One-dimensional dychotomies are frequent in �nance and some insights about them are easily

generalisable to multi-dimensional, multiple-choice decisions.

4. In this chapter we will explore the possibility that this underlying 'LGM anchor' is general-

izable to social and �nancial a�airs as the neuro�nancial consequence of our human/social

cognitive adaptation to Neural-Kalman Events.

5. This model is simple and intuitive enough to present the neuroscienti�c advances around the

changepoint - oddball - reversal problem.

9.3 The Changepoint - Oddball - Reversal Model

Neuroscientists have proposed that the brain works as a Bayesian estimator. In that model,

called the Bayesian Brain, animals (including humans) are continually predicting what is going

to happen. If something unexpected happens, the mechanism of surprise gets activated. That

mechanism helps you switch from your current model to a new one, whether it is an old model

you have already learned or a new model that you will need to learn from scratch. The cognitive

task of deciding whether the current experience matches our activated model is arguably common

exponentially for as long as the crisis is not decisively tackled + an inertial period (e.g. interest rate hikes' e�ects
on in�ation arguably do not fully show up until 12-18 months later).

5To be more precise, �peak would be the expected peak in�ation after a Fed hawkish pivot, i.e. the peak in�ation
rate that would be reached after a Fed pivot if the 'in�ation pain threshold' is reached, forcing the Fed to pivot.
The post-hike peak in�ation rate would be expected to be higher than such early pain threshold due to the fact
that interest rate hikes would only slow down the economy with some delay.
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Figure 9.1: In�ation forecasts for the UK by the Bank of England (BoE), reminiscent of a KF
prediction based on the wrong underlying plant model. (ONS, BoE, BGG)

to mice in laberynths, investors facing a new potential high-in�ation paradigm or channel tracking

algorithms under birth/death/partial tap hopping dynamics (Fig. 9.2).

Neuroscientists model this dilemma as the so-called �changepoint - oddball - reversal problem�.

This problem is represented in Fig. 9.3 through its three possibilities:

� Changepoint. This occurs when a new paradigm starts, forcing you to switch from one

model to the next. In Fig. 9.3 (uppermost line) we can see how one state, let us call it state

s1 (denoted by green dots), is followed by state s2 (denoted by light blue dots) and then

state s3 (denoted by purple dots).

� Oddball. Due to the statistical nature of the problem, you can get an outlier at any given

moment. If that outlier isn't followed by other similar outliers (which would suggest a

changepoint), then it makes sense to discard it. In Fig. 9.3 (central line) we can see how

state s1 (green) does not change into a di�erent state; the highest samples, marked with a

yellow star, are simply surprising outliers that must not lead to cognitive overreaction (false

detection of a changepoint).

� Reversal. This occurs when a new paradigm starts and then reverses after a short while.

We have seen this phenomenon in channel tracking, e.g. when a tap is activated and later

dies (i.e. returns to the initial state). In Fig. 9.3 (lowermost line) we can see how state s1

(green) is followed by s2 (blue) (that would be a changepoint) and then the sequence returns

to state s1 (that would be a reversal).

These dynamics appeared in the channel tracking problems we dealt with in previous chapters,

such as tap death/birth, where underlying dynamics were known. An interesting question would

be: what happens if those underlying dynamics are unknown? How can you solve the estima-

tion/prediction problem in that case? This problem would have applications both in communi-

cations engineering and other areas such as �nance. Life itself, after all, is to some extent an
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Figure 9.2: Mice, investors and robots face similar neurocognitive challenges.

estimation problem under abrupt unstereotyped dynamics. In our next section we will provide

some hints to solve it.

9.4 A Bayesian Stereotyper for Hopping LGM Models

Consider an algorithm (let us call it Stochastic State Stereotyper6, or simply Stereotyper) that

receives noisy samples from a random generator with N possible active states. At each epoch,

the active state can jump to (some of) the other possible states with a �xed likelihood or stay

at the same active state, i.e. the underlying states follow a Hidden Markov Chain Model (HMM)

[Fuh and Tartakovsky, 2019, Satorras et al., 2019]. Each state outputs samples following an LGM

model centered on di�erent unknown means �1, �2, �3,...,�N , etc, for states s1,s2,s3,...,sN , re-

spectively. For the sake of simplicity, let us assume all LGM models have the same variance and,

again, the total number of underlying LGM models is �nite (capped at N , but N is unknown to

the Stereotyper).

The Stereotyper will receive one element at each time step.

For each time step, the Stereotyper's goal is to produce the best possible approximation of the

underlying Markov Chain, ideally through a minimal-computation update algorithm.

Each of the stereotypes generated by the Stereotyper will be called a Stochastic State Stereotype

(SSS).

9.4.1 Trivial case (no noise)

In the trivial case7, where both measurement noise and plant noise are assumed to be zero, you

are receiving a time series whose elements belong to a �nite set. The time series is distributed as

6We are taking an engineering approach to this problem, i.e. fully Bayesian stereotypers will only be acceptable
solutions for low-complexity problems such as the trivial case. For the general case we will propose a combination
of AI and bio-inspired algorithms with Bayesian features, so, if we take o� our engineering hat and we put on our
'mathematics hat', Stochastic Stereotyper or maybe Bayesian-Inspired Stochastic Stereotyper would be more precise
terms than 'Bayesian', strictly speaking.

7I would like to thank Robert Israel, Associate Professor Emeritus at the University of British Columbia, for
suggesting both this interpretation of the problem and its solution to me.
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Figure 9.3: Surprising events can be classi�ed as changepoints, oddballs (outliers) or reversals.
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a Discrete-Time Markov Chain on the �nite set.

For a given state i, row i of the transition matrix �tr = (Pij) gives the transition probabilities

Pij from i to j, j = 1::n (the number of states). This is a probability distribution, and the

minimum variance unbiased estimator of it is the empirical distribution �̂tr = (P̂ij), with elements

P̂ij = Nij=Ni, where Ni is the number of times state i was observed before the latest time and Nij

is the number of times state i was directly followed by j.

9.4.2 Bio-inspired AI mechanisms for the non-trivial case

A general, e�cient solution for the non-trivial case is beyond the scope of the current PhD Thesis.

However, we can provide an overview of how di�erent schemes analyzed in the current Thesis, as

well as other bio-inspired AI mechanisms, might �t into the full picture of a general solution.

The following proposals have some commonalities with very recent publications such as LeCun's

Autonomous Machine Intelligence [LeCun, 2022] and Yu's Adaptive Learning Structure models

for biological brains [Yu et al., 2021], though the basic core ideas in our proposal were initially

developed earlier than, and independently from, the publication of such works and are more geared

towards problems where Neural-Kalman schemes might be particularly useful.

Let us consider the following bio-inspired AI mechanisms:

1. Surprise: once we receive a surprising sample (a sample that looks like an outlier based on

our current active stochastic model and could be a changepoint/oddball, see Section 9.3), we

consider the possibility that this is a new (potentially unstereotyped) state.

2. Attention (stereotyping): attention is the recognition that something is interesting and

deserves further neurocognitive work or, in other words, a non-zero complexity-memory bud-

get, i.e. memory space or computational power are reserved for the task deemed interesting.

For the hopping LGM model problem, the task will be: create a better stereotype (a more

precise SSS).

3. Dream: generation of training samples based on a set of SSSs so as to train an NNKF

scheme and adapt it to a speci�c SSS, or to improve classi�cation when choosing between

two or more SSSs. Importantly, dream is an optimization task that can take place remotely

(say, if the Bayesian stereotyper is an estimator doing stereotyping/exploitation work as a

channel track on a train, the dream stage could be done on a computer on that train; this is

feasible to the extent idle computers and the internet are everywhere now, greatly increasing

computational power).

4. Logic (stereotype algebra): SSSs' growth is exponential if left unchecked. You need a set

of reasoning rules that prunes the set of SSSs deemed valid. To do so, you might need to merge

several closely related stereotypes into one (e.g. �̂1; �̂2 = �̂1+�, �̂3 = �̂1��, for a su�ciently

small � with respect to noise and very similar estimated HMM transition probabilities, would

be merged into a single SSS). Moreover, some subtle di�erences between possible states might

not cause enough surprise and, thus, such di�erent states would never be stereotyped into

di�erent stereotypes. By de�ning certain convenient operations on stereotypes (operations

that will enable the Stereotyper to speculate on the existence of more granular state divisions),

the stereotyping outcome might become more granular and precise.
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5. Neurons and Kalman �lters (KFs, NNs, NNKFs). Kalman �lters would provide optimal

estimations/predictions for the LGM models (for as long as there is no transition; then sur-

prise will likely be activated). NNs can computationally optimize detections by frontloading

the computational cost in an external, computationally-rich device. Once the HMM is prop-

erly stereotyped, NNKFs will provide excellent performance for the exploitation phase (as

they did in our channel tracking tasks in previous chapters).

9.4.2.1 A Stereotyper thought experiment

Let us imagine how such bio-inspired mechanisms could interact with each other to solve the

problem. The Stereotyper would start with 0 stereotypes. Once it receives the �rst sample, the

Stereotyper is surprised8, since it is out of typical range for the currently active SSS (since there

is no SSS at all), so it assigns some complexity-memory budget to stereotype it (attention), i.e. it

locally computes a stereotype. For example, for a random number ni of samples, the Stereotyper

will assume that all such received samples will have been generated by the same HMM state.

If the complexity-memory budget is large enough, the Stereotyper might run several competing

stereotyping tasks in parallel, i.e. n 2 R, i 2 f1; 2::Imaxg and later decide which one better �ts the

data through logic (elimination of the SSS with less predictive power, or merging all Imax SSS or

a subset of them, to the extent they are identical or close to identical).

Why would SSS have predictive power? Because the underlying LGM makes it possible to run

a KF over it, and KFs provide predictions. Actually, KF's predictions are optimal assuming the

stereotype is perfect, as far as no new state transition occurs due to the HMM dynamics.

Let us continue with our Gedankenexperiment. Let us assume the Stereotyper has achieved its

�rst stereotype and it is the only available stereotype left (all Imax � 1 others were eliminated or

merged with it). As far as the new samples are close to the KF's prediction, the KF keeps exploiting

the SSS and no other bio-inspired mechanism is activated. However, as soon as a new surprising

sample is received, the mechanism of surprise is activated and a second state is stereotyped (again,

the Stereotyper might run several random-length stereotyping tasks in parallel).

Soon, the set of valid SSS (i.e. the Stereotyper's estimation of the HMM) becomes large enough

that the computations to decide which state is the current state sometimes becomes costly.

Fortunately, an idle computer lies nearby for a while and that gives the Stereotyper the op-

portunity to dream, that is, to temporarily use an external resource in order to train NNs that,

in combination with the KFs, can easily and correctly decide in case of edgy jumps that would

require too much computation otherwise.

Once decisions have been computationally optimized through the newly trained NNKFs, ex-

plotation is much cheaper (locally) and computational shortage issues have been averted.

In conclusion, bio-inspired mechanisms could help solve the Bayesian stereotyping estima-

tion/prediction problem through structures such as the proposed Bayesian stereotyper. Our next

section focuses on one such mechanism: surprise.

8There are many possible ways to implement surprise. The SMAP and NNKF algorithms arguably imple-
ment surprise. Another interesting technique would implement surprise through the �Bayes Surprise Factor�
[Liakoni et al., 2021], which can be applied to Particle Filters (Subsection 4.4.1), Message Passing (Subsection
4.4.2) and Variational Learning (Subsection 4.4.4) schemes.
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9.5 Ojipláticos: Neural-Kalman Schemes in Biological Brains

Human languages have related surprise to the eyes with expressions such as having eyes like saucers,

poner los ojos como platos or quedarse ojiplático9 (Spanish) or groÿe Augen machen (German).

Our surprise is very noticeable in our eyes, and not just in those of us who cannot hide our emotions

easily.

Adrenaline (or, to be more precise, norepinephrine) is involved in the human mechanism of

surprise and the activity of the norepinephrine-dispensing system10 can be measured by pupil

dilations. In the face of an abrupt change, some people dilate their pupils more than others;

interestingly, the size of that pupil dilation has been shown to be a measure of how much they have

changed11 their minds [Filipowicz et al., 2020]. Some researchers have speculated that the P300

response, that is, a measured brain response (recorded by electroencephalography), also re�ects the

extent to which people update their beliefs in response to an abrupt change [Jepma et al., 2016].

Interestingly, when facing an oddball instead of a real changepoint, people get sauce-eyed for longer.

In those cases, both pupil dilation and the P300 response stay active for longer and they predict

less, not more, learning [Nassar et al., 2019, O'Reilly et al., 2013].

Isn't this a contradiction? Not necessarily. You get surprised when your expectations don't get

ful�lled; in that case, your brain tries to switch to a new state (consider an NNKF system detecting

an abrupt change and switching to a new state). If the state is completely di�erent, you would try

to �learn� it (stereotype its statistical behaviour); if it soon resembles something you already know

(it comes back to 'normal' after an atypical reading), then you won't need to learn it, but you will

need to switch back to the old state. Thus, [Yu et al., 2021] proposed that norepinephrine signals

the need for a state transition, rather than the need to learn per se.

In other words, to the extent we primates might occasionally behave in a manner resembling

Neural-Kalman schemes12, our surprise (norepinephrine) signals the KF is wrong and we have to

switch into a new (potentially unstereotyped) state.

9.6 The Neural-Kalman Conjecture & Market Hypothesis

9.6.1 Neural-Kalman Problem Category Conjecture

Conjecture 10.1. For a �xed memory requirement, there is a non-empty class of

problems that can be solved with Kalman schemes by expending lower complexity

than schemes not incorporating the Kalman �ltering algorithm.

In particular, this conjecture implies that the algorithm called 'Kalman �lter' is computationally

optimal for Kalman �ltering13, i.e. you cannot obtain a MMSE estimator in linear problems with

9Literally �sauced-eyed�.
10The so-called locus coeruleus/norepinephrine system.
11A measure of how people update their priors after noticing an abrupt change. �Using an auditory adaptive

decision-making task, we show that evoked pupil diameter is more parsimoniously described as signaling violations
of learned, top-down expectations than changes in low-level stimulus properties. We further show that both baseline
and evoked pupil diameter is modulated by the degree to which individual subjects use these violations to update
their subsequent expectations, as re�ected in the complexity of their updating strategy.� [Filipowicz et al., 2020]

12For a full discussion of references around this hypothesis, see Section 9.7 and Appendix Sections B.2 (for
biological Neural-Kalman schemes in animals) and B.3 (for Neural-Kalman features in human behaviour).

13'Performing an operation' and 'performing an operation optimally' are two di�erent things. Addition performs
addition, but addition doesn't always perform addition optimally if memory is available, e.g. the computation of
333 x 444 = 147,852 can be performed by adding the number 444 once and again, 333 times, or it can be optimally
solved through multiplication.
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a di�erent, computationally more inexpensive set of steps if there is a su�ciently low memory

requirement. To the best knowledge of this author, nobody has proven that the Kalman �lter is

computationally optimal for Kalman �ltering in such conditions, so we need to conjecture it (read:

assume it). See Appendix Section B.1 for a deeper discussion of Kalman vs. Neural-Kalman

complexity.

De�nition 10.1. The Kalman Problem Category is the class of problems that, for a

�xed memory requirement, can be solved with Kalman schemes by expending lower

complexity than schemes not incorporating the Kalman �ltering algorithm.

Conjecture 10.2. There is a non-empty class of problems that can be solved with

Neural-Kalman schemes by expending lower complexity than schemes not incorpo-

rating the Kalman �ltering algorithm, such as pure (non-Kalman) Neural Networks,

do.

An exhaustive mathematical analysis of this conjecture, or a mathematical proof of it, is well

beyond the scope of the current Thesis. However, if such problems did exist and weren't very rare

in human contexts, we would �nd, at the very least, circumstancial evidence compatible with the

existence of Neural-Kalman problems in neuroscience and human a�airs.

Indeed, we have found signi�cant, wide-ranging evidence. See Appendix Sections B.2 (for

biological Neural-Kalman schemes in animals) and B.3 (for Neural-Kalman features in human

behaviour).

If Neural-Kalman schemes are indeed superior to non-Kalman schemes in a frequently appearing

class of problems, then a Neural-Kalman architecture for ever granular stereotyping

that provides a practical solution for continual learning in the presence of unstereotyped abrupt

dynamics would be extremely useful in communications and other continual learning tasks

[Hadsell et al., 2020]. This Thesis has proposed some ideas to design its architecture in Section

9.4.

Let us �nally add that we believe the concept of Neural-Kalman Stochastics might prove useful

for communication engineers and other problem-solvers in a �rst stage of design even if this

conjecture were to eventually be proven wrong.

9.6.2 Neural-Kalman Market Hypothesis

The future is uncertain and determined by events whose occurrence is unpredictable for most people

[Taleb, 2007], though a small amount of experts will detect such abrupt, consequential changes,

draw approximately right conclusions before most and start making surprising predictions that

real data will con�rm.

Most people, including most investors, might notice the new information but will draw the

wrong conclusion.

In terms of Neural-Kalman engineering, a few smart experts will have detected a changepoint

and they will have either started learning the new paradigm or recalling and applying a similar

past paradigm, i.e. they will behave as if a Neural-Network-switched scheme switched their brains

into a new model14.

The huge majority of the people will not make that switch early. The consequence is their

investment decisions will be guided by expert opinions that are no longer grounded on reality;

14The Spanish-language expression cambiar el chip (literally 'change the chip') perfectly describes this behaviour.
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expert predictions that surprisingly fail and keep failing; and possibly biosocial dynamics that

reinforce the wrong belief in the face of ever increasing evidence to the contrary [Staw, 1976,

Staw, 1996, Schaumberg and Wiltermuth, 2014, Kang and Kim, 2022].

If we assume humans have this bias, then we will necessarily conclude that, when those abrupt,

consequential changes happen, most market participants will be pricing assets in a suboptimal

manner, and the small minority of market participants who have drawn the right conclusions about

the change might not have the resources or risk tolerance to immediately correct that suboptimal

pricing in the markets.

We can recapitulate this reasoning in the following formal statement:

� Neural-Kalman Market Hypothesis. Financial markets are driven by such abrupt, con-

sequential changes that only a small minority of market participants can correctly interpret

them early as the abrupt, consequential changes they are.

� Local-Domain Expert Hypothesis. The interpretation of such abrupt changes requires

expertise in the speci�c area where they emerge. A minority of talented experts will correctly

detect and interpret abrupt changes that have far-reaching consequences beyond that speci�c

area.

Such abrupt changes will be called Neural-Kalman Events and their resulting neuro�nan-

cial dynamics will be called Neural-Kalman Phenomena.

� Corollary (abrupt bets against failed experts). Market participants with increased

focus/belief in local-domain experts whose surprising predictions become true will, ceteris

paribus, outperform their peers in the long run.

Outperformance will be maximized through levered positions against failing expert opinions

that take advantage of the relatively short time frame of an abrupt change. Such strategy

will be called Highly Leveraged Abrupt Bets Against Failing Expert Opinions, or

HLABAFEOs.

An example would be a hypothetical person who started following the right epidemiologists in

January 2020, noticed their surprising predictions were coming true and decided to short the airlines

early15. Once market participants priced in the Covid pandemic and the Western lockdowns by

March 2020, that person would have certainly outperformed them.

In the next four Subsections I will consider several potential counterarguments: the E�cient

Market Fallacy, high-frequency trading algorithms, lack of empirical evidence, and the argument

that supply eventually meets demand for any strategy.

9.6.2.1 Compatibility with the E�cient-Market Hypothesis

The E�cient-Market Hypothesis states that security prices at any time �fully re�ect� available

information [Fama, 1970]. This has sometimes been misinterpreted into the fallacy that stocks

trade at their fair market value on exchanges, generating above-average returns consistently is

impossible, beating the market is impossible, etc.

However, the E�cient-Market Hypothesis does not state that. That is a fallacious interpretation

[Siegel, 2009] which deserves to be referred to as the E�cient-Market Fallacy.

15Or, for maximum outperformance, long deep out-of-the-money puts on airline stocks with short-term expiry
(maximum abrupt leverage).
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Figure 9.4: Analogy of E�cient Market participants as �ltering methods with di�erent perfor-
mance.

The E�cient-Market Hypothesis only states that investors have incorporated all new available

information into the price of the stock, i.e. they have updated their pricing with the new available

information. This does not imply that such update is optimal, follows the smartest possible

interpretation or cannot be beaten with a smarter interpretation.

Eugene Fama himself [Fama, 2022] recognises two ways to outperform the market: insider trad-

ing or being better at interpreting �nancial conditions than �the market�, i.e. all other signi�cant

market participants combined. Thus, the Neural-Kalman Market Hypothesis is fully compatible

with the E�cient-Market Hypothesis, since any outperformance comes from a superior, scarce,

neurocognitively expensive interpretation of the market (better predictions).

In that sense, we could model the fair price of a stock as a channel tracking problem where

market participants update their fair price estimate by updating it with a new sample (the new

available information). If we assume that all market participants are exclusively using KF models to

update that model (e.g. because no better alternatives, such as NNs or NNKFs, have been invented

yet), then a new market participant using a superior strategy (e.g. a properly adapted NNKF)

would outperform the market while not violating the E�cient-Market Hypothesis, particularly

since its initial resources would be very limited in comparison with the market size.

The analogy is far from perfect, but it is no coincidence that the �rst hedge fund who con-

sistently used neural networks for high-frequency trading (Medallion Fund, a fund established by

Renaissance Technologies LLC) has been massively outperforming the market for three decades

straight since it was established in 1988, with an average annual16 gross return of 66% for those

31 pre-Covid years [Zuckerman, 2019].

9.6.2.2 High-Frequency Trading Algorithms

During day-to-day trading, some decisions are automatized by so-called high-frequency trading

algorithms. However, the strategic decisions relating to overall risk, such as leverage or exposure

to certain assets, are made by humans. Two good examples for this are the decision-making at

16To get a grasp of the magnitude of such success, consider the gross compound interest: 1:6631 = 6; 658; 106:37.
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Renaissance Technologies LLC during stock market challenges such as the August 2007 quant

crunch or the December 2018 taper tantrum [Zuckerman, 2019]. Thus, human biases are not

necessarily reduced by high-frequency trading algorithms in key processes, such as deleveraging.

The Neural-Kalman Hypothesis, and particularly its corollary (HLABAFEOs) are intended for

phenomena with completely di�erent timescales, environments, movement range, market bias and

decision makers than high-frequency trading algorithms and cannot be reasonably expected to be

a�ected by them.

More generally, the Neural-Kalman Market Hypothesis cannot be expected to be a�ected by

any algorithm that doesn't have complete, human-like neurocognition and complete, human-like

decision-making power. In any other case, the human limitations at the core of the Neural-Kalman

Market Hypothesis will appear.

9.6.2.3 Empirical Evidence

In the current early phase of research around the Neural-Kalman Market Hypothesis, the empirical

evidence supporting this hypothesis is a number of neuroscienti�c and sociological phenomena

(presented in Section 9.7 and Appendix Section B.3) as well as the admittedly anecdotal (but

continuously growing) evidence of outperformance in our own HLABAFEO portfolios (Section

9.9) and the related simulations based on such empirical live trading data (Section 9.10).

We expect more empirical evidence for the Neural-Kalman Market Hypothesis to be gathered

in future research (see Section 10.2).

9.6.2.4 Chronic Undersupply of HLABAFEO Traders

A counterargument against the Neural-Kalman Market Hypothesis might center on the apparent

contradiction that HLABAFEOs traders, if they do indeed signi�cantly outperform, would quickly

increase their capital (as well as the popularity of the strategy) and collectively become dominant

market participants, at which point the outperformance would disappear or even reverse.

It might be interesting to trace an analogy here with serial unicorn entrepreneurship, i.e. tal-

ented entrepreneurs that, after having founded a successful business that grows into a $1bn+

valuation, start other companies that grow into extremely successful businesses, as well.

If creative, talented entrepreneurship were really outperforming uncreative, untalented en-

trepreneurship, why isn't the market overcrowded with creative, talented entrepreneurs? Why

isn't everybody a unicorn founder17?

Some of the important factors why not everyone is a unicorn founder likely include: a shortage

in natural talent (intelligence, emotional resilience), the impossibility to train people for 'unicorn

founding' on scale and the tendency of the few very talented people to exchange money for free

time as they grow wealthier.

The same arguments can be applied to HLABAFEOs. There might exist a chronic, irreversible

undersupply of talented HLABAFEO traders. Consider the requirements for such a task: you would

need to know both about �nance and about a wide array of potentially consequential topics18; if

something with abrupt potential seemed to emerge, you would need to run a learning marathon

around that topic, identifying key experts, understanding who makes sense and who doesn't,

tracking short-term predictions and directly talking to the local-domain experts with the best

17Notice that non-founding human workers are not strictly necessary for this to be true in an era of robotics and
AI, e.g. once everyone had launched its own successful automatization start-up.

18Ideally, you would also keep a high-value network of contacts in �nance and all those consequential areas.
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recent prediction track record to make sure you understand the range of probable outcomes in

their minds, i.e. you basically need to become better at predicting local-domain outcomes than

most local-domain experts, and you should be able to do this overnight (within weeks). Then

you will bet a signi�cant part of your net worth (or managed capital) on your recently acquired

expertise on a highly-levered (i.e. mostly binary, �10x-or-nothing�) �nancial trade.

Moreover, this job isn't divisible, since learning, judgement or guts are not really divisible. You

will be the one who needs to learn it all, make the right call and assume the risk. These core tasks

cannot be delegated.

If that is the job description, why would we expect an oversupply of talented HLABAFEO

traders? Why wouldn't we expect talented HLABAFEO traders to outperform the market?

9.6.3 Separability of 'business as usual' vs. 'leap into new model'

For many purposes, including �nance, the mathematical conjecture and neurosocial hypothesis are

functionally equivalent. The approximate separability of 'business as usual' vs. 'leap into new

model', well represented as the KF vs. NN dychotomy, might be backed by mathematical means

(complexity), neuro-evolutionary arguments (energy e�ciency, �tness, biological neural structures)

or social dynamics (groupthink, incentives). It is the author's belief that all three underlying phe-

nomena combine into the emerging neuro�nancial structures and events analyzed in this chapter.

9.7 Neurosocial Evidence for Neural-Kalman Phenomena

A review of mental models among successful (abrupt-change) investors and research papers around

abrupt-change empirically-backed sociological phenomena has provided the following (non-exhaustive)

list of empirical Neural-Kalman-compatible phenomena:

� �Normalcy bias� in emergency research [Ripley, 2009]

� �When Experts Fail� [Graham, 2014]

� Anchoring (cognitive bias) [Tversky and Kahneman, 1974, Yasseri and Reher, 2022]

� �Black Swans� in �Extremistan� [Taleb, 2007, Taleb, 2020]

� �Gray Rhinos� [Wucker, 2016]

� Escalation of commitment to a failing proposition [Staw, 1976, Staw, 1996]

� Mirror neuron system [Keysers and Fadiga, 2009] and mimetic desire

All these empirical phenomena are analyzed in depth in Appendix B.3, including an extensive

review of references. For the sake of brevity, I will summarize here the �rst of them, �normalcy

bias� during catastrophes (Fig. 9.5), since all Neural-Kalman phenomena are arguably variations

on this same theme: a consequential abrupt change has occured, such as a �re in the plane you are

seating on, and only a small minority reacts and runs away. Most people stay on their seats until

it is too late and die like badly scripted robots (or maladapted KFs without a supporting NN).

It certainly sounds like an exaggeration, but it is not. Catastrophe researchers have found this

bias once and again when analyzing behaviour during catastrophes: only a minority �ees early to
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Figure 9.5: �Normalcy bias� as represented by the �This is �ne� Internet meme [Green, 2013].
Reproduced with permission from the author and copyright-holder. © 2013 KC Green.

avoid death [Ripley, 2009, Wucker, 2016, Klein, 1994, Proulx, 2002]! Most of the people need to

see others �ee in big numbers before they make the decision to �ee19. Flight is mimetic.

Please notice the inherent contradiction of acknowledging humans are empirically shown to

behave with this deadly bias when it matters most (their own lives and the lives of their loved

ones) while believing these same humans will behave rationally and with no normalcy bias in

�nancial markets20.

9.8 Our Proposal: Highly Leveraged Bets Against Failing

Expert Opinions (HLABAFEOs)

Our proposal to exploit the Neural-Kalman Phenomena in a market assumed to follow the Neural-

Kalman Market Hypothesis is by using Highly Leveraged Bets Against Failing Expert Opinions

(HLABAFEOs).

What is a HLABAFEO? In simpli�ed terms, it is a bet on the fact that models proven to be likely

wrong will still be used for a while. Remember that KFs degraded catastrophically when tracking a

channel tap that had di�erent underlying stochastics than assumed, di�erent statistical behaviour

than the built-in plant model (see Chapters 3 and 5). If we assume the same thing happens in

�nancial market participants (Neural-Kalman Market Hypothesis), then a most pro�table trade

would be to bet against such failing models as they start to fail. By using options with high

leverage21, we can maximize the pro�t while limiting the possible downside to a tolerable loss that

would not prevent multi-year compounding. This crucial feature is known as barbell strategy (see

Appendix Subsection B.3.4.2) and it is simulated in Section 9.10.

How can you detect an opportunity for a HLABAFEO? Ideally you would like to �nd a situation

19The reverse is also true. When people see others run away, they decide to �ee, too (without knowing why everyone
is running away); this happened recently when a group of CrossFitters passed by a restaurant [News.com.au, 2022].

20The potential argument that you only need a few smart traders to bring the price to its fair price does not
consider the fact that changepoints might be associated with periods of high volatility where even making 'the right
choice' might be extremely risky (e.g. shorting an extremely overvalued market, even if the bubble turns bust, has
the risk of timing the bear market rallies [Schultz, 2003]), so that smart market participants might be forced to
abstain (this is particularly true in times of deleveraging, functionally equivalent to �eeing the plane once everyone
has woken up to the reality that the �re in the airplane might kill them all, i.e. when �re escape are crowded and
�ight is slowest and unfeasible for most.

21Some highly volatile assets, such as some tech stocks or cryptocurrencies, can be considered functionally equiv-
alent to high leverage for the purposes of the HLABAFEO strategy.
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where the following properties apply:

1. Uncertainty: There is uncertainty about the future (i.e. experts are failing, but not 100%

failed yet), with some (consensus) expert frameworks predicting completely di�erent short-

term values/facts around Neural-Kalman Events than other (fringe) expert frameworks.

2. Highly Consequential Abrupt Change22: The occurrence of the values/events produced by

these competing expert frameworks lead to abrupt, consequential developments in a speci�c

industry or asset category.

3. Asymmetry: high risk-reward ratio.

4. Cognitive de�cits due to social, psychological, biological or emotional issues23, e.g. a widespread

situation in that speci�c security such that most investors in it have personal reasons to be-

lieve the failing expert opinion will eventually be proven right (pandemic fatigue, inability

to recognize unrealized losses, national bias, sense of belonging to a �nancial cult).

5. Uncorrelated (ideally). While the best HLABAFEO opportunities will necessarily be infre-

quent, a simple strategy based on uncorrelated, simultaneous HLABAFEO streams would

reduce the probability of total loss and increase long-term return.

9.9 Real-World HLABAFEO Portfolio Performance

Two HLABAFEO portfolios have been built in real time, based on the Neural-Kalman Market

Hypothesis (Section 9.6.2) and the failing expert opinion about in�ation explained in Sections 9.1

and 9.2, and have been managed in real �nancial markets for a total combined duration of 22

months. This must be interpreted as a preliminary proof of concept for HLABAFEO portfolios in

real-world conditions.

These are real-world portfolio returns, not backtests.

Exhaustive trading records will be provided by the author upon justi�ed demand. Trades in

Portfolio A can also be cryptographically veri�ed (gladly through a cryptographic message by the

author, if applicable).

9.9.1 Portfolio A: Liquidity-Driven Asset Price Boom

Live returns for a HLABAFEO Portfolio based on the �nal parabolic impulse of cryptocurrencies

during the liquidity-driven asset price boom in 2021 are shown in Table 9.1. This Table shows the

10 top investments by sales proceeds.

9.9.2 Portfolio B: Liquidity-Driven Asset Price Bust

Live returns for a HLABAFEO Portfolio based on the collapse of growth tech stocks during the

liquidity-driven asset price bust in 2022 are shown in Table 9.2. Description follows the format

�ticker + expiry date + strike price�, i.e. �PUT BLI 04/14/22 12.50� means a put against Berkeley

Lights (ticker: $BLI) with expiry date on April 14, 2022, and a strike price of 12.50 US dollars.

22See Appendix B.3 for detailed examples of such highly consequential abrupt changes.
23See Appendix B.3 for detailed examples of such cognitive de�cits.
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Name Symbol First Date
Acquired

Last Date
Sold

% Gain/Loss

Terra LUNA 03/03/2021 01/12/2022 516.30
Bitcoin BTC 01/04/2021 05/22/2021 28.47
Solana SOL 02/20/2021 01/30/2022 280.56

Ethereum ETH 01/04/2021 02/13/2022 31.07
Cardano ADA 01/05/2021 02/25/2021 305.56

yearn.�nance YFI 01/05/2021 02/23/2021 27.61
Helium HNT 02/20/2021 01/27/22 166.38
Hathor HTR 03/19/2021 12/17/21 -6.78

ADADOWN ADADOWN 03/15/2021 03/16/2021 -40.53
Zcash ZEC 01/07/2021 02/23/2021 92.00

Total Portfolio Gain � � � 162.58%

Table 9.1: HLABAFEO Portfolio A. Live returns during the 2021 liquidity-driven boom. Not a
backtest.

Description Days Held
(Median)

First Date
Acquired

Last Date
Sold

% Gain

PUT BLI 04/14/22 12.50 197 09/23/2021 04/14/2022 258.73
PUT TSLA 01/20/23 250 182 04/05/2022 10/04/2022 32.15
PUT AAPL 01/20/23 130 76 04/06/2022 06/21/2022 93.79
PUT BLI 10/21/22 2.50 132 04/11/2022 10/20/2022 49.45
PUT CVNA 01/20/23 85 176 04/11/2022 10/04/2022 274.18

PUT NVDA 01/20/23 157.50 169 04/12/2022 10/04/2022 158.93
PUT META 01/20/23 160 173 04/13/2022 10/04/2022 196.56
PUT AAPL 01/20/23 120 51 08/03/2022 10/07/2022 107.74

Total Portfolio Gain � � � 175.44%

Table 9.2: HLABAFEO Portfolio B. Live returns during the 2022 liquidity-driven bust. Not a
backtest.
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9.9.3 Investing style and tools

The basic investing strategy can be summarized as follows:

1. Detect KF-like behaviour in market participants, such as underlying prediction models that

do not get discarded in the face of abrupt changes in recent real-world data. An example of

such KF-like behaviour in the face of persistent in�ation was provided in Fig. 9.1.

2. Bet against such underlying prediction model. Properly sizing the bet is extremely important;

see relevant simulations and discussion in Section 9.10.

3. Pro�t and compound.

The following quantitative and qualitative tools have been used in the implementation of HLABAFEO

Portfolios A and B: macroeconomic indicators, including leading indicators such as surveys; pub-

lic expert opinions, including non-�nancial-domain expert opinions; conversations with industry-

speci�c experts (such as investors, CEOs and analysts with excellent track record); composite in-

dexes to aggregate expert opinions from di�erent domains; as well as patterns and models implicit

or explicit in successful experts' opinions, and their comparison with leading or other incoming

data.

9.10 Simulation: HLABAFEO Sizing andMedian Long-Term

Returns

HLABAFEOs, as highly leveraged investments, are quasi-binary in nature: in each cycle you get

either a large gain or a total loss (e.g. your stock options or altcoins become worthless). Therefore,

a size bet of 100% of your net worth/investment portfolio eventually leads to the complete loss of

capital.

The goal of this simulation is to determine what HLABAFEO bet sizes produce optimal median

long-term returns. The following (percentage) pro�t/loss (PnL) model is considered:

PnL =

8<
:�100 with probability PL

rn with probability 1� PL
(9.6)

where PL is the probability of total loss and

rn � N (�H ; �H) (9.7)

where the average pro�t �H in case of no loss and its variance �H are assumed, for the purposes

of this simulation, to be fully consistent with the real-world HLABAFEO portfolio returns in

Section 9.9, i.e. �H = (175:44 + 162:58)=2 = 169:01, etc.

9.10.1 Simulation results

Median long-term returns were simulated over 30 HLABAFEO cycles for di�erent PL values, as

well as di�erent bet sizes and luck percentiles. Each scenario was simulated 1001 times, then

the median (P50) and percentiles 3 (P3) and 97 (P97) were obtained. Tables 9.3 and 9.4 show

long-term performance as �nal net worth for di�erent bet sizes (as percentage of net worth) and

performance percentiles.
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Bet size P3 P50 P97

8% 66 191 557
12% 48 234 1143
16% 33 265 2205
20% 21 276 3687
24% 12 269 5918
28% 6 242 9032

Table 9.3: HLABAFEO long-term performance as �nal net worth (initial = 100) for di�erent bet
sizes and luck percentiles, assuming total loss in 50% of cycles.

Bet size P3 P50 P97

8% 84 249 800
12% 68 335 1972
16% 53 554 3442
20% 37 635 9396
24% 24 768 13133
28% 14 920 21443
32% 8 549 56771

Table 9.4: HLABAFEO long-term (30-cycle) performance as �nal net worth (initial = 100) for
di�erent bet sizes and luck percentiles, assuming total loss in 45% of cycles.

Assuming total loss in 50% of cycles, the HLABAFEO strategy is still pro�table (176% growth

in net worth) over 30 cycles with a maximal drawdown of 20% (total loss of bet size) per cycle.

The respective trajectories for P3, P50 and P97 are shown in Fig. 9.6.

Obviously, the strategy is not risk-free. However, the median trajectory is pro�table. The

overall risk can be reduced (i.e. the distribution of outcomes can be made more uniform) by

reducing bet size.

On the other hand, a low bet size would greatly reduce the pro�t in favourable outcomes if the

probability of total loss happened to be lower than 50%. Assuming total loss in just 45% of cycles,

the HLABAFEO strategy is far more pro�table (794% growth in net worth) over 30 cycles with

a maximal drawdown of 28% (total loss of bet size) per cycle. The respective trajectories for P3,

P50 and P97 are shown in Fig. 9.6.

Thus, bet size presents a trade-o� between lower risk (more uniformity in outcomes) and higher

median wealth growth.

9.10.2 Limitations

Taxes are not considered in this analysis due to the wide variety of diverging tax regulations around

the world. For example, trades in HLABAFEO Portfolio A (Subsection 9.9.1) would be subject to

short-term capital gains tax in the US (50% tax rate), while those same trades would be tax-free

in Portugal [Selkis, 2020].

Changes in the EURUSD exchange rates are not considered. If portfolio gains were to be

computed in euros, this would lead to a signi�cant increase in reported pro�t for HLABAFEO

Portfolio B (Subsection 9.9.2).

Nothing in this chapter should be construed as �nancial advice. The Neural-Kalman Market

Hypothesis is just an unproven hypothesis as of yet. This analysis considers what the optimal bet

size would be, in terms of long-term median wealth generation, provided that the Neural-Kalman
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Figure 9.6: HLABAFEO returns for di�erent performance percentiles, PL = 0:50.

Figure 9.7: HLABAFEO returns for di�erent performance percentiles, PL = 0:45.
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Market Hypothesis held true and the the model based on empirical HLABAFEO returns could

realistically be assumed. Past performance is no guarantee of future results. In particular, an

argument could be made that the assumed probability of loss could be exceedingly high; if lower

odds are assumed, optimal bet size would increase.

No risk mitigation strategies are assumed. A simple strategy based on uncorrelated, simultane-

ous HLABAFEO streams would reduce the probability of total loss and increase long-term returns;

accordingly, optimal bet size would increase. However, �nding uncorrelated HLABAFEO streams

might not always be possible or might require an unfeasible cognitive e�ort.

High-volatility bets are reported to increase stress and lead to bad, emotionally-induced deci-

sions, such as panic selling or not following your strategy consistently (e.g. not cutting your losses

according to your pre-loss plan) [Schultz, 2003, Taleb, 2007]. In this Thesis' author's experienced

opinion, the emotional and cognitive e�ort demanded by HLABAFEO strategies is hard to over-

state; they are major hindrances for the practical, successful implementation of any HLABAFEO

strategy24.

9.11 Main Takeaways for Communications Engineering

Topics in neuroscience are relevant for communications engineering; in particular, the Changepoint-

Oddball-Reversal problem studied by neuroscientists is functionally equivalent to the channel track-

ing problem under abrupt changes central to this Thesis. The SMAP estimator can be reinterpreted

in light of neuroscience as a compound detector for changepoints, oddballs and reversals.

Furthermore, by drawing explicit parallelisms between neuroscienti�c �ndings around biologi-

cal neurocognition, such as the Changepoint-Oddball-Reversal problem, and the channel tracking

problem under abrupt changes in communications engineering, we have suggested some neurosci-

enti�cally backed, bio-inspired mechanisms that could potentially improve channel tracking and

learning under unstereotyped dynamics.

In particular, this Thesis has formed the Neural-Kalman Problem Conjecture and has suggested

that a Neural-Kalman architecture for ever granular stereotyping providing a practical solution for

continual learning in the presence of unstereotyped abrupt dynamics would be extremely useful in

communications and other continual learning tasks [Hadsell et al., 2020].

Neuroscience, and particularly neuro�nance, have similar problems to channel tracking under

abrupt dynamics: mechanisms eventually elucidated in neuroscienti�c research should be a part of

future research in communications engineering.

9.12 Conclusions

A novel Neural-Kalman framework has been proposed to understand how market participants react

to failing expert opinions and how to outperform them through a new investing strategy, Highly

Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs), under the assumptions of our

newly stated Neural-Kalman Market Hypothesis.

The in�ation forecasting problem has been illustrated with a hopping LGM model and we have

provided a novel structure for a (partly Bayesian) stochastic stereotyper that might eventually

solve such problems through bio-inspired, neuroscienti�cally-backed mechanisms, like dreaming

24That explains why HLABAFEO investing is not crowded; otherwise it wouldn't be so pro�table (as argued in
Subsection 9.6.2.4).
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and surprise. This Chapter has suggested mathematical (Neural-Kalman Problem Category Con-

jecture), neuroscienti�c and social reasons why Neural-Kalman Phenomena might exist and it has

found strong evidence for their existence in the neuroscienti�c and �nancial literature. Further-

more, this research has signi�cant consequences for Communications Engineering, as explained in

Section 9.11.

Finally, we have provided speci�c examples, practical guidelines and historical performance for

some HLABAFEO investing portfolios. Though this research should be considered in its early

stages, the bulk of reviewed evidence is consistent with our proposed hypotheses and investment

strategies.



Chapter 10

Conclusions and Further Work

10.1 Summary and Conclusions

Three basic ideas are supported by this Thesis:

1. Some mechanisms work great when there are no abrupt changes. The Kalman �lter is one

of them (great for channel tracking!). These mechanisms degrade catastrophically when

there is an abrupt change and you do not detect it or do not adapt accordingly.

2. You can mitigate this issue by detecting abrupt changes with other schemes (such as our

proposed SMAP or our proposed neural detectors, which produce signi�cantly improved

performance in channel tracking). By combining these detectors with Kalman �lters (e.g.

the NNKF scheme), we get its advantages while mitigating degradation in the face of abrupt

changes.

3. SimilarNeural-Kalman dynamics can be identi�ed as relevant in communications, as well

as one's life or �nances. We introduced a long list of examples and speci�c frameworks to

pro�t from them, such as lateral subtap hopping (in channel tracking) or Highly Leveraged

Abrupt Bets Against Failed Expert Opinions (HLABAFEOs) in �nance.

In other words: we have proposed schemes such as the SMAP, NNKF and HLABAFEOs and we

have shown they can outperform competing schemes under speci�c conditions.

Figure 10.1 provides a mind-map summary for this Thesis. The components in this summary

are explained in the following section.

10.1.1 A Mind Map for this Thesis

10.1.1.1 Abrupt changes

The main topic of this Thesis is abrupt changes and how to deal with them, particularly in

channel tracking. Our channel literature review (Section 2.6) concluded that there are empirical

models of the birth/death of taps, typically �rst-order Markov models. These abrupt changes are

not rare: the dynamics of birth/death in intervehicular communications are very important and

they have been demonstrated in di�erent measurement campaigns (in fact, they have a signi�cantly

higher intensity than that assumed in our simulations). We have expanded the repertoire of abrupt

123
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Figure 10.1: Neural-Kalman Schemes for Channel Tracking: a PhD Thesis.

change models in the literature by proposing new geometrically-justi�ed abrupt changes, such

as lateral partial tap hopping (Subsection 8.1.1).

10.1.1.2 KF (Kalman Filtering)

Abrupt changes makes KF's performance degrade catastrophically when tracking channel taps,

as our simulations have shown. That is a real setback, since the application of KF to OFDM sys-

tems can improve channel estimation and reduce BER. Our KF literature review (Section 3.5) has

found many proposals using KF for channel estimation, typically applying KF to the monitoring

of the temporal variation of the subchannels. KFs are popular because they are optimal estima-

tors under ideal conditions. This leads to the question: what would happen if we could detect

such abrupt changes with low computational cost?

10.1.1.3 SMAP (Simpli�ed Maximum A Posteriori)

After reviewing the technical literature about abrupt change detection, we found a simple al-

gorithm was needed. An algorithm that could detect tap birth/death dynamics with a lower

computational cost than previous proposals, such as Rao-Blackwellized Particle Filters under the

Random Set Theory model. We derived the Simpli�ed Maximum A Posteriori (SMAP) tap

birth/death detector, a computationally inexpensive, threshold-based estimator that reduces

channel tracking error in combination with KF (Chapter 5).

Moreover, the abrupt change detection stage with a SMAP core is expandable. We have

shown how to expand abrupt change detection with new features, such as abrupt changes in SNR,

by building a new RST framework for combined death/birth and SNR detection (Chapter 6). Our

simulations suggest that SMAP, while being surprisingly robust to SNR drift, bene�ts from an

accurate SNR detection.
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10.1.1.4 Partial taps

Are there any other abrupt changes, apart from tap birth/death, that we should detect to improve

channel tracking performance? Yes. We developed a novel channel model for lateral partial-tap

hop dynamics (subtap hopping), i.e. instead of considering just the death/birth of the whole tap,

we considered a single tap could be interpreted as the sum of smaller components, called subtaps

or partial taps, that could hop to adjacent positions. We have provided a geometric justi�cation

for this and additional non-stationary dynamics (Subsection 8.1.1). Finally, we have suggested

some potential trackers, including a neural detector for lateral hops with large energy transfers.

10.1.1.5 NNKF (Neural-Network-switched Kalman Filters)

We later created a neural abrupt change detector that could be expanded to any trainable non-

stationarity, i.e. not just tap birth/death, but also more complex non-stationary models, such

as subtaps hopping laterally to adjacent taps or other dynamics we might encounter in the

future. We found a way to combine trainable neural networks with Kalman �lters: the proposed

low-complexity NN-switched KF trackers (NNKF) outperform all previously known multipath

channel tracking systems for OFDM communications, provided that tap birth/death phenomena

are present (Section 7.2). Moreover, its performance in terms of CTMSE is identical to that

of the ideal case (ISS) where perfect knowledge of tap activations is available. Furthermore,

NNKF schemes are not just expandable to any known trainable non-stationarity, but

the combination of NNKF with other bio-inspired computing mechanisms also gives them the

theoretical potential for learning unstereotyped dynamics, as we proposed in Section 9.4.

10.1.1.6 Neuro-�nancial

A novel Neural-Kalman framework has been proposed to understand how market participants react

to failing expert opinions and how to outperform them through a new investing strategy, Highly

Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs), under the assumptions of

our newly stated Neural-Kalman Market Hypothesis.

We have illustrated the in�ation forecasting problem with a hopping LGM model and we

have provided a novel structure for a Bayesian stereotyper that might eventually solve such

problems through bio-inspired, neuroscienti�cally-backed mechanisms, like dreaming and surprise

(biological Neural-Kalman). We have suggested mathematical (Neural-Kalman Problem Cat-

egory Conjecture), neuro-evolutionary and social reasons why Neural-Kalman Phenomena might

exist and we have found strong evidence for their existence in the areas of neuroscience and

�nance.

Finally, we have provided speci�c examples, practical guidelines and historical performance for

some HLABAFEO investing portfolios.

10.2 Future research

The following ideas for future research should be considered.

1. Applying our proposed NNKF scheme to real environments, such as those reviewed in 2.6,

e.g. a V2X Weibull channel with birth-death dynamics based on a road channel measurement

campaign [Hassan et al., 2020].
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2. Comparing the performance trade-o� (channel tracking improvement vs. computational com-

plexity) via simulations of the di�erent available tracking schemes for partial taps (see Section

8.3).

3. Empirical characterization for the prevalence and behaviour of partial tap hops (and similar

phenomena) in measurement campaigns.

4. Applying our proposed NNKF to real-world tasks such as those related to 6G and recent

advancements in smart mobility [Noor-A-Rahim et al., 2022].

5. Incorporating eventual advancements in KFs, NNs, NNKF and other Neural-Kalman and

particle optimisation schemes into the models presented in this PhD Thesis, particularly in

the context of unstereotyped abrupt dynamics (Section 9.4).

6. Delve into the neuro�nancial research of the HLABAFEOs through a compilation of mi-

cro and macroeconomic models and historical examples that can be interpreted within the

framework of Neural-Kalman dynamics and HLABAFEOs.



Appendix A

Derivation of GMAP Estimators in

an RST Model

A.1 RST Model for Complex Tap Gains

Let H(k)
p denote the following random set, which can be formed by a single element or an empty

set [Goodman et al., 2013, Angelosante et al., 2007]:

H(k)
p =

8<
:f;g if tap k is absentn

h
(k)
p

o
= f[k; a(k)p ]T g if tap k is present

(A.1)

where a
(k)
p is the complex gain for the kth tap at time p. All taps can be described by the union

set

Hp =

Lm�ax[
k=1

H(k)
p (A.2)

which is a random set in the hybrid space f1; :::; Lm�axg � C. A hybrid space is the conceptual

equivalent to a product space when, instead of metric spaces, what we have are spaces of random

sets. For the reader interested in understanding the details about the di�erences between the

concepts associated with metric spaces (measures, integrals, probability, etc.) and the dual concepts

generalized to any space of random sets, it is strongly recommended (not without warning of its

complexity) to consult the explanations in [Goodman et al., 2013, Nguyen, 2006] and, above all,

[Vihola, 2004].

Let us de�ne the projection random sets �(Hp) y �
0(Hp), which describe the projections of Hp

over f1; :::; Lm�axg and over C, respectively:

�(Hp) =
[

k:H
(k)
p 6=;

fkg (A.3)

�0(Hp) =
[

k2�(H
(k)
p )

fa(k)p g (A.4)

If Sp denotes the set of surviving taps, i.e. taps who survive in an active state from time p� 1
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to time p, and Bp is the set of newly born taps, then:

Hp = Sp [ Bp (A.5)

The restrictions on (A.3) and (A.4) as follows:

�(Hp�1) \ �(Bp) = ; (A.6)

�(Sp) � �(Hp�1) (A.7)

re�ect the fact that no component that is active at time p � 1 can transfer to the set of new

taps, and surviving taps at time p are a subset of active taps at time p � 1. To simplify the

derivation, it might be assumed that only one tap can be born at each epoch. This simpli�cation

is made, e.g. in [Ma et al., 2006, Angelosante et al., 2007, Angelosante et al., 2009]; in our case,

that implies de�ning the set of newly born taps as:

Bp =
8<
:f[l; a

(l)
p ]T g with probability Pbirth

; with probability 1� Pbirth
(A.8)

where l 2 f1; :::; Lm�axgn�(Hp�1), and Pbirth is the probability of a new tap being born. By

applying such information, the conditional probability density can be calculated:

fBpjHp�1
(BpjHp�1) =

8>>><
>>>:
Pbirthfa(l)p

(a
(l)
p ) if Bp = f[l; a(l)p ]T g

1� Pbirth if Bp = ;
0 if jBpj > 1

(A.9)

where l 2 f1; :::; Lm�axgn�(Hp�1), and fa(l)p
(a

(l)
p ) is the probability density function for the lth

tap gain at time p. Similarly, we can obtain the union set of surviving taps:

Sp =
[
k

S(k)p (A.10)

where

S(k)p =

8<
:; with probability Pdeath

fh(k)p g with probability 1� Pdeath
(A.11)

where Pdeath is the probability that an active path will disappear (probability of death).

A.2 Properties of the RST Model for Tap Gains

Assuming that the di�erent paths survive or die independently with respect to each other1, we

have the following properties:

� The conditional probability density function for random set Sp given Hp�1 can be de-

rived from the generalized convolution of probability density functions for random sets S
(k)
p

1Notice such independence condition holds true for the channel tracking problem in Chapters 5, 6 and 7, but not
for the lateral hopping problem introduced in Chapter 8.
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[Ma et al., 2006, Biglieri and Lops, 2006, Biglieri et al., 2012, Angelosante et al., 2007]:

fSpjHp�1
(SpjHp�1) = P

jHp�1j�jSpj
death (1� Pdeath)jSpj

Y
l2�(Sp)

f
a
(l)
p ja

(l)
p�1

(a(l)p ja(l)p�1) (A.12)

where Sp � Hp�1, and f
a
(l)
p ja

(l)
p�1

(a
(l)
p ja(l)p�1) is the transition density describing the evolution of

surviving tap gains.

� Random set sequences Sp and Bp are conditionally independent given Hp�1.

� (Hp)
1
p=1 forms a Markov sequence.

Therefore, the transition density fHpjHp�1
(HpjHp�1) can be determined through the generalized

convolution formula, which, when speci�ed for the current scenario, produces the following result

[Biglieri et al., 2012]:

fHpjHp�1
(HpjHp�1) = fSp(Hp \Hp�1)fBp(Hpn(Hp \Hp�1)jHp�1) (A.13)

The basic step to obtain causal estimates of the sequence of random sets (Hp)
1
p=1 based on the

observations y1:p is the implementation of Bayesian recursions [Mahler, 2003] as follows:

fHpjy1:p�1
(Hpjy1:p�1) =

�
fHpjHp�1

(HpjHp�1)fHp�1jy1:p�1
(Hp�1jy1:p�1)�Hp�1 (A.14)

fHpjy1:p(Hpjy1:p) / fypjHp
(ypjHp)fHpjy1:p�1

(Hpjy1:p�1) (A.15)

At this point, we must remember that we are working with generalized random set spaces,

and not with conventional metric spaces. For this reason, the integrals are not the conventional

ones (they are not integrals over conventional metric spaces) and the di�erential �Hp�1 of (A.14)

emphasizes the fact that it is a set integral, like the one presented in [Goodman et al., 2013].

For more details on this, it is recommended to read the explanation on set integrals included in

[Vihola, 2004].

Can integrals (A.14)-(A.15) be resolved? In general, it does not seem feasible to obtain explicit

solutions (in the sense of closed expressions) for these integrals, despite the great simpli�cation

implied by the starting parameters (the disappearance and birth of the channels could be gradual,

etc.) and despite other simpli�cations that might be made (such as simulating the temporal

variation of active taps as LGM models). We're now facing the biggest stumbling block of this

development: the inability to obtain an optimal solution in an explicit and computable way without

a high complexity.

A.3 Rao-Blackwellization and Finite Random Set Particle

Filters

The solution proposed in [Angelosante et al., 2007] resorts to so-called �particle �ltering� or Sequen-

tial Monte Carlo (SMC) methods to approximate Bayesian recursions [Arulampalam et al., 2002]

(see also Subsection 4.4.1). This �nite random set SMC �lter is described below. The posterior

probability density function is approximated by a set of particles as:
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fHpjy1:p(Hpjy1:p) �
MX
i=1

!(i)p mHp
(H(i)

p ) (A.16)

where mX (Y) is the �0-1� measure, de�ned as follows:

�
C

mX (Y)�X =

8<
:1, if Y � C
0, otherwise

(A.17)

In Eq. A.16, H(i)
p is the �particle� of the ith set, !

(i)
p is its �weight� or weighting factor, and

M is the total number of particles. The asymptotic convergence properties of the SMC �lter on

�nite random sets have been proved in [Vo et al., 2005], where the authors showed that, for a

su�ciently large M , the mean square error of approximation of the SMC �lter on �nite random

sets is inversely proportional to M
�

, for some constant 0 < � � 1, while the complexity of the

implementation is roughly linear with M .

Once the posterior density fHpjy1:p(Hpjy1:p) is obtained, there are several ways to obtain

an estimation for Hp, as explained in [Goodman et al., 2013]. If we follow the choices made in

[Angelosante et al., 2007] (whose derivation this Appendix is based on), we can de�ne two Bayesian

estimators, known as GMAP-I (or �Marginal Multi-Target Estimator�) and GMAP-II (or �Joint

Multi-Target Estimator�). GMAP-I is a two-stage estimator: in the �rst stage, only the cardinality

of the set (how many elements the set has) is estimated.

With the following de�nition:

fnpjy1:p(npjy1:p) ,
�
jHpj=np

fHpjy1:p(Hpjy1:p)�Hp (A.18)

the following GMAP estimators can be obtained:

GMAP-I:

8<
:n̂p = arg maxnp20;:::;Lm�ax

fnpjy1:p(np;y1:p);bHp = arg maxHp:jHpj=n̂pfHpjy1:p(Hp;y1:p);
(A.19)

Au contraire, GMAP-II performs a single-stage estimation:

bbHp = arg maxHp
fHpjy1:p(Hpjy1:p) c

jHpj

jHpj! (A.20)

where c is a small constant determined by the cost function this estimator intends to minimize

[Goodman et al., 2013]. (Clari�cation: remember again that jHpj represents the cardinality of Hp,

that is, the number of active taps at time p).

In addition, a third estimation rule is proposed in [Angelosante et al., 2007] that outperforms

the two previous ones in simulations [Angelosante et al., 2007, Angelosante et al., 2009]. It is based

on �rst estimating the identities of the active taps at time p (e.g., instead of estimating that there

are two active taps, as in GMAP-I, it estimates that the active tap indexes are 1 and 3), and then

estimating only the weights of the active taps as the expected value a posteriori, while setting the

weights for the inactive paths to zero. Formally, the authors de�ned the GMAP-III estimator as:
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GMAP-III :

8<
:
\�(Hp) = arg máx�(Hp)f�(Hp)jY1:p

(�(Hp)jY1:p),ehp = �
R
2j\�(Hp)j

hpfhpjY1:p
(hpjY1:p)dhp

(A.21)

where

f�(Hp)jY1:p
(�(Hp)jY1:p) =

�
�0(Hp)

f(HpjY1:p)�Hp (A.22)

This last integral can be explained intuitively as an integration (addition) of the probability of

Hp (that is, adding up all hypothetical sets of a certain number of active paths) over all its possible

continuous values. Therefore, in GMAP-III the discrete parameter is �rst estimated (in a similar

way to GMAP-I) and then the standard estimate of the posterior expectation is calculated.



Appendix B

Additional Evidence for

Neural-Kalman Phenomena

B.1 Complexity: Neural vs. Kalman

B.1.1 Could Neural-Only or Kalman-Only Solutions Solve Neural-Kalman

Problems?

Yes, approximately, but not necessarily optimally (in terms of either complexity or performance). A

KF can be implemented in a NN [Denève et al., 2007, Wilson and Finkel, 2009, Millidge et al., 2021]

(see Appendix Subsection B.2.3). A neural representation of a KF can encode NNKF-like cogni-

tion (see Appendix Subsection B.2.1). A complex enough network of KFs might encode some

abrupt-change-related cognition.

Thus, it is a matter of optimality, not feasibility.

B.1.2 Computational Cost in the Neural-Kalman Problem Category

Conjecture

B.1.2.1 Computational Cost of Addition vs. Multiplication

'Performing an operation' and 'performing an operation optimally' are two di�erent things. Ad-

dition performs addition, but addition doesn't always perform addition optimally if memory is

available, e.g. the computation of 333 x 444 = 147,852 can be performed by adding the number

444 once and again, 333 times, or it can be optimally solved through multiplication.

There is a trade-o� between memory (frontloaded, memorized operations, such as multiplica-

tions tables) and computational cost/implementation complexity.

B.1.2.2 Computational Cost of Kalman Filtering vs. Neural Networks

Similarly to the addition-vs-multiplication example above, we can �nd a memory-complexity trade-

o� in Kalman vs. non-Kalman schemes.

The Neural-Kalman Problem Category Conjecture (see Section 9.6.1) refers to Kalman schemes

being computationally optimal solutions in a class of problems (Kalman Problem Category), when

only Kalman and (non-Kalman) Neural schemes are considered, for a speci�c memory requirement.
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The relative (dis)advantage in computational cost of KF vs. NNs depends on the speci�c

architecture and application. A �rst reasonable approach to the problem of comparing the general

computational advantage of KF vs. NNKF in frequently occurring tasks might be neuroscienti�c:

what are brains doing? Do they encode Kalman and Neural-Kalman Schemes?

Appendix Section B.2 attempts to answer.

B.2 Neuroscienti�c Evidence for Biological Neural-Kalman

Schemes

Neuroscientists noticed that the brain is capable of approximating Bayesian inference in the face of

noisy input stimuli, but the neural underpinnings of this computation are still poorly understood

[Millidge et al., 2021].

[Wilson and Finkel, 2009] introduced a novel, bio-inspired neural network that this Appendix

Section reinterprets as a biological model for Neural-Kalman schemes.

B.2.1 Biological Encoding of NNKF-Like Cognition

The scheme in [Wilson and Finkel, 2009] is derived from a line attractor architecture [Zhang, 1996]

(a model for the spatial orientation in mice thanks to biological head-direction cells), whose dynam-

ics map directly onto those of the KF in the limit of small prediction error. When the prediction

error is large, this network was shown to respond robustly to changepoints, in a way that is qualita-

tively compatible with the optimal Bayesian model, i.e., when confronted with a changepoint, the

network no longer approximates a KF and instead maintains two competing hypotheses in a way

that is qualitatively similar to that of the run-length distribution in [Adams and Mackay, 2007].

In other words: KF-like behaviour when no changepoint is detected, but NNKF-like behaviour

when a changepoint is detected.

B.2.2 Neural-Kalman Stochastics as a Model for Biological Cognitive

Dynamics

This reinterpretation suggests the bio-inspired architecture mentioned above might explain how

the brain encodes Neural-Kalman-like schemes.

Importantly, [Wilson and Finkel, 2009] doesn't prove it does nor does it prove that it mathe-

matically can beyond unidimensional cases or, more importantly, that such a scheme is optimal

(i.e., with lower complexity than a pure, lowest-complexity NN changepoint detector connected to

a pure KF scheme).

B.2.3 A Biological Gradient-Descent Approximation to the Kalman Fil-

ter

Neurons that �re together, wire together.

� Donald Hebb

Can neurons encode a �pure� Kalman �lter? That is plausible if we could prove that KF can be

approximated via gradient descent while respecting the Hebbian rule (namely, that each time the

stimulus is repeated, the connections between learning neurons grow stronger and stronger).
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[Millidge et al., 2021] proved that a gradient-descent approximation to the KF requires only

local computations with variance weighted prediction errors. Moreover, it showed that it is pos-

sible under the same scheme to adaptively learn the dynamics model with a learning rule that

corresponds directly to Hebbian plasticity, and provided a neural implementation of the required

equations.

Thus, from a mathematical point of view, it is not unfeasible for current mathematical models

of biological neural networks to act as composable, self-tuning KFs. This doesn't preclude the ex-

istence of more complex, NNKF-like schemes at higher levels. As [Millidge et al., 2021] concludes:

(...) it is also possible that in the brain the prior state could be set by, or in�uenced by

feedback connections from higher levels, representing more advanced states of process-

ing which could inform the state estimate. We believe this is an important point about

how Kalman �ltering may �t into the larger picture. Since Kalman �ltering turns out

to be relatively straightforward algorithm which can be implemented in a rather small

neural circuit, it could perhaps serve as a composable building block of cortical process-

ing. Kalman �lters could potentially be implemented at the lowest hierarchical levels

to achieve some immediate processing and reduction of sensory noise before passing

on improved state estimates to higher levels of processing which can then apply more

complex nonlinear �ltering algorithms.

B.3 Neurosocial Evidence

The following concepts and works provide neurosocial evidence for NKP.

B.3.1 Normalcy bias in emergency research

Actual human behaviour in �res is somewhat di�erent from the 'panic' scenario.

What is regularly observed is a lethargic response. People are often cool during �res,

ignoring or delaying their response.

� [Proulx, 2002]

The consensus view in emergency research includes many statements that are shocking, easily

mistakable for jokes, but serious, enlightening and tragic. On Saturday nights, when a �re visibly

starts in a bar and �re�ghters arrive and tell customers to evacuate, many cling to their beers and

decide to stay [Ripley, 2009]. When a �re starts an an airplane and �ight attendants warn pas-

sengers to brace for the emergency landing, passengers laugh [Ripley, 2009]. Similarly widespread

denial reactions (silence, laughter, anger, inaction) have also been reported around other disasters,

such as 9/11 or Hurricane Katrina [Wucker, 2016, Ripley, 2009], as well as in persecuted minorities

when given life-saving information about the extermination camps they would soon be sent to

[Klein, 1994]. For additional discussion, see 9.7.

B.3.2 �When Experts Fail� (Paul Graham)

When experts are wrong, it's often because they're experts on an earlier version of the

world.
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(...) I spent almost a decade investing in early stage startups, and curiously enough

protecting yourself against obsolete beliefs is exactly what you have to do to succeed

as a startup investor. Most really good startup ideas look like bad ideas at �rst, and

many of those look bad speci�cally because some change in the world just switched

them from bad to good. I spent a lot of time learning to recognize such ideas, and the

techniques I used may be applicable to ideas in general.

The �rst step is to have an explicit belief in change. People who fall victim to a

monotonically increasing con�dence in their opinions are implicitly concluding the world

is static. If you consciously remind yourself it isn't, you start to look for change.

(...)

Startup investors have extraordinary incentives for correcting obsolete beliefs. If they

can realize before other investors that some apparently unpromising startup isn't, they

can make a huge amount of money.

� [Graham, 2014]

Paul Graham didn't use terms like Neural-Kalman Phenomena or HLABAFEO investing, but

that is exactly what he is describing [Graham, 2014]. An abrupt change that makes a previous,

neurocognitively undemanding strategy ('business as usual', such as KF tracking) obsolete and

requires switching to a new model (in tracking terms, it requires an available NN switch to detect

that change and, if necessary, switch into a Bayesian stereotyper1 to identify the novel dynamics);

such an abrupt change, if detected, can be extremely pro�table through highly leveraged bets.

Graham is arguably an expert in NKP and HLABAFEO investing through early-stage start-ups2.

B.3.3 Anchoring

Anchoring is a heuristic in behavioral �nance that describes the subconscious use of irrelevant

information, such as the purchase price of a security, as a �xed reference point (or anchor) for

making subsequent decisions.

Many studies have found evidence for this e�ect. In one of them, participants were asked to

estimate the percentage of African countries in the United Nations [Yasseri and Reher, 2022].

Before estimating, the participants �rst observed a roulette wheel that was predetermined to

stop on either 10 or 65. Participants whose wheel stopped on 10 guessed lower values (25% on aver-

age) than participants whose wheel stopped at 65 (45% on average) [Tversky and Kahneman, 1974].

Anchoring is also a term used in in�ation research. A simple explanation for in�ation anchoring

is that workers are more likely to demand a 10% rise in salaries if they expect in�ation to be close

to 10% next year than if they expect in�ation to be close to 2%. Thus, when in�ation expectations

rise (i.e. when they become unanchored), there is a risk of higher wage demands leading to higher

wages and higher prices (the so-called wage-price spiral [Blanchard and Johnson, 2017]). There

is signi�cant evidence that unanchored expectations lead to higher in�ation, while shock-induced

in�ation might be contained as far as in�ation expectations remain anchored; in that case, in�ation

reacts by less and returns quickly to its pre-shock level [Bems et al., 2021].

1For the Bayesian stereotyper proposed in this Thesis, see 9.4.
2Paul Graham is the founder of Y-Combinator, an early stage startup incubator that coached and invested in

AirBnB, Stripe, DoorDash, Coinbase, Instacart, Dropbox, Reddit and Gusto.
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Anchoring (to an underlying model) is not just a feature of KF, but a KF scheme is a reasonably

good model for anchoring, too. Therefore, wherever anchoring as a cognitive bias is signi�cant, an

overadapted KF mechanism will be applicable as a model and NKP will appear. That explains

why BoE's forecasts (Fig. 9.1) were reminiscent of a KF prediction based on the wrong (anchored)

model. The mere existence of anchored in�ation as an empirically backed concept is evidence for

KF-like behaviour in economic agents; unanchoring processes are NKP.

B.3.4 Black Swans in Extremistan (Nassim Nicholas Taleb)

Black Swans [Taleb, 2007] are events that come as a surprise and have a major e�ect. The theory

of Black Swans was developed in Nassim Nicholas Taleb's Incerto series [Taleb, 2001, Taleb, 2007,

Taleb, 2012, Taleb, 2018, Taleb, 2020] to explain the disproportionate role of high-pro�le, hard-

to-predict, and rare events that are beyond the realm of normal expectations in history, science,

�nance, and technology. The probability of such rare events is non-computable, but such events

do not surprise everybody; the same event can be a Black Swan for ordinary investors, but a

predictable outcome for some local-domain experts (an example would be the magnitude of Covid

when it was just a local event in Wuhan in early January 2020). Thus, what makes an event

a Black Swan is our lack of (speci�c) knowledge about them. Black Swans are subjective, not

necessarily universal.

A careful reader might have noticed the similarities between a Black Swan and a Neural-Kalman

Event, de�ned in this Thesis as an �abrupt, consequential change that only a small minority

of market participants can correctly interpret early as the abrupt, consequential change it is�

(Subsection 9.6.2).

The main di�erence between Taleb's approach and the NKP/HLABAFEO approach favoured

in this Thesis (Section 9.8) is that Taleb generally treats Black Swans as instantaneous, unknowl-

edgeable events, while we try to anticipate some of them by focusing on expert disagreements

(Section 9.1).

Black Swans can cause NKP to the extent they are abrupt changes with signi�cant impact

and unexpected by most market participants, though typically expected by a minority of market

participants who can pro�t from them. Such market participants, who predict the Black Swans

and position for it, are behaving like NNKFs in our analogy of E�cient Market participants as

�ltering methods with di�erent performance (Subsection 9.6.2.1), while the rest of the participants

ignore the early warning signs of the coming Black Swan (such as hidden risk) and behave like KFs

(over)adapted to pre-Black-Swan dynamics.

B.3.4.1 Extremistan and Gaussian �nancial models

Taleb's theory distinguishes two types of random event environments: Mediocristan and Extremis-

tan [Taleb, 2007]. Mediocristan environments, such as Linear Gauss-Markov models, can be safely

modeled by using the Gaussian distribution.

However, Extremistan is characterized by frequent abrupt movements (thick tails) that don't

�t Gaussian models.

The KFs used in this Thesis, based on underlying LGMmodels, can be interpreted as suitable es-

timators in Mediocristan, but they fail in Extremistan. Same can be said about any estimator based

on popular Gaussian models in the Modern Theory of Finance [Mandelbrot and Hudson, 2008,
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Taleb, 2007], including Capital Asset Pricing Model [Sharpe, 1964], Modern Portfolio Theory

[Markovitz, 1959], and the Black-Scholes option pricing model [Black and Scholes, 1973].

The widespread use of such Mediocristan models is evidence for KF-like behaviour in market

participants (Subsection 9.6.2.1). Both Black Swans and NKP live in Extremistan and destroy

their performance (Fig. 9.4).

B.3.4.2 Barbell strategy

The HLABAFEO strategy, based on relatively small bet sizes while the rest of the net worth/portfolio

remains uninvested, is our novel implementation of Taleb's barbell strategy [Taleb, 2007]. The focus

on median long-term returns in this Thesis' HLABAFEO simulations was inspired by Ergodicity

Economics [Peters, 2019].

B.3.5 Gray Rhinos (Michele Wucker)

Gray Rhinos are a similar concept to Black Swans: both are events that cause major impact and

which decision-makers, such as market participants, aren't prepared for [Wucker, 2016]. However,

for a Gray Rhino to exist, at least some credible experts will have sounded the alarm [Wucker, 2016].

Some Black Swans arguably start as Black Swans (low-probability events) and then, once enough

has gone wrong and the event has become an obvious threat3 for some experts (e.g. high-probability

events for them), they become Gray Rhinos. Our concept of NKP is closer to this Gray-Rhino

stage of Black Swans; in particular, the fact that credible (local-domain) experts have explicitly

pointed to the event is essential for the application of a HLABAFEO strategy (Section 9.8). The

real-world examples in [Wucker, 2016] provide neurosocial evidence for NKP.

B.3.6 Escalation of Commitment to a Failing Proposition

Escalation of commitment is a human behavior pattern in which an individual or group facing

increasingly negative outcomes from a decision (such as an investment) nevertheless continue the

behavior instead of altering course. The actor maintains behaviors that might be interpreted as

irrational, but align with previous decisions and actions [Staw, 1996, Staw, 1976].

Related concepts are the sunk-cost fallacy (justi�cation of increased investment of money or

e�ort in a failed decision) in economics or commitment bias in sociology.

The persistence of expert disagreements in the face of de�nitive data (see Section 9.1) can be

explained in light of the escalation of commitment.

Escalation of commitment can cause NKP to the extent it a�ects everybody, including experts

and investors whose behaviour follow the expert opinion. This is particularly true when the

expert believes their opinion is prosocial [Schaumberg and Wiltermuth, 2014] and/or is invested

emotionally, career-wise, politically, socially or �nancially on the matter.

An example could be a hypothetical expert in a politically relevant subject matter (such as

economics or public health) who has written 12 books backing a speci�c expert opinion, has

made many friends through collaborations in conferences and publications that backed such expert

opinion, has defended speci�c policies by a political party related to that expert opinion and has

made investments (and maybe even caused close friends and relatives to make investments) on the

basis of that expert opinion. If new data were to be discon�rming of the long-held opinion, the risk

3While [Wucker, 2016] focuses on threats, the exact same argument can be made for opportunities.



APPENDIX B. ADDITIONAL EVIDENCE FOR NEURAL-KALMAN PHENOMENA 138

of escalation of commitment to the failing expert opinion would be signi�cant. Criticized experts

often double down with overprecise predictions [Kang and Kim, 2022].

B.3.7 Mirror Neuron System and Mimetic Desire

It is innate for men to imitate and from childhood they di�er from other animals

in this capability�that imitation is possible and they �rst form learning through imi-

tation.

� Aristotle, Poetics, 1448b [Aristotle, 2017]

Mirror neurons are premotor neurons, originally discovered in the macaque brain and later in

humans, that discharge both during execution of goal-directed actions and during the observation

of similar actions executed by another individual [Keysers and Fadiga, 2009]. They therefore mirror

others' actions on the observer's motor repertoire. Mirror-like phenomena have been demonstrated

also for domains others than the pure motor one, such as the somatosensory and the emotional

systems, possibly providing a neurophysiological basis to phenomena such as embodiment and

empathy [Keysers and Fadiga, 2009].

Therefore, there might be a neural basis for learning emotions, including desires. This ties

into the mimetic theory of desire [Girard, 2001], which posits that humans desire what others

desire because we imitate their desires. Girard's mimetic theory of desire is well-known in some

�nancial circles, such as tech investing, since it reportedly helped one of Girard's students, Peter

Thiel, understand the potential of Facebook (everyone wanting to set a pro�le in Facebook because

everyone else would already have one) and make a fortune by becoming one of the �rst investors

in the company at an early stage [Perell, 2019]. The existence of mimetic behaviour can also be

interpreted as one of the sources and mechanisms of �nancial re�exivity [Soros, 2003], which causes

manic phases of overvaluation and depressive phases of undervaluation in �nancial markets.

All this suggests humans' main mode of learning might be mimetic (i.e. social), as Aristotle

stated in the quote above. If we assume the consequences of abrupt changes are learned by mimesis,

it follows that a core social network of local-domain experts will learn it by mimesis before it

spreads widely in social networks of �nancial experts. This mechanism backs our Local-Domain

Expert Hypothesis and its HLABAFEO Corollary under the Neural-Kalman Market Hypothesis

(see Subsection 9.6.2).
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