

APPROXIMATION OF THE INVERSE KINEMATICS OF

A ROBOTIC MANIPULATOR USING

A NEURAL NETWORK

BACH HOANG DINH

Thesis submitted for the Degree of Doctor of Philosophy

Heriot-Watt University

Department of Electrical, Electronic

and Computer Engineering

July 2009

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of
any of the information contained in it must acknowledge this thesis as the source of the

quotation or information.

i

Abstract

A fundamental property of a robotic manipulator system is that it is capable of accurately

following complex position trajectories in three-dimensional space. An essential component

of the robotic control system is the solution of the inverse kinematics problem which allows

determination of the joint angle trajectories from the desired trajectory in the Cartesian

space. There are several traditional methods based on the known geometry of robotic

manipulators to solve the inverse kinematics problem. These methods can become

impractical in a robot-vision control system where the environmental parameters can alter.

Artificial neural networks with their inherent learning ability can approximate the inverse

kinematics function and do not require any knowledge of the manipulator geometry.

This thesis concentrates on developing a practical solution using a radial basis function

network to approximate the inverse kinematics of a robot manipulator. This approach is

distinct from existing approaches as the centres of the hidden-layer units are regularly

distributed in the workspace, constrained training data is used and the training phase is

performed using either the strict interpolation or the least mean square algorithms. An

online retraining approach is also proposed to modify the network function approximation

to cope with the situation where the initial training and application environments are

different. Simulation results for two and three-link manipulators verify the approach.

A novel real-time visual measurement system, based on a video camera and image

processing software, has been developed to measure the position of the robotic manipulator

in the three-dimensional workspace. Practical experiments have been performed with a

Mitsubishi PA10-6CE manipulator and this visual measurement system. The performance

of the radial basis function network is analysed for the manipulator operating in two and

three-dimensional space and the practical results are compared to the simulation results.

Advantages and disadvantages of the proposed approach are discussed.

ii

Acknowledgements

Firstly, I would like to thank my supervisors, Dr. M. W. Dunnigan and Dr. D. S. Reay, for

their kind supports in my research time. I would particularly like to express my deepest

gratitude to my main supervisor, Dr. M.W. Dunnigan for his enthusiasm, patience,

guidance and support from the initial to the final level of the research and the writing of this

thesis.

Acknowledgement is also given to other members of the Intelligent Robotic Systems

Laboratory and staff members in the department. In particular, I would like to thank my

friends, Dr. J. T. Hatleskog and Dr. L. C. Tran for their kind helps.

I would also like to thank my parents, my parents-in-law and all members of my family for

their support and encouragement throughout the years of my Ph.D study. I am heartily

thankful to my wife, Vy, and my son, Tin, for their accompanying to make a great time in

Edinburgh.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the thesis.

Please note this form should bound into the submitted thesis.

Updated February 2008, November 2008, February 2009

ACADEMIC REGISTRY
Research Thesis Submission

Name: BACH HOANG DINH

School/PGI: EPS

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought
(Award and
Subject area)

Doctor of Philosophy

Electrical Engineering

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to

work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic

versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made

available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis

is submitted.

Signature of
Candidate:

 Date:

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in Academic Registry

Received in the Academic
Registry by (name in capitals):

Method of Submission
(Handed in to Academic Registry; posted
through internal/external mail):

E-thesis Submitted (mandatory for
final theses from January 2009)

Signature:

 Date:

iv

Table of Contents

Abstract i

Acknowledgements ii

Table of Contents iv

Chapter 1 Introduction

1.1 Introduction 1

1.2 Manipulator kinematics 5

1.3 Approximating the inverse kinematics of robotic manipulators by neural

networks
6

1.4 Real-time visual measurement system 6

1.5 Structure of the thesis 7

1.6 References 9

Chapter 2 Traditional Approaches for The Determination of The Inverse

Kinematics of a Manipulator

2.1 Introduction 10

2.2 Kinematic equations of a robotic manipulator 11

2.2.1 General structure of a robotic manipulator 11

2.2.2 Denavit & Hartenbergh representation 14

2.2.3 Kinematics equations of a three-link manipulator 16

2.3 Geometric approach 19

2.3.1 Principle of geometric approach 19

2.3.2 The geometric approach for a three-link manipulator 19

2.4 Algebraic approach 24

2.4.1 Principle of algebraic approach 24

2.4.2 The algebraic approach for a three-link manipulator 26

2.5 Conclusion 29

2.6 References 30

v

Chapter 3 Background of Neural Networks for Inverse Kinematics

Approximation of Robotic Manipulators

3.1 Introduction 32

3.2 Background of neural computing 33

3.3 General training schemes of neural networks used for inverse kinematics

approximation
36

3.4 Multi-layer perceptron networks 39

3.4.1 Structure of MLPNs 39

3.4.2 Back propagation training algorithm 41

3.4.3 Using MLPNs to approximate the inverse kinematics 43

3.5 Radial basis function networks 49

3.5.1 Structure of RBFNs 49

3.5.2 Training RBFNs 52

3.5.3 Using RBFNs to approximate the inverse kinematics 56

3.6 Conclusion 59

3.7 References 60

Chapter 4 Inverse Kinematics Approximation Using a Radial Basis Function

Network

4.1 Introduction 65

4.2 Using RBFNs to approximate the inverse kinematics of robotic manipulators 66

4.2.1 Selection of the hidden layer parameters 66

4.2.2 Training methods 70

4.2.3 Training data 72

4.3 Simulation for a two-link manipulator 72

4.3.1 Simulation description 74

4.3.2 Simulation results 76

4.3.3 Summary of results 85

4.4 Simulation for a three-link manipulator 86

4.4.1 Simulation description 87

4.4.2 Simulation results 90

4.4.3 Summary of results 95

vi

4.5 Conclusion 96

4.6 References 97

Chapter 5 Online Training To Modify The Inverse Kinematics Approximation

5.1 Introduction 99

5.2 Using online training to modify the inverse kinematics approximation 99

5.3 Simulation procedure 103

5.4 Two-link manipulator simulation 105

5.5 Three-link manipulator simulation 112

5.6 Conclusion 117

5.7 References 117

Chapter 6 Development of a Three-Dimensional Positional Measurement

System

6.1 Introduction 119

6.2 Background of computer vision 120

6.2.1 Image acquisition and processing 120

6.2.2 Perspective transformation from 3-D to 2-D space 122

6.3 Camera calibration methods 127

6.3.1 Overview 127

6.3.2 Camera calibration toolbox in MATLAB 130

6.4 A real-time 3-D measurement based video camera 132

6.4.1 Set-up of the vision-based measurement system 132

6.4.2 OpenCV library 134

6.4.3 Image processing software for 3-D visual measurement 136

6.4.4 Summary of results 139

6.5 Conclusion 141

6.6 References 142

vii

Chapter 7 Practical Investigation Of Radial Basis Function Network

Performance

7.1 Introduction 144

7.2 Components of the robotic system 144

7.2.1 Mitsubishi PA10-6CE manipulator 145

7.2.2 Robot control server 147

7.2.3 Application programmes 148

7.3 Description of the robotic system for practical experiments 150

7.3.1 Structure of the robotic system for the 2-D experiments 150

7.3.2 Structure of the robotic system for the 3-D experiments 152

7.4 Practical determination of the inverse kinematics of the robotic system 154

7.4.1 Experimental description 154

7.4.2 Experimental results 157

7.4.3 Summary of results 161

7.5 Practical work using online retraining to modify the RBFN 162

7.6 Conclusion 167

7.7 References 167

Chapter 8 Conclusions

8.1 General conclusions 169

8.2 Author’s contribution 170

8.3 Suggestions for future work 171

Appendix A Technical Specifications of PA10-6CE 173

Appendix B Simulation Results of Chapter 4 174

Appendix C MATLAB Simulation Files 182

Appendix D C++ Source Code for Practical Experiments 204

Appendix E Relevant Work Published by Author 253

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Robots are a vital part of modern manufacturing industries with their inherent capability

of executing complex tasks accurately and reliably. Robots are also used extensively in

areas where it is hazardous for humans. Examples of this are underwater intervention in

oil and gas exploration, nuclear plant decommissioning and space exploration. One of

the most popular robots are anthropomorphic robotic manipulators which are used

extensively in manufacturing industry. A robotic manipulator is composed of several

links connected together (usually in series) through joints to form an arm and/or wrist

[1.1]. Figure 1.1 presents the general structure of a series manipulator with revolute

joints.

Figure 1.1- The general structure of a manipulator with revolute joints.

When the joints move, the links also move according to the action of the joints which

are either revolute or prismatic. As a result, the end-effector attached at the tip of the

manipulator can be driven to any location in its workspace. The values of joint angles

determine the current configuration of the arm which places the end-effector at a

specific location in the environment [1.2]. The operational tasks of the manipulator are

Fixed Base

End-effector

revolute joint

link 2

joint 1

joint 2

joint N

link 1

link N

2

usually planned in the workspace (the Cartesian coordinates), whereas control

commands are directly performed in the joint space. One of the principal roles when

designing a robotic system is how to determine the inverse kinematics transformation

from the workspace to the joint space to set the references for the joint controllers

(dynamic control). Figure 1.2 shows the general operational tasks of a robotic system.

This thesis focuses on solving the inverse kinematics problem which is used to

transform a position of the end-effector in the Cartesian space to a set of joint angles. In

Figure 1.2 the inverse kinematics block operates as a transformation function to provide

the joint angle references for the dynamic control system which operates as a closed-

loop controller in the joint space. Figure 1.3 shows the general control diagram using

the inverse kinematics transformation to implement a position control task in the

workspace. The combination of the dynamic controller and the robot itself can be

modelled as the forward kinematics of the robotic system.

There are several different procedures available, which are based on the known

geometry of the manipulator, to solve the inverse kinematics problem. These include the

geometric, algebraic and numerical iterative methods [1.3], [1.4]. However, these

solutions become more difficult, or impractical, when the manipulator geometry cannot

be determined exactly. Therefore, this poses a question as to whether any alternative

solution to determine the inverse kinematics transformation exists if the geometry of the

Path planning

Inverse kinematics

Dynamic control

ROBOT

Feedback

X – workspace variables

θ – joint variables

Figure 1.2 - The operational tasks of a robotic system.

3

manipulator is unknown. A possible approach is to use neural networks to learn the

inverse kinematics transformation.

Neural networks with their inherent learning ability have been widely applied in many

fields of robotic control. They are seen as an intelligent control scheme because of their

learning ability, as well as having the flexibility to cope with the uncertain and

unstructured working conditions. The aim of this research is to develop a solution using

neural networks to solve the inverse kinematics transformation of a robotic manipulator

with unknown geometry. This is implemented though two sequential phases, training

with data collected from the robotic system and then operating as a transformation

function. Once trained, its generalisation ability allows responses to be produced for

untrained data according to stored knowledge. The network performance is related to

several factors, such as the network architecture, the learning method and training data.

This performance is not entirely controllable and sometimes it can be inaccurate. The

question of how to improve the performance of a neural network to solve the inverse

kinematics problem is an interesting and important topic, especially for practical

applications.

IK Dynamic controller ROBOT
XR θR

θA

-

IK – inverse kinematics transformation of the robot .

Dynamic controller – standard PID controller for joint angle control.

XR – desired position in the world space.

θR – desired joint angles setting for dynamic control system.

θA – actual joint angles of the robot.

Figure 1.3 - A control approach using the inverse kinematics transformation to

implement a position control task in the workspace.

4

The main objective of this thesis is to develop a practical solution using a neural

network to approximate the inverse kinematics of a robotic manipulator. The practical

system includes a simple computer vision measurement system to acquire the position

of the robot’s end-effector. The system is shown in Figure 1.4.

The vision-based measurement system, consisting of one camera and image processing

software, determines the position of the end-effector in real-time. Recently, vision-

based measurements have been used more extensively in the robotic field because of

their benefits, such as accuracy, low cost and portability [1.5]. Any change in the

structure of this system, either a displacement of the camera location or a change in the

location of the manipulator base leads to a change in the configuration of the robotic

system. Therefore, it is essential to develop a flexible and adaptable inverse kinematics

solution so that it can deal with any disturbances affecting the structure of this system.

A solution for this task is a neural network approach.

Joint Controller

Robot Control
Server

θ1

θ2

θ3

Neural Network
(Inverse Kinematics

transformation)

Robot Control
Client

Vision-Based
Measurement

TCP/IP

Industrial
PC

Application
PC

Camera

Figure 1.4 - Block diagram of the system used for practical work.

5

1.2 Manipulator kinematics

In robot kinematics there are two important problems, forward and inverse kinematics.

Forward kinematics can be regarded as a one-to-one mapping from the joint space to the

Cartesian coordinate space (workspace). From a set of joint angles, forward kinematics

determines the corresponding location (position and orientation) of the end-effector.

This problem can be solved by multiplying together the 4x4 homogenous

transformation matrices using the Denavit & Hartenbergh representation for the

manipulator [1.3], [1.4]. Inverse kinematics is used to compute the corresponding joint

angles from the location of the end-effector in Cartesian space. Inverse kinematics is a

more difficult problem than forward kinematics because of its multi-mapping

characteristics.

There have been many techniques proposed to solve the inverse kinematics problem,

e.g., the geometric, algebraic and numerical iterative methods. The geometric approach

is useful for simple manipulators with revolute joints. It is based on the definitions of

the link coordinate systems and human arm geometry which allows various arm

configurations to be identified for the inverse kinematics problem [1.3]. The matrix

algebraic approach is an inverse transform technique to obtain joint-angle solutions

directly from the homogenous transformation matrices (forward kinematics

representations) [1.6]. Both these approaches are regarded as analytical solutions which

determine the exact mathematical formulae for the inverse kinematics problem.

However, these are complicated and require intuition to select an appropriate case from

the several possible solutions for a particular manipulator [1.4]. In contrast, more

general approaches were developed using a numerical iterative solution based on the

Jacobian matrix [1.4], [1.6]. A relationship between joint velocities and hand motion

velocity is first derived from directly inverting the Jacobian matrix and then the inverse

kinematics solution for joint angles and hand position follows. This solution can be

applied for most of the common manipulator configurations in industry. However, it

does not always guarantee to produce all the possible inverse kinematic solutions and

involves significant computation. Furthermore, all the mentioned methods are termed

traditional approaches because they have been developed from the geometric parameters

of the manipulators. If the geometry cannot be exactly specified, these traditional

approaches become more difficult or even impractical. For these reasons, it is of interest

6

to pursue other non-traditional approaches and the research described in this thesis

proposes an alternative solution based on neural networks.

1.3 Approximating the inverse kinematics of robotic manipulators by neural

networks

Artificial neural networks are a simple imitation of human brain behaviours, such as

learning and responding to any stimuli from the environment. Due to its learning ability

a neural network will establish its knowledge through updating the synaptic weights

between interconnections of the network’s neurons. This learning is implemented with

training examples (sets of inputs and target outputs) which are collected from the

desired process. Thus, a neural network can learn and approximate any complex

function without any prior knowledge of that process [1.7].

Various neural networks have been used to solve the inverse kinematics problem. They

include the multi layer perceptron network (MLPN), cerebellar model articulation

controller (CMAC) and radial basis function network (RBFN) [1.7]. However, the

radial basis function network seems to be more suitable for the inverse kinematics

problem because its hidden-layer structure parameters (centres of radial basis functions)

could be optimally selected from training data and the learning process is simple using

the least squares approach [1.7], [1.8]. In this thesis, a novel approach using a radial

basis function network with regularly-spaced position centres to approximate the

inverse kinematics transformation of a manipulator is proposed and investigated. This

solution has then been applied for position control of the robotic system as shown in

Figure 1.4. Both computer simulation and practical work have demonstrated that the

proposed approach is effective in solving the inverse kinematics problem.

1.4 Real-time visual measurement system

To measure the location of a movable object in the world space, distance sensors have

normally been used including sonic or optical types. However, a vision-based

measurement system is more convenient because it can measure absolute space

coordinates of the object with respect to the camera base, instead of only the distance

from the object to a reference point. In recent years there have been many solutions to

7

develop 3-D visual measurement systems using video cameras. The principle of these

methods is to estimate the position and orientation of a known geometric object in the

world space based on the object’s image (in the image plane). This assumes that image

coordinates of the object in the image plane can be determined and the camera intrinsic

parameters (e.g., resolution, focal length, distortion coefficients) are known as well.

This is called the camera calibration method [1.9] and only uses one camera

accompanied with image processing software. This research field has made significant

progress in aspects of efficiency, accuracy and reduction in cost. As a result, using

cameras to supervise and control robots has become realistic and is widely applied in

robotic systems [1.5].

This thesis presents a real-time visual measurement system to estimate the three-

dimensional position of a manipulator in the workspace. It consists of a standard video

camera mounted on a fixed pole to measure the position of a light sample board

attached to the manipulator end-effector. The software is programmed based on the Intel

Open Source Computer Vision Library, in C++, and uses a Graphical User Interface

(GUI) to make this visual tool more convenient for practical applications.

1.5 Structure of the thesis

The thesis is presented in eight chapters.

Chapter 1 – Introduction. This chapter briefly introduces the problem background and

structure of the thesis. The main topics include the inverse kinematics transformation of

robotic manipulators, neural networks for approximating inverse kinematics and visual

measurement. The objectives of the thesis are stated.

Chapter 2 – Traditional Approaches for The Determination of The Inverse Kinematics

of Robotic Manipulators. This chapter introduces the background theory concerning the

inverse kinematics problem of robotic manipulators. Various traditional solutions, such

as the algebraic and geometric methods are discussed in detail. Advantages and

disadvantages of each solution are presented, especially in terms of practical

applications.

8

Chapter 3 – Background of Neural Networks for Inverse Kinematics Approximation of

Robotic Manipulators. This chapter is the literature review concerning using neural

networks to approximate the inverse kinematics transformation of robotic manipulators.

It includes two of the popular neural network architectures, MLPN and RBFN. The

fundamental aspects of the learning process and performance of each network are

described to highlight the advantages and drawbacks of existing approaches. Finally, the

reasons why the radial basis function network is adopted and the purpose of the

proposed approach are stated.

Chapter 4 – Inverse Kinematics Approximation Using a Radial Basis Function

Network. This chapter concentrates on investigating the possibility of using a radial

basis function network to approximate the inverse kinematics transformation. A novel

idea is proposed using hidden-layer centres which are regularly-spaced positions in the

workspace and using constrained training data whose inputs are collected approximately

around centre positions. Various simulations in MATLAB demonstrate the network

performance and factors that affect the network performance are investigated.

Chapter 5 – Online Training to Modify The Inverse Kinematics Approximation. This

chapter describes a solution to modify the inverse kinematics approximation using an

additional online training process. It uses the delta rule to update the linear weights of

the network which have been trained already with incorrect data. This online retraining

can be applied to deal with the difficulty in collecting constrained data and to re-correct

for operational errors due to variations in the visual measurement system. The

simulation results are discussed in detail.

Chapter 6 – Development of a Three-dimensional Positional Measurement System. This

chapter presents a solution using a webcam and image processing software to measure

the position of a manipulator in a 3-D workspace. The background of camera calibration

methods is described to explain the procedures in which the intrinsic and extrinsic

camera parameters are estimated. The concept of developing a 3-D visual measurement

system to determine the position of the manipulator end-effector is presented.

Chapter 7 – Practical Investigation of RBFN Performance. This chapter describes the

set-up of the experimental system which includes a PA10-6CE manipulator, a visual

9

measurement system and application programmes. Two experimental systems using two

different schemes are described for the two-dimensional and three-dimensional

workspaces. The experimental results of the RBFN are then presented. A solution using

online retraining to modify the RBFN to cope with a change in the structure of the

visual measurement system is presented in detail. Conclusions about the effectiveness

for the practical application are drawn.

Chapter 8 – Conclusions. This chapter summarises the author’s main contributions

including the benefits of this work. Finally, suggestions for future work are presented.

1.6 References

[1.1] C. Bergren, Anatomy of A Robot. McGraw Hill, 2003.

[1.2] J. Angeles, Fundamental of Robotic Mechanical System: Theory, Methods and

Algorithms – Second Editor. Springer, 2003.

[1.3] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics – Control, Sensing, Vision

and Intelligence. McGraw Hill, 1987.

[1.4] W. Khalil and E. Dombre, Modelling, Identification & Control of Robots.

Hermes Penton Ltd., 2002.

[1.5] S. Florczyk, Robot Vision Video-based Indoor Exploration with Autonomous

and Mobile Robots. Wiley-VCH, 2005.

[1.6] A. J. Koivo, Fundamentals for Control of Robotic Manipulators. John Wiley &

Sons, 1989.

[1.7] G. W. Irwin, K. Warwick and K. J. Hunt, Neural Network Applications in

Control. IEE Control Engineering Series 53, 1995.

[1.8] S. Haykin, Neural Networks a Comprehensive Foundation – Second Edition.

Prentice Hall, 1999.

[1.9] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision.

Prentice-Hall Inc., 1998.

10

CHAPTER 2

TRADITIONAL APPROACHES FOR THE DETERMINATION

OF THE INVERSE KINEMATICS OF A MANIPULATOR

2.1 Introduction

The kinematics of a manipulator deals with the geometry of manipulator motion with

respect to a fixed reference coordinate system as a function of time without regards to

the forces or moments that cause this motion [2.1]. Based on the spatial configuration of

a manipulator, kinematics equations are established to represent relationships between

the joint variable space and location of the end-effector in the world space (Cartesian

coordinate system). Inverse kinematics is used to compute the corresponding joint

angles from a given location of the end-effector. It is a nonlinear function where more

than one set of joint angles for a desired location of the end-effector can exist, i.e., there

are multiple solutions. Sometimes no solution can be found due to particular

configurations of the manipulator, such as singular and degenerate cases [2.3]. Thus,

this is a complex problem dependent on many factors such as complexity of

configuration, specific operating conditions and constraints of joint variables.

There are many inverse kinematics techniques based on either analytical or numerical

methods. These techniques are called traditional approaches, because they require

knowledge of the manipulator’s configuration parameters. An analytical approach

attempts to produce an exact solution mathematically by directly inverting the forward

kinematics equations. However, it is only possible for some relatively simple geometric

manipulators. A numerical solution uses approximate optimal techniques to solve the

inverse kinematics of a general manipulator. It can mutually transform all motion

characteristics, such as position, velocity and acceleration, from the Cartesian space to

the joint space by iterative computation based on the inversion of the Jacobian matrix

[2.3]-[2.5]. The principle of this approach is taken from the relationship between the

motion velocity (translation and rotation) of the end-effector in the Cartesian space and

the joint angle velocities to approximately calculate corresponding joint angles from a

given location of the end-effector. However, this involves an iterative numerical

algorithm with a high computational demand and does not guarantee convergence.

11

This chapter firstly describes the general structure of a robotic manipulator. The Denavit

& Hartenbergh procedure to systematically establish the kinematic equations of a

manipulator is then presented. Two analytical approaches, geometric and algebraic, are

presented to describe traditional algorithms to solve the inverse kinematics of robotic

manipulators. Each approach is applied to a three-link manipulator formed from the

structure of a Mitsubishi PA10-6CE used later in the experimental work [2.6].

Following this, the beneficial reasons of adopting an alternative solution using neural

networks for the determination of the inverse kinematics are stated.

2.2 Kinematic equations of a robotic manipulator

2.2.1 General structure of a robotic manipulator

A manipulator is made of several links, connected together (usually in series) by the

joints, to form an arm and/or wrist. A specific location (position and orientation) of the

end-effector, attached to a manipulator, will be completely determined by six

independent coordinates related to 6 Degrees-of-Freedom (D.O.F): three for position

and three for orientation [2.1]. The general configuration of a manipulator can be split

into two functional groups, the arm and wrist. The first three joints are commonly

designed in order to perform gross motion of the end-effector as an arm and the

remaining joints are used to accomplish orientation as a wrist. Thus, according to the

first three joint types (revolute or prismatic) and how they combine together, five

distinct and non-redundant structures can be described: Articulated (RRR), Spherical

(RRP), SCARA (RRP), Cylindrical (RPP), and Cartesian (PPP) (Figures 2.1 to 2.5)

[2.3], [2.7].

12

Z0 θ1

L2

Base

θ2

L1
d3

L3

Z1 Z2

Z0

θ1

L2

Base

Z1 θ2

Z2

L1

L3

Body

d3

Figure 2.1- The articulated configuration (elbow manipulator) (RRR).

Figure 2.2 - The spherical configuration (RRP).

θ1

L2

Base

Z1 θ2 Z2 θ3

L1

L3

Body

Shoulder

Upper-arm Fore-arm

Figure 2.3 - The SCARA configuration (RRP).

13

The wrist of a manipulator refers to the joints in the kinematic chains between the arm

and hand. Almost all the joints of the wrist are revolute. The wrist is used to achieve the

desired orientation of the end-effector. The most common type of wrist is the spherical

configuration as shown in Figure 2.6. In practice, the spherical wrist greatly simplifies

the kinematic analysis, effectively allowing decoupling of the position and orientation

of an object [2.7].

Z0
Base

L2

d2

L3

L1

d3

x

y

z

Z1

Z2

d1

Z0
θ1

Base

L2

d2

L3

L1

d3

Figure 2.4 - The cylindrical configuration (RPP).

Figure 2.5 - The Cartesian configuration (PPP).

14

2.2.2 Denavit & Hartenbergh representation

The kinematic equations use matrix algebra to build relationship functions between the

joint variables and the world coordinate location of the end-effector (position and

orientation) based on the spatial configuration of a particular manipulator. A systematic

and generalised approach to describe the kinematic equations of a serial link

manipulator was proposed by Denavit & Hartenbergh (D-H) [2.1]. This expresses the

rotation and translation of the coordinate frame attached to a link with respect to another

reference coordinate frame by a homogenous transformation matrix. It is a 4x4 matrix in

which the sub-matrix, a 3x3 rotation matrix, is used to describe the rotational operation.

A 3x1 vector is used to describe the translational operation of the coordinate frame

attached to a link with respect to the reference frame. The homogenous coordinate

transformation matrix i
i 1−A can be written as

 ⎥
⎦

⎤
⎢
⎣

⎡
= ××

− 10
1333

1
PR

Ai
i . (2.1)

The basic rules for establishing an orthogonal coordinate frame for each link and

determining the geometric parameters of a serial manipulator are presented in [2.1]-

[2.3] as a systematically closed-form procedure. Based on this algorithm, the D-H

Yaw

Pitch

Roll

Figure 2.6 - The spherical wrist with Pitch, Yaw and Roll.

15

coordinate systems can be established for all links and the homogenous transformation

matrices i
i 1−A between adjacent coordinate frames can be expressed easily by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=−

1000
cossin0

sincossincoscossin
cossinsinsincoscos

1
iii

iiiiiii

iiiiiii

i
i d

a
a

αα
θθαθαθ
θθαθαθ

A (2.2)

where ai, di, αi, θi are the geometric parameters of the relative ith joint as shown in

Figure 2.7 [2.1]. They can be defined as:

 αi is the angle between zi-1 and zi about xi.

 di is the distance between origin Oi-1 and the intersection of the zi-1 axis with the

xi axis along zi-1 (or the distance between xi-1 and xi if they are parallel).

 θi is the angle between xi-1 and xi about zi-1.

 ai is the distance between origin Oi and the intersection of the zi-1 axis with the xi

axis along xi (or the distance between zi-1 and zi if they are parallel).

Figure 2.7- Structure kinematic parameters for a general link i.

θi-1

Joint i-1

zi-2

zi-1

Joint i

θi

θi+1

xi-1

yi-1

xi

yi
zi

αi

ai

di

θi

Link i-2

Link i-1
Link i

Link i+1

Joint i+1

Oi

Oi-1

16

If a position vector pi is given in the ith coordinate frame, then it can be expressed in the

(i-1)th coordinate system as the vector pi-1 by

 i
i
ii pAp 11 −− = . (2.3)

Thus, the coordinate transformation matrix maps a position vector expressed in

homogenous coordinates from one coordinate system to another coordinate system. As

a result, through a sequential transformation, achieved by multiplying a series of the

coordinate transformation matrices, the coordinate frame attached to the end-effector

can be transformed and expressed in the base coordinate system. This systematic

transformation is shown in Figure 2.8. Generally, the homogenous transformation

matrix from the nth coordinate frame to the base coordinate frame can be determined by

multiplying i
i 1−A (i = 1, 2,…, n) together in sequence, such as

 n
n

n
1

2
1

1
00 −= AAAT K . (2.4)

Consequently, if a vector pn is known in the nth coordinate frame, it can be determined

with respect to base coordinate system by

 n
n pTp 00 = . (2.5)

Figure 2.8-Coordinate transformation from the end-effector to a base coordinate system.

x0

z0

zi-1 yi-1

xi-1

zi

xi
yi

1
0
−iT

i
i 1−A

zn

xn

yn
n

iT

n
0T

y0

17

2.2.3 Kinematics equations of a three-link manipulator

Applying the D-H representation, the kinematics equations of a three-link manipulator

illustrated in Figure 2.8 can be established as follows.

Figure 2.9 – Link coordinate systems of a three-link PA10 manipulator.

Using the D-H procedure, the coordinate frames are defined and the structural

geometric parameters of the three-link manipulator are presented in Table 2.1. This

structure is formed from the first three links of a Mitsubishi PA10-6CE manipulator

[2.6].

Link di (mm) ai (mm) αi (degree) θi (degree)

1 317 0 900 θ1

2 0 450 0 θ2 + 900

3 0 550 0 θ3

Table 2.1- Structural geometric parameters of the three-link manipulator.

Therefore, the coordinate transformation matrices i
i 1−A (i = 1, 2, 3) relating the

coordinates of the ith frame to those of the (i-1)th frame can be written using equation

(2.2) as follows

X0

Y0

Z0

X1
Z1

Y1

Z2

X2 Y2

X3 Y3

Z3

Link 1

Link 2

Link 3

Joint 1

Joint 2

Joint 3

18

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
010

00
00

1

11

11

1
0 d

CS
SC

A (2.6)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100

0
0

2222

2222

2
1

SaCS
CaSC

A (2.7)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100

0
0

3333

3333

3
2

SaCS
CaSC

A (2.8)

where Si = sin θi and Ci = cos θi .

The homogenous transformation matrix 3
0T from the coordinate frame attached to the

end-effector to the base coordinate frame can represented as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
+−−
+−

==

1000
0

)(
)(

1222332323

2223311231231

2223311231231

3
2

2
1

1
0

3
0 dSaSaCS

CaCaSCSSCS
CaCaCSSCCC

AAAT (2.9)

where

C23 = cos (θ2+ θ3) = C2C3 – S2S3, and

S23 = sin (θ2+ θ3) = S2C3 + C2S3.

Based on this transformation matrix, the forward kinematics can determine an exact

location of the manipulator in the workspace according to the value of each joint angle

variable.

19

2.3 Geometric approach

2.3.1 Principle of geometric approach

Based on the specific structural geometry of a manipulator this approach identifies

inverse kinematics solutions for a revolute manipulator which is classified according to

the first three joints and the remaining joints. The basic idea is that by analysing the

trigonometry of the arm for a given position vector, the first three joint angles can be

determined. The remaining joint angles can be calculated according to the orientation

matrix and the known values of previous joint angles. For example, Lee [2.8] developed

a geometric approach to solve the inverse kinematics for a Puma 560 manipulator. This

algorithm first used the position vector pointing from the shoulder to the wrist that was

determined from the homogenous matrix 3
0T to derive the inverse kinematics solution

for the first three joints. The last three joints were sequentially calculated using

previously known joint angles and the orientation sub-matrix of the corresponding

matrices i
0T (i = 4, 5, 6). In [2.6] a more general modified closed-form procedure was

proposed for the inverse kinematics of a Puma 560. The position vector was first

projected onto a xi - yi plane (i = 0, 1, 2) to derive the inverse kinematics solution for

each joint (by solving trigonometric equations). The last three joint angles could then be

determined from the previous known joint angles, the given orientation matrices and the

trigonometric equations which were derived from projecting the link coordinate frames

onto the following xi - yi planes (i = 3, 4, 5). These derived solutions were different for

each specific arm configuration: LEFT or RIGHT hand and UP or DOWN elbow.

Configuration indicators were therefore required to determine the appropriate result.

The arm-configuration indicators can be predefined and chosen by the user according to

the specific application. This approach can be generalised and extended to most

industrial manipulators with revolute joints.

2.3.2 The geometric approach for a three-link manipulator

In this section, the geometric approach is applied to find the inverse kinematics of the

three-link manipulator shown in Figure 2.9. The procedure is implemented as follows.

20

A point P representing a given position of the end-effector, which is the origin of the

last coordinate frame with respect to the base coordinate system, can be expressed by

 T
zyx PPP),,(P = . (2.10)

This corresponds to the translation vector of the homogenous coordinate transformation

matrix 3
0T in equation (2.9)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
+
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

122233

222331

222331

)(
)(

dSaSa
CaCaS
CaCaC

P
P
P

z

y

x

. (2.11)

By projecting the point P onto the x0-y0 plane as shown in Figure 2.10, the trigonometric

equations to solve θ1 can be obtained as:

 1cosOP' θ=xP (2.12)

 1sinOP' θ=yP (2.13)

 22'OP yx PP += . (2.14)

Hence, θ1 is calculated by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

P
P1

1 tanθ . (2.15)

21

Figure 2.10 – Projecting the point P onto the x0 - y0 plane.

Similarly, as shown in Figure 2.11, by projecting the point P onto the x1 - y1 plane the

geometric relationships for links 2 and 3 are written by

)sin(sin'P''M''NM''NP' 32322 θθθ +−−=+= aa (2.16)

)cos(cos''''''''NM'''NP' 32322 θθθ ++=+= aaPM (2.17)

where

 22OP'''NP yx PP +== (2.18)

 1''NP' dPz −= . (2.19)

Squaring and summing both sides of equations (2.16) and (2.17), the solution to

determine θ3 then can be expressed as

O
Y0

X0

N

M

P

P’

M’

Py

Px

θ1

Z0

22

 K
aa

aa
=

−−+
=

32

2
3

2
2

22

3 2
)''NP'()'(NP')cos(θ (2.20)

and

 2
3)1()sin(K−±=θ . (2.21)

Therefore, θ3 can finally be calculated as

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
±= −

K
K 2

1
3

1tanθ (2.22)

where

32

2
3

2
2

2
1

22

2
)(

aa
aadPPP

K zyx −−−++
= . (2.23)

To derive the solution for the joint angle θ2, equations (2.16) and (2.17) can be rewritten

as

)sin('NP'sin 32322 θθθ +−−= aa (2.24)

)cos(''NP'cos 32322 θθθ +−= aa . (2.25)

Squaring and summing both sides of equations (2.24) and (2.25) then using some

trigonometric transformations, the solution to calculate θ2 is expressed by

 3

2
1

2
1

tan θφθ −−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
±=

Φ

Φ−

K
K

 (2.26)

23

where

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+
=⎟

⎠
⎞

⎜
⎝
⎛= −−

1

22
11 tan

''NP'
'NP'tan

dP
PP

z

yxφ (2.27)

 2
1

22
3

2
2

2
3

2
1

22

)(2

)(

dPPPa

aadPPP
K

zyx

zyx

−++

−+−++
=Φ . (2.28)

The solutions for θ2 and θ3, as shown in Figure 2.11, corresponds to the upper-elbow

configuration. It will change if another configuration is selected.

Figure 2.11 – Projecting the point P onto x1 - y1 plane.

The geometric approach is an exact mathematical solution for solving the inverse

kinematics problem of simple configuration manipulators with revolute joints. It can

also define various possible arm configurations based on the link coordinate systems

and human arm geometry to analyse all the possible solutions. The appropriate solution

is chosen by the user according to the specific configuration of the manipulator.

However, this is a complex approach with many trigonometric transformations. For

each specific configuration there is an individual way to derive the inverse kinematics

Y1

X1 P’’ M’’

P

M

N

M’’’

P’’’

θ2

θ3

24

solution, so the geometric approach is dependent on user-defined solutions and is not a

systematic method.

2.4 Algebraic approach

2.4.1 Principle of algebraic approach

When a manipulator has a simple geometry where at least one of the distances (ai and

di) are zero and most of the angles (θi and αi) are zero or ±π/2, the inverse kinematics

solution can be analytically determined by an algebraic approach [2.3]. In [2.10] a

solution was proposed to directly determine joint angles from the kinematics equations

by using matrix algebraic techniques. This approach was applied to solve the inverse

kinematics problem for a Puma manipulator [2.10], [2.11] and a Stanford/JPL

manipulator [2.12].

In general, the description of the end-effector coordinate frame of a n-link manipulator

with respect to the base coordinate frame is given by

)()()(12
2
11

1
00 n

n
n

n θθθ −= AAAT K (2.29)

where)(1 i
i
i θ−A is the homogenous transformation relating the coordinate frame of link i

to the coordinate frame of link i-1.

The origin of the end-effector coordinate frame can be measured and represented by a

given location (position and orientation) with respect to the base coordinate system as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

1000
1000

0
1

zzzz

yyyy

xxxx

pasn
pasn
pasn

pasn
U (2.30)

where 0p is the position vector and n, s, a are unit vectors to define a coordinate frame

for the end-effector [2.1].

25

Thus, the necessary equations representing the relationship between a given location of

the end-effector in the workspace and corresponding joint angles can be determined by

)()()(

1000

12
2
11

1
01 n

n
n

zzzz

yyyy

xxxx

pasn
pasn
pasn

θθθ −=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= AAAU K (2.31)

where n, s, a, and 0p are the known vectors representing the orientation and position of

the end-effector in the workspace and the joint angles θi (i = 1, 2,.., n) are unknown

variables. Hence, the inverse kinematics solutions for a manipulator can be obtained by

solving equation (2.31).

To find the solutions of these joint angles, Paul [2.10] proposed separating each joint

angle onto the left-hand side, one after another, by successively pre-multiplying

equation (2.31) by 1−i
iA (i = 1, 2,.., n-1). These joint angles are then determined by

equating appropriate elements on both sides of the matrix equation. For example, for a

six D.O.F manipulator, the first matrix equation can be obtained by pre-multiplying

equation (2.31) by 1
0A

 () 2
6
5

5
4

4
3

3
2

2
11

11
0 UAAAAAUA ==
−

. (2.32)

In equation (2.32), the elements on the left-hand side are constants, or functions, of θ1,

but the elements on the opposite side are constants, or functions, of the remaining joint

angles θ2, θ3,..., θ6. By finding and equating appropriate elements from both sides, the

joint angle θ1 can be solved. If the implementation is continued by pre-multiplying

equation (2.32) by 2
1A , a new matrix equation can be obtained

 () () 3
6
5

5
4

4
3

3
21

11
0

12
1 UAAAAUAA ==

−−
 (2.33)

Thus, once the joint angle θ1 has been determined, the matrix elements on the left-hand

side of equation (2.33) are functions of θ2 only. The matrix elements of the right-hand

26

side are either constants, or functions, of the remaining joint angles (θ3 to θ6). Similarly,

by equating appropriate elements on both sides of the matrix equation, the solution to

determine the joint angle θ2 can be sequentially obtained. The procedure is repeated to

determine the solutions for the remaining joint angles.

2.4.2 The algebraic approach for a three-link manipulator

The algebraic approach is applied to the first three links of the PA10 manipulator to

determine expressions for the joint angles θ1 to θ3 (Figure 2.9). From its geometric

parameters, the transformation matrices related to the coordinate systems of links 1, 2,

and 3 have been described by equations (2.6) to (2.8) respectively. The homogenous

transformation matrix 3
0T from the coordinate frame attached to the end-effector to the

base coordinate frame has also been derived as equation (2.9). If the location of the end-

effector is given, all elements of the homogenous matrix 3
0T are defined in the matrix U1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

1000

3
01

zzzz

yyyy

xxxx

pasn
pasn
pasn

TU . (2.34)

As proved in [2.1], the inversion of a general 4x4 transformation matrix, 3
0T , can be

determined by

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

== −

1000

)('

'

'

13
0

0
3 apaaa

spsss
npnnn

zyx

zyx

zyx

TT . (2.35)

Applying equation (2.35) to 1
0A , an inversion matrix 11

0)(−A is determined. Pre-

multiplying both sides of equation (2.34) by 11
0)(−A gives

27

 () 3
2

2
11

11
0 AAUA =
−

. (2.36)

The left-hand side of equation (2.36) contains functions of the joint angle θ1 only as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−
++++

1000
11111111

1

11111111

yxyxyxyx

zzzz

yxyxyxyx

pCpSaCaSsCsSnCnS
dpasn

pSpCaSaCsSsCnSnC

. (2.37)

The right-hand side of equation (2.36) is expressed as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
+−

=

1000
0100

0
0

222332323

222332323

3
2

2
1

SaSaCS
CaCaSC

AA . (2.38)

Therefore, after equating the elements in the third row, fourth column of equations

(2.37) and (2.38), the solution to the joint angle θ1 is given as

 011 =− yx pCpS . (2.39)

The joint angle θ1 can be calculated by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

p
p1

1 tanθ . (2.40)

Having determined θ1, the left-hand side of equation (2.36) is completely defined. If

equations (2.37) and (2.38) are equated at elements in the first row, fourth column and

elements in the second row, fourth column, two new equations which contain functions

of θ2 and θ3 can be derived as

28

 yx pSpCCaCa 1122233 +=+ (2.41)

 122233 dpSaSa z −=+ . (2.42)

After squaring and summing both sides of equations (2.41) and (2.42), θ2 is eliminated

and θ3 is finally determined by

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
±= −

K
K 2

1
3

1tanθ (2.43)

where

32

2
3

2
2

2
1

2
11

2
)()(

aa
aadPpSpC

K zyx −−−++
= . (2.44)

To derive the solution for the joint angle θ2, equations (2.41) and (2.42) can be rewritten

as

 2331122 CapSpCCa yx −+= (2.45)

 233122 SadpSa z −−= . (2.46)

After several trigonometric calculation steps, the joint angle θ2 is finally determined by

 32

2
1

2
1

tan θφθ −+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
±=

Φ

Φ−

K
K

 (2.47)

where

29

 2
1

2
113

2
2

2
3

2
1

2
11

)()(2

)()(

dppSpCa

aadppSpC
K

zyx

zyx

−++

−+−++
=Φ (2.48)

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

= −

yx

z

pSpC
dp

11

11tanφ . (2.49)

Note that θ2 and θ3 are multi-solution functions according to the plus or minus sign

adopted in equations (2.43) and (2.47).

This approach uses matrix algebra to find the inverse kinematics solution for all joints

sequentially. These solutions can be directly determined from the kinematics equations

by using matrix algebraic techniques and trigonometric transformations. It can be

applied to most industrial manipulators. However, the decision of how to choose

suitable elements to determine the necessary equations when equating both sides of a

matrix is largely based on intuition. It also involves a complex procedure of

trigonometric transformation and the number of computations is higher than the

geometric approach as well. However, the algebraic approach is simpler and more

systematic than the geometric approach which involves complex geometric projections.

2.5 Conclusion

This chapter has presented an overview of traditional approaches to solve the inverse

kinematics of a robotic manipulator. Analytical approaches, geometric and algebraic,

attempt to mathematically produce an exact solution for the inverse kinematics problem

by analysing the link geometry and using trigonometric transformation techniques. They

can be used in real-time computer-based control applications. However, these

approaches are only possible for relatively simple robotic manipulator configurations

and involve an intuitive way to decide an appropriate result from the several possible

solutions available for a particular manipulator. The traditional methods develop their

computational algorithms based on the knowledge of manipulator geometry. In some

cases when manipulator geometry cannot be exactly specified, these solutions become

difficult or impractical. Therefore, an alternative approach using artificial neural

30

networks can be used to overcome this problem. In the next chapter, neural networks are

presented to solve the inverse kinematics problem of unknown geometry manipulators.

2.6 References

[2.1] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics – Control, Sensing, Vision

and Intelligence. McGraw Hill, 1987.

[2.2] J. Denavit and R. S. Hartenbergh, “A Kinematic Notation for Lowe-Pair

Mechanisms Based on Matrices”, Journal of Applied Mechanics, June 1955,

pp. 215-221.

[2.3] W. Khalil and E. Dombre, Modelling, Identification & Control of Robots.

Hermes Penton Ltd., 2002.

[2.4] G. Z. Grudic and P. D. Lawrence, “Iterative Inverse Kinematics with

Manipulator Configuration Control”, IEEE Trans. on Robotics and

Automation, vol. RA-9(4), August 1993, pp. 476-483.

[2.5] R. Featherstone, “The Position and Velocity Transformation between Robot

End-Effector Coordinates and Joint Angles”, Int. Journal of Robotics

Research, vol. 2(2), 1983, pp. 35-45.

[2.6] General Purpose Robot PA10-6CE – Instruction Manual for Installation,

Maintenance and Safety, Mitsubishi Heavy Industries Ltd.

[2.7] C. Bergren, Anatomy of a Robot. McGraw Hill, 2003.

[2.8] C. S. G. Lee, “Robot Arm Kinematics, Dynamics, and Control”, Computer,

vol. 15(12), December 1982, pp. 62-80.

[2.9] C. S. G. Lee and M. Ziegler, “Geometric Approach in Solving Inverse

Kinematics of Puma Robots”, IEEE Trans. on Aerospace and Electronic

Systems, vol. AES-20(6), November 1984, pp. 695-706.

[2.10] R. Paul, B. Shimano, and G. E. Mayer, “Kinematic Control Equation for

Simple Manipulators”, IEEE Trans. on Systems, Man, and Cybernetics, vol.

SMC-11(6), June 1981, pp. 449-455.

31

[2.11] R. Paul, Robot Manipulator: Mathematics, Programming and Control. MIT

Press, 1981.

[2.12] A. J. Koivo, Fundamentals for Control of Robotic Manipulators. John Wiley &

Sons, 1989.

[2.13] J. Angeles, Fundamental of Robotic Mechanical System: Theory, Methods and

Algorithms – Second Editor. Springer, 2003.

[2.14] B. Z. Sandler, Robotics - Designing the Mechanism for Automated Machines.

Academic Press, 1999.

32

CHAPTER 3

BACKGROUND OF NEURAL NETWORKS FOR INVERSE

KINEMATICS APPROXIMATION OF ROBOTIC

MANIPULATORS

3.1 Introduction

The previous chapter described traditional methods for solving the inverse kinematics

problem, which plays an important role in robotic control. However, these solutions are

based on the geometric parameters of robotic manipulators to develop their

computational algorithms. Using the traditional methods becomes difficult or

impractical if the geometric parameters are unknown. One such case is a robot-vision

system in which the position of a robot is measured by a vision-based measurement

system. If there is any change in the visual measurement system or the robot’s base is

moved in the workspace, the traditional methods will fail. This chapter presents a

review of alternative solutions using artificial neural networks to solve the inverse

kinematics problem assuming no prior knowledge of the manipulator’s geometric

configuration.

There have been many solutions proposed using neural networks to solve the inverse

kinematics problem of an unknown geometry manipulator. One solution followed a

closed-loop control scheme where a neural network is used to directly learn the

nonlinear relationship between the displacement in the workspace and control signal in

the joint angle space to achieve a desired position [3.1]-[3.5]. Another solution was

proposed to learn the inverse mapping of both the position and velocity from the

workspace to joint space by using a numerical solution based on the Jacobian matrix

[3.6]-[3.12]. Other schemes used a self-organized network system [3.13]-[3.15], a

multi-layer perceptron network [3.21]-[3.29] and a radial basis function network [3.32]-

[3.35] to learn a mapping function from the world space to joint angle space.

This chapter firstly discusses the background to neural computing. A literature review

of two of the most popular networks, the multi-layer perceptron networks (MLPNs) and

radial basis function networks (RBFNs), to solve the inverse kinematics problem are

33

then introduced. The specific characteristics of both network types are analysed and

compared. Finally, the reasons why RBFNs have been adopted in this research are

discussed in the conclusion.

3.2 Background of neural computing

In general, a neural network consists of a number of simple processing nodes called

artificial neurons which are connected together to form functional layers (input, output,

and hidden layer) [3.16]. A neuron model represents a biological neuron that fires when

its inputs are significantly excited (i.e., high enough) and an activation function (linear

or nonlinear) is used to measure that excitation. There are many kinds of activation

functions, such as threshold, sigmoid and hyperbolic tangent, that can be used in a

neuron model. For example, Figure 3.1 presents a generic artificial neuron with the

threshold function.

Figure 3.1 - A generic artificial neuron.

In this basic model, each neuron accepts a weighted set of inputs and responds by an

output according to excitation strength and activation function characteristics. A neuron

first forms the sum of weighted inputs to produce a stimulus signal given by

 i

N

i
ijj xWr ∑

=

=
1

 (3.1)

where ijW is a synaptic weight between an input vector xi and the jth neuron.

r

f(r)

Σ

x1

x2

xN

W1j

W2j

WNj

rj qj

34

Synaptic weights represent the strength of interconnections between inputs and a neuron

(or between neurons of other layers) and can be adjusted through a learning process.

The stimulus signal rj is the sum of the weighted inputs which take the form of data

items either from the environment or from other network elements, possibly from the

outputs of nodes in a previous layer. To expand the controllability of neurons, a bias is

added to the stimulus signal rj. It is equivalent to an additional input with a synaptic

weight of bj added to the neuron’s inputs [3.16]. The output is then calculated as a

function of the stimulus signal by

)(jjj brfq += or (3.2)

).(
1

ji

N

i
ijj bxWfq += ∑

=

 (3.3)

This output is a result of the neuron’s response according to inputs, synaptic weights

and activation function characteristics. Generally, knowledge stored in neural networks

(combination of many generic neurons) is represented by their structure (i.e., topology,

number of hidden layers and number of neurons in each layer), the specific features of

neurons (activation function) and the values of the interconnection weights between

neurons. Figure 3.2 presents a simple feed-forward neural network.

Input layer Hidden layer Output layer

x1

x2

xN

y1

y2

yM

.

.

.
.
.
.

.

.

.

)1(
11W

)1(
PNW)2(

MPW

)2(
11W

)1(
12W)2(

12W

Figure 3.2 - General structure of a neural network.

35

It contains an input layer which is used to receive stimuli from the environment, one or

more hidden layers whose computation nodes intervene between the external inputs and

the network output layer in some useful manner and an output layer which creates

network responses according to inputs presented.

If a neural network is used to approximate a system model, the number of inputs and

outputs of this network can be determined from the physical characteristics of this

system. They are often equal to the number of input and output parameters of the

system model (e.g., three inputs and three outputs for the inverse kinematics problem of

a 3-link robot). However, other important features, such as the number of hidden layers

and the number of neurons in each layer, the connection type (feed-forward or

recurrent) between the layers and the neuron model (perceptron, radial basis function)

need to be tailored (or investigated) according to the individual problem.

A common problem in neural network applications is to reproduce a function by

learning from a set of examples (i.e., pairs of input-output data) without any knowledge

of that function. This learning process is called supervised training [3.18]. The

supervised training process aims to adjust the association weights between the

processing nodes (neurons) so that errors between the actual outputs and desired

responses of a network are minimised by an optimisation process. This training process

ceases when the error falls below an expected goal or the maximum number of epochs

is exceeded. As a result, a neural network can learn to approximate any nonlinear

function by constructing the input-output mapping from information provided by

training examples. After training, the neural network is able to produce a reasonable

response for a new input according to its generalisation capability. The network

operation is fast because it just comprises of simple arithmetical calculations. Neural

networks also have the capability to adapt their association weights to changes in the

surrounding environment, even in real-time through an online training process.

Properties such as learning ability, generalisation and adaptability make neural networks

distinctly different from conventional methods based on mathematical algorithms. For

that reason, neural networks can be applied to a wide range of complex problems in

many scientific fields including robotics control [3.16], [3.17].

36

3.3 General training schemes of neural networks used for inverse kinematics

approximation

In this specific application, a neural network is applied to solve a problem called

functional approximation in which the network should initially be trained through an

offline process to approximate the inverse kinematics transformation of the manipulator.

The network can then work as an independent controller in the operational phase as

shown in Figure 3.3. This is called a feed-forward controller and is the most popular

scheme in neural network applications. The success of the feed-forward scheme is

closely related to the generalisation ability of the neural network to produce (or

generalise) an appropriate response to any input that it has not been trained with, based

on the experiential knowledge stored in its structure.

To train the network in this feed-forward scheme, a general learning architecture can be

used as shown in Figure 3.4 [3.19]. The training data is a set of reference joint angles θR

and actual positions XA. The training process can be implemented by two independent

steps, collection of the training data and updating the network weights. To collect

training data a set of arbitrary reference joint angles is sent to the robot’s control system

and the robot then moves to specific positions in the workspace corresponding to this

NN Dynamic controller Robot
XR θR

θA

-

NN – Inverse kinematics approximation using a neural network.

Dynamic controller – Standard PID controller for joint angle control.

XR , XA – Desired and actual positions of the robot in the world space.

θR , θA – Desired and actual joint angle references.

Inverse kinematics

Robotic system

XA

Figure 3.3 – General structure of inverse kinematics approximation using a

neural network.

37

command set. The neural network then uses this pair, actual position and reference joint

angle, as a training sample in the supervised learning procedure. The error between the

actual response of the network output and the reference joint angle is used to update the

network’s weights. This is the most common training scheme in neural computing.

However, this training architecture has a major drawback that may lead to poor

generalisation in some operational regions when operating as a feed-forward controller.

This is because the training region, where data was collected, is sometimes far from the

actual operating region. This problem is due to the fact that training data is collected in

the network output space, instead of the network input space. For example, training data

can be sampled regularly for a range of joint angles (the network output space) in Figure

3.3, but they will be arbitrary positions in the Cartesian space (the network input space).

The collected data may not reflect the full characteristics of the desired function (the

inverse kinematics) and the network after training may not work well in this operational

phase. To overcome this difficulty, training patterns could be collected over a wide

region producing a significant amount of data. This may be unreasonable and inefficient

since the neural network has to learn more training examples than is actually necessary.

Another training scheme called the specialised learning architecture [3.17], [3.19] can

be applied as shown in Figure 3.5. This architecture directly uses errors between the

desired and actual outputs of the robotic system to adjust the weights so that the errors

θR

θN

XA

ROBOTIC SYSTEM
Actual
position

NN’s output
angle

Δθ

-

Reference
joint angle

NN

 {XA, θR} - Training pattern.

Figure 3.4 – The general training architecture.

38

decrease. In this training architecture the training data can be collected in the network

input space to approximate the desired function over the whole operating region.

However, because the training algorithm criteria are in terms of the network output

(actual joint angles) instead of the system output (actual positions), the error ΔX in the

Cartesian space should be projected back into the error Δθ in the joint angle space.

Thus, it requires knowledge about the Jacobian matrix of the robot kinematics. The

Jacobian matrix contains partial derivatives of the position elements of each joint.

As the training and operational phases of the network are the same structure (Figures

3.3 and 3.5), the specialised learning architecture is able to update the network weights

online while operating in regions of interest.

In this research, the training process was performed using this general learning

architecture. However, the idea of collecting constrained data was proposed to

overcome the drawback of poor generalisation in the operational phase due to the

arbitrary collection of data.

Desired
position

Reference
joint angles

NN ROBOTIC SYSTEM

-

XR

Actual
position

XA

ΔX

Δθ

θR

θ∂
∂

=
XJ - Jacobian Matrix

Figure 3.5 - Specialized learning architecture.

39

3.4 Multi-layer perceptron networks

Multi-Layer Perceptron Networks (MLPNs) are the most widely encountered neural

networks in control problems. They are a powerful solution to solve problems such as

function approximation or process modelling. This is because of their inherent nonlinear

mapping capabilities which can deal with a wide range of process features [3.17]. This

section presents the general characteristics of MLPNs and a literature review of MLPNs

used for inverse kinematics approximation.

3.4.1 Structure of MLPNs

MLPNs, one of the most popular neural networks, have been successfully applied to

solve many complex problems by using a supervised training method known as the

back-error propagation algorithm (back propagation) [3.16], [3.20]. An MLPN typically

consists of an input layer, one or more hidden layers and an output layer of

computational nodes as shown in Figure 3.6.

In an MLPN, each node includes a nonlinear activation function to present the nonlinear

relationship between input-output pairs similar to the biological motivation of brain

Input
layer

Hidden
layer 2

Output
layer

Hidden
layer 1

X1

X2

X3

Xn

… … … …

Y1

Y2

Ym

Figure 3.6 – Architecture of an MLPN with two hidden layers.

40

neurons. Figure 3.7 presents a common form of the activation function called the

sigmoid expressed as

)exp(1

1)(
kr

rf
−+

= (3.4)

where r is the stimulus signal of the neuron which is a weighted sum of all synaptic

inputs calculated by equation (3.1) and k is the slope parameter of the sigmoid function.

Basically, knowledge in an MLPN is represented by the network configuration (i.e., the

number of hidden layers and number of neurons at each hidden layer) and the value of

association weights between neurons in related layers as well. Thus, in order to develop

a functional approximation based MLPN for a system, some important aspects related to

the selection of the network structure parameters should be investigated in accordance

with the system’s characteristics. This includes the number of hidden layers, numbers of

hidden neurons at each layer and the type of activation function. Specifically, the

question of how to select an appropriate network structure is always considered and

needs to be resolved at the first stage [3.17]. In most cases, the structure of the MLPN is

often chosen in a heuristic way. Thus, for a specific problem, a reasonable number of

hidden layers and neurons at each hidden layer are initially selected based on

experience. Adjustments then can be made on a trial and error basis, if the chosen

structure appears unsatisfactory. Once the selection of network structure has been

decided, the training process is implemented to update the network weights so that the

r

f(r)

1

0

Figure 3.7 - Sigmoid function.

41

network can perform as desired. A famous supervised learning method called the back

propagation algorithm is presented in the next section.

3.4.2 Back propagation training algorithm

The back propagation algorithm was presented in [3.16], [3.17] to train MLPNs with

more than one hidden layer. It is based on an idea that the error signal at the output layer

can be propagated backwards through the network to update the hidden layer weights.

This can be briefly described as follows.

At the output layer, the error signal of neuron j is defined by

 jjj yte −= (3.5)

where tj is the target output of neuron j and yj is an actual output of neuron j.

The purpose of the training process is to adjust the weights between neurons, so that this

output error signal ej decreases to a minimum. An optimisation algorithm can be applied

with the constraint as an error energy function, which depends on the network weights,

defined by

 22)(
2
1

2
1

jjjj yte −==ε . (3.6)

If L is the total number of training samples presented to the network, the average error

energy of all outputs throughout all training samples can be obtained by equation (3.7)

∑∑
= =

−=Ε
L

l

M

j
jj lylt

L 1 1

2))()((
2
1 (3.7)

where tj(l) is the lth target output of neuron j, yj(l) is the actual output of neuron j

corresponding to stimulus of the lth input and L and M are the number of training

samples and output neurons respectively.

42

This average error energy E (called mean square error) is a function of all adjustable

parameters (synaptic weights and/or bias levels) and could be used as the cost function

to measure the learning performance. A training process is then used to adjust the

network weights in order to minimise that cost function. It is an optimisation problem

and can be implemented by several popular methods such as the steepest descent (or

gradient descent), Newton and Gauss methods [3.16]. Based on the gradient descent

method the network weights are adjusted according to

.

ji

Old
ji

New
ji w

Eww
∂
∂

−= η (3.8)

The correction of synaptic weight jiwΔ can be expressed as

.

ji
ji w

Ew
∂
∂

−=Δ η (3.9)

In order to calculate the correction jiwΔ at iteration k, the partial derivative of the energy

function E with respect to the weight wji can be obtained by multiplying a range of the

partial derivatives of related functions as shown in [3.17], [3.20]. Finally, it is

determined by

)())(()()(kykrkekw ijjjji ϕη &=Δ (3.10)

where η is the learning rate, ej(k) is the output error of neuron j,))((krjjϕ& is the

derivative of the sigmoid function and yi(k) is the output of neuron i at the preceding

layer.

From equation (3.10), a key factor involved in correcting the network weight ijwΔ is the

output error signal ej(k) of neuron j. Consequently, it is necessary to consider two cases

depending on whether the location of neuron j is in the output layer or hidden layers.

43

If neuron j is located in the output layer, the error ej(k) is directly calculated from the

desired output (training data) and actual response as in equation (3.5). The correction

weight)(kwijΔ can then be determined from equation (3.10).

If neuron j is located in one of the hidden layers, the error signal ej(k) cannot be directly

calculated from the training data. However, it can be obtained recursively from the error

signals of the output-layer neurons, or the following layer, that are connected to this.

The error of the output-layer neurons are propagated backwards to determine the

hidden-layer weights. From equation (3.10) a function of the output error called the

local gradient)(kjδ is defined by

)).(()()(krkek jjjj ϕδ &= (3.11)

This)(kjδ can be regressively determined from the local gradient of the following layer

as

∑=

p
pjpjjj kwkkrk)()())(()(δϕδ & (3.12)

where)(kpδ is the local gradient computed for neurons p in the following hidden layer

(or output layer) that are connected to neuron j and)(kwpj is the weight associated with

the connection between neuron p and neuron j.

The correction weight)(kwijΔ can then be determined by equation (3.10).

3.4.3 Using MLPNs to approximate the inverse kinematics

The MLPN is the most popular neural network applied to functional approximation

problems. Thus, the use of MLPNs in the inverse kinematics problem has occurred to a

greater extent compared to other networks. There have been many approaches using

various structures based on MLPNs to approximate the inverse kinematics. This is not

only for simple configurations (ordinary manipulators) but also some complex cases,

44

such as redundant or singular configurations. This section presents the research that

reflects the most important aspects of MLPNs applied to the inverse kinematics

problem.

An approach using MLPNs with two hidden layers trained by the back-error

propagation algorithm was proposed to approximate the inverse kinematics function in

two- and three-dimensional space [3.22], [3.23], [3.26]. Figure 3.8 shows the general

structure of the MLPN where its inputs are the end-effector coordinates (Cartesian

space) and its outputs are the joint angles.

In [3.23] the effect of structural parameters (i.e., the number of hidden layers and the

number of neurons in each hidden layer), iteration steps and different numbers of

training points on the performance of the inverse kinematics approximation was

investigated. A more complex MLPN configuration is likely to produce a more accurate

inverse kinematics approximation. However, it also leads to the number of iterations

increasing significantly to satisfy the required training goal. Similarly, when increasing

the number of training points (the size of training data) the network’s performance

(generalisation ability) seems to be improved, but it also requires many more iterations

Hidden
layer 2

Hidden
layer 1

X

Y

θ1

θ2

3-D position
coordinates

Z θ3

… …

Joint angles of a
3-link manipulator

Figure 3.8 – A general structure of the MLPN to approximate the inverse kinematics of

a manipulator.

45

to satisfy the training goal. The general trend of an MLPN training process is that the

number of iterations increases exponentially with the number of training points and

rapidly with the number of hidden neurons. For example, with the structure of 2-10-10-

2 (two hidden layers), the training process needed 150,000 iterations to achieve a 1-

percent RMS error training accuracy for 73 training points collected arbitrarily in the

two-dimensional workspace [3.23]. In some cases when the number of hidden neurons

or training points were too large, the training process cannot even converge to an

expected error goal.

In [3.24] an MLPN with various structures of the input layer was proposed to solve the

inverse kinematics problem of a 6 D.O.F manipulator. Three different forms

representing the orientation of the end-effector with respect to the base were defined: a

3x3 rotation matrix (9 elements), a set of 3 Euler angles (3 elements) and one angle and

a 1x3 unit vector (4 elements). According to the three ways of representing the

orientation, there were three different network configurations established to perform the

inverse kinematics approximation. The simulation investigated the effect of the each

network configuration on the operational phase. The results showed that the first

configuration with 9 elements representing the orientation produced the best

performance. However, all three cases produced significant performance errors.

Other solutions were proposed by modifying the MLPN structure to improve the

performance of complex configuration manipulators with redundancy and singularities.

For example, a solution combining an MLPN and a lookup table to solve the inverse

kinematics problem of a redundant manipulator was proposed in [3.25]. There are many

solutions (sets of joint angles) that are available for a single position of the end-effector

of a redundant manipulator. The MLPN should be trained to recognise different

solutions corresponding to each common position according to the specific

configuration. Therefore, lookup tables can be used to store the network knowledge

corresponding to each configuration. After training, individual lookup tables of the

network weights were created for each configuration (or orientation) of the redundant

manipulator. These lookup tables can then be employed, depending on the required

orientation of the manipulator, to obtain suitable joint angles for a given position of the

end-effector in the workspace.

46

A new approach using an MLPN in parallel with a conventional inverse kinematics

computation module was developed in [3.27]. The MLPN operated as a compensation

component to improve the accuracy of the position control system. Using this scheme

the MLPN can compensate for inaccuracies due to mismatch between the system model

used to develop the inverse kinematics module and the real robotic system. Figure 3.9

shows the general diagram of this combination configuration.

The input layer of the MLPN in Figure 3.9 comprises of 9 inputs (Px, Py, Pz, ax, ay, az,

sx, sy, sz) to represent a location (position and orientation) of the end-effector. Training

was implemented by an offline process following the specialised learning architecture in

which the error ΔX between desired and actual location can be used to adjust the

network weights. This error ΔX needs to be projected back to the target output Δθ of the

MLPN in the joint angle space by using

 XJ Δ=Δ −1θ (3.13)

where 1−J is the inverse of the Jacobian matrix which can be determined from the

kinematic equations of the manipulator.

The solution using the MLPN operating in parallel with a conventional inverse

kinematics computation module improved the positioning accuracy of a six D.O.F

XD

Desired
position

ROBOT
XA θ

δθ

θ*

+

+

Compensation
signal

NEURAL
NETWORK

ΔX
-

ΔθA

-

IK
MODULE

Actual
position

Figure 3.9 - Combination between a conventional inverse kinematics module and an

MLPN to improve positioning accuracy of the manipulator.

47

manipulator when there were errors in the conventional inverse kinematics model.

However, the training process is complex and based on prior knowledge of the

manipulator kinematics.

In [3.28], [3.29] an approach using modular neural networks to solve the inverse

kinematics problem was presented. The principle of this approach was that several

MLPNs, each solving the inverse kinematics for one joint, were concatenated in order to

find the set of joint angles from a given location of the end-effector in a sequential way.

The modular neural network’s configuration is shown in Figure 3.10.

As seen in Figure 3.10, each joint angle is sequentially derived directly from the

corresponding homogenous transformation matrix. In general, the manipulator’s

kinematics equations can be expressed by a multiplication of the homogenous

transformation matrices as follows:

)()...()(1
2

1
21

0
1

0
n

n
nn AAA θθθ −=T (3.14)

 = ⎥

⎦

⎤
⎢
⎣

⎡

10

00
nn PR (3.15)

where 0
nR and 0

nP are the rotation matrix and translation vector of the end-effector with

respect to the base coordinate system respectively. By using the Euler angle type [φ, θ,

ψ] for the orientation representation, a specific location of a frame relative to another

can be described by a 6x1 vector. Thus, each neural module consists of 6 inputs

0
2−nX

Neural
Module n

Neural
Module n-1

Neural
Module 1

0
nX 0

1−nX 0
1X

…

nθ 1−nθ 1θ

Figure 3.10 – Configuration of a modular network to solve the inverse kinematics

problem.

48

(vector 0
iX) and 7 outputs (vector T

iiX],[0
1 θ−). The hidden layer’s specification (number

of hidden layers and number of neurons in each layer) is adjusted according to the

application. The learning process is performed independently for each neural module by

the back propagation algorithm. This learning aims to drive the manipulator to reach a

given location by measuring corresponding input-output pairs),(0 θiX [3.28]. Thus, the

output error is defined by:

 T
ii

T
ii EBPE)]()([*

1 θθ −= − (3.16)

where T
iEBP)(1− is the back propagation of error 1−iE through the neural module i-1.

This training process is complicated due to the use of the back propagation method

between different modules (individual networks) and is dependent on the forward

kinematics expressions. Therefore, it does not seem suitable for practical applications.

MLPNs have been a popular solution for solving the inverse kinematics problem. It is

due to their simple structure and their inherent nonlinear mapping capabilities which can

deal with a wide range of process features. They are able to solve the inverse kinematics

problem through interacting with input-output data using a variety of schemes. An

MLPN is different from other radial basis function types because of its wider

generalisation ability with the same training data set.

0
1−iX 0

iX

iE

iθ

NEURAL

MODULE i

BP

(6x1)

(7x1)

Figure 3.11 – Structure of a module (MLPN) in the modular network.

49

However, there is no reasonable mechanism to select a suitable network configuration

(number of hidden layers and number of neurons at each layer) relating to the system

characteristics represented by training data. Most of the structural choices are based on

the user’s experience and/or heuristic rules, so their performance is unpredictable. In

addition, training MLPNs using the back-error propagation algorithm is complex and

slow. It involves a nonlinear model formulated in the least squares manner (to build the

energy function of the training process) which requires an iterative numerical procedure

for optimisation. For a complex MLPN structure (multi-hidden layers and many

neurons at each hidden layer) required for a complex configuration manipulator, or a

large set of training data, the training process is slow to converge to a specific goal and

sometimes gets stuck at a local minimum.

The performance accuracy as stated in [3.23] and [3.24] is likely to be unsatisfactory for

application in a practical robotic system.

3.5 Radial basis function networks

Radial basis function networks (RBFNs) are feed-forward networks and are different

from MLPNs and other networks because of the process performed at the hidden layer.

The basic architecture of an RBFN is a three layer network consisting of an input layer,

a single hidden layer and a linear output layer [3.16]-[3.18]. Rather than using the

sigmoid activation function as in MLPNs, hidden units of RBFNs use the Gaussian

function (or some basis kernel function) where each hidden unit acts as a local selector

that computes a score for the match between the input vector and its centres. The basis

function units are highly specialised pattern detectors. A network output is then

produced by linearly combining the weighted outputs of all hidden units. Due to this

specific structure, training RBFNs is simple and straightforward using the least squares

approach. Recently, many solutions using RBFNs to solve the inverse kinematics

problem have been developed as an alternative approach to MLPNs.

3.5.1 Structure of RBFNs

Figure 3.12 shows the typical architecture of an RBFN. The input layer is made up of

the source nodes whose number is equal to the dimension N of input vector x. The

50

hidden layer is a group of nonlinear units which contains an activation basis function (N

inputs, one output) as a (RRN →) mapping function. This basis function, where a

Gaussian is the most common, has parameters such as centre and width. The centre of a

Gaussian function is a vector whose size is the same as the dimension N of the input

vector x. Each Gaussian function has its own centre point and the number of centre

points in the workspace is the number of hidden units of the RBFN.

If an input vector x (N dimensions) is sent to the RBFN, the output of the ith Gaussian

hidden unit can be expressed by

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=Φ 2

2

2 expexp)(
σσ

ii
i

dCx
x (3.17)

where di is the radial distance between the input vector x and centre Ci of the basis

function i. It is computed by an Euclidian distance as

.)(

1

2∑
=

−=
N

k
kiki Cxd (3.18)

x2

Gaussian
hidden layer

Linear output
layer

y1

x1

xN

Input layer

…
yM

…

)(LL CxG −

)(22 CxG −

)(11 CxG −

… …

W11

W1M

W21

W2M

Figure 3.12 – The typical architecture of a radial basis function network,

N inputs - L hidden units – M outputs.

51

As shown in Figure 3.13, the Gaussian function of a hidden unit is a curve which has a

peak at zero distance (if the input vector coincides with the centre) and decreases as the

distance from the centre is increased. The width σ defines the shape of the Gaussian

function (thin or flat). The smaller the width, the thinner the shape of the Gaussian

function. For convenience, the width of the Gaussian function can be represented by a

spread value (SP). If the distance di is equal to the spread, the output of the Gaussian

function is 0.5. Thus, equation (3.17) can be rewritten as

.8321.0exp)(

2
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

spread
dx ii (3.19)

The width and the spread are related to each other as

.

8321.0)5.0ln(
spreadspread

=
−

=σ (3.20)

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

GAUSSIAN FUNCTION

Input X

O
ut

pu
t G

SP = 10

SP = 5

SP = 2

Figure 3.13 - Gaussian function with C = 0 and the SP = 2, 5 and 10.

Based on the particular structure of the RBFN, the transformation from the input space

to the hidden unit space is nonlinear, whereas the transformation from the hidden unit

52

space to the output is linear. Therefore, for an RBFN with L hidden Gaussian units, an

output j of the output layer can be computed by

)(.)()(

1
xWxfxy

L

i
iijj ∑

=

Φ== (3.21)

where Φi(x) is the output of the ith hidden unit and Wij is the synaptic weight of

interconnection between the ith hidden unit and the output j.

The RBFN with N inputs, L hidden units and M outputs, as shown in Figure 3.12, is a

mapping function MN RRf →: from the N-dimensional space to the M-dimensional

space.

3.5.2 Training RBFNs

Knowledge of an RBFN is built based on the structure parameters of the hidden layer

(centres and spreads of hidden Gaussian functions) and the linear weights. Therefore, in

order to approximate a desired function, it is necessary to perform two independent

steps: building the structure of the hidden layer (selection of centres and spreads) and

supervised training of the linear weights. The first step is performed and then the

training process is implemented.

3.5.2.1 Building the structure of the basis function hidden layer

The selection of structural configurations in terms of the number and position of basis

function centres is important because it directly affects the quality of the functional

approximation achieved by an RBFN. Normally, these centres can be determined with

relation to the inputs of the training data by some unsupervised methods. These include

Kohonen’s self-organized maps and the K-means clustering technique [3.16], [3.30].

There are different ways to select these centres as a smaller subset of the training data.

One is to choose a random subset from the training data and another is to incrementally

select a point that minimises the training error the most, e.g., the orthogonal least

squares technique [3.31]. However, the performance of an RBFN is referred to as a

local mapping function where only a few of the hidden units will respond when an input

is presented to the network. This is because each hidden unit has only a specific local

53

area in input space according to its centre position and the width of the radial basis

function. Thus, it requires many hidden units to achieve a good performance within the

input space and the number of centres tends to increase exponentially with respect to the

input space dimension for a particular problem [3.17]. This number may possibly be

higher than the number of hidden-layer nodes in an MLPN for the same problem.

To avoid increased complexity all hidden basis function units should have the same

width (or spread) which can be a scaled factor of the average of centre distances.

3.5.2.2 Adjusting the linear weights

Once the hidden basis function units are set, the second phase of supervised training is

used to adjust the linear weights. As there is a straightforward linear relationship

between the linear weights and the network outputs, training the linear weights of

RBFNs is simple. The optimal weights which minimise the cost function in the least

mean squares manner can be calculated by a linear optimisation algorithm. This linear

learning procedure is a significant advantage compared to the MLPN training process

which requires a nonlinear optimisation algorithm [3.18].

Suppose that a training data set consisting of P training patterns, {(X1, X2,..., XP); (T1,

T2,…, TP)} (inputs; target outputs), is presented to the network, the training process aims

to minimise the cost function

∑
=

−=
P

k
kk XfTE

1

2))(((3.22)

where f(Xk) is the network output corresponding to the training pattern Xk. It is

determined by equation (3.21) where the output of the ith basis function under stimulus

of Xk is calculated by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=Φ 2exp)(

σ
ik

ki
CX

X . (3.23)

54

Thus, after all training patterns are presented to the RBFN a (PxL) interpolation matrix

is obtained. Every row corresponds to the responses of all hidden units for each pattern

and every column to each hidden unit through all patterns

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΦΦΦ

ΦΦΦ
ΦΦΦ

=

)()()(

)()()(
)()()(

21

22221

11211

PLPP

L

L

XXX

XXX
XXX

L

MOMM

L

L

Φ . (3.24)

In order to determine an optimal weight vector that minimises the cost function in the

least squares manner, the interpolation method is used [3.16]. It can directly calculate

the linear weights from target outputs and pseudo-inversion of the interpolation matrix

from the following equation [3.18]

 () TΦΦΦW T1T −
= . (3.25)

This solution produces an optimal weight vector that minimises the cost function

derived from the sum-squared error as described in equation (3.22).

One of the simplest training algorithms is to use all the inputs of training patterns as the

centres of hidden basis functions and to calculate the linear weights based on the

interpolation method. This is called the strict interpolation method [3.16] because the

RBFN performs an exact mapping of all observations in the training set. In this case, the

interpolation matrix becomes square due to L = P. The generalisation of the RBFN after

training is dependent on how appropriately the hidden-layer structure (centres and the

spread of radial basis functions) has been selected. However, when there are too many

data points in a training set, RBFNs trained by the strict interpolation method are likely

to produce an over-fitted model and the size of the interpolation matrix is also too large

to be able to compute its inverse. A modified method called the orthogonal least squares

learning algorithm provides a simple and efficient means for fitting RBFNs [3.31]. This

solution is used to select a suitable set of centres from a larger set of candidates (training

data) by incrementally searching training points that minimise the training error the

most.

55

The other training method known as the Least Mean Square (LMS) algorithm [3.17] is

more general than the former and could be applied in an online training process. In this

method, the structure of the hidden layer has to be chosen before and may not be related

to the training data. This LMS algorithm is a typical training solution for feed-forward

networks and is similar to the back propagation method for MLPNs. In the batch

training mode, the linear weights are updated one time only at each epoch. At each

epoch, the mean square error (MSE) through all patterns of the training set is calculated

and then the weight adjustment can be determined by

.

)(
)(

)(
)(1 kW

ke
ke

PkW
MSEW

ji

j
P

k
j

ji
ji ∂

∂
−=

∂
∂

−=Δ ∑
=

ηη (3.26)

Finally, it can be calculated from the network errors and the outputs of the Gaussian

functions by

)(.)(

1
kke

P
W i

P

k
jji Φ=Δ ∑

=

η (3.27)

where L, M and P are number of hidden units, network outputs and training patterns

respectively. η is the learning rate (0 ≤ η ≤ 1).

In the incremental training mode, the linear weights are updated after each training

pattern is presented to the network. As a result, in one epoch these linear weights are

updated P times corresponding to P training patterns. This is also called the Delta rule

and the weight adjustment can be calculated by

).().(.)(kkekW ijji Φ=Δ η (3.28)

This LMS training algorithm is simple and is only related to a learning rate η and the

size of the training data. As this is a gradient descent method, the convergence of this

training process is highly dependent on the selected learning rate. If the learning rate η

is small, the training process will take a long time to converge to a specific goal. In

contrast, if a large learning rate is adopted, it could possibly lead to an unstable learning

process in which the training may never converge to a goal.

56

3.5.3 Using RBFNs to approximate the inverse kinematics

MLPNs as discussed earlier have some significant disadvantages, such as the slow

training phase due to the nonlinear training algorithm and a lack of reasonable methods

to choose the network structures. Therefore, a trend towards using RBFNs which are

conceptually simpler and possess the ability to model any nonlinear function

conveniently have become more popular [3.17]. This section presents several

approaches using RBFNs to approximate the inverse kinematics transformation of robot

manipulators.

A solution using RBFNs for inverse kinematics approximation of robot manipulators

was presented in [3.32]. This work tried to explore the effect of various network

configurations on the performance of the network. A variety of network configurations

were developed, e.g. a single 12 inputs-6 outputs network, two 12 inputs-3 outputs

network modules and six 12 inputs-1 output network modules to solve the inverse

kinematics of a six D.O.F manipulator. All consisted of 12 input elements, [n, s, a, p],

to represent a location (position and orientation) of the end-effector with respect to the

base coordinate system. Figure 3.14 shows the architecture of the 12 inputs–6 outputs

network. Simulation results showed that the position errors of the three different

architectures for the test data within the training data space were all similar. However,

for the test data outside the training data space, the generalisation of the six 12 inputs-

1output network modules was poorer than the other two. The errors increased smoothly

with increased distances from the cubical volume of the training data space and almost

negligibly changed with training size. This demonstrated that the generalisation of

RBFNs has a localised characteristic in the effective area of training data. As a result,

the generalisation will be poorer if the network operates outside training regions.

57

Figure 3.14 – Architecture of a 12 inputs-6 outputs network.

Another solution to implement an inverse kinematics approximation of a 6 D.O.F

manipulator using RBFNs was presented in [3.33]. This solution developed a structure

of six parallel RBFNs, each of which consists of six inputs, [Px, Py, Pz, φ, θ, ψ], which

represent a location (position and orientation) of the end-effector and one output as the

joint angle. Figure 3.15 presents the architecture of the 6 inputs–1 output network. Thus,

the group of six parallel RBFNs (one for each joint angle) could perform an inverse

kinematics approximation of a 6 D.O.F manipulator.

Figure 3.15 –The architecture of a 6 inputs–1 output network to approximate one joint

angle of the inverse kinematics transformation.

Hidden layer
N basis function units

Linear output layer
6x1

θ1

n(x, y, z)

Input layer
12x1

s(x, y, z)

a(x, y, z)

p(x, y ,z)

θ2

θ3

θ4

θ5

θ6

.

.

.

θi

px

py

pz

φ

θ

ψ

Hidden layer Input layer

Linear output layer
(i = 1, 2,…, 6)

58

The simulation was performed by using the Levenberg-Marquardt optimisation

algorithm with 4,096 training data points created from the forward kinematics equations

of the 6 D.O.F MOTOMAN manipulator. The result was compared with a similar

approach using an MLPN and the back propagation training algorithm. It showed that

this solution can be applied successfully to solve the inverse kinematics problem.

However, it did not explain how to select the structure of hidden basis units (centres and

the spread of Gaussian functions) which directly affects the generalisation of the RBFN.

The network structure with only 6 basis function units seemed not enough to cover a

large area of the workspace. This is contrary to the opinion that the number of hidden

basis function units of an RBFN should be much higher than that of an MLPN to obtain

the same performance quality [3.16], [3.17].

In [3.34] and [3.35], a comparison between an MLPN and an RBFN for the inverse

kinematics problem of a 3-link manipulator was presented. In [3.34] both networks

were established from the same structure, which was the 3-20-5-3 configuration shown

in Figure 3.16 and used the same training data. Training of the RBFN was implemented

by two independent phases, the first phase using the K-means clustering method to

select cluster centres of the hidden radial basis units and the second phase using a

supervised LMS algorithm to update the linear weights. However, the RBFN was a

nonlinear model with more than one hidden layer which is different from the original

structure of the RBFNs in [3.16]-[3.18]. As a result, the RBFN performance was poorer

when compared to the MLPN due to the fact that the number of first hidden-layer

centres (20 units) is too small for this complex problem. The second hidden layer made

the training process slower and changed the generalisation characteristic of the RBFN.

Therefore, it indicated that an RBFN often requires more hidden neurons than an MLPN

to obtain equivalent performance for the same problem.

59

Figure 3.16 – An RBFN with two hidden basis function layers to approximate the

inverse kinematics transformation of a 3-link manipulator.

Many solutions using RBFNs to solve the inverse kinematics problem have been

presented as an alternative approach to MLPNs. Due to their particular structure, the

training process of the RBFNs is simple. The optimal linear weights can be calculated

by a linear optimisation algorithm (i.e., the interpolation method). Based on the

relationship between the input space and the centres of hidden basis functions some

solutions can be used to select a suitable set of centres related to the training data. This

is a useful feature of RBFNs which can aid the optimal selection of the network

structure and may possibly improve the network performance [3.36].

However, RBFNs have a localised generalisation characteristic in terms of centre

positions and training data. Thus, for the same complex problem the required number of

hidden-layer units is much higher than the number of hidden neurons of MLPNs.

3.6 Conclusion

This chapter has presented the general background of artificial neural networks and

applications of neural networks to the inverse kinematics problem. The two most

popular network types (MLPN and RBFN), used widely in inverse kinematics

approximation, have been described. The MLPN is a universal and powerful solution

for almost all functional approximation applications due to its inherent nonlinear

x

α

θ

Input layer
(3x1)

y

e

yaw

Hidden layer 1
(20 units)

Linear output layer
(3x1)

…
…

Hidden layer 2
(5 units)

60

mapping capabilities which can deal with a wide range of process features. However,

the training process is complex because it involves a nonlinear optimisation algorithm

which requires an iterative procedure and there is no reasonable mechanism to select a

suitable network configuration. In contrast, the RBFN training process is simple and

straightforward by using a linear optimisation algorithm based on the least squares

technique. There are several solutions to choose the optimal selection of the network

configuration from information about the robotic system (training data) so that the

generalisation can be improved. However, it seems that the performance of existing

approaches (both MLPNs and RBFNs) described earlier is still insufficiently accurate

and inefficient for practical applications.

For these reasons, a novel approach using an RBFN with regularly-spaced position

centres has been proposed to solve the inverse kinematics problem. This solution

produces an RBFN with a sufficiently small number of centres whilst achieving a

satisfactory accuracy for the inverse kinematics approximation. In addition, in order to

enhance the generalisation of RBFNs, the concept that the constrained training data

should be collected closely to the position of centres has been suggested. The proposed

approach is verified through simulations in Chapters 4 and 5 followed by practical work

in Chapter 7.

3.7 References

[3.1] W. T. Miller, “Sensor-Based Control Of Robotic Manipulators Using A

General Learning Algorithm”, IEEE Journal of Robotics And Automation, vol.

RA-3(2), April 1987, pp.157-165.

[3.2] K. T. Song and J. M. Chang, “Experimental Study on Robot Visual Tracking

Using A Neural Controller”, in Proc. of the 22nd Int. Conf. on Industrial

Electronics, Control, and Instrumentation, 1996, pp.1850–1855.

[3.3] F.L. Lewis, “Neural Network Control of Robot Manipulators”, IEEE Expert,

vol. 11(3), June 1996, pp. 64-75.

[3.4] H. Hashimoto, T. Kubota, M. Kudou and F. Harashima, “Self-Organizing

Visual Servo System Based on Neural Networks”, in Proc. of the 1991

American Control Conference, Boston, April 1991, pp. 31-36.

61

[3.5] H. Hashimoto, T. Kubota, M. Baeg and F. Harashima, “A Scheme for Visual

Tracking of Robot Manipulator Using Neural Network”, in Proc. of 1991 IEEE

Int. Joint Conf. on Neural Networks, vol. 2, Nov. 1991, pp. 1073 - 1078.

[3.6] D. H. Rao, M. M. Gupta and P.N. Nikiforuk, “On-Line Learning of Robot

Inverse Kinematic Transformations”, in Proc. of 1993 IEEE Int. Joint Conf. on

Neural Networks, 1993, pp. 2827-2830.

[3.7] E. Oyama, N. Y. Chong and A. Agah, “Inverse Kinematics Learning by

Modular Architecture Neural Networks with Performance Prediction

Networks”, in Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation,

Seoul, 2001, pp. 1006-1012.

[3.8] R. V. Mayorga and P. Sanongboon, “A Radial Basis Function Network

Approach for Inverse Kinematics and Singularities Prevention of Redundant

Manipulators”, in Proc. of the 2002 IEEE Int. Conf. on Robotics and

Automation, Washington DC, May 2002, pp. 1955-1960.

[3.9] F. Pourboghrat, “Neural Networks for Learning Inverse-Kinematics of

Redundant Manipulators”, in Proc. of the 1991 Seattle Int. Joint Conf. on

Neural Networks (IJCNN-91), vol. 2, Seattle, July 1991, pp. 1004-1007.

[3.10] G. Wu, J. Wang, “A Recurrent Neural Network for Manipulator Inverse

Kinematics Computation”, in Proc. of the 1994 IEEE Int. Conf. on Neural

Networks (IEEE World Congress on Computational Intelligence), vol. 5,

Orlando, April 1994, pp. 2715–2720.

[3.11] Y. Kuroe, Y. Nakai and T. Mori, “A New Neural Network Approach to the

Inverse Kinematics Problem in Robotics”, in Proc. of Asian-Pacific Workshop

on Advances in Motion Control, July 1993, pp.112-117.

[3.12] L. X. Wei, H. R. Wang and Y. Li, “A New Solution for Inverse Kinematics of

Manipulator Based on Neural Network”, in Proc. of the second Int. Conf. on

Machine Learning and Cybernetics, Nov. 2003, pp. 1201-1203.

[3.13] M. Zeller and K. Schulten, “Vision-Based Motion Planning of A Pneumatic

Robot Using a Topology Representing Neural Network”, in Proc. of the 1996

IEEE Int. Symposium on Intelligence Control, Dearborn, Sept. 1996, pp. 7– 12.

62

[3.14] J. Barhen, S. Gulati and M. Zak, “Neural Learning of Constrained Nonlinear

Transformations”, Computer, vol. 22(6), June 1989, pp. 67-76.

[3.15] G. Hermann, P. Wira and J. P. Urban, “Neural Networks Organisations to

Learn Complex Robotics Functions”, in Proc. of the 11th European

Symposium on Artificial Neural Networks, Bruges, Belgium, April 2003, pp.

33-38.

[3.16] S. Haykin, Neural Networks a Comprehensive Foundation – Second Edition.

Prentice Hall, 1999.

[3.17] G. W. Irwin, K. Warwick and K. J. Hunt, Neural Network Applications in

Control, IEE Control Engineering Series 53, 1995.

[3.18] M. J. L. Orr, Introduction To Radial Basis Function Networks. [Online].

Available: http://www.anc.ed.ac.uk/rbf/rbf.html. 1996.

[3.19] D. Psaltis, A. Sideris and A. A. Yamamura, “A Multilayered Neural Network

Controller”, IEEE Control Systems Magazine, vol. 8 (2), April 1988, pp. 17-21.

[3.20] P. D. Wilde, Neural Network Models - Second Editor. Springer – Verlag

London Limited, 1997.

[3.21] E. Watanabe and H. Shimizu, “A Study on Generalization Ability of Neural

Network for Manipulator Inverse Kinematics”, in Proc. of the 17th Int. Conf. on

Industrial Electronics, Control and Instrumentation, Kobe, Japan, vol. 2, Nov.

1991, pp. 957-962.

[3.22] A. Guez and Z. Ahmad, “Solution to The Inverse Kinematics Problem in

Robotics by Neural Networks”, in Proc. of 1988 IEEE Int. Conf. on Neural

Networks, San Diego, USA, vol. 1, July 1988, pp. 617-624.

[3.23] B. B. Choi and C. Lawrence, “Inverse Kinematics Problem in Robotics Using

Neural Networks”, NASA Technical Memorandum - 105869, October 1992.

[3.24] Z. Binggul, H. M. Ertunc, and C. Oysu, “Comparison of Inverse Kinematics

Solutions Using Neural Network for 6R Robot Manipulator with Offset”, in

Proc. of the 2005 Congress on Computational Intelligence Method &

Application, Istanbul, Turkey, Dec. 2005, pp. 1-5.

63

[3.25] A.S. Morris and A. Mansor, “Finding the Inverse Kinematics of Manipulator

Arm Using Artificial Neural Network with Look-Up Table”, Robotica, vol. 15,

1997, pp. 617-625.

[3.26] A. Guez and Z. Ahmad, “Accelerated Convergence In The Inverse Kinematics

Via Multilayer Feedforward Networks”, in Proc. of 1989 IEEE Int. Conf. on

Neural Networks, Washington, USA, vol. 2, June 1989, pp. 341-344.

 [3.27] N. Takanashi, “6 D.O.F. Manipulators Absolute Positioning Accuracy

Improvement Using a Neural Network”, in Proc. of the IEEE Int. Workshop on

Intelligent Robots and Systems, Ibaraki, Japan, vol. 2, July 1990, pp. 635-640.

[3.28] P. J. Alsina and N. S. Gehlot, “Robot Inverse Kinematics: A Modular Neural

Network Approach”, in Proc. of the 38th Midwest Symposium on Circuits and

Systems, Rio de Janeiro, Brazil, vol. 2, August 1995, pp. 631-634.

[3.29] B. L. Lul and K. Ito, “Regularization of Inverse Kinematics for Redundant

Manipulators Using Neural Network Inversions”, in Proc. of 1995 IEEE Int.

Conf. on Neural Networks, vol. 5, Perth, USA, Dec. 1995, pp. 2726 -2731.

[3.30] J. A. Leonard, M. A. Kramer and L. H. Ungar, “Using Radial Basis Functions

to Approximate a Function and Its Error Bounds”, IEEE Transactions on

Neural Networks, vol. 3(4), July 1992, pp. 624-627.

[3.31] S. Chen, C. F. N. Cowan and P. M. Grant, “Orthogonal Least Squares Learning

Algorithm for Radial Basis Function Networks”, IEEE Transactions on Neural

Networks, vol. 2(2), March 1991, pp. 302-309.

[3.32] J. A. Driscoll, “Comparison of Neural Network Architectures for the

Modelling of Robot Inverse Kinematics”, in Proc. of the 2000 IEEE

SOUTHEASTCON, Tennessee, USA, vol. 3, April 2000, pp. 44-51.

[3.33] P. Y. Zhang, T. S. Lu and L. B. Song, “RBF Networks-Based Inverse

Kinematics of 6R Manipulator”, Int. Journal of Advanced Manufacturing

Technology, Springer – Verlag London Ltd., vol. 26, 2004, pp. 144-147.

64

[3.34] S.S. Yang, M. Moghavvemi and John D. Tolman, “Modelling of Robot Inverse

Kinematics Using Two ANN Paradigms”, in Proc. of TENCON2000 -

Intelligent System and Technologies for the New Millennium, Kuala Lumpur,

Malaysia, vol. 3, Sept. 2000, pp. 173-177.

[3.35] A. S. Morris and M. A. Mansor, “Manipulator Inverse Kinematics Using an

Adaptive Back Propagation Algorithm and Radial Basis Function With a

Lookup Table”, Robotica, vol. 16(4), 1998, pp. 433- 444.

[3.36] A. Ghodsi and D. Schuumans, “Automatic Basis Selection Technique for RBF

Networks”, Neural Networks - Special issue: Advances in Neural Networks

Research (IJCNN’03), vol. 16, June 2003, pp. 809-816.

65

CHAPTER 4

INVERSE KINEMATICS APPROXIMATION USING A

RADIAL BASIS FUNCTION NETWORK

4.1 Introduction

In Chapter 3, several existing approaches using neural networks to approximate the

inverse kinematics of robotic manipulators were discussed. However, it is likely that

most of these approaches are still not suitable for practical applications because the

accuracy of the networks’ performances is limited. A radial basis function network

(RBFN) may be more advantageous than other networks since its hidden layer structure

can be chosen with regards to the training data. If appropriate training data can be

collected throughout the whole input space, it is possible to select the optimal structure

of the RBFN so that the network’s performance could then be improved in the

operational phase. Most of the solutions using RBFNs for determination of the inverse

kinematics have used training data collected arbitrarily, or regularly, in the joint angle

space (the output space of the networks) [4.1]-[4.3]. The training data has not reflected

the full characteristics of the inverse kinematics function in the whole workspace.

Consequently, the network’s performance has not been optimal in the operational phase.

This chapter presents a novel solution using RBFNs to approximate the inverse

kinematics of robotic manipulators. This approach has some fundamental principles:

centres of hidden-layer units are regularly distributed in the workspace, constrained

training data is used where inputs are collected approximately around the centre

positions in the workspace and the training phase is performed using either strict

interpolation or the least mean square algorithm.

The chapter first describes the main concepts of the proposed approach. A simple

example is presented to explain why regularly-spaced position centres can produce an

acceptable approximation to the inverse kinematics function. Simulations for two-link

and three-link manipulators are then presented to demonstrate the proposed approach.

Finally, conclusions are presented following analysis of the simulation results.

66

4.2 Using RBFNs to approximate the inverse kinematics of robotic manipulators

The accuracy of a neural network function approximation depends on three main

factors: the structure of the network, the training method and the training data. To

enhance the performance of an RBFN for the inverse kinematics approximation, a new

approach is proposed:

 using regularly-spaced position centres as a predefined structure of the RBFN,

 using constrained data for the training phase (this constrained training pattern is

collected around centre positions with a reasonable degree of accuracy),

 using strict interpolation, or the least mean square (LMS) algorithm, to update the

linear weights.

The main concepts of this proposed approach are described in the following sections.

4.2.1 Selection of the hidden layer parameters

To illustrate the idea that using an RBFN with regularly-spaced position centres can

produce a better approximation for a desired function, an example is presented as

follows.

Given a nonlinear function

 xxxf 1.0)2sin()(+= (4.1)

an RBFN is used to produce an approximation of this function by a linear model

∑
=

Φ=
L

i
ii xWy

1
)(. (4.2)

67

where Φi(x) is the output of the ith hidden unit, Wi is the interconnection weight between

the ith hidden unit and the network output and L is the number of hidden units.

A training method called strict interpolation [4.7] is used in which centres of hidden-

layer units are taken from inputs of a training set. This method creates as many hidden

units as there are inputs of the training set. Thus, the generalisation of the trained

network is dependent on the distribution of the training set and the spread of the

Gaussian basis function. This spread value should be large enough compared to the

distances between the centres of hidden units so that the active input regions of the

radial basis function neurons overlap sufficiently. This makes the network function

smoother and results in better generalisation for a new input occurring between centre

positions. However, the spread should not be too large because it can produce a poor

discrimination between radial basis functions in the effective area.

In this example, two different training data sets, an arbitrary and a regularly constrained

distribution, are used in the training phase. The arbitrary set uses inputs which are

randomly created by the function rand (in MATLAB) in the range [-3, 3] and consists

of the input vector P1 and target output T1. These are:

 P1 = [-2.46, - 2.29, -1.37, -1.33, -0.06, 0.53, 1.22, 1.85, 2.21, 2.38, 2.75, 2.77,

2.81];

 T1 = [0.73, 0.76, -0.53, -0.60, -0.13, 0.92, 0.77, -0.34, -0.74, -0.76, -0.43, -0.41,

-0.34].

Setting the spread value to 0.5 and using the strict interpolation method, the RBFN is

built to approximate the function f(x) according to the training set {P1, T1}. Figure 4.1

presents the network performance after training. The result shows that the generalisation

of the network is not the same in all regions of the workspace because the set of hidden-

layer centres is randomly distributed in the input space. When x is between zero and

three, the function approximation is close to the desired function. However, in other

regions, due to the lack of necessary neurons, the function approximation is poor. As the

centres of the RBFN are randomly distributed, the network cannot perform well in the

whole workspace.

68

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

RBFN - App. Function

Desired Function

Centre Points

Figure 4.1- The network’s performance with a set of randomly distributed centres.

Another training set is collected as regularly-spaced points in the input space. It

contains:

 P2 = [-3, -2.5, -2, -1.5, -1, - 0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3];

 T2 = [-0.0206, 0.7089, 0.5568, -0.2911, -1.0093, -0.8915, 0, 0.8915, 1.0093, 0.2911,

-0.5568, -0.7089, 0.0206].

The distance between elements of the input vector P2 is 0.5 and the spread of the

Gaussian functions is chosen to be the same value. The strict interpolation method is

then used to build an RBFN to approximate the function f(x) according to the training

set {P2, T2}. Figure 4.2 shows that the function approximation almost perfectly fits the

desired function over the whole operating space. The generalisation of the network

where the centres are regularly distributed in the input space is much better than the

network where the centres are in randomly spaced positions.

69

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

RBFN - App. Function

Desired Function

Centre Points

Figure 4.2 – The network’s performance with a set of regularly distributed centres.

As demonstrated above, it is clear that an RBFN could produce an appropriate

approximation of the inverse kinematics function if the hidden unit centres are

regularly-spaced positions in the workspace. Figure 4.3 presents typical examples of

regularly-spaced position centres in two- and three-dimensional spaces.

Figure 4.3 - Typical examples of regularly-spaced position centres in the workspace.

d

d

d

d

d

Two-dimensional space
Three-dimensional space

70

In this research, the distance between centres can be determined in a heuristic trial and

error manner. The smaller the distance between centres, the better the performance of

the RBFN. However, due to the limited computer memory capacity and the

computational complexity, the number of hidden layer units must be limited to a

sensible value so that a feasible training process can be implemented. Therefore, a

reasonable choice for the distance between centres should be investigated carefully

through trial and error experiments.

As the centres of the hidden layer units (Gaussian functions) are regularly distributed in

the workspace, these functions should have the same spread. The spread value affects

the smoothness of the network by varying the local-filter feature of the hidden units. For

a specific application, the spread value should also be tailored and estimated through

trial and error experiments.

4.2.2 Training methods

Once the structure of the hidden layer has been chosen, the second phase of supervised

training is used to adjust the linear weights. As a linear relationship between the linear

weights and the network outputs exists, the training process of an RBFN is simple and

straightforward using the least squares approach. Therefore, the training of an RBFN is

easier and faster compared to a multi-layer perceptron network for the same application

[4.4], [4.5]. As presented in Chapter 3, there are two popular training methods, strict

interpolation and LMS algorithms, to train the network.

When a training set with N patterns (input - target output), {(X1, X2,…, XN); (T1, T2,…,

TN)}, is presented to an RBFN, using the strict interpolation method an optimal set of

the linear weights is determined so that the cost function (i.e., sum of squared errors

between target and actual outputs of the network) is minimised. The centres of hidden

layer units can be either the same as, or different from, the inputs of the training data.

However, their number must be the same to produce an exact mapping kk TXf →: for

all training data presented to the RBFN [4.6]. The set of the linear weights, W, is

calculated by

71

 () TΦΦΦW T1T −
= (4.3)

where T is the target output vector and Φ(NxN) is the interpolation matrix, where each

row corresponds to the responses of all hidden units for each pattern and each column

corresponds to each hidden unit through all patterns.

The training phase using the strict interpolation method is simple and fast. It produces a

unique set of the linear weights that minimises the cost function. However, the number

of hidden units is limited due to the computational burden of the matrix inversion

algorithm. For some cases when the amount of training data is higher than the number

of hidden units, equation (4.3) is also used to calculate the linear weights. However, it

cannot produce an exact mapping for all training data presented to the network [4.4].

The LMS algorithm uses the gradient descent technique to iteratively update the linear

weights in a batch training mode [4.6]. At each training epoch, the linear weights are

updated in a direction that reduces the MSE (mean square error of the network outputs)

through all patterns of the training set. Assuming that a training set with N patterns is

presented to the RBFN, the adjustment of linear weights can be calculated by

)(.)(

1
ki

N

k
jji Xke

N
W Φ=Δ ∑

=

η (4.4)

where Φi(Xk) is the output of the ith Gaussian function corresponding to stimulation of

input Xk , ej(k) is the error at the network output j with the kth target output and η is the

learning rate (0 ≤ η ≤ 1).

The LMS algorithm can be used to train RBFNs with either arbitrary or constrained

training data without any restriction in the number of hidden units and/or training

patterns. This training process is simple and related to the value of learning rate η and

the size of the training data set. If the learning rate η is small, the training process will

take a long time to converge to a specific goal. In contrast, if a large learning rate is

adopted, it could possibly lead to a divergent learning process.

72

4.2.3 Training data

Two kinds of training data were used to train the RBFN in the simulations. The first is

called constrained data because their inputs coincide with the centres which are pre-

defined as regularly-spaced positions in the workspace. The other is collected randomly

around the centres’ positions. This data is also limited by setting a maximum deviation

from the centre position. For example, if a set of centres is predefined as in Figure 4.3, a

random training data set can be collected around the centres’ positions as

space) ldimensiona- three(for the).1rand.2(

).1rand.2(
).1rand.2(

zz

yy

xx

CMaxDevP

CMaxDevP
CMaxDevP

+−=

+−=
+−=

 (4.5)

where MaxDev is the maximum deviation, rand is a random distribution function

(MATLAB) in the range [0, 1] and {Cx, Cy, Cz} are the coordinates of the centres.

For a two-link manipulator, the maximum deviation should not be higher than 30% of

the centre distance to enable the training phase to produce an appropriate inverse

kinematics approximation. For a three-link manipulator, due to the more complex

configuration, the maximum deviation should not be higher than 20% of the centre

distance.

4.3 Simulation for a two-link manipulator

Figure 4.4 presents the two-link manipulator used in this simulation. It consists of two

revolute joints and two links that have the same length of 50 mm. Two coordinate

values x, y describe the position of the tip of the manipulator with respect to the base

coordinate frame. The forward kinematics is a mapping from a set of joint angles to the

corresponding position in Cartesian space (workspace) and is defined by

)cos(.)cos(. 21211 θθθ ++= llx (4.6)

)sin(.)sin(. 21211 θθθ ++= lly (4.7)

73

where l1 and l2 are the lengths of link 1 and link 2 respectively.

The inverse kinematics can be described by

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+
−±=

21

2
2

2
1

222

21

2
2

2
1

22

2 2
,

2
12Atan

ll
llyx

ll
llyxθ (4.8)

() ()221221 cos,sin2Atan,2Atan θθθ lllxy +−= . (4.9)

Atan2(y, x) is defined as

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≥≤≤−
≤−≤≤−
≥≤≤≤

≥≤≤

=

.0,0,090
0,,90180

0,0,18090
0,,900

x)2(y,Atan

00

00

00

00

yx
yx

yx
yx

θ
θ
θ
θ

 (4.10)

Figure 4.4 - Configuration of a two-link manipulator.

Using equations (4.8) and (4.9), training and test data were created for the simulation.

Due to the periodic characteristic of the inverse kinematics function, there is a rapid

change in the function θ1, between -1800 and 1800. This singular region is in the area

around {x = 0, y < 0}. However, because of the mechanical configuration limitations

x

y

θ1

θ2

0

l1

l2

74

(joint angle movement range) for a real manipulator, this singular region may not occur

in the workspace. Furthermore, the plug sign in equation (4.8) is adopted for the

expression of θ2. This corresponds with the lower-elbow structure of the two-link

manipulator. In this simulation, the workspace is limited to a quarter of the plane where

x > 0 and y > 0, as shown in Figure 4.6.

4.3.1 Simulation description

An RBFN was used to approximate the inverse kinematics function of this two-link

manipulator. Figure 4.5 shows the network configuration consisting of two inputs and

two outputs to perform a transformation from the world space (x, y) to the joint angle

space (θ1, θ2). The simulation was implemented according to the following procedure:

 The structure of the hidden layer was built with pre-defined centres regularly

distributed in the workspace (e.g., 10 mm x 10 mm grids). The spread was

experimentally selected so that the RBFN can produce an appropriate inverse

kinematics approximation.

 Training patterns {(x, y); (θ1, θ2)} were collected as either constrained or random

data in the workspace. There were three sets of training data used for this

simulation (e.g., Figure 4.7 presents the distribution of data with a centre distance

of 10 mm). A set of constrained data whose inputs were coincident with the

centres of hidden units was collected. Two others were randomly collected around

centre positions with a maximum deviation of 3 mm and 4 mm.

 The linear weights were adjusted by one of two methods, strict interpolation or

LMS.

 The RBFN performance was tested by presenting a set of new data that is

different from the training data. At this stage, two independent test data sets, a

trajectory inside (test trajectory 1) and a trajectory near the edge (test trajectory 2)

of the workspace (Figure 4.6), were presented to the network.

75

Figure 4.5 - Configuration of the RBFN to approximate the inverse kinematics of the

two-link manipulator.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X (mm)

Y
 (m

m
)

Test data 1 (inside)
Test data 2 (edge)
Workspace limitation

Figure 4.6 – Test trajectories for the two-link manipulator simulations.

The simulation investigated the network’s performance for various conditions: two

training methods with three different training data sets (constrained and random with a

maximum deviation of 3 mm and 4 mm) and a variety of spread values (e.g., 6 - 28

mm). To verify the network’s performance, the root mean square error (RMS) between

)(11 CxG −

y

Hidden layer Linear output layer

θ1
x

Input layer

θ2

)(LL CxG −

)(22 CxG −

…

76

joint angles produced by the network and the desired inverse kinematics function

(mathematical expressions) and the mean absolute errors (MAEs) between desired and

actual positions in X and Y directions were calculated for each condition. The results of

the three training cases with different training data are plotted in the same figure to

compare the effect of training data on the network’s performance. All simulation results

are listed in tables (Appendix B) where the columns show performance criteria and the

rows are the spread values.

4.3.2 Simulation results

Figure 4.7 shows the distribution of three different training data sets versus the position

of the hidden unit centres in the workspace. This case corresponds to an RBFN with a

centre distance of 10 mm (regularly-spaced distribution). The total number of hidden

units is 111 nodes.

-20 0 20 40 60 80 100
-20

0

20

40

60

80

100

X (mm)

Y
(m

m
)

Centres (Constrained Data)
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.7 – Distribution of three training data sets in the workspace (10 mm distance).

Figures 4.8 and 4.9 present the network performance using test trajectory 1 after

training by the strict interpolation method for various spread values (Appendix B.1).

77

Figures 4.10 and 4.11 present the performance of the same network using test trajectory

2.

6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Spread (mm)

R
M

S
(d

eg
)

Constrained

Random (MaxDev of 3mm)

Random (MaxDev of 4mm)

Figure 4.8 – Performance results for test trajectory 1 (inside).

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2

Spread (mm)

M
A

E-
X

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

Spread (mm)

M
A

E-
Y

(m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.9 – MAEs for test trajectory 1 (inside).

78

6 8 10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

50

60

70

80

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.10 - Performance results for test trajectory 2 (edge).

6 8 10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

Spread (mm)

M
A

E-
X

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

20

40

60

80

Spread (mm)

M
A

E-
Y

(m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.11 - MAEs for test trajectory 2 (edge).

The results show that the RBFN trained by the strict interpolation method produce an

appropriate approximation of the inverse kinematics function. For test trajectory 1

(Figure 4.9), using the constrained data produces the best performance in which the

average MAE (of MAE_X and MAE_Y) is approximately 0.1 mm for spreads between

79

16 and 22 mm. Using the random data with a maximum deviation of 3 mm also

produces a good performance where the average MAE is approximately 0.2 mm for

spreads between 16 and 22 mm. When using the random data with a maximum

deviation of 4 mm, an average MAE of 0.5 mm is achieved for the same range of spread

values. The performance of the RBFN is better for test trajectory 1 (inside the

workspace). This is because at the edge of workspace, the network does not have

enough hidden radial basis functions to be able to create appropriate responses for test

trajectory 2. For example, the best performance is about 1 mm when using the

constrained data with a spread between 12 and 16 mm as shown in Figure 4.11. This

reflects the local generalisation characteristics of the RBFN. Varying the spread leads to

differences in the performance. An increase in the spread value can improve the

network performance (decrease in the RMS error and MAEs). However, the

performance will become poorer if the spread is increased significantly, especially for

test trajectory 2. There is a spread value between 16 and 22 mm that can produce an

optimal inverse kinematics approximation for both test trajectories when training with

any of the three training data sets.

Another simulation was performed corresponding to an RBFN with a centre distance of

15 mm. Figure 4.12 presents the distribution of three different training sets.

-20 0 20 40 60 80 100
-20

0

20

40

60

80

100

X (mm)

Y
(m

m
)

Centres (Constrained Data)

Random (MaxDev of 3mm)

Random (MaxDev of 4mm)

Figure 4.12 - Distribution of three training data sets in the workspace (15 mm distance).

80

Figures 4.13 and 4.14 present the network’s performance for test trajectory 1 after

training by the strict interpolation method corresponding to various spread values

(Appendix B.3). Figures 4.15 and 4.16 present the performance of the same network for

test trajectory 2.

9 12 15 18 21 24 27 30 33 36 39 42
0

0.5

1

1.5

2

2.5

3

Spread (mm)

R
M

S
(d

eg
)

Constrained

Random (MaxDev of 3mm)

Random (MaxDev of 4mm)

Figure 4.13 - Performance results for test trajectory 1 (inside).

9 12 15 18 21 24 27 30 33 36 39 42
0

0.5

1

1.5

2

2.5

Spread (mm)

M
A

E
-X

 (m
m

)

9 12 15 18 21 24 27 30 33 36 39 42
0

0.5

1

1.5

Spread (mm)

M
A

E
-Y

 (m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.14 - MAEs for test trajectory 1 (inside).

81

9 12 15 18 21 24 27 30 33 36 39 42
0

10

20

30

40

50

60

70

Spread (mm)

R
M

S
(d

eg
)

Constrained

Random (MaxDev of 3mm)

Random (MaxDev of 4mm)

Figure 4.15 – Performance results for test trajectory 2 (edge).

9 12 15 18 21 24 27 30 33 36 39 42
0

10

20

30

40

Spread (mm)

M
A

E-
X

(m
m

)

9 12 15 18 21 24 27 30 33 36 39 42
0

20

40

60

Spread (mm)

M
A

E-
Y

(m
m

)

Figure 4.16 - MAEs for test trajectory 2 (edge).

Compared to the results using a centre distance of 10mm (Figures 4.8 to 4.11), it is clear

that the generalisation in this case (centre distance of 15 mm) is poorer. However, this

performance is still acceptable and the number of hidden units is significantly reduced

(56 points compared to 111 points for the previous case). For test trajectory 1 (Figure

82

4.14), when using the constrained data, an average MAE of approximately 0.3 mm can

be obtained for spreads between 21 to 30 mm. Using the random data produces a

slightly poorer performance (average MAE of approximately 0.5 mm) for the same

spread range. For test trajectory 2 (Figure 4.16), similar to the results using a centre

distance of 10mm, the errors significantly increase if the spread increases. The best

performance can be obtained with a spread value between 21 and 27 mm for both test

trajectories when training with any of the three training data sets.

A further simulation was performed using the same network and training data as in the

first case (centre distance of 10 mm) using the LMS algorithm. The training process was

implemented with the following parameters:

 Maximum training epochs = 500000,

 Goal = 0.0001,

 Learning rate = 0.01 – 0.001.

As the LMS algorithm is an iterative gradient descent technique, the training time was

significantly greater compared to the strict interpolation method. When the spread

increases, the learning rate has to decrease correspondingly to keep the training process

stable. The training time and training result (the final training performance at the

maximum epoch) are thus slower and poorer for a larger spread value.

Figures 4.17 and 4.18 present the network’s performance for test trajectory 1 after

training by the LMS algorithm corresponding to various spread values (Appendix B.2).

Figures 4.19 and 4.20 present the performance of the same network for test trajectory 2.

83

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.17 - Performance results for test trajectory 1 (inside).

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

Spread (mm)

M
A

E
-X

 (m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

Spread (mm)

M
A

E
-Y

 (m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.18 - MAEs for test trajectory 1 (inside).

84

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

5

6

7

8

9

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.19 - Performance results for test trajectory 2 (edge).

6 8 10 12 14 16 18 20 22 24 26 28
0

5

10

15

Spread (mm)

M
A

E-
X

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

Spread (mm)

M
A

E-
Y

(m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

Figure 4.20 - MAEs for test trajectory 2 (edge).

For test trajectory 1 (Figure 4.18), the best performance is achieved with a spread of 8

mm (an average MAE of approximately 0.2 mm when using the constrained data).

85

When the spread is slightly increased (greater than 10 mm), the performance errors

increase. In addition, the performance of the network trained with random training data

does not significantly differ from the performance of the network trained with

constrained data. In fact the network trained with constrained data has a poorer

performance compared to the network trained with random data for test trajectory 2

(Figure 4.20). Thus, the effect of using constrained or random data on the network’s

performance is not significant when training using the LMS algorithm. For both test

trajectories, using the LMS algorithm requires a smaller spread value to obtain the best

performance compared to the strict interpolation method. In general, the generalisation

capability in this case is poorer compared to the strict interpolation method.

4.3.3 Summary of results

The idea of using an RBFN with regularly-spaced position centres has produced an

excellent approximation of the inverse kinematics function for a two-link manipulator.

The average MAE (of X and Y directions) of the network with a centre distance of 10

mm is approximately 0.1 mm (or 1% of the centre distance) for a test trajectory inside

the workspace. This corresponds to an approximate RMS error smaller than 0.1 degrees

(Figures 4.8 and 4.9). The performance of the RBFN is poorer at the edge of the

workspace. These results are significantly better compared to other relevant approaches

[4.1], [4.2], [4.9], [4.10]. For example, in [4.1] the position errors of the best results

varied from 2 to 7 (unknown units) for an RBFN with the test trajectory inside the

trained area (cubical volume). Similarly, in [4.2] the network performance (RBFN) was

even poorer with an approximate position error of 30 mm for a SCARA robot with the

range of -300 mm ≤ x ≤ 300 mm and 0 mm ≤ y ≤ 700 mm. For an MLPN [4.10], the

joint angle error of the best results was about 1.6 – 2 degrees (as shown in figure) for a

two-link manipulator. Similarly, in [4.9] the best RMS error result for the simulation of

a six D.O.F manipulator was about 8 degrees (average of all six outputs).

The two different methods (strict interpolation and LMS) used in the training process, in

spite of the same network structure and training data, produce a different set of linear

weights. Therefore, their performances are not the same and the RBFN trained by the

strict interpolation method produces a better performance.

86

As the centres are regularly distributed in the workspace, when the distance between the

centres decreases, the generalisation of the RBFN becomes better. However, this leads

to a more complex training phase because the number of hidden layer units increases

significantly. Using the strict interpolation method, the number of hidden units is

limited due to the computational requirement of the matrix inversion algorithm.

Therefore, a suitable choice of centre distance should be carefully considered.

A large spread can produce a smooth approximation function of the actual inverse

kinematics function of the two-link manipulator. However, a large spread makes the

training process using the LMS algorithm become extremely slow because it requires a

small learning rate to allow convergence (gradually reducing the mean square error) of

the gradient descent technique.

The closer the training data to the centre positions, the better the inverse kinematics

approximation. The RBFN trained with a set of random data where the maximum

deviation is no higher than 30% of the centre distance also produces good results.

However, using constrained or random data does not significantly affect the network’s

performance when using the LMS algorithm.

4.4 Simulation for a three-link manipulator

Figure 4.21 presents the three-link manipulator used in these simulations. This is the

same structure as the manipulator presented in Chapter 2.

As presented in Section 2.3, the inverse kinematics solutions of joint angles from the

space coordinates (x, y, z) can be described as

 ()xy,2Atan1 =θ (4.11)

 ()KK ,12Atan 2
3 −±=θ (4.12)

 () () 31
222

2 ,2Atan,12Atan θθ −−+−−±= ΦΦ dzyxKK (4.13)

87

where

32

2
3

2
2

2
1

22

2
)(

aa
aadzyxK −−−++

= (4.14)

2

1
22

3

2
2

2
3

2
1

22

)(2

)(

dzyxa

aadzyxK
−++

−+−++
=Φ . (4.15)

Figure 4.21 - A three-link manipulator and its workspace.

The world coordinates (x, y, z) represent a position of the manipulator end-effector. In

equations (4.12), the joint angle θ3 is not a unique value because it is expressed by two

different functions. This reflects the multi-solution characteristics of the inverse

kinematics problem. In this simulation, the plus sign in equation (4.12) corresponding to

the upper-elbow structure was used. Hence, the third joint angle θ3 was always a

negative value. For this simulation, the three-dimensional workspace was limited to a

specific region where the three space coordinates were all positive values {(x > 0), (y >

0), (z > 0)}.

4.4.1 Simulation description

To approximate the inverse kinematics function of the three-link manipulator, an RBFN

as shown in Figure 4.22 was applied. Simulations were performed following this

procedure:

X

Y

Z

θ1

X

Y

Z

θ3 θ2

88

 The structure of the hidden layer was built with pre-defined centres regularly

distributed in the workspace (10 mm x 10 mm x 10 mm cubes). The total number

of hidden units was 410 nodes. The spread was experimentally selected so that the

RBFN can produce an appropriate inverse kinematics approximation.

 Training patterns {(x, y, z); (θ1, θ2, θ3)} were collected as either constrained or

random data in the workspace. There were three sets of training data: constrained

and random with a maximum deviation of 2 mm and 3 mm (Figure 4.23).

 The linear weights were adjusted by one of two methods, strict interpolation or

LMS.

 Two test trajectory sets (Figure 4.24), which did not occur in the training phase,

were presented to verify the performance of the RBFN after training. The first one

was a trajectory inside the workspace (5 mm x 5 mm x 5 mm cubes) and the

second was a trajectory near the edge of the workspace.

`

Figure 4.22 - Configuration of the RBFN to approximate the inverse kinematics of the

three-link manipulator.

y

Hidden layer Linear output layer

θ1

x

Input layer

θ2

)(LL CxG −

)(22 CxG −

)(11 CxG −

…

z

θ3

89

0 20 40 60 80 1000
50

100

30

40

50

60

70

80

90

100

110

120

130

X (mm)Y (mm)

Z
 (m

m
)

Centres (Constrained)
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.23 – Distribution of three training data sets used in the three-link manipulator

simulations.

20
40

60
80

100

0
20

40
60

80
40

50

60

70

80

90

100

110

X (mm)Y (mm)

Z
 (m

m
)

Test data 2 (edge)
Test data 1 (inside)

Figure 4.24 – Test trajectories for the three-link manipulator simulations.

90

Similar to the two-link manipulator case, the three-link manipulator simulations

investigated the network performance for various conditions: two different training

methods were used with three training data sets and a variety of spread values (6 - 28

mm) were chosen. The RMS error between the joint angles produced by the network

and the desired inverse kinematics function (mathematical expressions) and MAEs

(mean absolute errors) between the desired and actual positions in X, Y, Z directions

were used to present the network performance. The results of the three training cases

with different training data are plotted in the same figure to compare the effect of

training data on the network’s performance.

4.4.2 Simulation results

In the first case, the RBFN was trained by the strict interpolation method with the three

different training data sets. Figures 4.25 and 4.26 present the network performance for

test trajectory 1 (inside). Figures 4.27 and 4.28 present the performance of the same

network for test trajectory 2 (edge). These simulation results are detailed in Appendix

B.4.

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2

2.5

3

Spread (mm)

R
M

S
(d

eg
)

Constrained

Random (MaxDev of 2mm)

Random (MaxDev of 3mm)

Figure 4.25 - Performance results for test trajectory 1 (inside).

91

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

Spread (mm)

M
A

E-
Z

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

Spread (mm)

M
A

E-
Y(

m
m

)
6 8 10 12 14 16 18 20 22 24 26 28

0

1

Spread (mm)
M

A
E-

X
(m

m
) Constrained

Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.26 - MAEs for test trajectory 1 (inside)

6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

8

10

12

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.27 - Performance results for test trajectory 2 (edge).

92

6 8 10 12 14 16 18 20 22 24 26 28
0

5

Spread (mm)
M

A
E

-X
 (m

m
)

6 8 10 12 14 16 18 20 22 24 26 28
0

5

Spread (mm)

M
A

E
-Y

 (m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

5

10

Spread (mm)

M
A

E
-Z

 (m
m

)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.28 - MAEs for test trajectory 2 (edge).

The results show that the RBFN trained by the strict interpolation method produces an

appropriate approximation of the inverse kinematics function for the three-link

manipulator. For the test trajectory inside the workspace (Figure 4.26), using the

constrained data produces the best performance where the average MAE (of X, Y and Z

directions) is approximately 0.1 mm for spreads between 20 to 28 mm. The

performance is also good when using the random data with a maximum deviation of 2

mm (average MAE of approximately 0.2 mm for spreads between 20 to 28 mm) and is

poorer when using the random data with a maximum deviation of 3 mm. For test

trajectory 2 (Figure 4.28), the performance is poorer with the same network compared

to test trajectory 1. This is similar to the two-link manipulator simulation. The effect of

the different training data sets (constrained or random) on the network’s performance is

not significant for test trajectory 1. However, for test trajectory 2, the network using the

random data with a maximum deviation of 3 mm produced a significantly poorer

performance compared to the other training data sets. The RBFN used in the three-link

manipulator simulations requires a wider spread to achieve the optimal inverse

kinematics approximation (20 to 28 mm) compared to the two-link simulations (16 to

22 mm).

93

The second simulation was performed with the same network and training data but used

the LMS algorithm. The training process was implemented with the following

parameters:

 Maximum training epochs = 500000,

 Goal = 0.0001,

 Learning rate = 0.01 – 0.001.

Similar to the two-link manipulator simulation, the training process using the LMS

algorithm was significantly slower than the strict interpolation method. It is slower than

the two-link case due to the greater number of hidden nodes and training points (410

nodes compared to 110 nodes) and a more complex network structure (3 inputs – 3

outputs). Figures 4.29 and 4.30 present the network’s performance for test trajectory 1

after training by the LMS algorithm corresponding to various spread values (Appendix

B.5). Figures 4.31 and 4.32 present the performance of the same network for test

trajectory 2.

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2

2.5

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.29 - Performance results for test trajectory 1 (inside).

94

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

Spread (mm)
M

A
E

-X
 (m

m
)

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

Spread (mm)

M
A

E
-Y

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

Spread (mm)

M
A

E
-Z

 (m
m

)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.30 - MAEs for test trajectory 1 (inside).

6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

5

6

7

8

9

Spread (mm)

R
M

S
(d

eg
)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.31 - Performance results for test trajectory 2 (edge).

95

6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

Spread (mm)
M

A
E

-X
 (m

m
)

6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

Spread (mm)

M
A

E
-Y

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

5

Spread (mm)

M
A

E
-Z

 (m
m

)

Constrained
Random (MaxDev of 2mm)
Random (MaxDev of 3mm)

Figure 4.32 - MAEs for test trajectory 2 (edge).

The results show that the network trained by the LMS algorithm can produce a good

inverse kinematics approximation for the three-link manipulator. For test trajectory 1

(Figure 4.30), using the constrained data an average MAE of approximately 0.5 mm can

be obtained for spreads between 14 and 18 mm. The network’s performance is not

significantly different when using different training data (constrained or random). The

performance of the same network is poorer for test trajectory 2. In general, the

performance of the network trained by the LMS algorithm is poorer compared to the

network trained by the strict interpolation method. For both test trajectories, using the

LMS algorithm requires a smaller spread value to obtain the best performance compared

to the strict interpolation method.

4.4.3 Summary of results

Similar to the two-link manipulator simulations, using an RBFN with regularly-spaced

position centres has produced an excellent approximation of the inverse kinematics

function for a three-link manipulator. The RBFN trained by the strict interpolation

method, using constrained data produced an average MAE of approximately 0.1 mm (or

1% of the centre distance) for the test trajectory inside the workspace. However, it

96

requires a higher spread value compared to the two-link manipulator case to obtain the

best performance when training by either the strict interpolation or LMS methods.

The training process using the LMS method is extremely slow with a large spread value.

This situation is more serious compared to the two-link manipulator case due to the

more complex structure of the three-link manipulator and the larger number of training

points required.

The set of random data where the maximum deviation is not higher than 20% of the

centre distance also produces good results.

4.5 Conclusion

The proposed approach using an RBFN to approximate the inverse kinematics function

of robot manipulators has been presented in this chapter. Various simulations for two-

link and three-link manipulators have been presented to demonstrate the effectiveness of

the RBFN. Some conclusions can be stated:

 The selection of hidden unit centres as regularly-spaced positions in the

workspace significantly improves the network performance.

 The training process using the strict interpolation method with training data

collected closely to the centre positions enhances the network performance.

 The generalisation capability of an RBFN is closely related to the structure of the

hidden layer (centre distance and spread). If the centre distance is fixed due to the

limited number of hidden units, the spread value chosen affects the network’s

performance significantly, especially when using the strict interpolation method.

 The effect of using random training data (high deviation from the centre points)

on the network’s performance is not significant when the network is trained by the

LMS algorithm. Thus, it would be a suitable alternative if the strict interpolation

method was not chosen due to the significant number of hidden units required and

the training data has a high deviation from the centre points.

97

4.6 References

[4.1] J. A. Driscoll, “Comparison of Neural Network Architectures for the

Modelling of Robot Inverse Kinematics”, in Proc. of the 2000 IEEE

SOUTHEASTCON, Tennessee, USA, vol. 3, April 2000, pp. 44-51.

[4.2] S. S. Yang, M. Moghavvemi, and John D. Tolman, “Modelling of Robot

Inverse Kinematics Using Two ANN Paradigms”, in Proc. of TENCON2000-

Intelligent System and Technologies for the New Millennium, Kuala Lumpur,

Malaysia, Sept. 2000, vol. 3, pp. 173-177.

[4.3] P. Y. Zhang, T. S. Lu, L. B. Song, “RBF Networks-Based Inverse Kinematics

of 6R Manipulator”, International Journal of Advanced Manufacturing

Technology, Springer – Verlag London Ltd., vol. 26, 2004, pp.144-147.

[4.4] M. J. L. Orr, Introduction to Radial Basis Function Networks. [Online],

Available: http://www.anc.ed.ac.uk/rbf/rbf.html, 1996.

[4.5] G. W. Irwin, K. Warwick and K. J. Hunt, Neural Network Applications in

Control, IEE Control Engineering Series 53, 1995.

[4.6] S. Haykin, Neural Networks a Comprehensive Foundation – Second Edition.

Prentice Hall, 1999.

[4.7] A. Guez and Z. Ahmad, “Solution to The Inverse Kinematics Problem in

Robotics by Neural Networks”, in Proc. of 1988 IEEE Int. Conf. on Neural

Networks, San Diego, USA, vol.1, July 1988, pp. 617-624.

[4.8] B. B. Choi and C. Lawrence, “Inverse Kinematics Problem in Robotics Using

Neural Networks”, NASA Technical Memorandum - 105869, October 1992.

[4.9] Z. Binggul, H. M. Ertunc, and C. Oysu, “Comparison of Inverse Kinematics

Solutions Using Neural Network for 6R Robot Manipulator with Offset”, in

Proc. of the 2005 Congress on Computational Intelligence Method &

Application, Istanbul, Turkey, Dec. 2005, pp. 1-5.

[4.10] E. Watanabe and H. Shimizu, “A Study on Generalization Ability of Neural

Network for Manipulator Inverse Kinematics”, in Proc. of the 17th Int. Conf. on

98

Industrial Electronics, Control and Instrumentation, Kobe, Japan, vol. 2, Nov.

1991, pp. 957-962.

99

CHAPTER 5

ONLINE TRAINING TO MODIFY THE INVERSE

KINEMATICS APPROXIMATION

5.1 Introduction

In Chapter 4, the idea of using a radial basis function network (RBFN) with the centres

of hidden-layer units distributed regularly in the workspace to approximate the inverse

kinematics problem was presented. Simulation results have shown that this approach

can produce an appropriate approximation for the inverse kinematics transformation of

a robotic manipulator. However, sometimes a well-trained network cannot work

effectively in the operational phase because the initial network training occurs in an

environment that is not exactly the same as the environment where the system is

actually deployed. An online retraining approach can be effectively applied for systems

whose characteristics change due to environmental variations. An example of this is a

robot-vision system whose structure changes due to environment alterations between the

initial training phase and practical deployment, e.g., different type of camera or

variation in distance and view angle between the camera and robot.

This chapter presents an approach to modify the RBFN using an additional online

retraining phase. The RBFN, which has been trained to approximate the inverse

kinematics of a manipulator, can be modified through an online process during the

operational phase. This is an additional phase using the delta rule to update the linear

weights of the RBFN which has been initially trained. Simulations for two-link and

three-link manipulators are then presented and discussed.

5.2 Using online training to modify the inverse kinematics approximation

The principle of this approach is that an RBFN which has been trained before is

modified by the delta rule (also known as the Widrow–Hoff method [5.1]) through an

additional online process during the operational phase. This chapter presents simulation

work that consists of two stages: an incorrect inverse kinematics approximation is

produced by the strict interpolation method and then is corrected through an online

100

retraining phase. The incorrect network reflects the reasonable assumption that the

initial network training occurs in an environment that is not exactly the same as the

environment where the system is actually deployed. Figure 5.1 presents an example

where the RBFN is trained with data that does not reflect the correct characteristics of a

robotic system in which the RBFN will actually operate. This situation is due to an

offset value added to all target outputs of the training data.

For the simulations in this chapter, data used in the initial training phase is created by

the following procedure. A set of N training patterns is generated using mathematical

expressions for the inverse kinematics functions

 { }),(S iiX θ=1 (5.1)

where Xi and θi are the ith input and target output of training set (the position and the

corresponding joint angle of the robot).

ROBOT
θR XA

RBFN

λ

+ +

-

(a) – Training phase with incorrect data.

ROBOT
θA XA RBFN

XR

(b) – Operational phase with incorrect IK approximation.

 Training data (incorrect)

θ = θR + λ – target output vector

XA – input vector

Offset value

Figure 5.1- Block diagram of training and operational phases.

101

A constant error is added as an offset value to all target outputs. This produces a set of

incorrect patterns called S2

⎭
⎬
⎫

⎩
⎨
⎧=

∧
),(S iiX θ2 (5.2)

where

offsetii +=

∧
θθ . (5.3)

Therefore, using the data set S2 in the training phase means that the RBFN produces an

incorrect approximation of the inverse kinematics function.

The online retraining process is implemented using the Delta rule with recent data

collected during the operational phase. The training criterion is the cost function

expressed as a sum of square errors at each training pattern [5.1]. It is given by

∑
=

=
L

j
kjk XeXE

1

2)(
2
1)((5.4)

where

∑
=

Φ−=
M

i
kijijkj XWXe

1
)()(θ . (5.5)

θj is the target output of a network output j, Φi is the output of the ith hidden Gaussian

function and Wji is the interconnection weight between the network output j and the ith

hidden unit. The weight adjustment is derived using the Delta rule as

)().(. kikjji XXeW Φ=Δ η (5.6)

where η is learning rate (0 ≤ η ≤ 1).

102

One drawback of an online training process is learning interference where the training

effect of a current training point may upset some of the weights which were trained with

other points, if they are close together [5.2]. Consequently, the RBFN at a retraining

step can converge to the desired function in one area but diverge in other areas. This

learning interference is more serious when the spread and/or the learning rate is large.

Based on the characteristics of Gaussian functions, a simple rule is proposed to select

appropriate patterns in order to avoid learning interference. Given an input x, the output

of a Gaussian function can be calculated as

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

2
.832.0exp

Sp
D (5.7)

where Sp is the spread of the Gaussian function and CxD −= is the distance between

training points and the centre of the Gaussian function.

From equation (5.7), the relationship between the ratio of the distance D to the spread

value and the output of the Gaussian function can be determined as

693.0
ln

−
Φ

=
Sp
D , .10 ≤Φ≤ (5.8)

Thus, the effect of a training point on the output of a hidden unit is dependent on the

distance between this training point and the centre of the hidden unit in proportion to the

spread. It can be formulated as follows:

 SpD ≤⇔≥Φ 5.0 (5.9)

 SpDSp 822.15.01.0 ≤≤⇔≤Φ≤ (5.10)

 SpDSp 079.2822.11.005.0 ≤≤⇔≤Φ≤ (5.11)

103

 SpD 079.205.0 ≥⇔≤Φ . (5.12)

The principle of the free interference rule is that if the position of a new training point is

further than twice the spread value from the position of the previous training point used

to train the network, then the training process (with this new point) will not interfere in

the weights of hidden units whose centres are close to the previous point. Therefore,

following the free interference rule, the RBFN may be modified gradually and smoothly

in this online retraining process.

5.3 Simulation procedure

A MATLAB simulation was developed to demonstrate the proposed approach. This

simulation used two manipulator structures: two-link and three-link, the same as the

simulations in Chapter 4. It answered two questions: how an incorrect approximation

can be improved by an online training process and which factors affect this retraining

process. The simulation procedure can be described as below:

Step 1: Select the hidden layer parameters as presented in Chapter 4 where:

i/ centres of the hidden layer are predefined as regularly spaced positions in the

workspace,

ii/ the spread of the Gaussian functions is heuristically selected as a proportion of the

centre distance.

Step 2: Generate a constrained training set where its inputs are coincident with the

centre positions in the workspace using the mathematical inverse kinematics functions

presented in sections 4.3 and 4.4. A constant error (offset value) is then added to the

target outputs. Thus, the new training set is incorrect because the inputs and target

outputs no longer correspond to each other.

Step 3: Train the RBFN with the incorrect training set using the strict interpolation

method. This produces an incorrect inverse kinematics approximation.

104

Step 4: Adopt a learning rate (0.1 - 0.5) and update the linear weights of the RBFN

through the online training process. It is described by the following flowchart.

Figure 5.2 – Online retraining flowchart.

The effect of this retraining phase is dependent on three factors: learning rate, spread

and the distance between centres and training points.

To examine the network performance a range of test data are presented after each

retraining step. The performance criterion is root mean square (RMS) error between the

approximation function (modified RBFN) and the desired function (mathematical

expressions). In addition, mean absolute errors (MAEs) in X, Y, and Z (for the three-

link manipulator case) directions between the actual positions and the desired positions

are also used to demonstrate the network performance.

Move to an arbitrary position

Pick and store the current position
and the corresponding joint angles as

a new training pattern

Feed the training pattern to RBFN,
update the linear weights by the delta

rule as :

ijji eW Φ=Δ ..η

START

CONTINUE ?
NO

YES

FINISH

105

5.4 Two-link manipulator simulation

In this simulation, a set of regularly-spaced position centres were selected as 10 mm x

10 mm grids in the workspace. A training set was created where the inputs were

coincident with pre-defined centre positions and an offset value of 10 degrees was

added to the target outputs. As a result, the RBFN which was trained by this data set

using the strict interpolation method produced an incorrect inverse kinematics

approximation. To examine the network’s performance, a range of test data distributed

as 5 mm x 5 mm grids in the square area {x = 22 – 52 mm; y = 22 - 52 mm} were sent

to the RBFN. Figure 5.3 presents the outputs (joint angles) of the desired inverse

kinematics function and the incorrect approximation (the RBFN) in this test area. It

shows that the surface of the approximation functions (θ1 = f1(x, y) and θ2 = f2(x, y)) are

parallel to the surface of the desired functions but differ by a 10 degree offset. The

network performance is obtained as: RMS error = 9.91 degrees, MAE_X = 14.39 mm

and MAE_X = 3.21 mm.

10 20 30 40 50 60 70
20

40
60

-40
-20

0
20
40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

20
40

60

10203040506070
100
150

X (mm)Y (mm)

T
he

ta
 2

 (d
eg

)

Incorrect function

Desired function

Figure 5.3 - Surfaces of desired (mathematical expression) and approximation functions

(RBFN) in the test area.

106

To clarify the effect of online retraining in modifying the inverse kinematics

approximation, a series of the network’s performances through 5 training points,

collected using the free interference rule, are shown in Figures 5.4 to 5.8. The retraining

process was performed with a spread of 10 mm and a learning rate of 0.4. To illustrate

how the inverse kinematics approximation is modified through retraining, three

functions are shown on the same figure: the incorrect function (before retraining phase),

modified function and the desired function.

10 20 30 40 50 60 70
20

40
60

-40
-20

0
20
40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

10 20 30 40 50 60 70
20

40
60

100
150

X (mm)Y (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function

 Desired function

 Modified function

 Training point

Figure 5.4 - The network’s performance after retraining by the first point

(20 mm; 21mm).

107

10 20 30 40 50 60 7020
40

60
-40
-20

0
20
40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

10 20 30 40 50 60 70
20

40
60

100

150

X (mm)Y (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function
 Desired function
 Modified function
 Training point

Figure 5.5 - The network’s performance after retraining by the second point

(56 mm; 19 mm).

10 20 30 40 50 60 70 20 40 60-40
-20

0
20
40

Y (mm)
X (mm)

T
he

ta
 1

 (d
eg

)

10 20 30 40 50 60 70 20
40

60
100

150

Y (mm)
X (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function
 Desired function
 Modified function
 Training point

Figure 5.6 - The network’s performance after retraining by the third point

(63 mm; 56 mm).

108

10 20 30 40 50 60 70
204060

-40
-20

0
20

40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

10 20 30 40 50 60 7020

40

60

100

150

X (mm)
Y (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function
 Desired function
 Modified function
 Training point

Figure 5.7 - The network’s performance after retraining by the fourth point

(20 mm; 54 mm).

20 40 60
10203040506070

-40
-20

0
20
40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

10 20 30 40 50 60 70

20
40

60

100

150

X (mm)Y (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function
 Desired function
 Modified function
 Training point

Figure 5.8 - The network’s performance after retraining by the fifth point

(40 mm; 40 mm).

109

The results show that the online retraining has modified the inverse kinematics

approximation gradually. After 5 online retraining steps, the RBFN is close to the

desired function. By selecting the training patterns following the free interference rule,

the current modified function at each step approaches the desired function in the area

surrounding the training point whilst not affecting other areas.

The effect of spread and learning rate on the retraining process is shown in Table 5.1

which presents the RMS errors (between the current modified function and desired

function). A small spread (e.g., 8 mm) requires a high learning rate to produce a small

RMS error. A large spread (e.g., 16 mm) requires a small learning rate to produce a

small RMS error. For other spread values, the minimum RMS error is obtained for

learning rate values between 0.1 and 0.4. For example, a learning rate of 0.4 produces

the minimum RMS error with a spread of 10 mm. The selection of the spread and

learning rate should be carefully considered to ensure a successful retraining process.

 Spread

L.r

8(mm) 10(mm) 12(mm) 14(mm) 16(mm)

0.1 8.6 7.1 5.06 2.83 1

0.2 7.34 4.66 1.69 0.78 1.65

0.3 6.13 2.61 0.89 2.02 5.1

0.4 5 1.19 2.06 4.52 11.03

0.5 3.94 1.43 3.02 9.14 17

Table 5.1 - RMS errors (degrees) after online retraining with 5 training points.

The improvement of the RBFN is dependent on the learning rate, the spread and the

position of training points in the workspace. A large learning rate and/or a large spread

can improve the RBFN approximation in the area around the current training point

whilst other areas become poorer due to learning inference. In this research, it is

preferred to adopt a small learning rate and an average spread value for the retraining

process.

The retraining process can be continued with new training points. Figure 5.9 presents

the performance results of the RBFN after retraining with 5 more points (10 training

points in total). These were: {(20 mm; 21 mm), (56 mm; 19 mm), (53 mm; 56 mm), (20

110

mm; 54 mm), (40 mm; 40 mm), (24 mm; 25 mm), (50 mm; 24 mm), (51 mm; 49 mm),

(25 mm; 50 mm), (38 mm; 37 mm)}. A better performance is obtained:

 RMS error = 0.73 degrees,

 MAE_X = 0.74 mm,

 MEA_Y = 0.33 mm.

However, the improvement of the RBFN varies depending on the training points chosen

and their presentation order. To illustrate this point, 15 training points were randomly

collected in the test area: {(34 mm; 40 mm), (39 mm; 36 mm), (30 mm; 28 mm), (50

mm; 43 mm), (51 mm; 38 mm), (47 mm; 33 mm), (42 mm; 26 mm), (46 mm; 23 mm),

(32 mm; 22 mm), (25 mm; 26 mm), (21 mm; 30 mm), (32 mm; 28 mm), (42 mm; 32

mm), (49 mm; 28 mm), (39 mm; 52 mm)}. The network’s performance after online

retraining (learning rate = 0.4, spread = 10 mm) with these training points is:

 RMS error = 2.52 degrees,

 MAE_X = 3.04 mm,

 MAE_Y = 0.96 mm.

This result is poorer than the network’s performance after retraining with 10 training

points (following the free interference rule) as presented previously.

111

20 40
60

10203040506070
-40
-20

0
20
40

X (mm)Y (mm)

T
he

ta
 1

 (d
eg

)

20
40

60

10203040506070

100

150

X (mm)Y (mm)

T
he

ta
 2

 (d
eg

)

 Incorrect function
 Desired function
 Modified function
 Training point

Figure 5.9 - The network’s performance after retraining with a total of 10 training points

following the free inference rule.

The retraining process tends to continuously improve the inverse kinematics

approximation with further training points. If the number of training points is sufficient

and other factors (learning rate and spread) are appropriately chosen, the RBFN can

produce an approximation function similar to that obtained by the strict interpolation

method with correct training data (Chapter 4).

5.5 Three-link manipulator simulation

In this simulation, a set of regularly-spaced position centres was selected as 10 mm x 10

mm x 10 mm cubes in the workspace. A training set was created where the inputs were

coincident with pre-defined centre positions and an offset value of 5 degrees was added

to the target outputs. As a result, the RBFN trained with this training set using the strict

interpolation method produced an incorrect inverse kinematics approximation. In order

to examine the network’s performance, a range of test data distributed as 5 mm x 5 mm

x 5 mm cubes was sent to the RBFN as shown Figure 5.10. It is not convenient to show

the inverse kinematics function surfaces of the three-link manipulator in the same

manner as the two-link manipulator. Thus, the network’s performance can be presented

as errors between the desired and the current modified function for the test points. These

112

errors are the differences between joint angles produced by the RBFN and the

mathematical inverse kinematics expressions.

30 35 40 45 50 55 60 6530

40

50

60

40

50

60

70

80

X(mm)
Y(mm)

Z
(m

m
)

Figure 5.10- Test data distributed as 5 mm x 5 mm x 5 mm cubes in the workspace.

Figure 5.11 shows the network’s performance after initial training with the incorrect

data (offset value of 5 degrees added to all target outputs). The network’s performance

is:

 RMS error = 5.12 degrees,

 MAE_X = 5.87 mm,

 MAE_Y = 2.02 mm,

 MAE_Z = 10.52 mm.

113

0 20 40 60 80 100 120
-10

-5

0
ERROR BETWEEN THE DESIRED AND MODIFIED FUNCTIONS

Number of Test Points
D

T
he

ta
 1

(d
eg

)

0 20 40 60 80 100 120
-10

-5

0

Number of Test Points

D
T

he
ta

 2
(d

eg
)

0 20 40 60 80 100 120
-10

-5

0

Number of Test Points

D
T

he
ta

 3
(d

eg
)

Figure 5.11- The network’s performance after initial training with incorrect data.

To improve the network’s performance a series of 15 training points (Figure 5.12),

following the free interference rule, were applied to the online retraining process. These

were: {(34 mm; 35 mm; 48 mm), (34 mm; 61 mm; 48 mm), (34 mm; 61 mm; 74 mm),

(34 mm; 35 mm; 74 mm), (34 mm; 48 mm; 62 mm), (58 mm; 35 mm; 48 mm), (58 mm;

61 mm; 48 mm), (58 mm; 61 mm; 74 mm), (58 mm; 35 mm; 74 mm), (58 mm; 48 mm;

62mm), (46 mm; 35 mm; 48 mm), (46 mm; 61 mm; 48 mm), (46 mm; 61 mm; 74 mm),

(46 mm; 35 mm; 74 mm), (46 mm; 48 mm; 62 mm)}. The order of these training points

is important because it can result in performance variations.

114

30 35 40 45 50 55 60 6530

40

50

60

40

50

60

70

80

X(mm)
Y(mm)

Z
(m

m
)

Test Points
Training Points

Figure 5.12 - Distribution of 15 training patterns following the free interference rule in

the online retraining process.

Figure 5.13 shows the RBFN performance after retraining with 15 training points. This

online retraining process corresponds to a learning rate of 0.2 and a spread of 10 mm.

Compared to the performance of the incorrect approximation function (before the

retraining phase), this result shows that after online retraining with 15 training points the

network’s performance was noticeably improved. This can be verified by:

 RMS error = 1.55 degrees,

 MAE_X = 1.1 mm,

 MAE_Y = 0.85 mm,

 MAE_Z = 2.23 mm.

115

0 20 40 60 80 100 120
-2

0

2

ERROR BETWEEN THE DESIRED AND MODIFIED FUNCTIONS

Number of Test Points

D
T

he
ta

 1
(d

eg
)

0 20 40 60 80 100 120

-2

0

2

Number of Test Points

D
T

he
ta

 2
(d

eg
)

0 20 40 60 80 100 120
-6
-4
-2
0
2

Number of Test Points

D
T

he
ta

 3
(d

eg
)

Figure 5.13 - The network’s performance after retraining with 15 training points.

The effect of spread and learning rate on the retraining process is shown in Table 5.2. A

large spread (e.g., 12mm - 14 mm) requires a small learning rate to produce a small

RMS error. However, when using a spread of 14 mm, a small increase in the learning

rate leads to a significant increase in the RMS error. Thus, an RBFN with a large spread

value is not appropriate in the online retraining phase. A small spread value (e.g., 8 mm

to 10 mm) requires a learning rate in the range from 0.1 to 0.4 to minimise the RMS

error. For example, a learning rate of 0.2 produces the best network’s performance

(minimum RMS error) with a spread of 10 mm. The selection of the spread and the

learning rate should be carefully considered to ensure a successful retraining process.

 Spread

L.r

8 mm 10 mm 12 mm 14 mm

0.1 3.43 1.72 1.02 0.79

0.2 2.36 1.55 1.13 1.11

0.3 1.83 1.56 2.57 11.6

0.4 1.68 1.72 5.65 32.82

0.5 1.71 2.96 6.65 552.47

Table 5.2 - RMS errors (degrees) after online retraining with 15 points.

116

The retraining process can be continued to obtain further improvement. Figure 5.14

presents the performance results of the RBFN after retraining with 14 more points.

These were: {(52 mm; 42 mm; 55mm), (40 mm; 42 mm; 55 mm), (40 mm; 55 mm;

55mm), (52 mm; 55 mm ; 55 mm), (52 mm; 55 mm; 68 mm), (52 mm; 42 mm; 68 mm),

(40 mm; 42 mm; 68 mm), (40 mm; 55 mm; 68 mm), (46 mm; 35 mm; 62 mm), (34 mm;

48 mm; 62 mm), (46 mm; 61 mm; 62 mm), (58 mm; 48 mm; 62 mm), (46 mm; 48 mm;

74 mm), (46 mm; 48 mm; 48mm)}. The total number of online retraining steps was 29

and the improved performance is verified by:

 RMS error = 1.06 degrees,

 MAE_X = 0.71 mm,

 MAE_Y = 0.65 mm,

 MAE_Z = 1.44 mm.

0 20 40 60 80 100 120
-2

0

2

ERROR BETWEEN THE DESIRED AND MODIFIED FUNCTIONS

Number of Test Points

D
T

he
ta

 1
(d

eg
)

0 20 40 60 80 100 120

-2

0

2

Number of Test Points

D
T

he
ta

 2
(d

eg
)

0 20 40 60 80 100 120
-4
-2
0
2

Number of Test Points

D
T

he
ta

 3
(d

eg
)

Figure 5.14 - The network’s performance after retraining with 29 training points.

117

The robotic system in this simulation (three-link manipulator) has a more complex

structure than the two-link manipulator. Therefore, the improvement of the RBFN in the

online retraining phase is slower and requires more training patterns to achieve the same

performance improvements. For the three-link manipulator case, the RBFN modified by

the online retraining phase could obtain a similar level of performance as the RBFN

trained by the strict interpolation method with correct training data (Chapter 4). This

observation is valid as long as the number of training points is sufficient and the spread

and learning rate are appropriately chosen.

5.6 Conclusion

This chapter has presented a novel approach where the inverse kinematics

approximation is modified through an online retraining process. The simulations

demonstrate that the RBFN performance after online retraining noticeably improves.

There are three factors: the learning rate, the spread value and the position of the

training points that can affect the online retraining phase. Thus, the choice of learning

rate and the spread value must be carefully considered. The selection of training points

following the free learning interference rule can produce better results. However, the

effect of online retraining on the RBFN performance is dependent on how complex the

desired function is. For a more complex function (e.g., the inverse kinematics of the

three-link manipulator) the RBFN requires to be re-trained with more training patterns

and the improvement is slower compared to a simpler function (the inverse kinematics

of a two-link manipulator). This online retraining approach can be effectively applied

when the structure of the practical robotic system alters due to environmental variations

(Chapter 7).

5.7 References

[5.1] S. Haykin, Neural Networks a Comprehensive Foundation – Second Edition,

Prentice Hall, 1999.

[5.2] G. W. Irwin, K. Warwick, and K. J. Hunt, Neural Network Applications in

Control, IEE Control Engineering Series 53, 1995.

118

 [5.3] M. J. L. Orr, Introduction To Radial Basis Function Networks. [Online].

Available: http://www.anc.ed.ac.uk/rbf/rbf.html. 1996.

[5.4] N. Murataa, M. Kawanabeb, A. Zieheb and S. Amari, “Online Learning in

Changing Environments with Applications in Supervised and Unsupervised

Learning”, Neural Networks, vol. 15(4), June 2002, pp. 743–760.

[5.5] R. S. Sutton and S. D. Whitehead, “Online Learning with Random

Representations”, in Proc. of the 10th Int. Conf. on Machine Learning, 1993,

pp. 314-321.

 [5.6] D. H. Rao, M. M. Gupta and P.N. Nikiforuk, “Online Learning of Robot

Inverse Kinematic Transformations”, in Proc. of 1993 Int. Joint Conf. on

Neural Networks, 1993, pp. 2827-2830.

119

CHAPTER 6

DEVELOPMENT OF A THREE-DIMENSIONAL POSITIONAL

MEASUREMENT SYSTEM

6.1 Introduction

In robotic control, measuring the state variables (joint angle positions and velocities) in

the joint space is simple and direct by using optical sensors attached to the shaft of the

joints. However, measuring the position and velocity of the end-effector in the world

space (Cartesian coordinates) is significantly more difficult due to the need for an

indirect distance measurement system using sonic or vision sensors. In recent years,

vision-based measurements have been developed and applied more frequently in robotic

control because of benefits, such as efficiency, accuracy and low cost. In this chapter, a

real-time visual measurement system based on a video camera is presented to estimate

the position of the end-effector of a robotic manipulator in a three-dimensional

workspace. It consists of a standard video camera (Webcam) mounted on a fixed pole to

measure the position of a sample board attached to the end-effector. Image processing

software has been programmed using functions from the Intel Open Source Computer

Vision Library (OpenCV). A Graphic User Interface (GUI) has been developed to make

this visual measurement tool more convenient for practical applications.

This chapter firstly describes some background information on computer vision and

image processing. It includes the pinhole camera model which is the basis of calibration

methods of physical cameras. Next, a camera calibration procedure using a calibration

toolbox in MATLAB is presented to estimate the intrinsic parameters of the camera. A

real-time visual measurement solution to estimate the position of the robotic

manipulator in a 3-D workspace is then described. The set-up of the measurement

system components and the specific features of the image processing software are

presented.

120

6.2 Background of computer vision

Using a camera to transform a 3-D scene (world space) to a 2-D space (image plane) is

important for vision-based measurement. This is performed by a digital camera where

an object is digitally captured by recording images via an electronic image sensor. The

relationship between the 3-D and 2-D data of the object is then used to determine the

geometrical parameters of the camera. This section presents the general background of

computer vision related to a real-time vision based measurement system presented in

this chapter.

6.2.1 Image acquisition and processing

One of the most popular digital cameras at present is the CCD (Charge coupled device)

[6.1] photo-sensor type. Each sensor (photocell) can be regarded as a small rectangular-

black box that converts light energy into data as voltage levels. The quality and cost of a

camera is likely to relate to how many CCD sensors are attached in an area unit called

the camera resolution. In this research, a standard CCD-type webcam (i.e., a digital

camera connected to a computer) is used to capture the scenes of an object (robot) in the

world space. It records objects’ images by scanning the photo-sensors and then

producing video signals. These signals are continuously sent and stored in a memory

buffer following a specific sequence in the CCD-cell array, normally line by line. Thus,

the video stream is transferred to a computer as digital image frames, each consisting of

(N x M) data, at a speed of up to 30 frames per second.

A digital image is composed of a number of discrete image units called pixels and is

organised as a two-dimensional array (NxM) to build an image plane [6.2]. Figure 6.1

presents the general structure and geometry of a digital image. An element I[i, j] of the

digital image represents a value (image brightness) at the ith row, jth column pixel

corresponding to coordinates (xp, yp) in the image plane. Note that image coordinates

and indices of image data at one pixel are not the same, although both can be measured

in pixel units. The image coordinates are defined with respect to the origin of the image

plane - the principal point (centre). The indices of image data are determined with

respect to the left upper corner of the image array.

121

If the image in Figure 6.1 is a monochromatic (grey) image, then I[i, j] occupies a one-

byte memory to store an integer value in the range [0, 255]. The element (i, j) of a

colour image consists of three separated memory boxes to store three image-colour

components (red, green, blue) [6.2], [6.3] as shown in Figure 6.2. Hence, a three-

dimensional array I[i, j, k] with size (NxMx3) is used to represent the colour image in

which the third index specifies a particular colour.

(0,0) (W-1)

(H-1)

i

j

Image array
(NxM)

Image plane

y

x

(xp,yp)

I[i, j] - image coordinate (xp, yp)

0

(0,0)

(H-1)

i

j

Gray image array

(0,0)

i

j

k

(W-1)

I[2,3]

I[2,3,0]

I[2,3,1]

I[2,3,2]

(H-1)

(W-1)

Colour image array

Figure 6.1 - Relationship between the image plane and image array of a digital image.

Figure 6.2 - The structure of image data for a gray and a colour image.

122

Colour image information is organised as a multi-dimensional array according to a

particular colour space where RGB (Red-Green-Blue) is the most popular. It consists of

three colour channels, red, green and blue, each of which is represented by a specific

value (colour part) within the interval [0, 255]. By combining the three colour parts in

this format, the vision features (e.g., sharpness, colour, shadow, etc.) of the object can

be displayed. However, the RGB colour space is not stable with regards to alterations in

the illumination because the representation of a colour in the RGB colour space contains

no separation between the illumination and the colour parts [6.3]. It means that with an

illumination point (e.g., a light emitting diode) in either red, green, or blue, all colour

parts have the same brightness of 255. This problem has affected the performance of the

visual measurement system developed in this research where the data acquisition

programme is required to distinguish between two different-colour points in the

calibration sample. In order to eliminate this phenomenon, some adjustments of the

camera specifications (hardware) such as using lower brightness, reducing contrast level

and applying a colour filter function (software) have been implemented.

Most of the image processing functions to analyse image features (e.g., edge detector,

contour fragments, corner extraction) [6.1], [6.2] have been developed with gray-scale

or binary image data. Thus, a colour image should be first converted to the suitable

image space before processing. The threshold value of the colour conversion functions

should be selected experimentally depending on the particular situation.

6.2.2 Perspective transformation from 3-D to 2-D space

The perspective transformation is based on the pinhole camera model where each point

in the world space is projected by a straight line through the projection centre into the

image plane [6.2]. Figure 6.3 shows the projection of a point P(XP, YP, ZP) into the

image plane. It produces an image point p(x, y) correspondingly.

123

A 3-D coordinate frame attached in the projection centre of the camera is called the

camera coordinate system where the Zc axis is perpendicular to the image plane. This

camera coordinate frame can be determined with respect to the object coordinate system

which is attached to an object by a translation vector T(1x3) and a rotation matrix

R(3x3). Figure 6.4 expresses the relationship between the world (object) coordinate

system and the camera coordinate system.

In order to determine image coordinates of a point P(XP, YP, ZP)W given in the world

coordinate system, it is first transformed to the camera coordinate system as

 TR +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

W
P

W
P

W
P

C
P

C
P

C
P

Z
Y
X

Z
Y
X

 (6.1)

or

 .

333231

232221

131211

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

W
P

W
P

W
P

C
P

C
P

C
P

T
T
T

Z
Y
X

rrr
rrr
rrr

Z
Y
X

 (6.2)

ZC

XC

YC P(XP, YP, Zp)

p

OC

f

o

Image
Plane

Optical axis

Camera
Frame

Projection

Figure 6.3 - The pinhole model – projection of a 3-D point into the image plane.

124

The translation vector T and orthogonal matrix R (RTR = RRT = I) specify a

homogenous transformation from one reference frame to another and are commonly

called the camera extrinsic parameters. A projection from the camera coordinate frame

through the optical lens into the image plane is then implemented and the corresponding

image coordinates are determined by

 c

c

Z
Xfx =

(6.3)

 .c

c

Z
Yfy = (6.4)

Note that these coordinates (x, y) are defined with respect to the origin of the image

plane (centre of the image plane). However, the position of an image point is always

determined by counting the indices of the image array in pixel units, (u, v), as shown in

Figure 6.1. Thus, if the distortions of the optical lens are neglected, the relationship

between the 3-D and 2-D image coordinates (in pixels) can be expressed as

XC

YC

ZC

YW

XW

ZW

OC

OW

P(XP, YP, ZP)

Transformation
matrix

Figure 6.4 - Transformation between the world coordinate frame and the camera

coordinate frame.

125

 uc

c

xuc

c

u

o
Z
Xfo

Z
X

s
fu +−=+−= (6.5)

 vc

c

yvc

c

v

o
Z
Yfo

Z
Y

s
fv +−=+−= (6.6)

where (ou, ov) is the coordinate of the image centre in pixels and (su, sv) are the scale

coefficients of the pixels (in millimetres) in the horizontal and vertical directions

respectively.

However, this pinhole model is only an approximation for a real projection. In fact, all

optical lenses have some distortions affecting the projection. It is essential that some

coefficients can be attached to compensate for this phenomenon. In many cases, the

radial lens distortion [6.4] is likely to be a main cause of displacement in the image

coordinates. It can be expressed as

 ...)(4
2

2
1 ++=−= rkrkxxxdx dd (6.7)

 ...)(4
2

2
1 ++=−= rkrkyyydy dd (6.8)

where (xd, yd) is the coordinate of the distorted point and 222
dd yxr += .

Typically, radial distortion coefficients are small and often k2 << k1, so in most practical

cases only coefficient k1 is adopted as an intrinsic parameter [6.2]. As a result, the

intrinsic parameters of a camera includes:

 fx , fy – focal lengths in effective horizontal and vertical pixel size units,

 (ou, ov) - image centre coordinate in pixels, and

 k1 – radial distortion coefficient.

126

The projection from the object coordinate system to the image plane can also be

expressed in a more general form by a linear matrix such as

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11

M.
.

34333231

24232221

14131211

w

w

w

w

w

w

Z
Y
X

mmmm
mmmm
mmmm

Z
Y
X

w
wv
wu

 (6.9)

where

 .

333231

332332223121

331332123111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−+−+−+−
+−+−+−+−

=

z

zvyyvyvyvy

zuxxuxuxux

Trrr
ToTfrorfrorfrorf
ToTfrorfrorfrorf

M (6.10)

M is called the perspective transformation matrix where w is an arbitrary scale value

[6.2]. This can be rewritten as a product of two simpler matrices, Mint and Mext, as

shown by

 extMMM .int= (6.11)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

100

0

0

int v
v

u
u

o
s
f

o
s
f

M (6.12)

 .

333231

232221

131211

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

ext

Trrr
Trrr
Trrr

M (6.13)

127

Mext performs the transformation between the object coordinate frame and the camera

coordinate frame and Mint performs the projection from the camera coordinate frame to

the image plane. Therefore, this perspective matrix can be defined, dependent on an

arbitrary scale factor w, by 11 independent parameters, 6 extrinsic and 5 intrinsic.

6.3 Camera calibration methods

6.3.1 Overview

Camera calibration is the estimation of the intrinsic and extrinsic parameters of the

camera model from a set of known coordinates of 3-D objects and their corresponding

images [6.6]-[6.10]. As presented in Section 6.2.2, projecting an object from the world

space to the image plane can be expressed by the perspective transformation matrix on

the basis of the pinhole camera model. However, this transformation cannot be

described perfectly due to optical lens distortions. Thus, the pinhole model is only an

approximation to the real physical camera. For this reason, the transformation procedure

should be modified by using additional intrinsic parameters to model the lens

distortions. In [6.4], [6.5] a literature review of calibration methods and various

distortion models was presented. It listed a range of existing camera calibration

approaches and mentioned various lens distortion models (e.g., radial and tangential), as

well as how these distortions affect image displacements in the image plane. A

calibration method called the direct linear transformation which uses the pinhole model

and ignores the nonlinear radial and tangential distortion components was described in

[6.2], [6.6]. A nonlinear estimation approach [6.6] applied an optimisation method

which minimises the distances between perspective model images, calculated by

equation (6.9), and actual measured images to estimate the camera parameters. The

radial and tangential distortion had also been added in the constraint equations. This is a

nonlinear optimisation problem due to the vision-geometry relationships and an iterative

approach using the Levenberg-Marquardt method was applied to simultaneously

estimate the camera parameters. A similar nonlinear estimation solution called the

maximum-likelihood estimate was proposed in [6.7]. It built the constrained equations

in the least squares manner with a simplification in the homograph matrix between the

model plane and its images. Most of the camera calibration tools combine the direct

linear transformation and nonlinear estimation together. Firstly, an initial phase is

implemented based on the direct linear transformation without any distortion

128

components, then the nonlinear estimation is applied to refine all camera parameters

including distortion components. Given a sufficient number of calibration patterns, a

camera-parameter estimation approach can be implemented as follows.

If a set of N planar points (3-D space) and their corresponding image coordinates (2-D

space) are known, by applying (6.10) a matrix equation which represents the

relationships between the N pairs of 3-D and 2-D points can be written as

 0=Am (6.14)

where the coefficient matrix A is determined by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−
−−−−
−−−−

=

NNNNNNNNNN

NNNNNNNNNN

vZvYvXvZYX
uZuYuXuZYX

vZvYvXvZYX
uZuYuXuZYX
vZvYvXvZYX
uZuYuXuZYX

10000
00001

............

............

............
10000
00001
10000
00001

2222222222

2222222222

1111111111

1111111111

A (6.15)

and the variable vector is

 []343332312423222114131211 ,,,,,,,,,,, mmmmmmmmmmmm=m . (6.16)

By replacing the known object coordinates (Xi, Yi, Zi) and image coordinates (ui, vi) in

(6.15), the parameter vector m can be estimated based on the least squares technique. It

is performed by applying the SVD (Singular Value Decomposition) transformation for

matrix A

 TUDVA = . (6.17)

129

Since matrix A has rank 11, the solution of vector m can be obtained using the SVD

technique as a column of matrix V corresponds to the smallest singular value of A [6.2].

This solution is formed by the entries of the projection matrix dependent on an

unknown scale factor. Once m is estimated, the camera intrinsic parameters can be

computed from the perspective matrix and the extrinsic parameters are then determined

correspondingly [6.2].

In order to refine the camera parameters for real conditions where noise is present, a

nonlinear estimation technique can be performed which minimises the error between the

model plane coordinates)~,~(ii vu and measured coordinates (ui, vi). If it is assumed that

the image points are corrupted by noise with a normal distribution (Gaussian noise), the

cost function is expressed as a sum of squared errors [6.7]:

 ∑∑
==

−+−=
N

i
ii

N

i
ii vvuuF

1

2

1

2)~()~((6.18)

where)~,~(ii vu are dependent functions of all camera parameters including distortions.

Equation (6.18) is a nonlinear function and an iterative algorithm can be used to

minimise it. The camera parameters estimated by the direct linear transformation are

used as the initial values in the optimisation algorithm.

The precision of the calibration algorithm depends on how accurately the coordinates of

3-D objects and their corresponding images can be located. This is highly dependent on

which sample type and image-extraction technique are applied to obtain adequate data.

In order to provide a range of 3-D objects for a calibration algorithm, some samples

called the calibration patterns are used with known geometry. These are located in a

known position in the world space so that their image coordinates are easily determined

from the image plane. Figure 6.5 shows two popular types of calibration patterns. Both

provide a set of points as planar grids and the corresponding image positions of these

points in the image plane can be easily determined by any common image processing

toolbox, e.g., MATLAB Image processing toolbox or OpenCV.

130

Recently, many of the calibration samples in 3-D reconstruction/measurement fields

have used structured light systems [6.11]-[6.13]. The term structured light is defined as

the projection of simple or encoded light patterns (i.e., points, lines, grids, complex

shapes) [6.11] onto the illuminated object. The main benefit of using structured light is

that features in the images are better defined. As a result, both the detection and

extraction of image features are simplified and are more robust. The quality of camera

calibration algorithms can be improved significantly.

6.3.2 Camera calibration toolbox in MATLAB

An interesting toolbox with full instructions for camera calibration in MATLAB has

been developed [6.14]. Most functions in this toolbox are also included in the OpenCV

library which was used to programme the real-time visual measurement software in this

research.

This camera calibration toolbox was used to estimate the intrinsic parameters of the

Trust 380 USB 2.0 SPACEC@M webcam used in this research. The calibration

procedure was implemented as follows:

 Prepare a chessboard pattern as in Figure 6.5 and attach it to a planar surface.

 Capture several images of the pattern with the webcam. The pattern is changed

by varying the viewing angles and distances with respect to the camera to collect

a range of different images. The calibration toolbox is then run to load images

Chessboard Planar light points

Figure 6.5 – Two popular types of calibration patterns used in computer vision.

131

(Read images function). As suggested in the toolbox instructions, this calibration

procedure should be implemented with about 20 images (or more) to obtain an

acceptable result.

 Detect the feature points in the image planes by using the Extract grid corners

function. The four extreme corners on the rectangular chessboard pattern are

then manually selected to bound the effective area and to assign the origin of the

object coordinate system. The corner extraction engine includes an automatic

mechanism for counting the number of squares in the grid. This tool is

especially convenient when working with a large number of images since the

user does not have to manually enter the number of squares in both the x and y

directions of the pattern.

 After corner extraction, the camera calibration function is then performed. The

calibration procedure is done in two phases: initialisation and then nonlinear

optimisation. The initialisation phase computes the calibration parameters by the

direct linear transformation without any lens distortion. The nonlinear

optimisation phase iteratively minimises the total re-projection error between

measured and image coordinates (which are calculated from the camera model

estimated in the pervious iteration step) for all the calibration parameters. This

toolbox uses an optimisation approach based on the gradient descent method.

Calibration result

Focal Length (pixels): fC = [838.65; 833.57] ± [4.31; 4.7].

Principal point (pixels): OC = [327.16; 268.84] ± [7.49; 6.48].

Skew: alpha_c = [0.00] ± [0.00] => angle of pixel axes = 90 ± 0.00 degrees.

Distortion: kC = [- 0.22; 0.09; 0.0017; 0.0017 ; 0] ± [0.029; 0.197; 0.0016; 0.0017; 0].

Pixel error: err = [0.293; 0.422].

132

This calibration result has been used for the visual measurement tool developed in this

research. The MATLAB calibration toolbox has been used to verify the performance of

this real-time visual measurement system.

6.4 A real-time 3-D measurement based video camera

This section presents a real-time visual measurement system which consists of a camera

and image processing software to measure the position of a sample board attached in the

end-effector. The software is programmed in C++ using functions of the OpenCV

library. A GUI makes this visual measurement tool more convenient for practical

applications.

6.4.1 Set-up of the vision-based measurement system

The first component of the visual measurement system is the sample board. Most 3-D

vision-based measurement systems have used structured light systems as the calibration

sample [6.15], [6.16]. In [6.11] a range of popular types of structured light samples in

computer vision were reviewed. Such systems are often composed of one or two

cameras and a projector which emits structured light patterns onto the object surface.

The projector can produce structured light patterns which are easily distinguished or

detected by their different features. The cameras then capture and process images of the

structured light sample. This system has been very popular in 3D

reconstruction/measurement fields where accuracy depends on the technology of the

light emitting devices (liquid-crystal or laser-based) and the camera resolution [6.12].

However, this is costly and inconvenient to attach to the manipulator. A low-cost

sample was built in which four light points (LEDs), in two different colours, were used

to form a calibration pattern. This sample board consists of four points fitted in a square

of 61 mm x 61 mm as shown in Figure 6.6. It is small and light enough to fix to the end-

effector without changing its dynamic characteristics and is simple for real-time

processing. However, using the LEDs as active light sources for the visual measurement

system can lead to some disadvantages. Specifically, high illumination, lack of

distinction between coloured parts and interference due to the fluctuation of the power

supply can affect the accuracy of the visual measurement system.

133

The second component of the visual measurement system is a Trust 380 USB 2.0

SPACEC@M webcam (USB port, 640 x 480 resolution, 30 frames/second video

stream) which was used to capture images of the sample board attached at the end-

effector.

Figure 6.7 shows the structure of the robotic system consisting of the manipulator and

the visual measurement system.

1 0

3 2

61 mm

61 mm

Figure 6.6 – Sample board attached to the end-effector as the calibration pattern.

θ1

θ2

θ3

Zw

Xw

Yw
O

Computer

Webcam

Light point
sample

Camera
coordinate
system

World coordinate
system

Zc

Xc

Yc

O

Figure 6.7 – Three-dimensioned visual measurement system.

134

The position of the origin of the sample board (i.e., point 0 in Figure 6.6) is seen as the

position of the manipulator end-effector with respect to the camera reference system.

Thus, the reference point has to be distinguished from other points on the image plane.

To achieve this, LEDs with two different colours, red for the origin point and green for

the others were used. This solution together with a new approach to extract image points

based on the angle comparison is a convenient approach for 3-D vision based

measurement. This is distinct from other solutions mentioned in [6.3] where the

discrimination was based on the difference of sizes or edge distances between the

sample points. Other solutions mentioned in [6.11]-[6.13] using coded strips for the

structured light system, which is costly due to the expensive projector and active

camera. Therefore, the proposed approach is simple, low cost and practically

convenient.

6.4.2 OpenCV library

OpenCV, a popular image processing library, was used to develop the image processing

software. It is a collection of C/C++ functions and classes of popular Image Processing

and Computer Vision [6.17] algorithms. OpenCV is free for both non-commercial and

commercial use. It consists of the modules:

 cv - Main OpenCV functions.

 cvaux - Auxiliary (experimental) OpenCV functions.

 cxcore - Data structures and linear algebra support.

 highgui - GUI functions.

As presented in [6.18], the OpenCV library includes image processing functions and

computer vision algorithms for:

 Image data manipulation (allocation, release, copying, setting, conversion).

 Image and video I/O (file and camera based input, image/video file output).

135

 Matrix and vector manipulation and linear algebra routines (products, solvers,

eigenvalues, SVD).

 Various dynamic data structures (lists, queues, sets, trees, graphs).

 Basic image processing (filtering, edge detection, corner detection, sampling

and interpolation, colour conversion, morphological operations, histograms,

image pyramids).

 Structural analysis (connected components, contour processing, distance

transform, various moments, template matching, Hough transform, polygonal

approximation, line fitting, ellipse fitting, Delaunay triangulation).

 Camera calibration (finding and tracking calibration patterns, calibration,

fundamental matrix estimation, homography estimation, stereo correspondence).

 Motion analysis (optical flow, motion segmentation, tracking).

 Object recognition.

 Basic GUI (display image/video, keyboard and mouse handling, scroll-bars).

 Image labelling (line, conic, polygon, text drawing).

136

6.4.3 Image processing software for 3-D visual measurement

Software was developed using the OpenCV library, Visual C++ and displayed as a GUI

to produce a convenient interface for users. Figure 6.8 presents the flowchart of this

software.

Figure 6.8 - Flowchart of the image processing software.

START

IMAGE ACQUISITION

WHILE (1)

EXTRACT LIGHTING - POINT
COORDINATES FROM IMAGE

ARRAY

ARRANGE THE ORDER OF
IMAGE ARRAY CORESPONDING

TO OBJECT SEQUENCE

ESTIMATE EXTRINSIC
PARAMETERS USING KNOWN

IMAGE ARRAY AND OBJECT ARRAY

EXTRACT 3-D COORDINATES OF
THE TIP OF MANIPULATOR FROM

THE TRANSLATION VECTOR

BREAK
Next Frame Stop Video Signal

YES

137

Image acquisition: This sub-programme starts capturing images of the sample board in

the workspace. A video stream at a speed of 30 frames/second is established. Each

frame creates a 3-D image data array in the RGB colour space using the order [Blue,

Green, Red] as defined in [6.18].

Extract image point coordinates: This sub-programme extracts the image coordinates

of 4 light points in the image plane (Figure 6.9). Image data are first filtered to

recognise the different colour points and then converted to binary space (black and

white pixels) to determine the areas of these points. Contours of the four light points are

extracted from the background. Each point centre is determined based on its own

contours. In this step, the order of these image points follows the order of contour

sequence (the order in which each point contour was loaded [6.18]). This order is

obviously different from the order of object data in the object-position vector.

Figure 6.9 – Images of the sample points in the image plane.

Arrange the order of lighting point images corresponding to the sequence of light

point in the sample board: This is a novel solution to distinguish the different image

points based on an angle comparison algorithm. The aim of this sub-programme is to

match each image point (Figure 6.9) with its corresponding object point (Figure 6.6) as

required by the estimation algorithm. It is performed by the following procedure.

1. Recognise image point 0’of the point 0 based on its particular colour.

θ21
θ23

0’

1’

2’

3’

Image plane '33
'22

'11
'00

→
→
→
→

l01

l02

l03

θ1

θ2 θ3

138

2. Calculate the distances in pixel units between image point 0’ and all other image

points. The longest distance corresponds to image point 2’ and the two remaining are

either point 1’ or point 3’.

3. Define two adjacent angles θ21 and θ23 from three lines 101, 102, and 103 as shown in

Figure 6.9. According to the real arrangement of the four object points in the sample

board, points 1’ and 3’ (in image plane) are distinguishable by comparing these angles

from the following equations:

 021 >θ , and 023 <θ (6.19)

where

 1221 θθθ −= (6.20)

 3223 θθθ −= . (6.21)

θ1, θ2 and θ3 are the angles of lines 101, 102 and l03 respectively.

This algorithm can automatically recognise image points corresponding to the sample

object points exactly. It arranges the order of image points in the data array

corresponding with the order of sample points in the sample board.

Calculate the extrinsic parameters of camera :

The function cvFindExtrinsicCameraParams2(Object_point, Image_point,

&Intrinsic_matrix, &Distortion_coeffs, Rotation_vector, Translation_vector) [6.17] is

used. The rotation vector and translation vectors are the position and orientation of

object points with respect to the camera coordinate system. The position of the

manipulator end-effector is the position of the reference point (point 0 in Figure 6.6) in

the sample board.

139

6.4.4 Summary of results

Figure 6.10 presents the image of the sample board attached to the manipulator end-

effector on the computer screen. The image processing software has recognised the

coordinates of the image points in the correct order to match with the LED points in the

sample board.

Figure 6.11 presents the GUI of the visual measurement software where 3-D

coordinates of the manipulator are displayed in the window ACTUAL POSITION OF

PA10 ROBOT. When the manipulator operates in the workspace, its position is

measured almost in real-time with respect to the camera location.

Figure 6.10 - The view of the manipulator end-effector in the camera window.

140

The real-time visual measurement system has been tested by using the Camera

calibration toolbox in MATLAB [6.14] with the same data. Both approaches produced

similar results. However, as the key factor in determining measurement accuracy is how

well images of the light points could be extracted in pixel units, this visual measurement

tool is limited due to the low quality of hardware (camera and sample board). The

simple sample board was a self-manufactured device with common LEDs whose images

vary significantly according to the camera view and fluctuate due to variation in the

power supply. For example, two different camera views affect the accuracy of the visual

measurement as shown in Figure 6.12. In case (b) the shapes of the LEDs’ images are

deformed compared to case (a) and the position (coordinates) of image points which are

determined as the centre of each point may deviate from the real position. As a result,

using this incorrect image data in the estimation algorithm leads to a measurement error.

A deviation value of one pixel in the image plane leads to an approximate error of 1.8

mm in the 3-D coordinates corresponding to the camera resolution of 640x480 and the

distance between the manipulator and the webcam in the experiment.

Figure 6.11 - GUI of the application software using the 3-D visual measurement system.

141

In the practical work, the measured position is not consistent, even with the same set of

joint angles sent to the servo-controllers. This situation is more serious in the Z direction

where the variation was about 6-12 mm, instead of 2-6 mm in the other two directions

when measuring the same point multiple times.

This error level is acceptable for practical work and could be improved if a high

resolution camera and a better light sample board were obtained.

6.5 Conclusion

A real-time 3-D visual measurement system, consisting of a light sample board, one

video webcam and image processing software, has been presented. It includes a novel

solution to automatically detect the image data for real-time applications. It is

convenient to apply this measurement system to a robot manipulator where the sample

board is easily attached to the manipulator end-effector. The proposed system is

portable, reasonably accurate and low cost.

(a) - a good view for measurement (b) - a poor view for measurement

Figure 6.12 - Two views of the sample board with respect to the camera that affect the

accuracy of the visual measurement system.

142

6.6 References

[6.1] R. Jain, R. Kasturi and B. G. Schunk, Machine Vision. McGraw-Hill, Inc.,

1995.

[6.2] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision.

Prentice-Hall, Inc., 1998.

[6.3] S. Florczyk, Robot Vision Video-based Indoor Exploration with Autonomous

and Mobile Robots. Wiley-VCH, 2005.

[6.4] D. C. Brown, “Close-Range Camera Calibration”, Photogrammetric

Engineering, vol. 37(8), 1971, pp. 855-866.

[6.5] T. A. Clarke, J. F. Fryer and X.Wang, “The principal point and CCD cameras”,

Photogrammetric Record, vol. 16(92), 1998, pp. 293-312.

[6.6] J. Heikkilä and O. Silvén, “A Four-step Camera Calibration Procedure with

Implicit Image Correction”, in Proc. of the IEEE Computer Society Conf. on

Computer Vision and Pattern Recognition, San Juan, Jun. 1997, pp. 1106-

1112.

[6.7] Z. Zhang, “Flexible Camera Calibration By Viewing a Plane From Unknown

Orientations”, in Proc. of the 7th IEEE Int. Conf. on Computer Vision,

Kerkyra, Sep. 1999, vol. 1, pp. 666 - 673.

[6.8] T. A. Clarke and J. G. Fryer, “The Development of Camera Calibration

Methods and Models”, Photogrammetric Record, vol. 16(91), 1998, pp. 51-56.

[6.9] R. Y. Tsai, “A Versatile Camera Calibration Techniaue for High-Accuracy 3D

Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lense”,

IEEE Journal of Robotics and Automation, vol. RA-3(4), August 1987, pp.

323-344.

[6.10] P. F. Sturm and S. J. Maybank, “On Plane-Based Camera Calibration: A

General Algorithm, Singularities, Applications“, in Proc. of the IEEE

Computer Society Conf. on Computer Vision and Pattern Recognition, Fort

Collins, 1999, pp. 23–25.

143

[6.11] M. Ribo and M. Brandner, “State of the Art on Vision-Based Structured Light

Systems for 3D Measurements”, presented at the IEEE Int. Workshop on

Robotic Sensors: Robotic and Sensors Environments, Ottawa, 2005, pp. 2-6.

[6.12] C. Rocchini, P. Cignoni, C. Montani, P. Pingi and R. Scopigno, “A low cost

3D scanner based on structured light”, Eurographics 2001, vol. 20(3), 2001,

pp. 1-6.

[6.13] H. Cui, N. Dai, W. Liao and X. Cheng, “An Accurate Reconstruction Model

Using Structured Light of 3-D Computer Vision”, in Proc. of the 7th World

Congress on Intelligent Control and Automation, Chongqing, June 2008, pp.

5100 – 5104.

[6.14] J. Y. Bouguet, Camera Calibration Toolbox for MATLAB. [Online]. Available:

http://www.vision.caltech.edu/bouguetj/calib_doc/.(Last updated June 2nd,

2008).

[6.15] P. Renaud, N. Andreff, J. M. Lavest and M. Dhome, “Simplifying the

Kinematic Calibration of Parallel Mechanisms Using Vision-Based

Metrology”, IEEE Trans. on Robotics, vol. 22(1), Feb. 2006, pp. 12-22.

[6.16] L. Li, Z. Feng, Y. Feng and Q. Peng, “A High Accuracy Camera Calibration

for Vision-Based Measurement Systems”, in Proc. of the IEEE 5th World

Congress on Intelligent Control and Automation, Hangzhou, 2004, pp. 3730-

3733.

[6.17] Open Source Computer Vision Library - Reference Manual, Version 04. Intel

Corporation, Dec. 2001.

[6.18] G. Agam, Introduction to programming with OpenCV, 2006.

[6.19] X. Wang and T. A. Clarke, “An algorithm for real-time 3-D measurement”,

ISPRS, vol. 31(part B5), 1996, pp. 587-592.

144

CHAPTER 7

PRACTICAL INVESTIGATION OF RADIAL BASIS FUNCTION

NETWORK PERFORMANCE

7.1 Introduction

A solution using a radial basis function network with regularly spaced position centres

to approximate the inverse kinematics transformation of a robotic manipulator was

demonstrated through various simulations in Chapters 4 and 5. This chapter

demonstrates the proposed approach by applying it to a practical robotic system

consisting of a Mitsubishi PA10-6CE manipulator. The experiments have been

conducted for two different situations. In the first case, the RBFN has been trained to

approximate the inverse kinematics transformation using an offline training phase. In

the second case, an additional online retraining phase has been used to cope with a

variation in the visual measurement structure of the robotic system. This chapter starts

with a brief description of the components of the practical robotic system. The

implementation procedures for the practical experiments in two- and three-dimensional

space are presented. The results are shown to demonstrate the effectiveness of the

proposed approach and conclusions are stated.

7.2 Components of the robotic system

Practical experiments have been developed and performed using the existing facilities in

the Intelligent Robotics Laboratory [7.1]. The robotic system is controlled via an

Internet interface as shown in Figure 7.1. The following elements of the system can be

identified:

 The Mitsubishi PA10-6CE manipulator with servo controller. This is a six-link

multipurpose arm connected to an industrial PC (IPC) via an ARC-Net interface.

 The IPC running under the QNX Neutrino real-time operating system is used to

execute control programmes and communicate with an application PC (APC) via

an Internet interface.

145

 A standard webcam mounted on a vertical shaft that permits rotation captures the

manipulator images in the workspace.

 The main application programmes were written in C++ and run on the APC.

7.2.1 Mitsubishi PA10-6CE manipulator

This PA10-6CE manipulator is a general-purpose robot manufactured by Mitsubishi

Heavy Industries. Figure 7.2 shows a diagram of its range of movements and a

photograph of the actual manipulator. The technical specifications and servo-control

driver of the PA10-6CE [7.2] are presented in Appendix A.

Light
sample

Joint servo controller Visual measurement software

Robot Control Server Inverse kinematics based RBFN

Robot Control Client

TCP / IP

Industrial PC

Application PC

PA10-6CE
manipulator

Webcam

Figure 7.1 - General structure of the robotic control system.

146

Figure 7.2 – General purpose robot manipulator Mitsubishi PA10 – 6CE.

(a) – Schematic of manipulator joints

(b) – Mitsubishi PA10 manipulator

147

7.2.2 Robot control server

An open-architecture computer system for remote control of a robotic system has

previously been developed [7.1], [7.4]. It includes a robot control server and a network

communication module running on an industrial personal computer (IPC) under the

QNX operating system environment. The application programming interface (API) and

necessary drivers on the IPC have been already developed to interface with the PA10

manipulator. This provides a flexible tool for programming the control application

algorithms.

The QNX operating system is ideal for real-time applications [7.5]. It provides all the

essential ingredients of a real-time system, such as multitasking, priority-driven pre-

emptive scheduling and fast context switching. It is also flexible in that the developers

can easily customise the operating system to meet the needs of their applications. QNX

achieves its high efficiency, modularity and simplicity through two fundamental

principles: a micro-kernel architecture and message-based inter-process communication

[7.5]. The robot control server programme (robot server) performs two programming

tasks, control and communication, synchronously under two threads of the QNX. From

a user’s point of view, this robot server can be seen as a hidden layer between the user’s

application algorithm and the joint servo-controllers. Thus, a control task (e.g., joint

position or velocity) is sent from the user’s programme to the joint servo-controllers

without any attention as to how it is transformed to a reference signal (e.g., voltage,

current) for the controller. The robot server is also seen as a remote communication

partner where the application programme communicates to the server through some

standardised commands. For example, the application programme of this practical work

communicates to the robot server via the internet interface to set new joint positions for

the robot and to receive the status reply. It is implemented by a command using the

format: “j nn nn nn nn nn nn nn” [7.1], where nn = 10 x joint angle [degrees].

This is an open-architecture control system, which means that the control layer

(application programmes) can be replaced and easily manipulated. Figure 7.3 presents

the block diagram of the open-architecture control system. This allows the users to

develop and test any desired control algorithm in a high-level programming language

without directly accessing the base control level.

148

Figure 7.3 - Block diagram of the open-architecture control system.

7.2.3 Application programmes

Application programmes were developed in Visual C++ and run on the application

computer to perform the inverse kinematics transformation of the PA10 manipulator.

Two programmes were developed, one for the two-dimensional workspace and the other

for the three-dimensional workspace. Figures 7.4 and 7.5 show the GUIs’ developed for

these experiments. There are three main software modules: communication, visual

measurement and RBFN.

Communication module: This establishes a connection between the application

programme and the robot server. If there are any control commands issued, it provides a

communication pathway to pass the control data packet to the robot server via the

internet interface.

Visual measurement module: This image processing software analyses image data

from the webcam and then estimates the position of the PA10 manipulator in the

workspace. There are two different visual measurement packages, one for the two-

dimensional application and the other for the three-dimensional application. The first

Control algorithm - 3 Control algorithm - 1 Control algorithm - 2

Robot control sever

ROBOT SYSTEM

Communication module

Joint servo-controller

Control signal

Control commands

Communication Data : “j nn nn nn…”

Control Layer – The User’s Application Programmes

Control commands

Base control level

149

one is based on an image-based scheme in which the position of the LED attached to the

end-effector is directly determined by image coordinates (pixel units) in the image

plane. The second uses a 3-D visual measurement tool (described in Chapter 6) to

determine the Cartesian coordinate position of the end-effector with respect to the

camera base. Both were developed using the OpenCV library [7.7].

RBFN module: This module implements both the training and operational phases. Two

different software packages were developed to perform the inverse kinematics

approximation of the PA10 in the two-dimensional and three-dimensional workspace.

Figure 7.4 - GUI of the application software for 2-D workspace experiments.

150

Figure 7.5 - GUI of the application software for 3-D workspace experiments.

7.3 Description of the robotic system for practical experiments

This section presents the set-up of the practical experiments using two different

schemes for the two-dimensional (2-D) and three-dimensional (3-D) workspaces. For

each case the structure of the manipulator (controlled by two or three joints), the RBFN

and the visual measurement system are different. Thus, the application software for each

experiment has been separately developed.

7.3.1 Structure of the robotic system for the 2-D experiments

This is implemented using an image-based control scheme in which the position of the

LED attached to the end-effector is directly determined in the webcam plane as shown

in Figure 7.6. The position of the LED is observed as the position of the end-effector.

151

Figure 7.7 shows the general structure of the robotic system for the 2-D experiment.

The RBFN is used to approximate the inverse kinematics transformation of the PA10

manipulator from the image coordinate space to the joint angle space [7.8], [7.9]. This

RBFN transforms a desired position (in the image plane) to the corresponding desired

set of joint angles. The joint servo-controllers then use this set of joint angles as

reference commands to move the PA10 in the workspace. Using this simple vision

system, the position of the PA10 manipulator is represented by image coordinates in

pixel units, instead of the world coordinates with respect to the base frame, so the

geometry of the manipulator is not required.

The PA10 manipulator is controlled to move in two dimensions by only allowing

movement of the shoulder-swing (S2) and elbow-swing (E1) joints (Figure 7.2 (a)). The

technique of using an RBFN, consisting of two inputs (x, y) and two outputs (θ1, θ2), to

approximate the inverse kinematics transformation of the two-link manipulator is

illustrated in Figure 7.7.

ZW

XW

World
Coordinate
System

LED

Camera

Image
Coordinate
System

x

y

z

YW

Figure 7.6 – Simple visual measurement system for the 2-D workspace.

152

Figure 7.7 – General structure of the robotic system for 2-D experiments.

A simple visual measurement system based on a webcam and image processing

software is used. The webcam captures the LED scene and sends video frames with a

resolution of 640 x 480 [pixels] to the image processing software with a transmission

speed of up to 30 frames per second. This system can perform measurements without

any knowledge of camera calibration parameters and the vision geometry (i.e., distance

from the camera to the manipulator). Therefore, this visual measurement system can

directly determine the relative position of an unknown geometric robotic system in the

image plane.

7.3.2 Structure of the robotic system for the 3-D experiments

The position of the PA10 manipulator is determined by the 3-D coordinates of the light

sample board attached to the end-effector with respect to the camera frame as shown in

Figure 7.8. This position, as described in Chapter 6, is the 3-D coordinates of the first

point (reference) of the light sample board with respect to the webcam base. By using

this 3-D visual measurement system, the workspace of the PA10 manipulator is

represented in the camera coordinate system (Xc, Yc, Zc), instead of the world coordinate

system with respect to the base frame. The coordinate system attached to the base can

be determined from the camera coordinate frame by a homogenous transformation

matrix. Although this is feasible, it makes the measurement system more complex and

increases the system errors as well.

Vision-based
measurement

RBFN Robot
Controller

x

y

θ2

θ1

L.E.D

(X, Y)

E1

S2

(θ1, θ2) = G(x, y)

Webcam

Inverse kinematics
transformation

153

Figure 7.8 - Determination of the PA10 manipulator position in the 3-D workspace.

The visual measurement system consists of a webcam, a light sample board and image

processing software (described in Chapter 6). This light sample board is a self-

manufactured device in which light points are produced from four standard 5mm

L.E.D’s and powered by a 220VAC/6VDC adaptor. The image processing software

estimates the position (3-D coordinates) of these light points with respect to the camera

location according to the images of these points in the webcam plane.

Figure 7.9 shows the block diagram of the robotic system for the 3-D experiments. The

RBFN, consisting of three inputs (Xc, Yc, Zc) and three outputs (θ1, θ2, θ3), is used to

transform a desired position in the 3-D workspace to the corresponding set of joint

angles. The PA10 manipulator is controlled to move in the 3-D workspace by only

allowing movement of the shoulder-rotate (S1), shoulder-swing (S2) and elbow-swing

(E1) joints (Figure 7.2 (a)).

ZW

XW
World
Coordinate
System

YW

Zc

Xc

Yc

Oc

f

o

Image
Plane

Optical axis

Camera
Coordinate
system Projection ray

PA10-6CE Manipulator

Light sample
board

Base

154

7.4 Practical determination of the inverse kinematics of the robotic system

7.4.1 Experimental description

The experiments using an RBFN to approximate the inverse kinematics were performed

using two different structures of the robotic system for the 2-D and 3-D workspaces.

These can be described as follows:

 Firstly, the hidden layer of the RBFN was built with a set of pre-defined centres

regularly distributed in the workspace. Figures 7.10 and 7.11 present the

distribution of 10 pixel x 10 pixel grids for the 2-D workspace and 20 mm x 20

mm x 20 mm cubes for the 3-D workspace. These centres had to be chosen in the

operational region which is constrained due to joint angle limits. The number of

hidden centres was 167 points (2-D) and 653 points (3-D) for the two

experiments. The spread of Gaussian functions was experimentally selected as a

proportion of the centre distance.

Robot Controller

θ1

θ2

θ3

RBFN

Vision-Based
Measurement

WebCam

S1 S2 E1

θ3
θ2

θ1

Xc Yc Zc

Inverse
kinematics

transformation

Figure 7.9 - General structure of the robotic system for 3-D experiments.

155

 Secondly, training data was manually collected as constrained patterns, which are

as close to the centres as possible, by using the joint servo-controllers and the

visual measurement system. For the 2-D experiment, the patterns were formed as

{(x, y); (θ1, θ2)} where the inputs are image coordinates in pixel units. For the 3-D

experiment, the patterns were formed as {(Xc, Yc, Zc); (θ1, θ2, θ3)} where the

inputs are 3-D coordinates with respect to the webcam base. The quality (or

accuracy) of collected data depends on careful observation and a poor pattern

means that its input deviates from the pre-defined position (centres). This

deviation was no higher than 30% of the centre distance. Collected data for the 3-

D experiment involved unpredictable interference due to the low quality of the

visual measurement system (the light sample board and webcam), the fluctuation

of the power supply and the positional errors of the joint servo-controllers.

Consequently, sometimes the measured position is not consistent, even with the

same joint angles sent to the servo-controllers. This situation is more serious in

the Z direction in which the variation was about 6-12 mm, instead of 2-6 mm in

the other two directions when measuring the same point several times. This effect

is not due to the performance of the inverse kinematics function because at this

stage only the joint servo-controllers have been used. In order to reduce this

variation, each training pattern should be sampled at least three times with the

same set of joint angles and the input value of each training pattern is determined

by the mean value.

 Thirdly, the linear weights were adjusted by either the strict interpolation or the

least mean square (LMS) algorithms [7.6] with previously collected training data.

At this stage, various spread values can be investigated to select a suitable RBFN

structure that produces a good approximation of the inverse kinematics

transformation.

 Finally, to verify the network performance a test data set was presented as a

number of desired positions in the workspace. The robotic system, which uses the

RBFN to perform the inverse kinematics transformation, moved to actual

positions dependent on the response of the RBFN. The error between the desired

and actual position was calculated to verify how well the RBFN approximates the

actual inverse kinematics function. This practical error is affected not only by the

quality of the RBFN but also measurement error and joint servo-controller error.

156

The test data set consists of 20 and 50 test points for the 2-D and 3-D experiments

respectively.

220 240 260 280 300 320 340 360 380 400
180

200

220

240

260

280

300

320

340

360

380

400

X (Pixel)

Y
 (P

ix
el

)

Figure 7.10 - Distribution of the hidden-layer centres in 2-D workspace.

-100 -80 -60 -40 -20 0 20 40 60 80 100-100
0

100

850

900

950

1000

X (mm)Y (mm)

Z
 (m

m
)

Figure 7.11 - Distribution of the hidden-layer centres in 3-D workspace.

157

7.4.2 Experimental results

Table 7.1 describes the RBFN performance in the 2-D workspace after training by the

strict interpolation and LMS algorithms. The columns show the performance criteria

(e.g., mean absolute error between desired and actual positions in x and y coordinates,

MAE_X, MAE_Y) and the rows contain various spread values used for each training

method.

TRAINING METHOD APPLIED MAE_X (Pixel) MAE_Y (Pixel)

Spread = 6 (Pixel) 2.35 2.95

Spread = 7 (Pixel) 0.9 1.55

Spread = 8 (Pixel) 0.95 2.1

Spread = 9 (Pixel) 0.95 2.2

STRICT
INTERPOLATION

Spread = 10 (Pixel) 1 2

Spread = 6 (Pixel) 2.45 3.2

Spread = 7 (Pixel) 1.25 1.6

Spread = 8 (Pixel) 1.3 1.95

Spread = 9 (Pixel) 1.5 2

LEAST MEAN
SQUARE

Spread = 10 (Pixel) 1.4 2.05

Table 7.1 - Performance results of the experiment in 2-D workspace.

This shows that the RBFN with a spread of 7 pixels produced the best performance after

training by both methods.

Figures 7.12 and 7.13 present the RBFN performance with a spread of 7 pixels. Figure

7.12 presents the distribution of desired and actual positions in the workspace and

Figure 7.13 shows the errors between the desired and actual positions using the strict

interpolation and LMS methods to compare their effectiveness.

158

240 260 280 300 320 340 360 380
220

240

260

280

300

320

340

360

X AXIS (Pixel)

Y
 A

X
IS

 (
Pi

xe
l)

Desired Positions
Actual Positions of StrInt
Actual Positions of LMS

Figure 7.12 - RBFN performance (centre distance of 10 pixels, spread of 7 pixels).

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

Number of Test Points

D
X

 (P
ix

el
)

0 2 4 6 8 10 12 14 16 18 20

0

5

10

Number of Test Points

D
Y

 (P
ix

el
)

StrInt

LMS

Figure 7.13 – Error between desired and actual positions.

Figure 7.13 shows that most of the actual positions were close to the desired positions

with an error of 1 or 2 pixels (one pixel is approximately equivalent to 1.8 mm). The

159

RBFN trained by the strict interpolation method had a slightly better performance than

when trained by the LMS algorithm. These results demonstrate that the RBFN can

produce an appropriate approximation of the inverse kinematics transformation of the

robotic system in the 2-D workspace. However, there was one position which deviated

significantly from the actual desired position. This happened in all experiments with

different spreads because this test point was located near the edge of the workspace

where the RBFN may have insufficient basis functions to produce an adequate

generalisation in that region. This situation is similar to the simulation results in Chapter

4 with the test points located near the edge of the workspace.

Compared to the simulation results presented in Section 4.3.2, the experimental results

are poorer. For the simulation case, an error smaller than 3% of the centre distance was

achieved (where the maximum deviation of training data was no higher 30% of the

centre distance). If the centre distance is selected at 10 mm, then the error is smaller

than 0.3 mm. In the practical work, the additional errors are because of the visual

measurement system and the joint servo-controllers. The visual measurement error

always exists as there is at least an error of 0.5 pixels due to the discrete form of image

data.

Table 7.2 presents the 3-D experimental results. The columns show the mean absolute

errors between desired and actual positions in X, Y and Z coordinates (MAE-X, MAE-

Y, MAE-Z) and the rows contain the spread values. The 3-D visual measurement

system measured the position of the PA10 manipulator with respect to the webcam

reference. Thus, the coordinate values are in metric units (mm), instead of pixel units as

used in the 2-D experiments.

As shown in Table 7.2, the RBFN with a spread of 24 mm produced the best

performance after training by both methods. Figures 7.14 and 7.15 show the

experimental results with a spread of 24 mm. Figure 7.14 presents the distribution of the

desired and actual positions in the workspace and Figure 7.15 shows the errors between

the desired and actual positions using the strict interpolation and LMS methods to

compare their effectiveness.

160

METHOD APPLIED MAE_X
(mm)

MAE_Y
(mm)

MAE_Z
(mm)

Spread = 16 (mm) 5.75 10.69 7.66

Spread = 18 (mm) 3.54 6.19 7.32

Spread = 20 (mm) 2.52 4.06 8.09

Spread = 22 (mm) 2.33 3.00 7.63

STRICT
INTERPOLATION

METHOD

Spread = 24 (mm) 2.07 2.43 7.52

Spread = 16 (mm) 6.04 10.68 8

Spread = 18 (mm) 3.69 6.55 8

Spread = 20 (mm) 3.08 5.05 7.89

Spread = 22 (mm) 2.12 3.52 7.51

LMS

Spread = 24 (mm) 2.1 3.52 6.49

Table 7.2 - Performance results of the experiment in 3-D workspace.

-80 -60 -40 -20 0 20 40 60

-100
-50

0
50

100
860

880

900

920

940

960

980

X (mm)Y (mm)

Z
 (m

m
)

Actual Positions of LMS

Desired Positions

Actual Positions of StrInt

Figure 7.14 – RBFN performance (centre distance of 20 mm, spread of 24 mm).

161

0 5 10 15 20 25 30 35 40 45 50
-15
-10

-5
0
5

Number of Test Points
D

X
 (m

m
)

0 5 10 15 20 25 30 35 40 45 50

-10

0

10

Number of Test Points

D
Y

 (m
m

)

0 5 10 15 20 25 30 35 40 45 50
-30
-20
-10

0
10

Number of Test Points

D
Z

 (m
m

)
StrInt
LMS

Figure 7.15 - Errors between desired and actual positions.

The experimental results demonstrate that the RBFN can produce an adequate inverse

kinematics transformation of the robotic system in the 3-D workspace. Similar to the

2-D workspace case, the experimental results are poorer than the simulation results

(Section 4.4.2). The practical performance is affected by not only the RBFN but also

other components of the robotic system, such as the visual measurement system and the

joint servo-controllers. When compared to the 2-D workspace experimental results with

an image-based control scheme, the 3-D workspace experiments are affected more

significantly by the operation of the visual measurement system. This is because the

3-D measurement involves a conversion error from the 3-D view to 2-D data adding

further estimation errors. Additional errors are due to the low quality of the light sample

board and the fluctuation of power supply. Thus, the 3-D visual measurement system

errors are higher than the 2-D visual measurement system errors.

7.4.3 Summary of results

In general, using the pre-defined centres of the hidden layer as regularly-spaced

positions means that the hidden layer structure remains the same and therefore is able to

generalise throughout the whole workspace. As the inverse kinematics transformation of

162

this robotic system does not contain high frequency components, the strict interpolation

method seems to be a suitable solution if the training patterns can be collected around

the centres. The experimental results demonstrate that the proposed method can produce

a well-generalised RBFN with a small number of hidden units. This is similar to the

simulation case with random training data whose the maximum deviation from the

centres is no higher than 30% of the centre distance.

It is observed that when the distance between the centres becomes smaller, better

generalisation can be achieved. Therefore, the RBFN needs more hidden units to

improve the accuracy of the inverse kinematics function. Obviously, there is a practical

limit to the number of centres of the hidden layer due to lack of computer memory and

the complex architecture of the network. In addition, most of the practical errors are due

to additional errors (visual measurement system). The improvement of the RBFN alone

does not lead to an improvement in the overall performance of the robotic system.

7.5 Practical work using online retraining to modify the RBFN

The approach described in Chapter 5 is used to modify online the RBFN to cope with a

change in the robotic system structure. This was only implemented for the 2-D

workspace with the image-based control scheme (Figure 7.7) as the 3-D workspace

experiments were too problematic to investigate the online training progress due to the

inaccuracy of the 3-D visual measurement system.

The experimental procedure is similar to the previous experiment with an additional

online retraining step. The practical experiment is described as follows. The RBFN

trained in the previous experiment was used to provide the inverse kinematics

approximation of the robotic system. The best RBFN, which had been trained by the

strict interpolation method with a spread of 7 pixels (Table 7.1), was used. A test data

set, consisting of 12 test points, was used as a rectangular trajectory. The performance is

presented in Figure 7.16.

163

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X (Pixel)

Y
 (P

ix
el

)

Desired Trajectory
Actual Trajectory

Figure 7.16 - Performance of the RBFN trained by the strict interpolation method.

To alter the set-up of the robotic system, the webcam was rotated through an arbitrary

angle so that it changed the image transformation of the visual measurement system

correspondingly. Consequently, the inverse kinematics approximation stored in the

existing RBFN no longer matches with the new structure of the robot-vision system.

Figure 7.17 presents the performance of the RBFN with the new condition of the visual

measurement system and the errors introduced are obvious from inspection.

164

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X (Pixel)

Y
 (P

ix
el

)

Desired Trajectory
Actual Trajectory

Figure 7.17 - Performance of the existing RBFN with a new condition of the visual

measurement system.

1 2 3 4 5 6 7 8 9 10 11 12
-30

-20

-10

0

Number of Test Points

D
X

 (P
ix

el
)

1 2 3 4 5 6 7 8 9 10 11 12
-3

-2

-1

0

Number of Test Points

D
Y

 (P
ix

el
)

MAE-Y=1.5 (Pixel)

MAE-X=24.9 (Pixel)

Figure 7.18 - Error between desired and actual positions with a new condition of the

visual measurement system.

165

To obtain the new correct function, an online training process was applied using the

delta rule (Chapter 5) instead of being retrained by the strict interpolation method from

the start again. In this procedure, the linear weights are adjusted with each recent

training pattern obtained from moving the PA10 manipulator in the workspace.

However, as mentioned in Chapter 5, the improvement of the RBFN by the online

learning process is dependent on the spread, the learning rate and training patterns. As

suggested from the simulations in Chapter 5, this experiment was implemented by

updating the linear weights with 10 training points that were collected according to the

free interference rule. The learning rate was chosen as a small value (e.g., 0.1-0.2) to

maintain the smoothness of the inverse kinematics approximation. A new retraining

loop, which is then repeated, used the same existing 10 training points to continuously

update the linear weights. Thus, after incremental updating with a sufficient number of

training points, the RBFN can adapt to the new condition of the visual measurement

system and the performance of the robotic system is clearly improved. Figures 7.19 and

7.20 shows the performance of the RBFN after training with 100 training patterns (10

training points applied to 10 retraining loops).

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X (Pixel)

Y
 (P

ix
el

)

Desired Trajectory
Actual Trajectory

Figure 7.19 - Performance of the RBFN after online retraining with

100 training patterns.

166

1 2 3 4 5 6 7 8 9 10 11 12
-2

-1

0

1

Number of Test Points

D
X

 (P
ix

el
)

1 2 3 4 5 6 7 8 9 10 11 12
-2

-1

0

1

2

Number of Test Points

D
Y

 (P
ix

el
)

MAE-X=0.83 (Pixel)

MAE-Y= 1 (Pixel)

Figure 7.20 - Error between desired and actual positions after online retraining with 100

training patterns.

As mentioned before, the online learning process is affected by the position of the

training patterns, the learning rate and the spread. Therefore, if different training

parameters are applied, the improvement of the RBFN in the online retraining phase

will vary and the overall performance of the robotic system will change as well.

Since the RBFN acts as a locally tuned function, only hidden units close enough to the

training pattern positions contribute noticeably to the network output. As a result, only

the linear weights connected to these hidden units are adjusted via online training. It

means that the positions of the training data have an important impact in the online

training process. The closer the training pattern to the test points, the stronger the effect

in modifying the linear weights of the RBFN in that area. Different patterns presented to

the RBFN can produce different improvement effects in the approximation function.

Thus, the distribution of training patterns should cover the entire workspace to modify

the whole of the inverse kinematics function.

The choice of learning rate is an important variable in the delta rule algorithm. The

variation in learning rate can lead to completely different training results. Therefore, in

167

order to maintain the smoothness of the inverse kinematics approximation over the

whole workspace, a small learning rate (η = 0.1- 0.2) should be adopted even though it

made the training process slower. This is the reason that the retraining process required

a hundred training points for the small test area. The actual number of training patterns

for these experiments was collected at a maximum of 10 points and they were used

repeatedly in the incremental mode with a small learning rate to ensure the stability of

the learning process. In other experiments, when using the same training patterns with a

larger learning rate (e.g., 0.3 to 0.5), the RBFN performs well in the test area after

training with only two retraining loops (e.g., 20 training points). However, its response

in other neighbouring areas appeared to be worse due to the learning interference.

7.6 Conclusion

This chapter has presented the practical results produced from an investigation of the

effectiveness of using an RBFN to approximate the inverse kinematics. The

experiments were performed for two different situations. In the first case, an RBFN was

trained to approximate the inverse kinematics transformation of the robotic system,

including the PA10 manipulator and the visual measurement system, through an offline

training phase using the strict interpolation and the LMS methods. The second

experiment investigated a variation in the structure of the robotic system and proposed a

solution using an additional online retraining phase based on the delta rule.

Experimental results verified the effectiveness of the proposed approach and practical

limitations were discussed.

7.7 References

[7.1] C. M. Wronka and M. W. Dunnigan, “Internet Remote Control Interface for a

Multipurpose Robotic Arm”, the Int. Journal of Advanced Robotic Systems,

vol. 3, June 2006, pp. 179-182.

[7.2] General Purpose Robot PA10-6CE – Instruction Manual for Installation,

Maintenance and Safety, Mitsubishi Heavy Industries, Ltd.

[7.3] General Purpose Robot PA10-6CE – Operation Manual for Operation Support

Program, Mitsubishi Heavy Industries, Ltd.

168

[7.4] A. Uhlmann, Development of Driver Software to Support The Mitsubishi PA10

Manipulator under The QNX Neutrino Real-Time Operating System. Master

thesis, Heriot-Watt University, 2003.

[7.5] The Philosophy of QNX. QNX Software Systems Ltd. [Online]. Available:

http://www.qnx.com/developers/docs/qnx_4.25_docs/qnx4/sysarch/ intro.html.

2006.

[7.6] S. Haykin, Neural networks - A Comprehensive Foundation. Prentice Hall,

Inc., 1999.

[7.7] Open Source Computer Vision Library - Reference Manual, Version 04, Intel

Corporation, Dec. 2001.

[7.8] B. H. Dinh, M. W. Dunnigan and D. S. Reay, “Position Control of a Robotic

Manipulator Using a Radial Basis Function Network and a Simple Vision

System”, in Proc. of the IEEE Int. Symposium on Industrial Electronics

(ISIE’08), Cambridge, United Kingdom, July 2008, pp.1371-1376.

[7.9] B. H. Dinh, M. W. Dunnigan, and D. S. Reay, “A Practical Approach for

Position Control Of a Robotic Manipulator Using a RBFN and a Simple Vision

System”, WSEAS Transactions on System and Control, vol. 3 (4), April 2008,

pp. 289-298.

169

CHAPTER 8

CONCLUSIONS

8.1 General conclusions

In this thesis, several solutions to determine the inverse kinematics of robotic

manipulators have been presented. Two analytical approaches, the geometric and

algebraic, are traditional algorithms used to solve the inverse kinematics problem.

Several alternative approaches using two of the most popular neural networks, MLPNs

and RBFNs, were reviewed with regards to their abilities to approximate the inverse

kinematics of unknown geometry manipulators. However, it is appropriate to propose

some modifications to improve the performance of these existing approaches, especially

in terms of practical applications.

A new approach using an RBFN with regularly-spaced position centres has been

proposed to solve the inverse kinematics problem. Constrained data whose inputs are

collected approximately around the centre positions in the workspace was also

suggested. Two training methods, strict interpolation and the least mean square

algorithms were introduced to update the network weights in an offline training phase.

The effect of centre distances, spreads and training methods on the network’s

performance was investigated through various simulations. The effect of training data

randomly collected around the centre points was also examined. A suggestion for the

maximum deviation has been mentioned to improve the network’s performance. The

simulation results showed that using these proposed ideas improved the RBFN

performance significantly. Moreover, an RBFN has a local mapping characteristic in

which the RBFN will only respond to any inputs that fall in the trained area of the

workspace. If a new input which is beyond the trained area is presented to the RBFN, it

will respond by a “do nothing” action or by resetting all joint angles (zeros). Therefore,

according to this property, the inverse kinematics approximation could avoid the

violation of the mechanical limitations of joint angles, but its operation is also limited to

a specific area dependent on the training data. This is useful for practical work when all

training data are actually collected in the range of the joint angles. The operational

phase is thus restricted to the trained region.

170

An online retraining approach was proposed to deal with the incorrect operation of the

network because the initial network training occurred in an environment that is not

exactly the same as the environment where the system is actually deployed. This online

retraining approach can be effectively applied for systems whose characteristics change

due to environmental variations. Various simulations to investigate the effects of the

spread, learning rate and presented training patterns on the network’s performance were

conducted for a two-link and a three-link manipulator. The results demonstrated the

effectiveness of the approach.

A real-time visual measurement system based on a video camera was developed to

estimate the position of a robotic manipulator in a 3-D workspace. It consists of a

camera, a light sample board and image processing software. This system is portable,

low cost and has reasonable accuracy.

Practical experiments were performed with a Mitsubishi PA10-6CE manipulator and the

visual measurement system. The performance of the inverse kinematics transformation

using an RBFN was examined for operation of the manipulator in two- and three-

dimensional spaces. The practical results were compared to the simulation results.

Advantages and disadvantages of the proposed approach were discussed. The results

demonstrated the effectiveness of the proposed approach for practical applications.

8.2 Author’s contributions

Chapter 4 proposed a new approach using an RBFN with regularly-spaced position

centres to solve the inverse kinematics problem. This requires a sufficiently small

number of centres and can achieve a satisfactory accuracy for the inverse kinematics

approximation through the whole workspace. The concept of using constrained data that

are collected close to the centre positions enhances the generalisation of the RBFN. The

maximum deviation for training data that was randomly collected around the centre

positions was suggested based on experimental evidence to ensure a good performance

is achieved in the operational phase. Simulation results verified this approach.

Chapter 5 proposed a new approach using the delta rule to update the linear weights

through an online retraining phase. It was effectively applied to modify an incorrect

171

network due to operational environment variations, instead of retraining the network

from the start again. A simple rule was suggested to select appropriate training points so

that the effect of learning interference was minimised. The three factors (learning rate,

spread value and the position of training points) that can affect the online retraining

phase were investigated though various simulations. The key recommendations were

presented to ensure a successful online retraining phase.

Chapter 6 presented a novel real-time 3-D visual measurement system. A light sample

board consisting of four LED points with two different colours was a simple and

economic solution. Image processing software was developed to be convenient for the

users. It included an efficient solution to automatically extract the appropriate image

data based on a real-time angle comparison algorithm. This visual measurement system

is portable, low cost and has reasonable accuracy for use in a practical robotic system.

The most important contribution of this thesis is that it demonstrates that a neural

network solution can be effectively applied to approximate the inverse kinematics of a

practical robotic system. In Chapter 7, two different experimental schemes were

presented. The first used an image-based control scheme where the image coordinates in

pixel units represented the manipulator position in the 2-D workspace. The second

scheme used the visual measurement system developed in Chapter 6 to determine the

position of the manipulator in the 3-D workspace. Experimental results verified the

effectiveness of the proposed solution to deal with common practical situations. This

approach is a promising solution for high performance control applications using

remotely controlled robots (e.g., underwater intervention or space exploration).

8.3 Suggestions for future work

Although the proposed approach has been verified for a two- and three-link

manipulator, it should be investigated further for some more complex configurations

such as greater than three D.O.F manipulators. This can be feasibly implemented for

simulation cases in which the mathematical expression of the inverse kinematics is used

to create training data. However, it is more difficult for practical work because a new

measurement system will be required to estimate the orientation of the end-effector with

respect to a fixed coordinate frame.

172

The solution using regularly-spaced position centres for a radial basis function still has

performance limitations in operational areas near the edge of the workspace due to the

lack of necessary radial basis function nodes in these areas. Thus, the network’s

performance will be improved if additional nodes can be added in these areas. This

could be implemented in an incremental mode, which does not require the inverse of the

interpolation matrix each time, by using a technique known as the inverse of a

partitioned matrix or an orthogonal least squares learning approach.

In the online retraining phase (Chapter 5), the distribution of training patterns and the

learning rate both influence the incremental modification of the linear weights. To keep

the retraining process smooth and fast, the learning rate should not be a constant and

should be related to the distribution of training patterns. For example, if a new pattern

presented to the network is far away from previously used patterns, the learning rate can

be large. In contrast, it should be small to keep the training function surface smooth

when the current pattern presented is close, or the same, as previous patterns. This

aspect requires further investigation.

As presented in Chapter 4, a set of random training data used to train an RBFN where

the maximum deviation is set to a specific value (30% and 20% of the centre distance

for a 2-link and 3-link manipulator respectively) produces a good approximation of the

inverse kinematics transformation. Therefore, a new way of collecting data should be

investigated. The training data could be sampled following a distribution in the joint

angle space instead of a regularly-spaced distribution in the workspace. The set of

collected data can then be sorted according to the maximum deviation from the

predefined centre points. This approach is a more convenient technique than the current

way of collecting data in the practical experiments.

