2,101 research outputs found

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, ß, ¿, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 × 10-3 seconds with a position error fitness around 3.116 × 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 × 10-9.Peer ReviewedPostprint (author's final draft

    Approximation of the inverse kinematics of a robotic manipulator using a neural network

    Get PDF
    A fundamental property of a robotic manipulator system is that it is capable of accurately following complex position trajectories in three-dimensional space. An essential component of the robotic control system is the solution of the inverse kinematics problem which allows determination of the joint angle trajectories from the desired trajectory in the Cartesian space. There are several traditional methods based on the known geometry of robotic manipulators to solve the inverse kinematics problem. These methods can become impractical in a robot-vision control system where the environmental parameters can alter. Artificial neural networks with their inherent learning ability can approximate the inverse kinematics function and do not require any knowledge of the manipulator geometry. This thesis concentrates on developing a practical solution using a radial basis function network to approximate the inverse kinematics of a robot manipulator. This approach is distinct from existing approaches as the centres of the hidden-layer units are regularly distributed in the workspace, constrained training data is used and the training phase is performed using either the strict interpolation or the least mean square algorithms. An online retraining approach is also proposed to modify the network function approximation to cope with the situation where the initial training and application environments are different. Simulation results for two and three-link manipulators verify the approach. A novel real-time visual measurement system, based on a video camera and image processing software, has been developed to measure the position of the robotic manipulator in the three-dimensional workspace. Practical experiments have been performed with a Mitsubishi PA10-6CE manipulator and this visual measurement system. The performance of the radial basis function network is analysed for the manipulator operating in two and three-dimensional space and the practical results are compared to the simulation results. Advantages and disadvantages of the proposed approach are discussed

    Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae Search

    Get PDF

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Dynamics and control of robotic systems for on-orbit objects manipulation

    Get PDF
    Multi-body systems (MSs) are assemblies composed of multiple bodies (either rigid or structurally flexible) connected among each other by means of mechanical joints. In many engineering fields (such as aerospace, aeronautics, robotics, machinery, military weapons and bio-mechanics) a large number of systems (e.g. space robots, aircraft, terrestrial vehicles, industrial machinery, launching systems) can be included in this category. The dynamic characteristics and performance of such complex systems need to be accurately and rapidly analyzed and predicted. Taking this engineering background into consideration, a new branch of study, named as Multi-body Systems Dynamics (MSD), emerged in the 1960s and has become an important research and development area in modern mechanics; it mainly addresses the theoretical modeling, numerical analysis, design optimization and control for complex MSs. The research on dynamics modeling and numerical solving techniques for rigid multi-body systems has relatively matured and perfected through the developments over the past half century. However, for many engineering problems, the rigid multi-body system model cannot meet the requirements in terms of precision. It is then necessary to consider the coupling between the large rigid motions of the MS components and their elastic displacements; thus the study of the dynamics of flexible MSs has gained increasing relevance. The flexible MSD involves many theories and methods, such as continuum mechanics, computational mechanics and nonlinear dynamics, thus implying a higher requirement on the theoretical basis. Robotic on-orbit operations for servicing, repairing or de-orbiting existing satellites are among space mission concepts expected to have a relevant role in a close future. In particular, many studies have been focused on removing significant debris objects from their orbit. While mission designs involving tethers, nets, harpoons or glues are among options studied and analyzed by the scientific and industrial community, the debris removal by means of robotic manipulators seems to be the solution with the longest space experience. In fact, robotic manipulators are now a well-established technology in space applications as they are routinely used for handling and assembling large space modules and for reducing human extravehicular activities on the International Space Station. The operations are generally performed in a tele-operated approach, where the slow motion of the robotic manipulator is controlled by specialized operators on board of the space station or at the ground control center. Grasped objects are usually cooperative, meaning they are capable to re-orient themselves or have appropriate mechanisms for engagement with the end-effectors of the manipulator (i.e. its terminal parts). On the other hand, debris removal missions would target objects which are often non-controlled and lacking specific hooking points. Moreover, there would be a distinctive advantage in terms of cost and reliability to conduct this type of mission profile in a fully autonomous manner, as issues like obstacle avoidance could be more easily managed locally than from a far away control center. Space Manipulator Systems (SMSs) are satellites made of a base platform equipped with one or more robotic arms. A SMS is a floating system because its base is not fixed to the ground like in terrestrial manipulators; therefore, the motion of the robotic arms affects the attitude and position of the base platform and vice versa. This reciprocal influence is denoted as "dynamic coupling" and makes the dynamics modeling and motion planning of a space robot much more complicated than those of fixed-base manipulators. Indeed, SMSs are complex systems whose dynamics modeling requires appropriate theoretical and mathematical tools. The growing importance SMSs are acquiring is due to their operational ductility as they are able to perform complicated tasks such as repairing, refueling, re-orbiting spacecraft, assembling articulated space structures and cleaning up the increasing amount of space debris. SMSs have also been employed in several rendezvous and docking missions. They have also been the object of many studies which verified the possibility to extend the operational life of commercial and scientific satellites by using an automated servicing spacecraft dedicated to repair, refuel and/or manage their failures (e.g. DARPA's Orbital Express and JAXA's ETS VII). Furthermore, Active Debris Removal (ADR) via robotic systems is one of the main concerns governments and space agencies have been facing in the last years. As a result, the grasping and post-grasping operations on non-cooperative objects are still open research areas facing many technical challenges: the target object identification by means of passive or active optical techniques, the estimation of its kinematic state, the design of dexterous robotic manipulators and end-effectors, the multi-body dynamics analysis, the selection of approaching and grasping maneuvers and the post-grasping mission planning are the main open research challenges in this field. The missions involving the use of SMSs are usually characterized by the following typical phases: 1. Orbital approach; 2. Rendez-vous; 3. Robotic arm(s) deployment; 4. Pre-grasping; 5. Grasping and post-grasping operations. This thesis project will focus on the last three. The manuscript is structured as follows: Chapter 1 presents the derivation of a multi-body system dynamics equations further developing them to reach their Kane's formulation; Chapter 2 investigates two different approaches (Particle Swarm Optimization and Machine Learning) dealing with a space manipulator deployment maneuver; Chapter 3 addresses the design of a combined Impedance+PD controller capable of accomplishing the pre-grasping phase goals and Chapter 4 is dedicated to the dynamic modeling of the closed-loop kinematic chain formed by the manipulator and the grasped target object and to the synthesis of a Jacobian Transpose+PD controller for a post-grasping docking maneuver. Finally, the concluding remarks summarize the overall thesis contribution
    corecore