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Abstract 

A fundamental property of a robotic manipulator system is that it is capable of accurately 

following complex position trajectories in three-dimensional space. An essential component 

of the robotic control system is the solution of the inverse kinematics problem which allows 

determination of the joint angle trajectories from the desired trajectory in the Cartesian 

space. There are several traditional methods based on the known geometry of robotic 

manipulators to solve the inverse kinematics problem. These methods can become 

impractical in a robot-vision control system where the environmental parameters can alter. 

Artificial neural networks with their inherent learning ability can approximate the inverse 

kinematics function and do not require any knowledge of the manipulator geometry. 

This thesis concentrates on developing a practical solution using a radial basis function 

network to approximate the inverse kinematics of a robot manipulator. This approach is 

distinct from existing approaches as the centres of the hidden-layer units are regularly 

distributed in the workspace, constrained training data is used and the training phase is 

performed using either the strict interpolation or the least mean square algorithms. An 

online retraining approach is also proposed to modify the network function approximation 

to cope with the situation where the initial training and application environments are 

different. Simulation results for two and three-link manipulators verify the approach. 

A novel real-time visual measurement system, based on a video camera and image 

processing software, has been developed to measure the position of the robotic manipulator 

in the three-dimensional workspace. Practical experiments have been performed with a 

Mitsubishi PA10-6CE manipulator and this visual measurement system. The performance 

of the radial basis function network is analysed for the manipulator operating in two and 

three-dimensional space and the practical results are compared to the simulation results. 

Advantages and disadvantages of the proposed approach are discussed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Robots are a vital part of modern manufacturing industries with their inherent capability 

of executing complex tasks accurately and reliably. Robots are also used extensively in 

areas where it is hazardous for humans. Examples of this are underwater intervention in 

oil and gas exploration, nuclear plant decommissioning and space exploration. One of 

the most popular robots are anthropomorphic robotic manipulators which are used 

extensively in manufacturing industry. A robotic manipulator is composed of several 

links connected together (usually in series) through joints to form an arm and/or wrist 

[1.1]. Figure 1.1 presents the general structure of a series manipulator with revolute 

joints.  

 

Figure 1.1- The general structure of a manipulator with revolute joints. 

When the joints move, the links also move according to the action of the joints which 

are either revolute or prismatic. As a result, the end-effector attached at the tip of the 

manipulator can be driven to any location in its workspace. The values of joint angles 

determine the current configuration of the arm which places the end-effector at a 

specific location in the environment [1.2]. The operational tasks of the manipulator are 

Fixed Base 

End-effector 

revolute joint 

link 2 

joint 1 

joint 2 

joint N

link 1 

link N 
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usually planned in the workspace (the Cartesian coordinates), whereas control 

commands are directly performed in the joint space. One of the principal roles when 

designing a robotic system is how to determine the inverse kinematics transformation 

from the workspace to the joint space to set the references for the joint controllers 

(dynamic control). Figure 1.2 shows the general operational tasks of a robotic system.  

 

 

This thesis focuses on solving the inverse kinematics problem which is used to 

transform a position of the end-effector in the Cartesian space to a set of joint angles. In 

Figure 1.2 the inverse kinematics block operates as a transformation function to provide 

the joint angle references for the dynamic control system which operates as a closed-

loop controller in the joint space. Figure 1.3 shows the general control diagram using 

the inverse kinematics transformation to implement a position control task in the 

workspace. The combination of the dynamic controller and the robot itself can be 

modelled as the forward kinematics of the robotic system.  

There are several different procedures available, which are based on the known 

geometry of the manipulator, to solve the inverse kinematics problem. These include the 

geometric, algebraic and numerical iterative methods [1.3], [1.4]. However, these 

solutions become more difficult, or impractical, when the manipulator geometry cannot 

be determined exactly. Therefore, this poses a question as to whether any alternative 

solution to determine the inverse kinematics transformation exists if the geometry of the 

Path planning

Inverse kinematics 

Dynamic control 

ROBOT 

Feedback 

X – workspace variables 

θ – joint variables 

Figure 1.2 - The operational tasks of a robotic system. 
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manipulator is unknown. A possible approach is to use neural networks to learn the 

inverse kinematics transformation. 

 

 

Neural networks with their inherent learning ability have been widely applied in many 

fields of robotic control. They are seen as an intelligent control scheme because of their 

learning ability, as well as having the flexibility to cope with the uncertain and 

unstructured working conditions. The aim of this research is to develop a solution using 

neural networks to solve the inverse kinematics transformation of a robotic manipulator 

with unknown geometry. This is implemented though two sequential phases, training 

with data collected from the robotic system and then operating as a transformation 

function. Once trained, its generalisation ability allows responses to be produced for 

untrained data according to stored knowledge. The network performance is related to 

several factors, such as the network architecture, the learning method and training data. 

This performance is not entirely controllable and sometimes it can be inaccurate. The 

question of how to improve the performance of a neural network to solve the inverse 

kinematics problem is an interesting and important topic, especially for practical 

applications. 

IK Dynamic controller ROBOT 
XR θR 

θA 

-

IK – inverse kinematics transformation of the robot . 

Dynamic controller – standard PID controller for joint angle control. 

XR  – desired position in the world space. 

θR  – desired joint angles setting for dynamic control system. 

θA  – actual joint angles of the robot.   

Figure 1.3 - A control approach using the inverse kinematics transformation to 

implement a position control task in the workspace. 
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The main objective of this thesis is to develop a practical solution using a neural 

network to approximate the inverse kinematics of a robotic manipulator. The practical 

system includes a simple computer vision measurement system to acquire the position 

of the robot’s end-effector. The system is shown in Figure 1.4.  

 

 

The vision-based measurement system, consisting of one camera and image processing 

software, determines the position of the end-effector in real-time. Recently, vision-

based measurements have been used more extensively in the robotic field because of 

their benefits, such as accuracy, low cost and portability [1.5]. Any change in the 

structure of this system, either a displacement of the camera location or a change in the 

location of the manipulator base leads to a change in the configuration of the robotic 

system. Therefore, it is essential to develop a flexible and adaptable inverse kinematics 

solution so that it can deal with any disturbances affecting the structure of this system. 

A solution for this task is a neural network approach. 

Joint Controller 

Robot Control 
Server 

θ1 

θ2 

θ3 

Neural Network  
(Inverse Kinematics 

transformation) 

Robot Control 
Client 

Vision-Based 
Measurement 

TCP/IP 

Industrial 
PC 

Application 
PC 

Camera  

Figure 1.4 - Block diagram of the system used for practical work.  
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1.2 Manipulator kinematics 

In robot kinematics there are two important problems, forward and inverse kinematics. 

Forward kinematics can be regarded as a one-to-one mapping from the joint space to the 

Cartesian coordinate space (workspace). From a set of joint angles, forward kinematics 

determines the corresponding location (position and orientation) of the end-effector. 

This problem can be solved by multiplying together the 4x4 homogenous 

transformation matrices using the Denavit & Hartenbergh representation for the 

manipulator [1.3], [1.4]. Inverse kinematics is used to compute the corresponding joint 

angles from the location of the end-effector in Cartesian space. Inverse kinematics is a 

more difficult problem than forward kinematics because of its multi-mapping 

characteristics.  

There have been many techniques proposed to solve the inverse kinematics problem, 

e.g., the geometric, algebraic and numerical iterative methods. The geometric approach 

is useful for simple manipulators with revolute joints. It is based on the definitions of 

the link coordinate systems and human arm geometry which allows various arm 

configurations to be identified for the inverse kinematics problem [1.3]. The matrix 

algebraic approach is an inverse transform technique to obtain joint-angle solutions 

directly from the homogenous transformation matrices (forward kinematics 

representations) [1.6]. Both these approaches are regarded as analytical solutions which 

determine the exact mathematical formulae for the inverse kinematics problem. 

However, these are complicated and require intuition to select an appropriate case from 

the several possible solutions for a particular manipulator [1.4]. In contrast, more 

general approaches were developed using a numerical iterative solution based on the 

Jacobian matrix [1.4], [1.6]. A relationship between joint velocities and hand motion 

velocity is first derived from directly inverting the Jacobian matrix and then the inverse 

kinematics solution for joint angles and hand position follows. This solution can be 

applied for most of the common manipulator configurations in industry. However, it 

does not always guarantee to produce all the possible inverse kinematic solutions and 

involves significant computation. Furthermore, all the mentioned methods are termed 

traditional approaches because they have been developed from the geometric parameters 

of the manipulators. If the geometry cannot be exactly specified, these traditional 

approaches become more difficult or even impractical. For these reasons, it is of interest 
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to pursue other non-traditional approaches and the research described in this thesis 

proposes an alternative solution based on neural networks. 

1.3 Approximating the inverse kinematics of robotic manipulators by neural 

networks 

Artificial neural networks are a simple imitation of human brain behaviours, such as 

learning and responding to any stimuli from the environment. Due to its learning ability 

a neural network will establish its knowledge through updating the synaptic weights 

between interconnections of the network’s neurons. This learning is implemented with 

training examples (sets of inputs and target outputs) which are collected from the 

desired process. Thus, a neural network can learn and approximate any complex 

function without any prior knowledge of that process [1.7].  

Various neural networks have been used to solve the inverse kinematics problem. They 

include the multi layer perceptron network (MLPN), cerebellar model articulation 

controller (CMAC) and radial basis function network (RBFN) [1.7]. However, the 

radial basis function network seems to be more suitable for the inverse kinematics 

problem because its hidden-layer structure parameters (centres of radial basis functions) 

could be optimally selected from training data and the learning process is simple using 

the  least squares approach [1.7], [1.8]. In this thesis, a novel approach using a radial 

basis function network with regularly-spaced position centres to approximate the 

inverse kinematics transformation of a manipulator is proposed and investigated. This 

solution has then been applied for position control of the robotic system as shown in 

Figure 1.4. Both computer simulation and practical work have demonstrated that the 

proposed approach is effective in solving the inverse kinematics problem. 

1.4 Real-time visual measurement system 

To measure the location of a movable object in the world space, distance sensors have 

normally been used including sonic or optical types. However, a vision-based 

measurement system is more convenient because it can measure absolute space 

coordinates of the object with respect to the camera base, instead of only the distance 

from the object to a reference point. In recent years there have been many solutions to 
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develop 3-D visual measurement systems using video cameras. The principle of these 

methods is to estimate the position and orientation of a known geometric object in the 

world space based on the object’s image (in the image plane). This assumes that image 

coordinates of the object in the image plane can be determined and the camera intrinsic 

parameters (e.g., resolution, focal length, distortion coefficients) are known as well. 

This is called the camera calibration method [1.9] and only uses one camera 

accompanied with image processing software. This research field has made significant 

progress in aspects of efficiency, accuracy and reduction in cost. As a result, using 

cameras to supervise and control robots has become realistic and is widely applied in 

robotic systems [1.5]. 

This thesis presents a real-time visual measurement system to estimate the three-

dimensional position of a manipulator in the workspace. It consists of a standard video 

camera mounted on a fixed pole to measure the position of a light sample board 

attached to the manipulator end-effector. The software is programmed based on the Intel 

Open Source Computer Vision Library, in C++, and uses a Graphical User Interface 

(GUI) to make this visual tool more convenient for practical applications. 

1.5 Structure of the thesis 

The thesis is presented in eight chapters. 

Chapter 1 – Introduction. This chapter briefly introduces the problem background and 

structure of the thesis. The main topics include the inverse kinematics transformation of 

robotic manipulators, neural networks for approximating inverse kinematics and visual 

measurement. The objectives of the thesis are stated.      

Chapter 2 – Traditional Approaches for The Determination of The Inverse Kinematics 

of Robotic Manipulators. This chapter introduces the background theory concerning the 

inverse kinematics problem of robotic manipulators. Various traditional solutions, such 

as the algebraic and geometric methods are discussed in detail. Advantages and 

disadvantages of each solution are presented, especially in terms of practical 

applications.  
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Chapter 3 – Background of Neural Networks for Inverse Kinematics Approximation of 

Robotic Manipulators. This chapter is the literature review concerning using neural 

networks to approximate the inverse kinematics transformation of robotic manipulators. 

It includes two of the popular neural network architectures, MLPN and RBFN. The 

fundamental aspects of the learning process and performance of each network are 

described to highlight the advantages and drawbacks of existing approaches. Finally, the 

reasons why the radial basis function network is adopted and the purpose of the 

proposed approach are stated.  

Chapter 4 – Inverse Kinematics Approximation Using a Radial Basis Function 

Network. This chapter concentrates on investigating the possibility of using a radial 

basis function network to approximate the inverse kinematics transformation. A novel 

idea is proposed using hidden-layer centres which are regularly-spaced positions in the 

workspace and using constrained training data whose inputs are collected approximately 

around centre positions. Various simulations in MATLAB demonstrate the network 

performance and factors that affect the network performance are investigated. 

Chapter 5 – Online Training to Modify The Inverse Kinematics Approximation. This 

chapter describes a solution to modify the inverse kinematics approximation using an 

additional online training process. It uses the delta rule to update the linear weights of 

the network which have been trained already with incorrect data. This online retraining 

can be applied to deal with the difficulty in collecting constrained data and to re-correct 

for operational errors due to variations in the visual measurement system. The 

simulation results are discussed in detail. 

Chapter 6 – Development of a Three-dimensional Positional Measurement System. This 

chapter presents a solution using a webcam and image processing software to measure 

the position of a manipulator in a 3-D workspace. The background of camera calibration 

methods is described to explain the procedures in which the intrinsic and extrinsic 

camera parameters are estimated. The concept of developing a 3-D visual measurement 

system to determine the position of the manipulator end-effector is presented.  

Chapter 7 – Practical Investigation of RBFN Performance. This chapter describes the 

set-up of the experimental system which includes a PA10-6CE manipulator, a visual 
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measurement system and application programmes. Two experimental systems using two 

different schemes are described for the two-dimensional and three-dimensional 

workspaces. The experimental results of the RBFN are then presented. A solution using 

online retraining to modify the RBFN to cope with a change in the structure of the 

visual measurement system is presented in detail. Conclusions about the effectiveness 

for the practical application are drawn. 

Chapter 8 – Conclusions. This chapter summarises the author’s main contributions 

including the benefits of this work. Finally, suggestions for future work are presented. 
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CHAPTER 2                                                                  

TRADITIONAL APPROACHES FOR THE DETERMINATION 

OF THE INVERSE KINEMATICS OF A MANIPULATOR 

2.1 Introduction 

The kinematics of a manipulator deals with the geometry of manipulator motion with 

respect to a fixed reference coordinate system as a function of time without regards to 

the forces or moments that cause this motion [2.1]. Based on the spatial configuration of 

a manipulator, kinematics equations are established to represent relationships between 

the joint variable space and location of the end-effector in the world space (Cartesian 

coordinate system). Inverse kinematics is used to compute the corresponding joint 

angles from a given location of the end-effector. It is a nonlinear function where more 

than one set of joint angles for a desired location of the end-effector can exist, i.e., there 

are multiple solutions. Sometimes no solution can be found due to particular 

configurations of the manipulator, such as singular and degenerate cases [2.3]. Thus, 

this is a complex problem dependent on many factors such as complexity of 

configuration, specific operating conditions and constraints of joint variables.  

There are many inverse kinematics techniques based on either analytical or numerical 

methods. These techniques are called traditional approaches, because they require 

knowledge of the manipulator’s configuration parameters. An analytical approach 

attempts to produce an exact solution mathematically by directly inverting the forward 

kinematics equations. However, it is only possible for some relatively simple geometric 

manipulators. A numerical solution uses approximate optimal techniques to solve the 

inverse kinematics of a general manipulator. It can mutually transform all motion 

characteristics, such as position, velocity and acceleration, from the Cartesian space to 

the joint space by iterative computation based on the inversion of the Jacobian matrix 

[2.3]-[2.5]. The principle of this approach is taken from the relationship between the 

motion velocity (translation and rotation) of the end-effector in the Cartesian space and 

the joint angle velocities to approximately calculate corresponding joint angles from a 

given location of the end-effector. However, this involves an iterative numerical 

algorithm with a high computational demand and does not guarantee convergence.  
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This chapter firstly describes the general structure of a robotic manipulator. The Denavit 

& Hartenbergh procedure to systematically establish the kinematic equations of a 

manipulator is then presented. Two analytical approaches, geometric and algebraic, are 

presented to describe traditional algorithms to solve the inverse kinematics of robotic 

manipulators. Each approach is applied to a three-link manipulator formed from the 

structure of a Mitsubishi PA10-6CE used later in the experimental work [2.6]. 

Following this, the beneficial reasons of adopting an alternative solution using neural 

networks for the determination of the inverse kinematics are stated. 

2.2 Kinematic equations of a robotic manipulator  

2.2.1 General structure of a robotic manipulator 

A manipulator is made of several links, connected together (usually in series) by the 

joints, to form an arm and/or wrist.  A specific location (position and orientation) of the 

end-effector, attached to a manipulator, will be completely determined by six 

independent coordinates related to 6 Degrees-of-Freedom (D.O.F): three for position 

and three for orientation [2.1]. The general configuration of a manipulator can be split 

into two functional groups, the arm and wrist. The first three joints are commonly 

designed in order to perform gross motion of the end-effector as an arm and the 

remaining joints are used to accomplish orientation as a wrist. Thus, according to the 

first three joint types (revolute or prismatic) and how they combine together, five 

distinct and non-redundant structures can be described: Articulated (RRR), Spherical 

(RRP), SCARA (RRP), Cylindrical (RPP), and Cartesian (PPP) (Figures 2.1 to 2.5) 

[2.3], [2.7]. 
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The wrist of a manipulator refers to the joints in the kinematic chains between the arm 

and hand. Almost all the joints of the wrist are revolute. The wrist is used to achieve the 

desired orientation of the end-effector. The most common type of wrist is the spherical 

configuration as shown in Figure 2.6. In practice, the spherical wrist greatly simplifies 

the kinematic analysis, effectively allowing decoupling of the position and orientation 

of an object [2.7].  
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Figure 2.4 - The cylindrical configuration (RPP). 

Figure 2.5 - The Cartesian configuration (PPP). 
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2.2.2 Denavit & Hartenbergh representation  

The kinematic equations use matrix algebra to build relationship functions between the 

joint variables and the world coordinate location of the end-effector (position and 

orientation) based on the spatial configuration of a particular manipulator. A systematic 

and generalised approach to describe the kinematic equations of a serial link 

manipulator was proposed by Denavit & Hartenbergh (D-H) [2.1]. This expresses the 

rotation and translation of the coordinate frame attached to a link with respect to another 

reference coordinate frame by a homogenous transformation matrix. It is a 4x4 matrix in 

which the sub-matrix, a 3x3 rotation matrix, is used to describe the rotational operation. 

A 3x1 vector is used to describe the translational operation of the coordinate frame 

attached to a link with respect to the reference frame. The homogenous coordinate 

transformation matrix i
i 1−A can be written as  

 

  ⎥
⎦

⎤
⎢
⎣

⎡
= ××

− 10
1333

1
PR

Ai
i .    (2.1) 

The basic rules for establishing an orthogonal coordinate frame for each link and 

determining the geometric parameters of a serial manipulator are presented in [2.1]-

[2.3] as a systematically closed-form procedure. Based on this algorithm, the D-H 

Yaw 

Pitch 

Roll 

Figure 2.6 - The spherical wrist with Pitch, Yaw and Roll. 
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coordinate systems can be established for all links and the homogenous transformation 

matrices i
i 1−A between adjacent coordinate frames can be expressed easily by 
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⎥
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where ai, di, αi, θi are the geometric parameters of the relative ith joint as shown in 

Figure 2.7 [2.1]. They can be defined as: 

 αi is the angle between zi-1 and zi about xi. 

 di is the distance between origin Oi-1 and the intersection of the  zi-1 axis with the  

xi axis along zi-1 (or the distance between xi-1 and xi if  they are parallel).  

 θi is the angle between xi-1 and xi about zi-1. 

 ai is the distance between origin Oi and the intersection of the zi-1 axis with the xi 

axis along xi (or the distance between zi-1 and zi if  they are parallel). 

 

Figure 2.7- Structure kinematic parameters for a general link i. 
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If a position vector pi is given in the ith coordinate frame, then it can be expressed in the 

(i-1)th coordinate system as the vector pi-1 by 

 i
i
ii pAp 11 −− = . (2.3) 

Thus, the coordinate transformation matrix maps a position vector expressed in 

homogenous coordinates from one coordinate system to another coordinate system. As 

a result, through a sequential transformation, achieved by multiplying a series of the 

coordinate transformation matrices, the coordinate frame attached to the end-effector 

can be transformed and expressed in the base coordinate system. This systematic 

transformation is shown in Figure 2.8. Generally, the homogenous transformation 

matrix from the nth coordinate frame to the base coordinate frame can be determined by 

multiplying i
i 1−A (i = 1, 2,…, n) together in sequence, such as  

 n
n

n
1

2
1

1
00 −= AAAT K . (2.4) 

Consequently, if a vector pn is known in the nth coordinate frame, it can be determined 

with respect to base coordinate system by 

 n
n pTp 00 = . (2.5) 

 

Figure 2.8-Coordinate transformation from the end-effector to a base coordinate system. 
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2.2.3 Kinematics equations of a three-link manipulator  

Applying the D-H representation, the kinematics equations of a three-link manipulator 

illustrated in Figure 2.8 can be established as follows.  

 

Figure 2.9 – Link coordinate systems of a three-link PA10 manipulator. 

Using the D-H procedure, the coordinate frames are defined and the structural 

geometric parameters of the three-link manipulator are presented in Table 2.1. This 

structure is formed from the first three links of a Mitsubishi PA10-6CE manipulator 

[2.6]. 

Link di (mm) ai (mm) αi (degree) θi (degree) 

1 317 0 900 θ1  

2 0 450 0 θ2 + 900 

3 0 550 0 θ3 

Table 2.1- Structural geometric parameters of the three-link manipulator. 

Therefore, the coordinate transformation matrices i
i 1−A (i = 1, 2, 3) relating the 

coordinates of the ith frame to those of the (i-1)th frame can be written using equation 

(2.2) as follows 

X0 

Y0 

Z0 

X1 
Z1 

Y1 
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X3 Y3 
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Joint 1 

Joint 2 

Joint 3 
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where Si = sin θi  and Ci = cos θi . 

The homogenous transformation matrix 3
0T  from the coordinate frame attached to the 

end-effector to the base coordinate frame can represented as  
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where   

C23 = cos (θ2+ θ3) = C2C3 – S2S3, and  

S23 = sin (θ2+ θ3) = S2C3 + C2S3. 

Based on this transformation matrix, the forward kinematics can determine an exact 

location of the manipulator in the workspace according to the value of each joint angle 

variable. 
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2.3 Geometric approach 

2.3.1 Principle of geometric approach  

Based on the specific structural geometry of a manipulator this approach identifies 

inverse kinematics solutions for a revolute manipulator which is classified according to 

the first three joints and the remaining joints. The basic idea is that by analysing the 

trigonometry of the arm for a given position vector, the first three joint angles can be 

determined. The remaining joint angles can be calculated according to the orientation 

matrix and the known values of previous joint angles. For example, Lee [2.8] developed 

a geometric approach to solve the inverse kinematics for a Puma 560 manipulator. This 

algorithm first used the position vector pointing from the shoulder to the wrist that was 

determined from the homogenous matrix 3
0T  to derive the inverse kinematics solution 

for the first three joints. The last three joints were sequentially calculated using 

previously known joint angles and the orientation sub-matrix of the corresponding 

matrices i
0T  (i = 4, 5, 6). In [2.6] a more general modified closed-form procedure was 

proposed for the inverse kinematics of a Puma 560. The position vector was first 

projected onto a xi - yi plane (i = 0, 1, 2) to derive the inverse kinematics solution for 

each joint (by solving trigonometric equations). The last three joint angles could then be 

determined from the previous known joint angles, the given orientation matrices and the 

trigonometric equations which were derived from projecting the link coordinate frames 

onto the following xi - yi planes (i = 3, 4, 5). These derived solutions were different for 

each specific arm configuration: LEFT or RIGHT hand and UP or DOWN elbow. 

Configuration indicators were therefore required to determine the appropriate result. 

The arm-configuration indicators can be predefined and chosen by the user according to 

the specific application. This approach can be generalised and extended to most 

industrial manipulators with revolute joints.   

2.3.2 The geometric approach for a three-link manipulator 

In this section, the geometric approach is applied to find the inverse kinematics of the 

three-link manipulator shown in Figure 2.9. The procedure is implemented as follows.  
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A point P representing a given position of the end-effector, which is the origin of the 

last coordinate frame with respect to the base coordinate system, can be expressed by 

 T
zyx PPP ),,(P = . (2.10)

This corresponds to the translation vector of the homogenous coordinate transformation 

matrix 3
0T  in equation (2.9) 
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By projecting the point P onto the x0-y0 plane as shown in Figure 2.10, the trigonometric 

equations to solve θ1 can be obtained as: 

 1cosOP' θ=xP  (2.12)

 1sinOP' θ=yP  (2.13)

 22'OP yx PP += . (2.14)

Hence, θ1 is calculated by 

 ⎟⎟
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⎞
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⎛
= −

x

y

P
P1

1 tanθ . (2.15)
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Figure 2.10 – Projecting the point P onto the x0 - y0 plane. 

Similarly, as shown in Figure 2.11, by projecting the point P onto the x1 - y1 plane the 

geometric relationships for links 2 and 3 are written by  

 )sin(sin'P''M''NM''NP' 32322 θθθ +−−=+= aa  (2.16)

 )cos(cos''''''''NM'''NP' 32322 θθθ ++=+= aaPM  (2.17)

where 

 22OP'''NP yx PP +==  (2.18)

 1''NP' dPz −= . (2.19)

Squaring and summing both sides of equations (2.16) and (2.17), the solution to 

determine θ3 then can be expressed as 

O
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and 

 2
3 )1()sin( K−±=θ . (2.21)

Therefore, θ3 can finally be calculated as 
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To derive the solution for the joint angle θ2, equations (2.16) and (2.17) can be rewritten 

as  

 )sin('NP'sin 32322 θθθ +−−= aa  (2.24)

 )cos(''NP'cos 32322 θθθ +−= aa . (2.25)

Squaring and summing both sides of equations (2.24) and (2.25) then using some 

trigonometric transformations, the solution to calculate θ2 is expressed by  
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where 
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The solutions for θ2 and θ3, as shown in Figure 2.11, corresponds to the upper-elbow 

configuration. It will change if another configuration is selected. 

  

Figure 2.11 – Projecting the point P onto x1 - y1 plane. 

The geometric approach is an exact mathematical solution for solving the inverse 

kinematics problem of simple configuration manipulators with revolute joints. It can 

also define various possible arm configurations based on the link coordinate systems 

and human arm geometry to analyse all the possible solutions. The appropriate solution 

is chosen by the user according to the specific configuration of the manipulator. 

However, this is a complex approach with many trigonometric transformations. For 

each specific configuration there is an individual way to derive the inverse kinematics 
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solution, so the geometric approach is dependent on user-defined solutions and is not a 

systematic method. 

2.4 Algebraic approach 

2.4.1 Principle of algebraic approach 

When a manipulator has a simple geometry where at least one of the distances (ai and 

di) are zero and most of the angles (θi and αi) are zero or ±π/2, the inverse kinematics 

solution can be analytically determined by an algebraic approach [2.3]. In [2.10] a 

solution was proposed to directly determine joint angles from the kinematics equations 

by using matrix algebraic techniques. This approach was applied to solve the inverse 

kinematics problem for a Puma manipulator [2.10], [2.11] and a Stanford/JPL 

manipulator [2.12].  

In general, the description of the end-effector coordinate frame of a n-link manipulator 

with respect to the base coordinate frame is given by 

 )()()( 12
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1
00 n

n
n

n θθθ −= AAAT K  (2.29)

where )(1 i
i
i θ−A is the homogenous transformation relating the coordinate frame of link i 

to the coordinate frame of link i-1. 

The origin of the end-effector coordinate frame can be measured and represented by a 

given location (position and orientation) with respect to the base coordinate system as 
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where 0p is the position vector and n, s, a are unit vectors to define a coordinate frame 

for the end-effector [2.1].  
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Thus, the necessary equations representing the relationship between a given location of 

the end-effector in the workspace and corresponding joint angles can be determined by  
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where n, s, a, and 0p  are the known vectors representing the orientation and position of 

the end-effector in the workspace and the joint angles θi (i = 1, 2,.., n) are unknown 

variables. Hence, the inverse kinematics solutions for a manipulator can be obtained by 

solving equation (2.31). 

To find the solutions of these joint angles, Paul [2.10] proposed separating each joint 

angle onto the left-hand side, one after another, by successively pre-multiplying 

equation (2.31) by 1−i
iA (i = 1, 2,.., n-1). These joint angles are then determined by 

equating appropriate elements on both sides of the matrix equation. For example, for a 

six D.O.F manipulator, the first matrix equation can be obtained by pre-multiplying 

equation (2.31) by 1
0A  
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0 UAAAAAUA ==
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. (2.32)

In equation (2.32), the elements on the left-hand side are constants, or functions, of θ1, 

but the elements on the opposite side are constants, or functions, of the remaining joint 

angles θ2, θ3,..., θ6. By finding and equating appropriate elements from both sides, the 

joint angle θ1 can be solved. If the implementation is continued by pre-multiplying 

equation (2.32) by 2
1A , a new matrix equation can be obtained 

 ( ) ( ) 3
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12
1 UAAAAUAA ==

−−
 (2.33)

Thus, once the joint angle θ1 has been determined, the matrix elements on the left-hand 

side of equation (2.33) are functions of θ2 only. The matrix elements of the right-hand 
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side are either constants, or functions, of the remaining joint angles (θ3 to θ6). Similarly, 

by equating appropriate elements on both sides of the matrix equation, the solution to 

determine the joint angle θ2 can be sequentially obtained. The procedure is repeated to 

determine the solutions for the remaining joint angles.   

2.4.2 The algebraic approach for a three-link manipulator 

The algebraic approach is applied to the first three links of the PA10 manipulator to 

determine expressions for the joint angles θ1 to θ3 (Figure 2.9). From its geometric 

parameters, the transformation matrices related to the coordinate systems of links 1, 2, 

and 3 have been described by equations (2.6) to (2.8) respectively. The homogenous 

transformation matrix 3
0T  from the coordinate frame attached to the end-effector to the 

base coordinate frame has also been derived as equation (2.9). If the location of the end-

effector is given, all elements of the homogenous matrix 3
0T are defined in the matrix U1  
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As proved in [2.1], the inversion of a general 4x4 transformation matrix, 3
0T , can be 

determined by 
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Applying equation (2.35) to 1
0A , an inversion matrix 11

0 )( −A  is determined. Pre-

multiplying both sides of equation (2.34) by 11
0 )( −A gives 



27 

 ( ) 3
2

2
11

11
0 AAUA =
−

. (2.36)

The left-hand side of equation (2.36) contains functions of the joint angle θ1 only as 
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The right-hand side of equation (2.36) is expressed as  
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Therefore, after equating the elements in the third row, fourth column of equations 

(2.37) and (2.38), the solution to the joint angle θ1 is given as 

 011 =− yx pCpS . (2.39)

The joint angle θ1 can be calculated by 

 ⎟⎟
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1 tanθ . (2.40)

Having determined θ1, the left-hand side of equation (2.36) is completely defined. If 

equations (2.37) and (2.38) are equated at elements in the first row, fourth column and 

elements in the second row, fourth column, two new equations which contain functions 

of θ2 and θ3 can be derived as 
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 yx pSpCCaCa 1122233 +=+  (2.41)

 122233 dpSaSa z −=+ . (2.42)

After squaring and summing both sides of equations (2.41) and (2.42), θ2 is eliminated 

and θ3 is finally determined by  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
±= −

K
K 2

1
3

1tanθ  (2.43)

where  

 
32

2
3

2
2

2
1

2
11

2
)()(

aa
aadPpSpC

K zyx −−−++
= . (2.44)

To derive the solution for the joint angle θ2, equations (2.41) and (2.42) can be rewritten 

as 

 2331122 CapSpCCa yx −+=  (2.45)

 233122 SadpSa z −−= . (2.46)

After several trigonometric calculation steps, the joint angle θ2 is finally determined by 
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where 
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Note that θ2 and θ3 are multi-solution functions according to the plus or minus sign 

adopted in equations (2.43) and (2.47).   

This approach uses matrix algebra to find the inverse kinematics solution for all joints 

sequentially. These solutions can be directly determined from the kinematics equations 

by using matrix algebraic techniques and trigonometric transformations. It can be 

applied to most industrial manipulators. However, the decision of how to choose 

suitable elements to determine the necessary equations when equating both sides of a 

matrix is largely based on intuition. It also involves a complex procedure of 

trigonometric transformation and the number of computations is higher than the 

geometric approach as well. However, the algebraic approach is simpler and more 

systematic than the geometric approach which involves complex geometric projections.    

2.5 Conclusion 

This chapter has presented an overview of traditional approaches to solve the inverse 

kinematics of a robotic manipulator. Analytical approaches, geometric and algebraic, 

attempt to mathematically produce an exact solution for the inverse kinematics problem 

by analysing the link geometry and using trigonometric transformation techniques. They 

can be used in real-time computer-based control applications. However, these 

approaches are only possible for relatively simple robotic manipulator configurations 

and involve an intuitive way to decide an appropriate result from the several possible 

solutions available for a particular manipulator. The traditional methods develop their 

computational algorithms based on the knowledge of manipulator geometry. In some 

cases when manipulator geometry cannot be exactly specified, these solutions become 

difficult or impractical. Therefore, an alternative approach using artificial neural 
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networks can be used to overcome this problem. In the next chapter, neural networks are 

presented to solve the inverse kinematics problem of unknown geometry manipulators.  
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CHAPTER 3 

BACKGROUND OF NEURAL NETWORKS FOR INVERSE 

KINEMATICS APPROXIMATION OF ROBOTIC 

MANIPULATORS 

3.1 Introduction 

The previous chapter described traditional methods for solving the inverse kinematics 

problem, which plays an important role in robotic control. However, these solutions are 

based on the geometric parameters of robotic manipulators to develop their 

computational algorithms. Using the traditional methods becomes difficult or 

impractical if the geometric parameters are unknown. One such case is a robot-vision 

system in which the position of a robot is measured by a vision-based measurement 

system. If there is any change in the visual measurement system or the robot’s base is 

moved in the workspace, the traditional methods will fail. This chapter presents a 

review of alternative solutions using artificial neural networks to solve the inverse 

kinematics problem assuming no prior knowledge of the manipulator’s geometric 

configuration.  

There have been many solutions proposed using neural networks to solve the inverse 

kinematics problem of an unknown geometry manipulator. One solution followed a 

closed-loop control scheme where a neural network is used to directly learn the 

nonlinear relationship between the displacement in the workspace and control signal in 

the joint angle space to achieve a desired position [3.1]-[3.5]. Another solution was 

proposed to learn the inverse mapping of both the position and velocity from the 

workspace to joint space by using a numerical solution based on the Jacobian matrix 

[3.6]-[3.12]. Other schemes used a self-organized network system [3.13]-[3.15], a 

multi-layer perceptron network [3.21]-[3.29] and a radial basis function network [3.32]-

[3.35] to learn a mapping function from the world space to joint angle space.      

This chapter firstly discusses the background to neural computing. A literature review 

of two of the most popular networks, the multi-layer perceptron networks (MLPNs) and 

radial basis function networks (RBFNs), to solve the inverse kinematics problem are 
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then introduced. The specific characteristics of both network types are analysed and 

compared. Finally, the reasons why RBFNs have been adopted in this research are 

discussed in the conclusion. 

3.2 Background of neural computing 

In general, a neural network consists of a number of simple processing nodes called 

artificial neurons which are connected together to form functional layers (input, output, 

and hidden layer) [3.16]. A neuron model represents a biological neuron that fires when 

its inputs are significantly excited (i.e., high enough) and an activation function (linear 

or nonlinear) is used to measure that excitation. There are many kinds of activation 

functions, such as threshold, sigmoid and hyperbolic tangent, that can be used in a 

neuron model. For example, Figure 3.1 presents a generic artificial neuron with the 

threshold function. 

 

Figure 3.1 - A generic artificial neuron. 

In this basic model, each neuron accepts a weighted set of inputs and responds by an 

output according to excitation strength and activation function characteristics. A neuron 

first forms the sum of weighted inputs to produce a stimulus signal given by 
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Synaptic weights represent the strength of interconnections between inputs and a neuron 

(or between neurons of other layers) and can be adjusted through a learning process. 

The stimulus signal rj is the sum of the weighted inputs which take the form of data 

items either from the environment or from other network elements, possibly from the 

outputs of nodes in a previous layer. To expand the controllability of neurons, a bias is 

added to the stimulus signal rj. It is equivalent to an additional input with a synaptic 

weight of bj added to the neuron’s inputs [3.16]. The output is then calculated as a 

function of the stimulus signal by 

 )( jjj brfq +=  or (3.2) 
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This output is a result of the neuron’s response according to inputs, synaptic weights 

and activation function characteristics. Generally, knowledge stored in neural networks 

(combination of many generic neurons) is represented by their structure (i.e., topology, 

number of hidden layers and number of neurons in each layer), the specific features of 

neurons (activation function) and the values of the interconnection weights between 

neurons. Figure 3.2 presents a simple feed-forward neural network.  
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Figure 3.2 - General structure of a neural network. 
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It contains an input layer which is used to receive stimuli from the environment, one or 

more hidden layers whose computation nodes intervene between the external inputs and 

the network output layer in some useful manner and an output layer which creates 

network responses according to inputs presented. 

If a neural network is used to approximate a system model, the number of inputs and 

outputs of this network can be determined from the physical characteristics of this 

system. They are often equal to the number of input and output parameters of the 

system model (e.g., three inputs and three outputs for the inverse kinematics problem of 

a 3-link robot). However, other important features, such as the number of hidden layers 

and the number of neurons in each layer, the connection type (feed-forward or 

recurrent) between the layers and the neuron model (perceptron, radial basis function) 

need to be tailored (or investigated) according to the individual problem. 

A common problem in neural network applications is to reproduce a function by 

learning from a set of examples (i.e., pairs of input-output data) without any knowledge 

of that function. This learning process is called supervised training [3.18]. The 

supervised training process aims to adjust the association weights between the 

processing nodes (neurons) so that errors between the actual outputs and desired 

responses of a network are minimised by an optimisation process. This training process 

ceases when the error falls below an expected goal or the maximum number of epochs 

is exceeded. As a result, a neural network can learn to approximate any nonlinear 

function by constructing the input-output mapping from information provided by 

training examples. After training, the neural network is able to produce a reasonable 

response for a new input according to its generalisation capability. The network 

operation is fast because it just comprises of simple arithmetical calculations. Neural 

networks also have the capability to adapt their association weights to changes in the 

surrounding environment, even in real-time through an online training process. 

Properties such as learning ability, generalisation and adaptability make neural networks 

distinctly different from conventional methods based on mathematical algorithms. For 

that reason, neural networks can be applied to a wide range of complex problems in 

many scientific fields including robotics control [3.16], [3.17]. 
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3.3 General training schemes of neural networks used for inverse kinematics 

approximation 

In this specific application, a neural network is applied to solve a problem called 

functional approximation in which the network should initially be trained through an 

offline process to approximate the inverse kinematics transformation of the manipulator. 

The network can then work as an independent controller in the operational phase as 

shown in Figure 3.3. This is called a feed-forward controller and is the most popular 

scheme in neural network applications. The success of the feed-forward scheme is 

closely related to the generalisation ability of the neural network to produce (or 

generalise) an appropriate response to any input that it has not been trained with, based 

on the experiential knowledge stored in its structure.  

 

 

To train the network in this feed-forward scheme, a general learning architecture can be 

used as shown in Figure 3.4 [3.19]. The training data is a set of reference joint angles θR 

and actual positions XA. The training process can be implemented by two independent 

steps, collection of the training data and updating the network weights. To collect 

training data a set of arbitrary reference joint angles is sent to the robot’s control system 

and the robot then moves to specific positions in the workspace corresponding to this 
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Figure 3.3 – General structure of inverse kinematics approximation using a          

neural network. 
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command set. The neural network then uses this pair, actual position and reference joint 

angle, as a training sample in the supervised learning procedure. The error between the 

actual response of the network output and the reference joint angle is used to update the 

network’s weights. This is the most common training scheme in neural computing. 

However, this training architecture has a major drawback that may lead to poor 

generalisation in some operational regions when operating as a feed-forward controller. 

This is because the training region, where data was collected, is sometimes far from the 

actual operating region. This problem is due to the fact that training data is collected in 

the network output space, instead of the network input space. For example, training data 

can be sampled regularly for a range of joint angles (the network output space) in Figure 

3.3, but they will be arbitrary positions in the Cartesian space (the network input space). 

The collected data may not reflect the full characteristics of the desired function (the 

inverse kinematics) and the network after training may not work well in this operational 

phase. To overcome this difficulty, training patterns could be collected over a wide 

region producing a significant amount of data. This may be unreasonable and inefficient 

since the neural network has to learn more training examples than is actually necessary.         

 

 

Another training scheme called the specialised learning architecture [3.17], [3.19] can 

be applied as shown in Figure 3.5. This architecture directly uses errors between the 

desired and actual outputs of the robotic system to adjust the weights so that the errors 
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decrease. In this training architecture the training data can be collected in the network 

input space to approximate the desired function over the whole operating region. 

However, because the training algorithm criteria are in terms of the network output 

(actual joint angles) instead of the system output (actual positions), the error ΔX in the 

Cartesian space should be projected back into the error Δθ in the joint angle space. 

Thus, it requires knowledge about the Jacobian matrix of the robot kinematics. The 

Jacobian matrix contains partial derivatives of the position elements of each joint. 

 

 

As the training and operational phases of the network are the same structure (Figures 

3.3 and 3.5), the specialised learning architecture is able to update the network weights 

online while operating in regions of interest. 

In this research, the training process was performed using this general learning 

architecture. However, the idea of collecting constrained data was proposed to 

overcome the drawback of poor generalisation in the operational phase due to the 

arbitrary collection of data. 
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3.4 Multi-layer perceptron networks 

Multi-Layer Perceptron Networks (MLPNs) are the most widely encountered neural 

networks in control problems. They are a powerful solution to solve problems such as 

function approximation or process modelling. This is because of their inherent nonlinear 

mapping capabilities which can deal with a wide range of process features [3.17]. This 

section presents the general characteristics of MLPNs and a literature review of MLPNs 

used for inverse kinematics approximation.   

3.4.1 Structure of MLPNs 

MLPNs, one of the most popular neural networks, have been successfully applied to 

solve many complex problems by using a supervised training method known as the 

back-error propagation algorithm (back propagation) [3.16], [3.20]. An MLPN typically 

consists of an input layer, one or more hidden layers and an output layer of 

computational nodes as shown in Figure 3.6. 

 

 

In an MLPN, each node includes a nonlinear activation function to present the nonlinear 

relationship between input-output pairs similar to the biological motivation of brain 
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Figure 3.6 – Architecture of an MLPN with two hidden layers. 
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neurons. Figure 3.7 presents a common form of the activation function called the 

sigmoid expressed as 

 
)exp(1

1)(
kr
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=  (3.4) 

where r is the stimulus signal of the neuron which is a weighted sum of all synaptic 

inputs calculated by equation (3.1) and k is the slope parameter of the sigmoid function. 

 

 

Basically, knowledge in an MLPN is represented by the network configuration (i.e., the 

number of hidden layers and number of neurons at each hidden layer) and the value of 

association weights between neurons in related layers as well. Thus, in order to develop 

a functional approximation based MLPN for a system, some important aspects related to 

the selection of the network structure parameters should be investigated in accordance 

with the system’s characteristics. This includes the number of hidden layers, numbers of 

hidden neurons at each layer and the type of activation function. Specifically, the 

question of how to select an appropriate network structure is always considered and 

needs to be resolved at the first stage [3.17]. In most cases, the structure of the MLPN is 

often chosen in a heuristic way. Thus, for a specific problem, a reasonable number of 

hidden layers and neurons at each hidden layer are initially selected based on 

experience. Adjustments then can be made on a trial and error basis, if the chosen 

structure appears unsatisfactory. Once the selection of network structure has been 

decided, the training process is implemented to update the network weights so that the 
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Figure 3.7 - Sigmoid function. 
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network can perform as desired. A famous supervised learning method called the back 

propagation algorithm is presented in the next section. 

3.4.2 Back propagation training algorithm  

The back propagation algorithm was presented in [3.16], [3.17] to train MLPNs with 

more than one hidden layer. It is based on an idea that the error signal at the output layer 

can be propagated backwards through the network to update the hidden layer weights. 

This can be briefly described as follows. 

At the output layer, the error signal of neuron j is defined by 

 jjj yte −=  (3.5) 

where tj is the target output of neuron j and yj is an actual output of neuron j. 

The purpose of the training process is to adjust the weights between neurons, so that this 

output error signal ej decreases to a minimum. An optimisation algorithm can be applied 

with the constraint as an error energy function, which depends on the network weights, 

defined by 
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If L is the total number of training samples presented to the network, the average error 

energy of all outputs throughout all training samples can be obtained by equation (3.7) 
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where tj(l) is the lth target output of neuron j, yj(l) is the actual output of neuron j 

corresponding to stimulus of the lth input and L and M are the number of training 

samples and output neurons respectively. 



42 

This average error energy E (called mean square error) is a function of all adjustable 

parameters (synaptic weights and/or bias levels) and could be used as the cost function 

to measure the learning performance. A training process is then used to adjust the 

network weights in order to minimise that cost function. It is an optimisation problem 

and can be implemented by several popular methods such as the steepest descent (or 

gradient descent), Newton and Gauss methods [3.16]. Based on the gradient descent 

method the network weights are adjusted according to    
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The correction of synaptic weight jiwΔ  can be expressed as   
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In order to calculate the correction jiwΔ at iteration k, the partial derivative of the energy 

function E with respect to the weight wji can be obtained by multiplying a range of the 

partial derivatives of related functions as shown in [3.17], [3.20]. Finally, it is 

determined by 

 )())(()()( kykrkekw ijjjji ϕη &=Δ  (3.10)

where η is the learning rate, ej(k) is the output error of neuron j, ))(( krjjϕ& is the 

derivative of the sigmoid function and yi(k) is the output of neuron i at the preceding 

layer. 

From equation (3.10), a key factor involved in correcting the network weight ijwΔ is the 

output error signal ej(k) of neuron j. Consequently, it is necessary to consider two cases 

depending on whether the location of neuron j is in the output layer or hidden layers.   
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If neuron j is located in the output layer, the error ej(k) is directly calculated from the 

desired output (training data) and actual response as in equation (3.5). The correction 

weight )(kwijΔ  can then be determined from equation (3.10). 

If neuron j is located in one of the hidden layers, the error signal ej(k) cannot be directly 

calculated from the training data. However, it can be obtained recursively from the error 

signals of the output-layer neurons, or the following layer, that are connected to this. 

The error of the output-layer neurons are propagated backwards to determine the 

hidden-layer weights. From equation (3.10) a function of the output error called the 

local gradient )(kjδ is defined by  

 )).(()()( krkek jjjj ϕδ &=  (3.11)

This )(kjδ can be regressively determined from the local gradient of the following layer 

as 
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where )(kpδ is the local gradient computed for neurons p in the following hidden layer 

(or output layer) that are connected to neuron j and )(kwpj is the weight associated with 

the connection between neuron p and neuron j. 

The correction weight )(kwijΔ  can then be determined by equation (3.10). 

3.4.3 Using MLPNs to approximate the inverse kinematics  

The MLPN is the most popular neural network applied to functional approximation 

problems. Thus, the use of MLPNs in the inverse kinematics problem has occurred to a 

greater extent compared to other networks. There have been many approaches using 

various structures based on MLPNs to approximate the inverse kinematics. This is not 

only for simple configurations (ordinary manipulators) but also some complex cases, 
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such as redundant or singular configurations. This section presents the research that 

reflects the most important aspects of MLPNs applied to the inverse kinematics 

problem. 

An approach using MLPNs with two hidden layers trained by the back-error 

propagation algorithm was proposed to approximate the inverse kinematics function in 

two- and three-dimensional space [3.22], [3.23], [3.26]. Figure 3.8 shows the general 

structure of the MLPN where its inputs are the end-effector coordinates (Cartesian 

space) and its outputs are the joint angles.  

 

 

  

In [3.23] the effect of structural parameters (i.e., the number of hidden layers and the 

number of neurons in each hidden layer), iteration steps and different numbers of 

training points on the performance of the inverse kinematics approximation was 

investigated. A more complex MLPN configuration is likely to produce a more accurate 

inverse kinematics approximation. However, it also leads to the number of iterations 

increasing significantly to satisfy the required training goal. Similarly, when increasing 

the number of training points (the size of training data) the network’s performance 

(generalisation ability) seems to be improved, but it also requires many more iterations 
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Figure 3.8 – A general structure of the MLPN to approximate the inverse kinematics of 
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to satisfy the training goal. The general trend of an MLPN training process is that the 

number of iterations increases exponentially with the number of training points and 

rapidly with the number of hidden neurons. For example, with the structure of 2-10-10-

2 (two hidden layers), the training process needed 150,000 iterations to achieve a 1-

percent RMS error training accuracy for 73 training points collected arbitrarily in the 

two-dimensional workspace [3.23]. In some cases when the number of hidden neurons 

or training points were too large, the training process cannot even converge to an 

expected error goal. 

In [3.24] an MLPN with various structures of the input layer was proposed to solve the 

inverse kinematics problem of a 6 D.O.F manipulator. Three different forms 

representing the orientation of the end-effector with respect to the base were defined: a 

3x3 rotation matrix (9 elements), a set of 3 Euler angles (3 elements) and one angle and 

a 1x3 unit vector (4 elements). According to the three ways of representing the 

orientation, there were three different network configurations established to perform the 

inverse kinematics approximation. The simulation investigated the effect of the each 

network configuration on the operational phase. The results showed that the first 

configuration with 9 elements representing the orientation produced the best 

performance. However, all three cases produced significant performance errors.      

Other solutions were proposed by modifying the MLPN structure to improve the 

performance of complex configuration manipulators with redundancy and singularities. 

For example, a solution combining an MLPN and a lookup table to solve the inverse 

kinematics problem of a redundant manipulator was proposed in [3.25]. There are many 

solutions (sets of joint angles) that are available for a single position of the end-effector 

of a redundant manipulator. The MLPN should be trained to recognise different 

solutions corresponding to each common position according to the specific 

configuration. Therefore, lookup tables can be used to store the network knowledge 

corresponding to each configuration. After training, individual lookup tables of the 

network weights were created for each configuration (or orientation) of the redundant 

manipulator. These lookup tables can then be employed, depending on the required 

orientation of the manipulator, to obtain suitable joint angles for a given position of the 

end-effector in the workspace.        



46 

A new approach using an MLPN in parallel with a conventional inverse kinematics 

computation module was developed in [3.27]. The MLPN operated as a compensation 

component to improve the accuracy of the position control system. Using this scheme 

the MLPN can compensate for inaccuracies due to mismatch between the system model 

used to develop the inverse kinematics module and the real robotic system. Figure 3.9 

shows the general diagram of this combination configuration. 

 

The input layer of the MLPN in Figure 3.9 comprises of 9 inputs (Px, Py, Pz, ax, ay, az, 

sx, sy, sz) to represent a location (position and orientation) of the end-effector. Training 

was implemented by an offline process following the specialised learning architecture in 

which the error ΔX between desired and actual location can be used to adjust the 

network weights. This error ΔX needs to be projected back to the target output Δθ of the 

MLPN in the joint angle space by using 

 XJ Δ=Δ −1θ  (3.13)

where 1−J is the inverse of the Jacobian matrix which can be determined from the 

kinematic equations of the manipulator. 

The solution using the MLPN operating in parallel with a conventional inverse 

kinematics computation module improved the positioning accuracy of a six D.O.F 
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MLPN to improve positioning accuracy of the manipulator. 
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manipulator when there were errors in the conventional inverse kinematics model. 

However, the training process is complex and based on prior knowledge of the 

manipulator kinematics.  

In [3.28], [3.29] an approach using modular neural networks to solve the inverse 

kinematics problem was presented. The principle of this approach was that several 

MLPNs, each solving the inverse kinematics for one joint, were concatenated in order to 

find the set of joint angles from a given location of the end-effector in a sequential way. 

The modular neural network’s configuration is shown in Figure 3.10. 

 

 

As seen in Figure 3.10, each joint angle is sequentially derived directly from the 

corresponding homogenous transformation matrix. In general, the manipulator’s 

kinematics equations can be expressed by a multiplication of the homogenous 

transformation matrices as follows:  
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where 0
nR  and 0

nP  are the rotation matrix and translation vector of the end-effector with 

respect to the base coordinate system respectively. By using the Euler angle type [φ, θ, 

ψ] for the orientation representation, a specific location of a frame relative to another 

can be described by a 6x1 vector. Thus, each neural module consists of 6 inputs 
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Figure 3.10 – Configuration of a modular network to solve the inverse kinematics 

problem. 
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(vector 0
iX ) and 7 outputs (vector T

iiX ],[ 0
1 θ− ). The hidden layer’s specification (number 

of hidden layers and number of neurons in each layer) is adjusted according to the 

application. The learning process is performed independently for each neural module by 

the back propagation algorithm. This learning aims to drive the manipulator to reach a 

given location by measuring corresponding input-output pairs ),( 0 θiX  [3.28]. Thus, the 

output error is defined by: 

 T
ii

T
ii EBPE )]()([ *

1 θθ −= −  (3.16)

where T
iEBP )( 1− is the back propagation of error 1−iE through the neural module i-1.  

 

 

This training process is complicated due to the use of the back propagation method 

between different modules (individual networks) and is dependent on the forward 

kinematics expressions. Therefore, it does not seem suitable for practical applications. 

MLPNs have been a popular solution for solving the inverse kinematics problem. It is 

due to their simple structure and their inherent nonlinear mapping capabilities which can 

deal with a wide range of process features. They are able to solve the inverse kinematics 

problem through interacting with input-output data using a variety of schemes. An 

MLPN is different from other radial basis function types because of its wider 

generalisation ability with the same training data set.  
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However, there is no reasonable mechanism to select a suitable network configuration 

(number of hidden layers and number of neurons at each layer) relating to the system 

characteristics represented by training data. Most of the structural choices are based on 

the user’s experience and/or heuristic rules, so their performance is unpredictable. In 

addition, training MLPNs using the back-error propagation algorithm is complex and 

slow. It involves a nonlinear model formulated in the least squares manner (to build the 

energy function of the training process) which requires an iterative numerical procedure 

for optimisation. For a complex MLPN structure (multi-hidden layers and many 

neurons at each hidden layer) required for a complex configuration manipulator, or a 

large set of training data, the training process is slow to converge to a specific goal and 

sometimes gets stuck at a local minimum.    

The performance accuracy as stated in [3.23] and [3.24] is likely to be unsatisfactory for 

application in a practical robotic system. 

3.5 Radial basis function networks 

Radial basis function networks (RBFNs) are feed-forward networks and are different 

from MLPNs and other networks because of the process performed at the hidden layer. 

The basic architecture of an RBFN is a three layer network consisting of an input layer, 

a single hidden layer and a linear output layer [3.16]-[3.18]. Rather than using the 

sigmoid activation function as in MLPNs, hidden units of RBFNs use the Gaussian 

function (or some basis kernel function) where each hidden unit acts as a local selector 

that computes a score for the match between the input vector and its centres. The basis 

function units are highly specialised pattern detectors. A network output is then 

produced by linearly combining the weighted outputs of all hidden units. Due to this 

specific structure, training RBFNs is simple and straightforward using the least squares 

approach. Recently, many solutions using RBFNs to solve the inverse kinematics 

problem have been developed as an alternative approach to MLPNs. 

3.5.1 Structure of RBFNs 

Figure 3.12 shows the typical architecture of an RBFN. The input layer is made up of 

the source nodes whose number is equal to the dimension N of input vector x. The 
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hidden layer is a group of nonlinear units which contains an activation basis function (N 

inputs, one output) as a ( RRN → ) mapping function. This basis function, where a 

Gaussian is the most common, has parameters such as centre and width. The centre of a 

Gaussian function is a vector whose size is the same as the dimension N of the input 

vector x. Each Gaussian function has its own centre point and the number of centre 

points in the workspace is the number of hidden units of the RBFN.  

 

 

If an input vector x (N dimensions) is sent to the RBFN, the output of the ith Gaussian 

hidden unit can be expressed by 
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where di is the radial distance between the input vector x and centre Ci of the basis 

function i. It is computed by an Euclidian distance as 
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As shown in Figure 3.13, the Gaussian function of a hidden unit is a curve which has a 

peak at zero distance (if the input vector coincides with the centre) and decreases as the 

distance from the centre is increased. The width σ defines the shape of the Gaussian 

function (thin or flat). The smaller the width, the thinner the shape of the Gaussian 

function. For convenience, the width of the Gaussian function can be represented by a 

spread value (SP). If the distance di is equal to the spread, the output of the Gaussian 

function is 0.5. Thus, equation (3.17) can be rewritten as 
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The width and the spread are related to each other as   
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Figure 3.13 - Gaussian function with C = 0 and the SP = 2, 5 and 10. 

Based on the particular structure of the RBFN, the transformation from the input space 

to the hidden unit space is nonlinear, whereas the transformation from the hidden unit 
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space to the output is linear. Therefore, for an RBFN with L hidden Gaussian units, an 

output j of the output layer can be computed by 
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where Φi(x) is the output of the ith hidden unit and Wij is the synaptic weight of 

interconnection between the ith hidden unit and the output j.  

The RBFN with N inputs, L hidden units and M outputs, as shown in Figure 3.12, is a 

mapping function MN RRf →: from the N-dimensional space to the M-dimensional 

space.  

3.5.2 Training RBFNs 

Knowledge of an RBFN is built based on the structure parameters of the hidden layer 

(centres and spreads of hidden Gaussian functions) and the linear weights. Therefore, in 

order to approximate a desired function, it is necessary to perform two independent 

steps: building the structure of the hidden layer (selection of centres and spreads) and 

supervised training of the linear weights. The first step is performed and then the 

training process is implemented.  

3.5.2.1 Building the structure of the basis function hidden layer 

The selection of structural configurations in terms of the number and position of basis 

function centres is important because it directly affects the quality of the functional 

approximation achieved by an RBFN. Normally, these centres can be determined with 

relation to the inputs of the training data by some unsupervised methods. These include 

Kohonen’s self-organized maps and the K-means clustering technique [3.16], [3.30]. 

There are different ways to select these centres as a smaller subset of the training data. 

One is to choose a random subset from the training data and another is to incrementally 

select a point that minimises the training error the most, e.g., the orthogonal least 

squares technique [3.31]. However, the performance of an RBFN is referred to as a 

local mapping function where only a few of the hidden units will respond when an input 

is presented to the network. This is because each hidden unit has only a specific local 
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area in input space according to its centre position and the width of the radial basis 

function. Thus, it requires many hidden units to achieve a good performance within the 

input space and the number of centres tends to increase exponentially with respect to the 

input space dimension for a particular problem [3.17]. This number may possibly be 

higher than the number of hidden-layer nodes in an MLPN for the same problem.  

To avoid increased complexity all hidden basis function units should have the same 

width (or spread) which can be a scaled factor of the average of centre distances.    

3.5.2.2 Adjusting the linear weights 

Once the hidden basis function units are set, the second phase of supervised training is 

used to adjust the linear weights. As there is a straightforward linear relationship 

between the linear weights and the network outputs, training the linear weights of 

RBFNs is simple. The optimal weights which minimise the cost function in the least 

mean squares manner can be calculated by a linear optimisation algorithm. This linear 

learning procedure is a significant advantage compared to the MLPN training process 

which requires a nonlinear optimisation algorithm [3.18].  

Suppose that a training data set consisting of P training patterns, {(X1, X2,..., XP); (T1, 

T2,…, TP)} (inputs; target outputs), is presented to the network, the training process aims 

to minimise the cost function  
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where f(Xk) is the network output corresponding to the training pattern Xk. It is 

determined by equation (3.21) where the output of the ith basis function under stimulus 

of Xk is calculated by  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=Φ 2exp)(

σ
ik

ki
CX

X . (3.23)



54 

Thus, after all training patterns are presented to the RBFN a (PxL) interpolation matrix 

is obtained. Every row corresponds to the responses of all hidden units for each pattern 

and every column to each hidden unit through all patterns 
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In order to determine an optimal weight vector that minimises the cost function in the 

least squares manner, the interpolation method is used [3.16]. It can directly calculate 

the linear weights from target outputs and pseudo-inversion of the interpolation matrix 

from the following equation [3.18] 

 ( ) TΦΦΦW T1T −
= . (3.25)

This solution produces an optimal weight vector that minimises the cost function 

derived from the sum-squared error as described in equation (3.22). 

One of the simplest training algorithms is to use all the inputs of training patterns as the 

centres of hidden basis functions and to calculate the linear weights based on the 

interpolation method. This is called the strict interpolation method [3.16] because the 

RBFN performs an exact mapping of all observations in the training set. In this case, the 

interpolation matrix becomes square due to L = P. The generalisation of the RBFN after 

training is dependent on how appropriately the hidden-layer structure (centres and the 

spread of radial basis functions) has been selected. However, when there are too many 

data points in a training set, RBFNs trained by the strict interpolation method are likely 

to produce an over-fitted model and the size of the interpolation matrix is also too large 

to be able to compute its inverse. A modified method called the orthogonal least squares 

learning algorithm provides a simple and efficient means for fitting RBFNs [3.31]. This 

solution is used to select a suitable set of centres from a larger set of candidates (training 

data) by incrementally searching training points that minimise the training error the 

most.  
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The other training method known as the Least Mean Square (LMS) algorithm [3.17] is 

more general than the former and could be applied in an online training process. In this 

method, the structure of the hidden layer has to be chosen before and may not be related 

to the training data. This LMS algorithm is a typical training solution for feed-forward 

networks and is similar to the back propagation method for MLPNs. In the batch 

training mode, the linear weights are updated one time only at each epoch. At each 

epoch, the mean square error (MSE) through all patterns of the training set is calculated 

and then the weight adjustment can be determined by 
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Finally, it can be calculated from the network errors and the outputs of the Gaussian 

functions by 
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where L, M and P are  number of hidden units, network outputs and training patterns 

respectively. η is the learning rate (0 ≤ η ≤ 1). 

In the incremental training mode, the linear weights are updated after each training 

pattern is presented to the network. As a result, in one epoch these linear weights are 

updated P times corresponding to P training patterns. This is also called the Delta rule 

and the weight adjustment can be calculated by 

 ).().(.)( kkekW ijji Φ=Δ η  (3.28)

This LMS training algorithm is simple and is only related to a learning rate η and the 

size of the training data. As this is a gradient descent method, the convergence of this 

training process is highly dependent on the selected learning rate. If the learning rate η 

is small, the training process will take a long time to converge to a specific goal. In 

contrast, if a large learning rate is adopted, it could possibly lead to an unstable learning 

process in which the training may never converge to a goal.  
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3.5.3 Using RBFNs to approximate the inverse kinematics 

MLPNs as discussed earlier have some significant disadvantages, such as the slow 

training phase due to the nonlinear training algorithm and a lack of reasonable methods 

to choose the network structures. Therefore, a trend towards using RBFNs which are 

conceptually simpler and possess the ability to model any nonlinear function 

conveniently have become more popular [3.17]. This section presents several 

approaches using RBFNs to approximate the inverse kinematics transformation of robot 

manipulators.    

A solution using RBFNs for inverse kinematics approximation of robot manipulators 

was presented in [3.32]. This work tried to explore the effect of various network 

configurations on the performance of the network. A variety of network configurations 

were developed, e.g. a single 12 inputs-6 outputs network, two 12 inputs-3 outputs 

network modules and six 12 inputs-1 output network modules to solve the inverse 

kinematics of a six D.O.F manipulator. All consisted of 12 input elements, [n, s, a, p], 

to represent a location (position and orientation) of the end-effector with respect to the 

base coordinate system. Figure 3.14 shows the architecture of the 12 inputs–6 outputs 

network. Simulation results showed that the position errors of the three different 

architectures for the test data within the training data space were all similar. However, 

for the test data outside the training data space, the generalisation of the six 12 inputs-

1output network modules was poorer than the other two. The errors increased smoothly 

with increased distances from the cubical volume of the training data space and almost 

negligibly changed with training size. This demonstrated that the generalisation of 

RBFNs has a localised characteristic in the effective area of training data. As a result, 

the generalisation will be poorer if the network operates outside training regions.      
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Figure 3.14 – Architecture of a 12 inputs-6 outputs network.  

Another solution to implement an inverse kinematics approximation of a 6 D.O.F 

manipulator using RBFNs was presented in [3.33]. This solution developed a structure 

of six parallel RBFNs, each of which consists of six inputs, [Px, Py, Pz, φ, θ, ψ], which 

represent a location (position and orientation) of the end-effector and one output as the 

joint angle. Figure 3.15 presents the architecture of the 6 inputs–1 output network. Thus, 

the group of six parallel RBFNs (one for each joint angle) could perform an inverse 

kinematics approximation of a 6 D.O.F manipulator.  

 

Figure 3.15 –The architecture of a 6 inputs–1 output network to approximate one joint 

angle of the inverse kinematics transformation. 
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The simulation was performed by using the Levenberg-Marquardt optimisation 

algorithm with 4,096 training data points created from the forward kinematics equations 

of the 6 D.O.F MOTOMAN manipulator. The result was compared with a similar 

approach using an MLPN and the back propagation training algorithm. It showed that 

this solution can be applied successfully to solve the inverse kinematics problem. 

However, it did not explain how to select the structure of hidden basis units (centres and 

the spread of Gaussian functions) which directly affects the generalisation of the RBFN. 

The network structure with only 6 basis function units seemed not enough to cover a 

large area of the workspace. This is contrary to the opinion that the number of hidden 

basis function units of an RBFN should be much higher than that of an MLPN to obtain 

the same performance quality [3.16], [3.17]. 

In [3.34] and [3.35], a comparison between an MLPN and an RBFN for the inverse 

kinematics problem of a 3-link manipulator was presented. In [3.34] both networks 

were established from the same structure, which was the 3-20-5-3 configuration shown 

in Figure 3.16 and used the same training data. Training of the RBFN was implemented 

by two independent phases, the first phase using the K-means clustering method to 

select cluster centres of the hidden radial basis units and the second phase using a 

supervised LMS algorithm to update the linear weights. However, the RBFN was a 

nonlinear model with more than one hidden layer which is different from the original 

structure of the RBFNs in [3.16]-[3.18]. As a result, the RBFN performance was poorer 

when compared to the MLPN due to the fact that the number of first hidden-layer 

centres (20 units) is too small for this complex problem. The second hidden layer made 

the training process slower and changed the generalisation characteristic of the RBFN. 

Therefore, it indicated that an RBFN often requires more hidden neurons than an MLPN 

to obtain equivalent performance for the same problem. 
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Figure 3.16 – An RBFN with two hidden basis function layers to approximate the 

inverse kinematics transformation of a 3-link manipulator.  

Many solutions using RBFNs to solve the inverse kinematics problem have been 

presented as an alternative approach to MLPNs. Due to their particular structure, the 

training process of the RBFNs is simple. The optimal linear weights can be calculated 

by a linear optimisation algorithm (i.e., the interpolation method). Based on the 

relationship between the input space and the centres of hidden basis functions some 

solutions can be used to select a suitable set of centres related to the training data. This 

is a useful feature of RBFNs which can aid the optimal selection of the network 

structure and may possibly improve the network performance [3.36].  

However, RBFNs have a localised generalisation characteristic in terms of centre 

positions and training data. Thus, for the same complex problem the required number of 

hidden-layer units is much higher than the number of hidden neurons of MLPNs. 

3.6 Conclusion 

This chapter has presented the general background of artificial neural networks and 

applications of neural networks to the inverse kinematics problem. The two most 

popular network types (MLPN and RBFN), used widely in inverse kinematics 

approximation, have been described. The MLPN is a universal and powerful solution 

for almost all functional approximation applications due to its inherent nonlinear 
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mapping capabilities which can deal with a wide range of process features. However, 

the training process is complex because it involves a nonlinear optimisation algorithm 

which requires an iterative procedure and there is no reasonable mechanism to select a 

suitable network configuration. In contrast, the RBFN training process is simple and 

straightforward by using a linear optimisation algorithm based on the least squares 

technique. There are several solutions to choose the optimal selection of the network 

configuration from information about the robotic system (training data) so that the 

generalisation can be improved. However, it seems that the performance of existing 

approaches (both MLPNs and RBFNs) described earlier is still insufficiently accurate 

and inefficient for practical applications.    

For these reasons, a novel approach using an RBFN with regularly-spaced position 

centres has been proposed to solve the inverse kinematics problem. This solution 

produces an RBFN with a sufficiently small number of centres whilst achieving a 

satisfactory accuracy for the inverse kinematics approximation. In addition, in order to 

enhance the generalisation of RBFNs, the concept that the constrained training data 

should be collected closely to the position of centres has been suggested. The proposed 

approach is verified through simulations in Chapters 4 and 5 followed by practical work 

in Chapter 7. 
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CHAPTER 4 

INVERSE KINEMATICS APPROXIMATION USING A 

RADIAL BASIS FUNCTION NETWORK 

4.1 Introduction 

In Chapter 3, several existing approaches using neural networks to approximate the 

inverse kinematics of robotic manipulators were discussed. However, it is likely that 

most of these approaches are still not suitable for practical applications because the 

accuracy of the networks’ performances is limited. A radial basis function network 

(RBFN) may be more advantageous than other networks since its hidden layer structure 

can be chosen with regards to the training data. If appropriate training data can be 

collected throughout the whole input space, it is possible to select the optimal structure 

of the RBFN so that the network’s performance could then be improved in the 

operational phase. Most of the solutions using RBFNs for determination of the inverse 

kinematics have used training data collected arbitrarily, or regularly, in the joint angle 

space (the output space of the networks) [4.1]-[4.3]. The training data has not reflected 

the full characteristics of the inverse kinematics function in the whole workspace. 

Consequently, the network’s performance has not been optimal in the operational phase. 

This chapter presents a novel solution using RBFNs to approximate the inverse 

kinematics of robotic manipulators. This approach has some fundamental principles: 

centres of hidden-layer units are regularly distributed in the workspace, constrained 

training data is used where inputs are collected approximately around the centre 

positions in the workspace and the training phase is performed using either strict 

interpolation or the least mean square algorithm. 

The chapter first describes the main concepts of the proposed approach. A simple 

example is presented to explain why regularly-spaced position centres can produce an 

acceptable approximation to the inverse kinematics function. Simulations for two-link 

and three-link manipulators are then presented to demonstrate the proposed approach. 

Finally, conclusions are presented following analysis of the simulation results. 
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4.2 Using RBFNs to approximate the inverse kinematics of robotic manipulators  

The accuracy of a neural network function approximation depends on three main 

factors: the structure of the network, the training method and the training data. To 

enhance the performance of an RBFN for the inverse kinematics approximation, a new 

approach is proposed:  

 using regularly-spaced position centres as a predefined structure of the RBFN,  

 using constrained data for the training phase (this constrained training pattern is 

collected around centre positions with a reasonable degree of accuracy), 

 using strict interpolation, or the least mean square (LMS) algorithm, to update the 

linear weights. 

The main concepts of this proposed approach are described in the following sections. 

4.2.1 Selection of the hidden layer parameters  

To illustrate the idea that using an RBFN with regularly-spaced position centres can 

produce a better approximation for a desired function, an example is presented as 

follows. 

Given a nonlinear function  

 xxxf 1.0)2sin()( +=  (4.1) 

an RBFN is used to produce an approximation of this function by a linear model  
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where Φi(x) is the output of the ith hidden unit, Wi is the interconnection weight between 

the ith hidden unit and the network output and L is the number of hidden units. 

A training method called strict interpolation [4.7] is used in which centres of hidden-

layer units are taken from inputs of a training set. This method creates as many hidden 

units as there are inputs of the training set. Thus, the generalisation of the trained 

network is dependent on the distribution of the training set and the spread of the 

Gaussian basis function. This spread value should be large enough compared to the 

distances between the centres of hidden units so that the active input regions of the 

radial basis function neurons overlap sufficiently. This makes the network function 

smoother and results in better generalisation for a new input occurring between centre 

positions. However, the spread should not be too large because it can produce a poor 

discrimination between radial basis functions in the effective area. 

In this example, two different training data sets, an arbitrary and a regularly constrained 

distribution, are used in the training phase. The arbitrary set uses inputs which are 

randomly created by the function rand (in MATLAB) in the range [-3, 3] and consists 

of the input vector P1 and target output T1. These are:  

 P1 = [-2.46, - 2.29, -1.37, -1.33, -0.06, 0.53, 1.22, 1.85, 2.21, 2.38, 2.75, 2.77, 

2.81]; 

 T1 = [0.73, 0.76, -0.53, -0.60, -0.13, 0.92, 0.77, -0.34, -0.74, -0.76, -0.43, -0.41,  

-0.34]. 

Setting the spread value to 0.5 and using the strict interpolation method, the RBFN is 

built to approximate the function f(x) according to the training set {P1, T1}. Figure 4.1 

presents the network performance after training. The result shows that the generalisation 

of the network is not the same in all regions of the workspace because the set of hidden-

layer centres is randomly distributed in the input space. When x is between zero and 

three, the function approximation is close to the desired function. However, in other 

regions, due to the lack of necessary neurons, the function approximation is poor. As the 

centres of the RBFN are randomly distributed, the network cannot perform well in the 

whole workspace.  
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Figure 4.1- The network’s performance with a set of randomly distributed centres. 

Another training set is collected as regularly-spaced points in the input space. It 

contains:  

 P2 = [-3, -2.5, -2, -1.5, -1, - 0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3 ]; 

 T2 = [-0.0206, 0.7089, 0.5568, -0.2911, -1.0093, -0.8915, 0, 0.8915, 1.0093, 0.2911,  

-0.5568, -0.7089, 0.0206]. 

The distance between elements of the input vector P2 is 0.5 and the spread of the 

Gaussian functions is chosen to be the same value. The strict interpolation method is 

then used to build an RBFN to approximate the function f(x) according to the training 

set {P2, T2}. Figure 4.2 shows that the function approximation almost perfectly fits the 

desired function over the whole operating space. The generalisation of the network 

where the centres are regularly distributed in the input space is much better than the 

network where the centres are in randomly spaced positions.   
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Figure 4.2 – The network’s performance with a set of regularly distributed centres.  

As demonstrated above, it is clear that an RBFN could produce an appropriate 

approximation of the inverse kinematics function if the hidden unit centres are 

regularly-spaced positions in the workspace. Figure 4.3 presents typical examples of 

regularly-spaced position centres in two- and three-dimensional spaces.         

 

Figure 4.3 - Typical examples of regularly-spaced position centres in the workspace. 
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In this research, the distance between centres can be determined in a heuristic trial and 

error manner. The smaller the distance between centres, the better the performance of 

the RBFN. However, due to the limited computer memory capacity and the 

computational complexity, the number of hidden layer units must be limited to a 

sensible value so that a feasible training process can be implemented. Therefore, a 

reasonable choice for the distance between centres should be investigated carefully 

through trial and error experiments. 

As the centres of the hidden layer units (Gaussian functions) are regularly distributed in 

the workspace, these functions should have the same spread. The spread value affects 

the smoothness of the network by varying the local-filter feature of the hidden units. For 

a specific application, the spread value should also be tailored and estimated through 

trial and error experiments. 

4.2.2 Training methods 

Once the structure of the hidden layer has been chosen, the second phase of supervised 

training is used to adjust the linear weights. As a linear relationship between the linear 

weights and the network outputs exists, the training process of an RBFN is simple and 

straightforward using the least squares approach. Therefore, the training of an RBFN is 

easier and faster compared to a multi-layer perceptron network for the same application 

[4.4], [4.5]. As presented in Chapter 3, there are two popular training methods, strict 

interpolation and LMS algorithms, to train the network. 

When a training set with N patterns (input - target output), {(X1, X2,…, XN); (T1, T2,…, 

TN)}, is presented to an RBFN, using the strict interpolation method an optimal set of 

the linear weights is determined so that the cost function (i.e., sum of squared errors 

between target and actual outputs of the network) is minimised. The centres of hidden 

layer units can be either the same as, or different from, the inputs of the training data. 

However, their number must be the same to produce an exact mapping kk TXf →: for 

all training data presented to the RBFN [4.6]. The set of the linear weights, W, is 

calculated by  
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 ( ) TΦΦΦW T1T −
=  (4.3) 

where T is the target output vector and Φ(NxN) is the interpolation matrix, where each 

row corresponds to the responses of all hidden units for each pattern and each column 

corresponds to each hidden unit through all patterns.  

The training phase using the strict interpolation method is simple and fast. It produces a 

unique set of the linear weights that minimises the cost function. However, the number 

of hidden units is limited due to the computational burden of the matrix inversion 

algorithm. For some cases when the amount of training data is higher than the number 

of hidden units, equation (4.3) is also used to calculate the linear weights. However, it 

cannot produce an exact mapping for all training data presented to the network [4.4]. 

The LMS algorithm uses the gradient descent technique to iteratively update the linear 

weights in a batch training mode [4.6]. At each training epoch, the linear weights are 

updated in a direction that reduces the MSE (mean square error of the network outputs) 

through all patterns of the training set. Assuming that a training set with N patterns is 

presented to the RBFN, the adjustment of linear weights can be calculated by 
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=

η  (4.4) 

where Φi(Xk) is the output of the ith Gaussian function corresponding to stimulation of 

input Xk , ej(k) is the error at the network output j with the kth target output and η is the 

learning rate (0 ≤ η ≤ 1). 

The LMS algorithm can be used to train RBFNs with either arbitrary or constrained 

training data without any restriction in the number of hidden units and/or training 

patterns. This training process is simple and related to the value of learning rate η and 

the size of the training data set. If the learning rate η is small, the training process will 

take a long time to converge to a specific goal. In contrast, if a large learning rate is 

adopted, it could possibly lead to a divergent learning process.   
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4.2.3 Training data 

Two kinds of training data were used to train the RBFN in the simulations. The first is 

called constrained data because their inputs coincide with the centres which are pre-

defined as regularly-spaced positions in the workspace. The other is collected randomly 

around the centres’ positions. This data is also limited by setting a maximum deviation 

from the centre position. For example, if a set of centres is predefined as in Figure 4.3, a 

random training data set can be collected around the centres’ positions as  

 

space) ldimensiona- three(for the).1rand.2(

).1rand.2(
).1rand.2(

zz

yy

xx

CMaxDevP

CMaxDevP
CMaxDevP

+−=

+−=
+−=

 (4.5) 

where MaxDev is the maximum deviation, rand is a random distribution function 

(MATLAB) in the range [0, 1] and {Cx, Cy, Cz} are the coordinates of the centres. 

For a two-link manipulator, the maximum deviation should not be higher than 30% of 

the centre distance to enable the training phase to produce an appropriate inverse 

kinematics approximation. For a three-link manipulator, due to the more complex 

configuration, the maximum deviation should not be higher than 20% of the centre 

distance. 

4.3 Simulation for a two-link manipulator  

Figure 4.4 presents the two-link manipulator used in this simulation. It consists of two 

revolute joints and two links that have the same length of 50 mm. Two coordinate 

values x, y describe the position of the tip of the manipulator with respect to the base 

coordinate frame. The forward kinematics is a mapping from a set of joint angles to the 

corresponding position in Cartesian space (workspace) and is defined by  

 )cos(.)cos(. 21211 θθθ ++= llx  (4.6) 

 )sin(.)sin(. 21211 θθθ ++= lly  (4.7) 
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where l1 and l2 are the lengths of link 1 and link 2 respectively. 

The inverse kinematics can be described by 
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( ) ( )221221 cos,sin2Atan,2Atan θθθ lllxy +−= . (4.9) 

Atan2(y, x) is defined as   

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≥≤≤−
≤−≤≤−
≥≤≤≤

≥≤≤

=

.0,0,090
0,,90180

0,0,18090
0,,900

x)2(y,Atan

00

00

00

00

yx
yx

yx
yx

θ
θ
θ
θ

 (4.10)

 

Figure 4.4 - Configuration of a two-link manipulator. 

Using equations (4.8) and (4.9), training and test data were created for the simulation. 

Due to the periodic characteristic of the inverse kinematics function, there is a rapid 

change in the function θ1, between -1800 and 1800. This singular region is in the area 

around {x = 0, y < 0}. However, because of the mechanical configuration limitations 
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(joint angle movement range) for a real manipulator, this singular region may not occur 

in the workspace. Furthermore, the plug sign in equation (4.8) is adopted for the 

expression of θ2. This corresponds with the lower-elbow structure of the two-link 

manipulator. In this simulation, the workspace is limited to a quarter of the plane where 

x > 0 and y > 0, as shown in Figure 4.6. 

4.3.1 Simulation description 

An RBFN was used to approximate the inverse kinematics function of this two-link 

manipulator. Figure 4.5 shows the network configuration consisting of two inputs and 

two outputs to perform a transformation from the world space (x, y) to the joint angle 

space (θ1, θ2).  The simulation was implemented according to the following procedure: 

 The structure of the hidden layer was built with pre-defined centres regularly 

distributed in the workspace (e.g., 10 mm x 10 mm grids). The spread was 

experimentally selected so that the RBFN can produce an appropriate inverse 

kinematics approximation.   

 Training patterns {(x, y); (θ1, θ2)} were collected as either constrained or random 

data in the workspace. There were three sets of training data used for this 

simulation (e.g., Figure 4.7 presents the distribution of data with a centre distance 

of 10 mm). A set of constrained data whose inputs were coincident with the 

centres of hidden units was collected. Two others were randomly collected around 

centre positions with a maximum deviation of 3 mm and 4 mm. 

 The linear weights were adjusted by one of two methods, strict interpolation or 

LMS. 

 The RBFN performance was tested by presenting a set of new data that is 

different from the training data. At this stage, two independent test data sets, a 

trajectory inside (test trajectory 1) and a trajectory near the edge (test trajectory 2) 

of the workspace (Figure 4.6), were presented to the network. 
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Figure 4.5 - Configuration of the RBFN to approximate the inverse kinematics of the 

two-link manipulator. 
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Figure 4.6 – Test trajectories for the two-link manipulator simulations. 

The simulation investigated the network’s performance for various conditions: two 

training methods with three different training data sets (constrained and random with a 

maximum deviation of 3 mm and 4 mm) and a variety of spread values (e.g., 6 - 28 

mm). To verify the network’s performance, the root mean square error (RMS) between 
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joint angles produced by the network and the desired inverse kinematics function 

(mathematical expressions) and the mean absolute errors (MAEs) between desired and 

actual positions in X and Y directions were calculated for each condition. The results of 

the three training cases with different training data are plotted in the same figure to 

compare the effect of training data on the network’s performance. All simulation results 

are listed in tables (Appendix B) where the columns show performance criteria and the 

rows are the spread values. 

4.3.2 Simulation results 

Figure 4.7 shows the distribution of three different training data sets versus the position 

of the hidden unit centres in the workspace. This case corresponds to an RBFN with a 

centre distance of 10 mm (regularly-spaced distribution). The total number of hidden 

units is 111 nodes.  
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Figure 4.7 – Distribution of three training data sets in the workspace (10 mm distance).  

Figures 4.8 and 4.9 present the network performance using test trajectory 1 after 

training by the strict interpolation method for various spread values (Appendix B.1). 
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Figures 4.10 and 4.11 present the performance of the same network using test trajectory 

2. 
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Figure 4.8 – Performance results for test trajectory 1 (inside). 

6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2

Spread (mm)

M
A

E-
X 

(m
m

)

6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

Spread (mm)

M
A

E-
Y 

(m
m

)

Constrained
Random (MaxDev of 3mm)
Random (MaxDev of 4mm)

 

Figure 4.9 – MAEs for test trajectory 1 (inside). 
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Figure 4.10 - Performance results for test trajectory 2 (edge). 
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Figure 4.11 - MAEs for test trajectory 2 (edge). 

The results show that the RBFN trained by the strict interpolation method produce an 

appropriate approximation of the inverse kinematics function. For test trajectory 1 

(Figure 4.9), using the constrained data produces the best performance in which the 

average MAE (of MAE_X and MAE_Y) is approximately 0.1 mm for spreads between 
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16 and 22 mm. Using the random data with a maximum deviation of 3 mm also 

produces a good performance where the average MAE is approximately 0.2 mm for 

spreads between 16 and 22 mm. When using the random data with a maximum 

deviation of 4 mm, an average MAE of 0.5 mm is achieved for the same range of spread 

values. The performance of the RBFN is better for test trajectory 1 (inside the 

workspace). This is because at the edge of workspace, the network does not have 

enough hidden radial basis functions to be able to create appropriate responses for test 

trajectory 2. For example, the best performance is about 1 mm when using the 

constrained data with a spread between 12 and 16 mm as shown in Figure 4.11. This 

reflects the local generalisation characteristics of the RBFN. Varying the spread leads to 

differences in the performance. An increase in the spread value can improve the 

network performance (decrease in the RMS error and MAEs). However, the 

performance will become poorer if the spread is increased significantly, especially for 

test trajectory 2. There is a spread value between 16 and 22 mm that can produce an 

optimal inverse kinematics approximation for both test trajectories when training with 

any of the three training data sets.  

Another simulation was performed corresponding to an RBFN with a centre distance of 

15 mm. Figure 4.12 presents the distribution of three different training sets.   
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Figure 4.12 - Distribution of three training data sets in the workspace (15 mm distance). 
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Figures 4.13 and 4.14 present the network’s performance for test trajectory 1 after 

training by the strict interpolation method corresponding to various spread values 

(Appendix B.3). Figures 4.15 and 4.16 present the performance of the same network for 

test trajectory 2. 
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Figure 4.13 - Performance results for test trajectory 1 (inside). 
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Figure 4.14 - MAEs for test trajectory 1 (inside). 
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Figure 4.15 – Performance results for test trajectory 2 (edge). 
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Figure 4.16 - MAEs for test trajectory 2 (edge). 

Compared to the results using a centre distance of 10mm (Figures 4.8 to 4.11), it is clear 

that the generalisation in this case (centre distance of 15 mm) is poorer. However, this 

performance is still acceptable and the number of hidden units is significantly reduced 

(56 points compared to 111 points for the previous case). For test trajectory 1 (Figure 
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4.14), when using the constrained data, an average MAE of approximately 0.3 mm can 

be obtained for spreads between 21 to 30 mm. Using the random data produces a 

slightly poorer performance (average MAE of approximately 0.5 mm) for the same 

spread range. For test trajectory 2 (Figure 4.16), similar to the results using a centre 

distance of 10mm, the errors significantly increase if the spread increases. The best 

performance can be obtained with a spread value between 21 and 27 mm for both test 

trajectories when training with any of the three training data sets. 

A further simulation was performed using the same network and training data as in the 

first case (centre distance of 10 mm) using the LMS algorithm. The training process was 

implemented with the following parameters:  

 Maximum training epochs = 500000,  

 Goal = 0.0001,  

 Learning rate = 0.01 – 0.001. 

As the LMS algorithm is an iterative gradient descent technique, the training time was 

significantly greater compared to the strict interpolation method. When the spread 

increases, the learning rate has to decrease correspondingly to keep the training process 

stable. The training time and training result (the final training performance at the 

maximum epoch) are thus slower and poorer for a larger spread value.  

Figures 4.17 and 4.18 present the network’s performance for test trajectory 1 after 

training by the LMS algorithm corresponding to various spread values (Appendix B.2). 

Figures 4.19 and 4.20 present the performance of the same network for test trajectory 2.   
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Figure 4.17 - Performance results for test trajectory 1 (inside). 
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Figure 4.18 - MAEs for test trajectory 1 (inside). 
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Figure 4.19 - Performance results for test trajectory 2 (edge). 
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Figure 4.20 - MAEs for test trajectory 2 (edge). 

For test trajectory 1 (Figure 4.18), the best performance is achieved with a spread of 8 

mm (an average MAE of approximately 0.2 mm when using the constrained data). 
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When the spread is slightly increased (greater than 10 mm), the performance errors 

increase. In addition, the performance of the network trained with random training data 

does not significantly differ from the performance of the network trained with 

constrained data. In fact the network trained with constrained data has a poorer 

performance compared to the network trained with random data for test trajectory 2 

(Figure 4.20). Thus, the effect of using constrained or random data on the network’s 

performance is not significant when training using the LMS algorithm. For both test 

trajectories, using the LMS algorithm requires a smaller spread value to obtain the best 

performance compared to the strict interpolation method. In general, the generalisation 

capability in this case is poorer compared to the strict interpolation method. 

4.3.3 Summary of results 

The idea of using an RBFN with regularly-spaced position centres has produced an 

excellent approximation of the inverse kinematics function for a two-link manipulator. 

The average MAE (of X and Y directions) of the network with a centre distance of 10 

mm is approximately 0.1 mm (or 1% of the centre distance) for a test trajectory inside 

the workspace. This corresponds to an approximate RMS error smaller than 0.1 degrees 

(Figures 4.8 and 4.9). The performance of the RBFN is poorer at the edge of the 

workspace. These results are significantly better compared to other relevant approaches 

[4.1], [4.2], [4.9], [4.10]. For example, in [4.1] the position errors of the best results 

varied from 2 to 7 (unknown units) for an RBFN with the test trajectory inside the 

trained area (cubical volume). Similarly, in [4.2] the network performance (RBFN) was 

even poorer with an approximate position error of 30 mm for a SCARA robot with the 

range of -300 mm ≤ x ≤ 300 mm and 0 mm ≤ y ≤ 700 mm. For an MLPN [4.10], the 

joint angle error of the best results was about 1.6 – 2 degrees (as shown in figure) for a 

two-link manipulator. Similarly, in [4.9] the best RMS error result for the simulation of 

a six D.O.F manipulator was about 8 degrees (average of all six outputs).  

The two different methods (strict interpolation and LMS) used in the training process, in 

spite of the same network structure and training data, produce a different set of linear 

weights. Therefore, their performances are not the same and the RBFN trained by the 

strict interpolation method produces a better performance.  
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As the centres are regularly distributed in the workspace, when the distance between the 

centres decreases, the generalisation of the RBFN becomes better. However, this leads 

to a more complex training phase because the number of hidden layer units increases 

significantly. Using the strict interpolation method, the number of hidden units is 

limited due to the computational requirement of the matrix inversion algorithm. 

Therefore, a suitable choice of centre distance should be carefully considered. 

A large spread can produce a smooth approximation function of the actual inverse 

kinematics function of the two-link manipulator. However, a large spread makes the 

training process using the LMS algorithm become extremely slow because it requires a 

small learning rate to allow convergence (gradually reducing the mean square error) of 

the gradient descent technique.  

The closer the training data to the centre positions, the better the inverse kinematics 

approximation. The RBFN trained with a set of random data where the maximum 

deviation is no higher than 30% of the centre distance also produces good results. 

However, using constrained or random data does not significantly affect the network’s 

performance when using the LMS algorithm. 

4.4 Simulation for a three-link manipulator 

Figure 4.21 presents the three-link manipulator used in these simulations. This is the 

same structure as the manipulator presented in Chapter 2.  

As presented in Section 2.3, the inverse kinematics solutions of joint angles from the 

space coordinates (x, y, z) can be described as 

 ( )xy,2Atan1 =θ  (4.11)

 ( )KK ,12Atan 2
3 −±=θ  (4.12)

 ( ) ( ) 31
222

2 ,2Atan,12Atan θθ −−+−−±= ΦΦ dzyxKK  (4.13)
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where 
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Figure 4.21 - A three-link manipulator and its workspace. 

The world coordinates (x, y, z) represent a position of the manipulator end-effector. In 

equations (4.12), the joint angle θ3 is not a unique value because it is expressed by two 

different functions. This reflects the multi-solution characteristics of the inverse 

kinematics problem. In this simulation, the plus sign in equation (4.12) corresponding to 

the upper-elbow structure was used. Hence, the third joint angle θ3 was always a 

negative value. For this simulation, the three-dimensional workspace was limited to a 

specific region where the three space coordinates were all positive values {(x > 0), (y > 

0), (z > 0)}.  

4.4.1 Simulation description 

To approximate the inverse kinematics function of the three-link manipulator, an RBFN 

as shown in Figure 4.22 was applied. Simulations were performed following this 

procedure: 
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 The structure of the hidden layer was built with pre-defined centres regularly 

distributed in the workspace (10 mm x 10 mm x 10 mm cubes). The total number 

of hidden units was 410 nodes. The spread was experimentally selected so that the 

RBFN can produce an appropriate inverse kinematics approximation.   

 Training patterns {(x, y, z); (θ1, θ2, θ3)} were collected as either constrained or 

random data in the workspace. There were three sets of training data: constrained 

and random with a maximum deviation of 2 mm and 3 mm (Figure 4.23).  

 The linear weights were adjusted by one of two methods, strict interpolation or 

LMS. 

 Two test trajectory sets (Figure 4.24), which did not occur in the training phase, 

were presented to verify the performance of the RBFN after training. The first one 

was a trajectory inside the workspace (5 mm x 5 mm x 5 mm cubes) and the 

second was a trajectory near the edge of the workspace.  

`

 

Figure 4.22 - Configuration of the RBFN to approximate the inverse kinematics of the 

three-link manipulator. 
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Figure 4.23 – Distribution of three training data sets used in the three-link manipulator 

simulations. 
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Figure 4.24 – Test trajectories for the three-link manipulator simulations. 
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Similar to the two-link manipulator case, the three-link manipulator simulations 

investigated the network performance for various conditions: two different training 

methods were used with three training data sets and a variety of spread values (6 - 28 

mm) were chosen. The RMS error between the joint angles produced by the network 

and the desired inverse kinematics function (mathematical expressions) and MAEs 

(mean absolute errors) between the desired and actual positions in X, Y, Z directions 

were used to present the network performance. The results of the three training cases 

with different training data are plotted in the same figure to compare the effect of 

training data on the network’s performance.  

4.4.2 Simulation results 

In the first case, the RBFN was trained by the strict interpolation method with the three 

different training data sets. Figures 4.25 and 4.26 present the network performance for 

test trajectory 1 (inside). Figures 4.27 and 4.28 present the performance of the same 

network for test trajectory 2 (edge). These simulation results are detailed in Appendix 

B.4. 
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Figure 4.25 - Performance results for test trajectory 1 (inside). 
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Figure 4.26 - MAEs for test trajectory 1 (inside) 
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Figure 4.27 - Performance results for test trajectory 2 (edge). 
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Figure 4.28 - MAEs for test trajectory 2 (edge). 

The results show that the RBFN trained by the strict interpolation method produces an 

appropriate approximation of the inverse kinematics function for the three-link 

manipulator. For the test trajectory inside the workspace (Figure 4.26), using the 

constrained data produces the best performance where the average MAE (of X, Y and Z 

directions) is approximately 0.1 mm for spreads between 20 to 28 mm. The 

performance is also good when using the random data with a maximum deviation of 2 

mm (average MAE of approximately 0.2 mm for spreads between 20 to 28 mm) and is 

poorer when using the random data with a maximum deviation of 3 mm. For test 

trajectory 2 (Figure 4.28), the performance is poorer with the same network compared 

to test trajectory 1. This is similar to the two-link manipulator simulation. The effect of 

the different training data sets (constrained or random) on the network’s performance is 

not significant for test trajectory 1. However, for test trajectory 2, the network using the 

random data with a maximum deviation of 3 mm produced a significantly poorer 

performance compared to the other training data sets. The RBFN used in the three-link 

manipulator simulations requires a wider spread to achieve the optimal inverse 

kinematics approximation (20 to 28 mm) compared to the two-link simulations (16 to 

22 mm).          
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The second simulation was performed with the same network and training data but used 

the LMS algorithm. The training process was implemented with the following 

parameters:  

 Maximum training epochs = 500000,  

 Goal = 0.0001,  

 Learning rate = 0.01 – 0.001. 

Similar to the two-link manipulator simulation, the training process using the LMS 

algorithm was significantly slower than the strict interpolation method. It is slower than 

the two-link case due to the greater number of hidden nodes and training points (410 

nodes compared to 110 nodes) and a more complex network structure (3 inputs – 3 

outputs).   Figures 4.29 and 4.30 present the network’s performance for test trajectory 1 

after training by the LMS algorithm corresponding to various spread values (Appendix 

B.5). Figures 4.31 and 4.32 present the performance of the same network for test 

trajectory 2.  
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Figure 4.29 - Performance results for test trajectory 1 (inside). 
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Figure 4.30 - MAEs for test trajectory 1 (inside). 
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Figure 4.31 - Performance results for test trajectory 2 (edge). 
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Figure 4.32 - MAEs for test trajectory 2 (edge). 

The results show that the network trained by the LMS algorithm can produce a good 

inverse kinematics approximation for the three-link manipulator. For test trajectory 1 

(Figure 4.30), using the constrained data an average MAE of approximately 0.5 mm can 

be obtained for spreads between 14 and 18 mm. The network’s performance is not 

significantly different when using different training data (constrained or random).  The 

performance of the same network is poorer for test trajectory 2. In general, the 

performance of the network trained by the LMS algorithm is poorer compared to the 

network trained by the strict interpolation method. For both test trajectories, using the 

LMS algorithm requires a smaller spread value to obtain the best performance compared 

to the strict interpolation method.  

4.4.3 Summary of results   

Similar to the two-link manipulator simulations, using an RBFN with regularly-spaced 

position centres has produced an excellent approximation of the inverse kinematics 

function for a three-link manipulator. The RBFN trained by the strict interpolation 

method, using constrained data produced an average MAE of approximately 0.1 mm (or 

1% of the centre distance) for the test trajectory inside the workspace. However, it 
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requires a higher spread value compared to the two-link manipulator case to obtain the 

best performance when training by either the strict interpolation or LMS methods.   

The training process using the LMS method is extremely slow with a large spread value. 

This situation is more serious compared to the two-link manipulator case due to the 

more complex structure of the three-link manipulator and the larger number of training 

points required.  

The set of random data where the maximum deviation is not higher than 20% of the 

centre distance also produces good results. 

4.5 Conclusion 

The proposed approach using an RBFN to approximate the inverse kinematics function 

of robot manipulators has been presented in this chapter. Various simulations for two-

link and three-link manipulators have been presented to demonstrate the effectiveness of 

the RBFN. Some conclusions can be stated: 

 The selection of hidden unit centres as regularly-spaced positions in the 

workspace significantly improves the network performance. 

 The training process using the strict interpolation method with training data 

collected closely to the centre positions enhances the network performance.  

 The generalisation capability of an RBFN is closely related to the structure of the 

hidden layer (centre distance and spread). If the centre distance is fixed due to the 

limited number of hidden units, the spread value chosen affects the network’s 

performance significantly, especially when using the strict interpolation method.  

 The effect of using random training data (high deviation from the centre points) 

on the network’s performance is not significant when the network is trained by the 

LMS algorithm. Thus, it would be a suitable alternative if the strict interpolation 

method was not chosen due to the significant number of hidden units required and 

the training data has a high deviation from the centre points.  
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CHAPTER 5                                                                  

ONLINE TRAINING TO MODIFY THE INVERSE 

KINEMATICS APPROXIMATION  

5.1 Introduction 

In Chapter 4, the idea of using a radial basis function network (RBFN) with the centres 

of hidden-layer units distributed regularly in the workspace to approximate the inverse 

kinematics problem was presented. Simulation results have shown that this approach 

can produce an appropriate approximation for the inverse kinematics transformation of 

a robotic manipulator. However, sometimes a well-trained network cannot work 

effectively in the operational phase because the initial network training occurs in an 

environment that is not exactly the same as the environment where the system is 

actually deployed. An online retraining approach can be effectively applied for systems 

whose characteristics change due to environmental variations. An example of this is a 

robot-vision system whose structure changes due to environment alterations between the 

initial training phase and practical deployment, e.g., different type of camera or 

variation in distance and view angle between the camera and robot.      

This chapter presents an approach to modify the RBFN using an additional online 

retraining phase. The RBFN, which has been trained to approximate the inverse 

kinematics of a manipulator, can be modified through an online process during the 

operational phase. This is an additional phase using the delta rule to update the linear 

weights of the RBFN which has been initially trained. Simulations for two-link and 

three-link manipulators are then presented and discussed.     

5.2 Using online training to modify the inverse kinematics approximation  

The principle of this approach is that an RBFN which has been trained before is 

modified by the delta rule (also known as the Widrow–Hoff method [5.1]) through an 

additional online process during the operational phase. This chapter presents simulation 

work that consists of two stages: an incorrect inverse kinematics approximation is 

produced by the strict interpolation method and then is corrected through an online 
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retraining phase. The incorrect network reflects the reasonable assumption that the 

initial network training occurs in an environment that is not exactly the same as the 

environment where the system is actually deployed. Figure 5.1 presents an example 

where the RBFN is trained with data that does not reflect the correct characteristics of a 

robotic system in which the RBFN will actually operate. This situation is due to an 

offset value added to all target outputs of the training data.  

 

 

For the simulations in this chapter, data used in the initial training phase is created by 

the following procedure. A set of N training patterns is generated using mathematical 

expressions for the inverse kinematics functions  

 { }),(S iiX θ=1          (5.1) 

where Xi and θi are the ith input and target output of training set (the position and the 

corresponding joint angle of the robot). 

ROBOT 
θR XA 

RBFN 

λ 

+ + 

- 

(a) – Training phase with incorrect data. 

ROBOT 
θA XA RBFN 

XR 

(b) – Operational phase with incorrect IK approximation. 

       Training data (incorrect) 
 
θ = θR + λ – target output vector 
 
XA – input vector 

Offset value 

Figure 5.1- Block diagram of training and operational phases.   
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A constant error is added as an offset value to all target outputs. This produces a set of 

incorrect patterns called S2 

 

⎭
⎬
⎫

⎩
⎨
⎧=

∧
),(S iiX θ2  (5.2) 

where 

 
offsetii +=

∧
θθ . (5.3) 

Therefore, using the data set S2 in the training phase means that the RBFN produces an 

incorrect approximation of the inverse kinematics function. 

The online retraining process is implemented using the Delta rule with recent data 

collected during the operational phase. The training criterion is the cost function 

expressed as a sum of square errors at each training pattern [5.1]. It is given by   
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where 

 
∑
=

Φ−=
M

i
kijijkj XWXe

1
)()( θ . (5.5) 

θj is the target output of a network output j, Φi is the output of the ith hidden Gaussian 

function and Wji is the interconnection weight between the network output j and the ith 

hidden unit. The weight adjustment is derived using the Delta rule as 

 )().(. kikjji XXeW Φ=Δ η  (5.6) 

where η is learning rate (0 ≤ η ≤ 1). 
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One drawback of an online training process is learning interference where the training 

effect of a current training point may upset some of the weights which were trained with 

other points, if they are close together [5.2]. Consequently, the RBFN at a retraining 

step can converge to the desired function in one area but diverge in other areas. This 

learning interference is more serious when the spread and/or the learning rate is large. 

Based on the characteristics of Gaussian functions, a simple rule is proposed to select 

appropriate patterns in order to avoid learning interference. Given an input x, the output 

of a Gaussian function can be calculated as 

  

⎟
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⎞
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⎝
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2
.832.0exp

Sp
D  (5.7) 

where Sp is the spread of the Gaussian function and CxD −=  is the distance between 

training points and the centre of the Gaussian function. 

From equation (5.7), the relationship between the ratio of the distance D to the spread 

value and the output of the Gaussian function can be determined as  

 

693.0
ln

−
Φ

=
Sp
D ,      .10 ≤Φ≤  (5.8) 

Thus, the effect of a training point on the output of a hidden unit is dependent on the 

distance between this training point and the centre of the hidden unit in proportion to the 

spread. It can be formulated as follows:  

 SpD ≤⇔≥Φ 5.0   (5.9) 

 SpDSp 822.15.01.0 ≤≤⇔≤Φ≤  (5.10)

 SpDSp 079.2822.11.005.0 ≤≤⇔≤Φ≤   (5.11)
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 SpD 079.205.0 ≥⇔≤Φ .  (5.12)

The principle of the free interference rule is that if the position of a new training point is 

further than twice the spread value from the position of the previous training point used 

to train the network, then the training process (with this new point) will not interfere in 

the weights of hidden units whose centres are close to the previous point. Therefore, 

following the free interference rule, the RBFN may be modified gradually and smoothly 

in this online retraining process.  

5.3 Simulation procedure 

A MATLAB simulation was developed to demonstrate the proposed approach. This 

simulation used two manipulator structures: two-link and three-link, the same as the 

simulations in Chapter 4. It answered two questions: how an incorrect approximation 

can be improved by an online training process and which factors affect this retraining 

process. The simulation procedure can be described as below: 

Step 1: Select the hidden layer parameters as presented in Chapter 4 where: 

i/ centres of the hidden layer are predefined as regularly spaced positions in the 

workspace,  

ii/ the spread of the Gaussian functions is heuristically selected as a proportion of the 

centre distance. 

Step 2: Generate a constrained training set where its inputs are coincident with the 

centre positions in the workspace using the mathematical inverse kinematics functions 

presented in sections 4.3 and 4.4. A constant error (offset value) is then added to the 

target outputs. Thus, the new training set is incorrect because the inputs and target 

outputs no longer correspond to each other. 

Step 3: Train the RBFN with the incorrect training set using the strict interpolation 

method. This produces an incorrect inverse kinematics approximation. 
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Step 4: Adopt a learning rate (0.1 - 0.5) and update the linear weights of the RBFN 

through the online training process. It is described by the following flowchart. 

 

Figure 5.2 – Online retraining flowchart.  

The effect of this retraining phase is dependent on three factors: learning rate, spread 

and the distance between centres and training points.  

To examine the network performance a range of test data are presented after each 

retraining step. The performance criterion is root mean square (RMS) error between the 

approximation function (modified RBFN) and the desired function (mathematical 

expressions). In addition, mean absolute errors (MAEs) in X, Y, and Z (for the three-

link manipulator case) directions between the actual positions and the desired positions 

are also used to demonstrate the network performance.    

Move to an arbitrary position

Pick and store the current position 
and the corresponding joint angles as 

a new training pattern 

Feed the training pattern to RBFN, 
update the linear weights by the delta 

rule as : 
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5.4 Two-link manipulator simulation   

In this simulation, a set of regularly-spaced position centres were selected as 10 mm x 

10 mm grids in the workspace. A training set was created where the inputs were 

coincident with pre-defined centre positions and an offset value of 10 degrees was 

added to the target outputs. As a result, the RBFN which was trained by this data set 

using the strict interpolation method produced an incorrect inverse kinematics 

approximation. To examine the network’s performance, a range of test data distributed 

as 5 mm x 5 mm grids in the square area {x = 22 – 52 mm; y = 22 - 52 mm} were sent 

to the RBFN. Figure 5.3 presents the outputs (joint angles) of the desired inverse 

kinematics function and the incorrect approximation (the RBFN) in this test area. It 

shows that the surface of the approximation functions (θ1 = f1(x, y) and θ2 = f2(x, y)) are 

parallel to the surface of the desired functions but differ by a 10 degree offset. The 

network performance is obtained as: RMS error = 9.91 degrees, MAE_X = 14.39 mm 

and MAE_X = 3.21 mm.   
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Figure 5.3 - Surfaces of desired (mathematical expression) and approximation functions 

(RBFN) in the test area. 
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To clarify the effect of online retraining in modifying the inverse kinematics 

approximation, a series of the network’s performances through 5 training points, 

collected using the free interference rule, are shown in Figures 5.4 to 5.8. The retraining 

process was performed with a spread of 10 mm and a learning rate of 0.4. To illustrate 

how the inverse kinematics approximation is modified through retraining, three 

functions are shown on the same figure: the incorrect function (before retraining phase), 

modified function and the desired function.  
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Figure 5.4 - The network’s performance after retraining by the first point                    

(20 mm; 21mm). 
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Figure 5.5 - The network’s performance after retraining by the second point                 

(56 mm; 19 mm). 
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Figure 5.6 - The network’s performance after retraining by the third point                   

(63 mm; 56 mm). 
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Figure 5.7 - The network’s performance after retraining by the fourth point                 

(20 mm; 54 mm). 
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Figure 5.8 - The network’s performance after retraining by the fifth point                     

(40 mm; 40 mm). 
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The results show that the online retraining has modified the inverse kinematics 

approximation gradually. After 5 online retraining steps, the RBFN is close to the 

desired function. By selecting the training patterns following the free interference rule, 

the current modified function at each step approaches the desired function in the area 

surrounding the training point whilst not affecting other areas.   

The effect of spread and learning rate on the retraining process is shown in Table 5.1 

which presents the RMS errors (between the current modified function and desired 

function). A small spread (e.g., 8 mm) requires a high learning rate to produce a small 

RMS error. A large spread (e.g., 16 mm) requires a small learning rate to produce a 

small RMS error. For other spread values, the minimum RMS error is obtained for 

learning rate values between 0.1 and 0.4. For example, a learning rate of 0.4 produces 

the minimum RMS error with a spread of 10 mm. The selection of the spread and 

learning rate should be carefully considered to ensure a successful retraining process. 

     Spread 

L.r 

8(mm) 10(mm) 12(mm) 14(mm) 16(mm) 

0.1 8.6 7.1 5.06 2.83 1 

0.2 7.34 4.66 1.69 0.78 1.65 

0.3 6.13 2.61 0.89 2.02 5.1 

0.4 5 1.19 2.06 4.52 11.03 

0.5 3.94 1.43 3.02 9.14 17 

Table 5.1 - RMS errors (degrees) after online retraining with 5 training points. 

The improvement of the RBFN is dependent on the learning rate, the spread and the 

position of training points in the workspace. A large learning rate and/or a large spread 

can improve the RBFN approximation in the area around the current training point 

whilst other areas become poorer due to learning inference. In this research, it is 

preferred to adopt a small learning rate and an average spread value for the retraining 

process. 

The retraining process can be continued with new training points. Figure 5.9 presents 

the performance results of the RBFN after retraining with 5 more points (10 training 

points in total). These were: {(20 mm; 21 mm), (56 mm; 19 mm), (53 mm; 56 mm), (20 
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mm; 54 mm), (40 mm; 40 mm), (24 mm; 25 mm), (50 mm; 24 mm), (51 mm; 49 mm), 

(25 mm; 50 mm), (38 mm; 37 mm)}. A better performance is obtained:  

 RMS error = 0.73 degrees,  

 MAE_X = 0.74 mm,  

 MEA_Y = 0.33 mm.  

However, the improvement of the RBFN varies depending on the training points chosen 

and their presentation order. To illustrate this point, 15 training points were randomly 

collected in the test area: {(34 mm; 40 mm), (39 mm; 36 mm), (30 mm; 28 mm), (50 

mm; 43 mm), (51 mm; 38 mm), (47 mm; 33 mm), (42 mm; 26 mm), (46 mm; 23 mm), 

(32 mm; 22 mm), (25 mm; 26 mm), (21 mm; 30 mm), (32 mm; 28 mm), (42 mm; 32 

mm), (49 mm; 28 mm), (39 mm; 52 mm)}. The network’s performance after online 

retraining (learning rate = 0.4, spread = 10 mm) with these training points is:  

 RMS error = 2.52 degrees,  

 MAE_X = 3.04 mm,  

 MAE_Y = 0.96 mm.  

This result is poorer than the network’s performance after retraining with 10 training 

points (following the free interference rule) as presented previously. 
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Figure 5.9 - The network’s performance after retraining with a total of 10 training points 

following the free inference rule. 

The retraining process tends to continuously improve the inverse kinematics 

approximation with further training points. If the number of training points is sufficient 

and other factors (learning rate and spread) are appropriately chosen, the RBFN can 

produce an approximation function similar to that obtained by the strict interpolation 

method with correct training data (Chapter 4). 

5.5 Three-link manipulator simulation 

In this simulation, a set of regularly-spaced position centres was selected as 10 mm x 10 

mm x 10 mm cubes in the workspace. A training set was created where the inputs were 

coincident with pre-defined centre positions and an offset value of 5 degrees was added 

to the target outputs. As a result, the RBFN trained with this training set using the strict 

interpolation method produced an incorrect inverse kinematics approximation. In order 

to examine the network’s performance, a range of test data distributed as 5 mm x 5 mm 

x 5 mm cubes was sent to the RBFN as shown Figure 5.10. It is not convenient to show 

the inverse kinematics function surfaces of the three-link manipulator in the same 

manner as the two-link manipulator. Thus, the network’s performance can be presented 

as errors between the desired and the current modified function for the test points. These 
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errors are the differences between joint angles produced by the RBFN and the 

mathematical inverse kinematics expressions.  

30 35 40 45 50 55 60 6530

40

50

60

40

50

60

70

80

X(mm)
Y(mm)

Z
(m

m
)

 

Figure 5.10- Test data distributed as 5 mm x 5 mm x 5 mm cubes in the workspace. 

Figure 5.11 shows the network’s performance after initial training with the incorrect 

data (offset value of 5 degrees added to all target outputs). The network’s performance 

is: 

 RMS error = 5.12 degrees, 

 MAE_X = 5.87 mm, 

 MAE_Y = 2.02 mm, 

 MAE_Z =  10.52 mm. 
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Figure 5.11- The network’s performance after initial training with incorrect data.  

To improve the network’s performance a series of 15 training points (Figure 5.12), 

following the free interference rule, were applied to the online retraining process. These 

were: {(34 mm; 35 mm; 48 mm), (34 mm; 61 mm; 48 mm), (34 mm; 61 mm; 74 mm), 

(34 mm; 35 mm; 74 mm), (34 mm; 48 mm; 62 mm), (58 mm; 35 mm; 48 mm), (58 mm; 

61 mm; 48 mm), (58 mm; 61 mm; 74 mm), (58 mm; 35 mm; 74 mm), (58 mm; 48 mm; 

62mm), (46 mm; 35 mm; 48 mm), (46 mm; 61 mm; 48 mm), (46 mm; 61 mm; 74 mm), 

(46 mm; 35 mm; 74 mm), (46 mm; 48 mm; 62 mm)}. The order of these training points 

is important because it can result in performance variations.  
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Figure 5.12 - Distribution of 15 training patterns following the free interference rule in 

the online retraining process.  

Figure 5.13 shows the RBFN performance after retraining with 15 training points. This 

online retraining process corresponds to a learning rate of 0.2 and a spread of 10 mm. 

Compared to the performance of the incorrect approximation function (before the 

retraining phase), this result shows that after online retraining with 15 training points the 

network’s performance was noticeably improved. This can be verified by: 

 RMS error = 1.55 degrees, 

 MAE_X = 1.1 mm, 

 MAE_Y = 0.85 mm, 

 MAE_Z =  2.23 mm. 
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Figure 5.13 - The network’s performance after retraining with 15 training points.    

The effect of spread and learning rate on the retraining process is shown in Table 5.2. A 

large spread (e.g., 12mm - 14 mm) requires a small learning rate to produce a small 

RMS error. However, when using a spread of 14 mm, a small increase in the learning 

rate leads to a significant increase in the RMS error. Thus, an RBFN with a large spread 

value is not appropriate in the online retraining phase. A small spread value (e.g., 8 mm 

to 10 mm) requires a learning rate in the range from 0.1 to 0.4 to minimise the RMS 

error. For example, a learning rate of 0.2 produces the best network’s performance 

(minimum RMS error) with a spread of 10 mm. The selection of the spread and the 

learning rate should be carefully considered to ensure a successful retraining process. 

    Spread 

L.r 

8 mm 10 mm 12 mm 14 mm 

0.1 3.43 1.72 1.02 0.79 

0.2 2.36 1.55 1.13 1.11 

0.3 1.83 1.56 2.57 11.6 

0.4 1.68 1.72 5.65 32.82 

0.5 1.71 2.96 6.65 552.47 

Table 5.2 - RMS errors (degrees) after online retraining with 15 points. 
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The retraining process can be continued to obtain further improvement. Figure 5.14 

presents the performance results of the RBFN after retraining with 14 more points. 

These were: {(52 mm; 42 mm; 55mm), (40 mm; 42 mm; 55 mm), (40 mm; 55 mm; 

55mm), (52 mm; 55 mm ; 55 mm), (52 mm; 55 mm; 68 mm), (52 mm; 42 mm; 68 mm), 

(40 mm; 42 mm; 68 mm), (40 mm; 55 mm; 68 mm), (46 mm; 35 mm; 62 mm), (34 mm; 

48 mm; 62 mm), (46 mm; 61 mm; 62 mm), (58 mm; 48 mm; 62 mm), (46 mm; 48 mm; 

74 mm), (46 mm; 48 mm; 48mm)}. The total number of online retraining steps was 29 

and the improved performance is verified by: 

 RMS error = 1.06 degrees, 

 MAE_X =   0.71 mm, 

 MAE_Y =   0.65 mm, 

 MAE_Z =    1.44 mm. 
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Figure 5.14 - The network’s performance after retraining with 29 training points. 
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The robotic system in this simulation (three-link manipulator) has a more complex 

structure than the two-link manipulator. Therefore, the improvement of the RBFN in the 

online retraining phase is slower and requires more training patterns to achieve the same 

performance improvements. For the three-link manipulator case, the RBFN modified by 

the online retraining phase could obtain a similar level of performance as the RBFN 

trained by the strict interpolation method with correct training data (Chapter 4). This 

observation is valid as long as the number of training points is sufficient and the spread 

and learning rate are appropriately chosen. 

5.6 Conclusion  

This chapter has presented a novel approach where the inverse kinematics 

approximation is modified through an online retraining process. The simulations 

demonstrate that the RBFN performance after online retraining noticeably improves. 

There are three factors: the learning rate, the spread value and the position of the 

training points that can affect the online retraining phase. Thus, the choice of learning 

rate and the spread value must be carefully considered. The selection of training points 

following the free learning interference rule can produce better results.  However, the 

effect of online retraining on the RBFN performance is dependent on how complex the 

desired function is. For a more complex function (e.g., the inverse kinematics of the 

three-link manipulator) the RBFN requires to be re-trained with more training patterns 

and the improvement is slower compared to a simpler function (the inverse kinematics 

of a two-link manipulator). This online retraining approach can be effectively applied 

when the structure of the practical robotic system alters due to environmental variations 

(Chapter 7). 
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CHAPTER 6 

DEVELOPMENT OF A THREE-DIMENSIONAL POSITIONAL 

MEASUREMENT SYSTEM 

6.1 Introduction 

In robotic control, measuring the state variables (joint angle positions and velocities) in 

the joint space is simple and direct by using optical sensors attached to the shaft of the 

joints. However, measuring the position and velocity of the end-effector in the world 

space (Cartesian coordinates) is significantly more difficult due to the need for an 

indirect distance measurement system using sonic or vision sensors. In recent years, 

vision-based measurements have been developed and applied more frequently in robotic 

control because of benefits, such as efficiency, accuracy and low cost. In this chapter, a 

real-time visual measurement system based on a video camera is presented to estimate 

the position of the end-effector of a robotic manipulator in a three-dimensional 

workspace. It consists of a standard video camera (Webcam) mounted on a fixed pole to 

measure the position of a sample board attached to the end-effector.  Image processing 

software has been programmed using functions from the Intel Open Source Computer 

Vision Library (OpenCV). A Graphic User Interface (GUI) has been developed to make 

this visual measurement tool more convenient for practical applications.  

This chapter firstly describes some background information on computer vision and 

image processing. It includes the pinhole camera model which is the basis of calibration 

methods of physical cameras. Next, a camera calibration procedure using a calibration 

toolbox in MATLAB is presented to estimate the intrinsic parameters of the camera. A 

real-time visual measurement solution to estimate the position of the robotic 

manipulator in a 3-D workspace is then described. The set-up of the measurement 

system components and the specific features of the image processing software are 

presented. 
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6.2 Background of computer vision 

Using a camera to transform a 3-D scene (world space) to a 2-D space (image plane) is 

important for vision-based measurement. This is performed by a digital camera where 

an object is digitally captured by recording images via an electronic image sensor. The 

relationship between the 3-D and 2-D data of the object is then used to determine the 

geometrical parameters of the camera. This section presents the general background of 

computer vision related to a real-time vision based measurement system presented in 

this chapter.    

6.2.1 Image acquisition and processing 

One of the most popular digital cameras at present is the CCD (Charge coupled device) 

[6.1] photo-sensor type. Each sensor (photocell) can be regarded as a small rectangular-

black box that converts light energy into data as voltage levels. The quality and cost of a 

camera is likely to relate to how many CCD sensors are attached in an area unit called 

the camera resolution. In this research, a standard CCD-type webcam (i.e., a digital 

camera connected to a computer) is used to capture the scenes of an object (robot) in the 

world space. It records objects’ images by scanning the photo-sensors and then 

producing video signals. These signals are continuously sent and stored in a memory 

buffer following a specific sequence in the CCD-cell array, normally line by line. Thus, 

the video stream is transferred to a computer as digital image frames, each consisting of 

(N x M) data, at a speed of up to 30 frames per second. 

A digital image is composed of a number of discrete image units called pixels and is 

organised as a two-dimensional array (NxM) to build an image plane [6.2]. Figure 6.1 

presents the general structure and geometry of a digital image. An element I[i, j] of the 

digital image represents a value (image brightness) at the ith row, jth column pixel 

corresponding to coordinates (xp, yp) in the image plane. Note that image coordinates 

and indices of image data at one pixel are not the same, although both can be measured 

in pixel units. The image coordinates are defined with respect to the origin of the image 

plane - the principal point (centre). The indices of image data are determined with 

respect to the left upper corner of the image array. 
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If the image in Figure 6.1 is a monochromatic (grey) image, then I[i, j] occupies a one-

byte memory to store an integer value in the range [0, 255]. The element (i, j) of a 

colour image consists of three separated memory boxes to store three image-colour 

components (red, green, blue) [6.2], [6.3] as shown in Figure 6.2. Hence, a three-

dimensional array I[i, j, k] with size (NxMx3) is used to represent the colour image in 

which the third index specifies a particular colour. 
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Figure 6.1 - Relationship between the image plane and image array of a digital image. 

Figure 6.2 - The structure of image data for a gray and a colour image. 
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Colour image information is organised as a multi-dimensional array according to a 

particular colour space where RGB (Red-Green-Blue) is the most popular. It consists of 

three colour channels, red, green and blue, each of which is represented by a specific 

value (colour part) within the interval [0, 255]. By combining the three colour parts in 

this format, the vision features (e.g., sharpness, colour, shadow, etc.) of the object can 

be displayed. However, the RGB colour space is not stable with regards to alterations in 

the illumination because the representation of a colour in the RGB colour space contains 

no separation between the illumination and the colour parts [6.3]. It means that with an 

illumination point (e.g., a light emitting diode) in either red, green, or blue, all colour 

parts have the same brightness of 255. This problem has affected the performance of the 

visual measurement system developed in this research where the data acquisition 

programme is required to distinguish between two different-colour points in the 

calibration sample. In order to eliminate this phenomenon, some adjustments of the 

camera specifications (hardware) such as using lower brightness, reducing contrast level 

and applying a colour filter function (software) have been implemented. 

Most of the image processing functions to analyse image features (e.g., edge detector, 

contour fragments, corner extraction) [6.1], [6.2] have been developed with gray-scale 

or binary image data. Thus, a colour image should be first converted to the suitable 

image space before processing. The threshold value of the colour conversion functions 

should be selected experimentally depending on the particular situation.   

6.2.2  Perspective transformation from 3-D to 2-D space 

The perspective transformation is based on the pinhole camera model where each point 

in the world space is projected by a straight line through the projection centre into the 

image plane [6.2]. Figure 6.3 shows the projection of a point P(XP, YP, ZP) into the 

image plane. It produces an image point p(x, y) correspondingly.  
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A 3-D coordinate frame attached in the projection centre of the camera is called the 

camera coordinate system where the Zc axis is perpendicular to the image plane. This 

camera coordinate frame can be determined with respect to the object coordinate system 

which is attached to an object by a translation vector T(1x3) and a rotation matrix 

R(3x3). Figure 6.4 expresses the relationship between the world (object) coordinate 

system and the camera coordinate system.  

In order to determine image coordinates of a point P(XP, YP, ZP)W given in the world 

coordinate system, it is first transformed to the camera coordinate system as  
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Figure 6.3 - The pinhole model – projection of a 3-D point into the image plane.  
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The translation vector T and orthogonal matrix R (RTR = RRT = I) specify a 

homogenous transformation from one reference frame to another and are commonly 

called the camera extrinsic parameters. A projection from the camera coordinate frame 

through the optical lens into the image plane is then implemented and the corresponding 

image coordinates are determined by 

 c

c

Z
Xfx =

 
(6.3) 

 .c

c

Z
Yfy =  (6.4) 

Note that these coordinates (x, y) are defined with respect to the origin of the image 

plane (centre of the image plane). However, the position of an image point is always 

determined by counting the indices of the image array in pixel units, (u, v), as shown in 

Figure 6.1. Thus, if the distortions of the optical lens are neglected, the relationship 

between the 3-D and 2-D image coordinates (in pixels) can be expressed as 
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Figure 6.4 - Transformation between the world coordinate frame and the camera 

coordinate frame.  
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where (ou, ov) is the coordinate of the image centre in pixels and (su, sv) are the scale 

coefficients of the pixels (in millimetres) in the horizontal and vertical directions 

respectively. 

However, this pinhole model is only an approximation for a real projection. In fact, all 

optical lenses have some distortions affecting the projection. It is essential that some 

coefficients can be attached to compensate for this phenomenon. In many cases, the 

radial lens distortion [6.4] is likely to be a main cause of displacement in the image 

coordinates. It can be expressed as   

  ...)( 4
2

2
1 ++=−= rkrkxxxdx dd  (6.7) 

 ...)( 4
2

2
1 ++=−= rkrkyyydy dd  (6.8) 

where (xd, yd) is the coordinate of the distorted point and 222
dd yxr += .  

Typically, radial distortion coefficients are small and often k2 << k1, so in most practical 

cases only coefficient k1 is adopted as an intrinsic parameter [6.2]. As a result, the 

intrinsic parameters of a camera includes: 

 fx , fy – focal lengths in effective horizontal and vertical pixel size units, 

 (ou, ov) - image centre coordinate in pixels, and 

 k1 – radial distortion coefficient.   
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The projection from the object coordinate system to the image plane can also be 

expressed in a more general form by a linear matrix such as  
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M is called the perspective transformation matrix where w is an arbitrary scale value 

[6.2]. This can be rewritten as a product of two simpler matrices, Mint and Mext, as 

shown by  

 extMMM .int=  (6.11)

where  
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Mext performs the transformation between the object coordinate frame and the camera 

coordinate frame and Mint performs the projection from the camera coordinate frame to 

the image plane. Therefore, this perspective matrix can be defined, dependent on an 

arbitrary scale factor w, by 11 independent parameters, 6 extrinsic and 5 intrinsic. 

6.3 Camera calibration methods 

6.3.1 Overview 

Camera calibration is the estimation of the intrinsic and extrinsic parameters of the 

camera model from a set of known coordinates of 3-D objects and their corresponding 

images [6.6]-[6.10]. As presented in Section 6.2.2, projecting an object from the world 

space to the image plane can be expressed by the perspective transformation matrix on 

the basis of the pinhole camera model. However, this transformation cannot be 

described perfectly due to optical lens distortions. Thus, the pinhole model is only an 

approximation to the real physical camera. For this reason, the transformation procedure 

should be modified by using additional intrinsic parameters to model the lens 

distortions. In [6.4], [6.5] a literature review of calibration methods and various 

distortion models was presented. It listed a range of existing camera calibration 

approaches and mentioned various lens distortion models (e.g., radial and tangential), as 

well as how these distortions affect image displacements in the image plane. A 

calibration method called the direct linear transformation which uses the pinhole model 

and ignores the nonlinear radial and tangential distortion components was described in 

[6.2], [6.6]. A nonlinear estimation approach [6.6] applied an optimisation method 

which minimises the distances between perspective model images, calculated by 

equation (6.9), and actual measured images to estimate the camera parameters. The 

radial and tangential distortion had also been added in the constraint equations. This is a 

nonlinear optimisation problem due to the vision-geometry relationships and an iterative 

approach using the Levenberg-Marquardt method was applied to simultaneously 

estimate the camera parameters. A similar nonlinear estimation solution called the 

maximum-likelihood estimate was proposed in [6.7]. It built the constrained equations 

in the least squares manner with a simplification in the homograph matrix between the 

model plane and its images. Most of the camera calibration tools combine the direct 

linear transformation and nonlinear estimation together. Firstly, an initial phase is 

implemented based on the direct linear transformation without any distortion 
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components, then the nonlinear estimation is applied to refine all camera parameters 

including distortion components. Given a sufficient number of calibration patterns, a 

camera-parameter estimation approach can be implemented as follows.  

If a set of N planar points (3-D space) and their corresponding image coordinates (2-D 

space) are known, by applying (6.10) a matrix equation which represents the 

relationships between the N pairs of 3-D and 2-D points can be written as  

 0=Am  (6.14)

where the coefficient matrix A is determined by 
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and the variable vector is 

 [ ]343332312423222114131211 ,,,,,,,,,,, mmmmmmmmmmmm=m . (6.16)

By replacing the known object coordinates (Xi, Yi, Zi) and image coordinates (ui, vi) in 

(6.15), the parameter vector m can be estimated based on the least squares technique. It 

is performed by applying the SVD (Singular Value Decomposition) transformation for 

matrix A 

 TUDVA = . (6.17)
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Since matrix A has rank 11, the solution of vector m can be obtained using the SVD 

technique as a column of matrix V corresponds to the smallest singular value of A [6.2]. 

This solution is formed by the entries of the projection matrix dependent on an 

unknown scale factor. Once m is estimated, the camera intrinsic parameters can be 

computed from the perspective matrix and the extrinsic parameters are then determined 

correspondingly [6.2].  

In order to refine the camera parameters for real conditions where noise is present, a 

nonlinear estimation technique can be performed which minimises the error between the 

model plane coordinates )~,~( ii vu and measured coordinates (ui, vi). If it is assumed that 

the image points are corrupted by noise with a normal distribution (Gaussian noise), the 

cost function is expressed as a sum of squared errors [6.7]: 

 ∑∑
==

−+−=
N

i
ii

N

i
ii vvuuF

1

2

1

2 )~()~(  (6.18)

where )~,~( ii vu are dependent functions of all camera parameters including distortions.  

Equation (6.18) is a nonlinear function and an iterative algorithm can be used to 

minimise it. The camera parameters estimated by the direct linear transformation are 

used as the initial values in the optimisation algorithm.  

The precision of the calibration algorithm depends on how accurately the coordinates of 

3-D objects and their corresponding images can be located. This is highly dependent on 

which sample type and image-extraction technique are applied to obtain adequate data.  

In order to provide a range of 3-D objects for a calibration algorithm, some samples 

called the calibration patterns are used with known geometry. These are located in a 

known position in the world space so that their image coordinates are easily determined 

from the image plane. Figure 6.5 shows two popular types of calibration patterns. Both 

provide a set of points as planar grids and the corresponding image positions of these 

points in the image plane can be easily determined by any common image processing 

toolbox, e.g., MATLAB Image processing toolbox or OpenCV. 
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Recently, many of the calibration samples in 3-D reconstruction/measurement fields 

have used structured light systems [6.11]-[6.13]. The term structured light is defined as 

the projection of simple or encoded light patterns (i.e., points, lines, grids, complex 

shapes) [6.11] onto the illuminated object. The main benefit of using structured light is 

that features in the images are better defined. As a result, both the detection and 

extraction of image features are simplified and are more robust. The quality of camera 

calibration algorithms can be improved significantly.  

6.3.2 Camera calibration toolbox in MATLAB  

An interesting toolbox with full instructions for camera calibration in MATLAB has 

been developed [6.14]. Most functions in this toolbox are also included in the OpenCV 

library which was used to programme the real-time visual measurement software in this 

research.  

This camera calibration toolbox was used to estimate the intrinsic parameters of the 

Trust 380 USB 2.0 SPACEC@M webcam used in this research. The calibration 

procedure was implemented as follows: 

 Prepare a chessboard pattern as in Figure 6.5 and attach it to a planar surface. 

 Capture several images of the pattern with the webcam. The pattern is changed 

by varying the viewing angles and distances with respect to the camera to collect 

a range of different images. The calibration toolbox is then run to load images 

Chessboard Planar light points 

Figure 6.5 – Two popular types of calibration patterns used in computer vision. 
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(Read images function). As suggested in the toolbox instructions, this calibration 

procedure should be implemented with about 20 images (or more) to obtain an 

acceptable result. 

 Detect the feature points in the image planes by using the Extract grid corners 

function. The four extreme corners on the rectangular chessboard pattern are 

then manually selected to bound the effective area and to assign the origin of the 

object coordinate system. The corner extraction engine includes an automatic 

mechanism for counting the number of squares in the grid. This tool is 

especially convenient when working with a large number of images since the 

user does not have to manually enter the number of squares in both the x and y 

directions of the pattern.  

 After corner extraction, the camera calibration function is then performed. The 

calibration procedure is done in two phases: initialisation and then nonlinear 

optimisation. The initialisation phase computes the calibration parameters by the 

direct linear transformation without any lens distortion. The nonlinear 

optimisation phase iteratively minimises the total re-projection error between 

measured and image coordinates (which are calculated from the camera model 

estimated in the pervious iteration step) for all the calibration parameters. This 

toolbox uses an optimisation approach based on the gradient descent method. 

Calibration result 

Focal Length (pixels):  fC = [838.65; 833.57] ± [4.31; 4.7]. 

Principal point (pixels): OC = [327.16; 268.84] ± [7.49; 6.48]. 

Skew: alpha_c = [0.00] ± [0.00] => angle of pixel axes = 90 ± 0.00 degrees. 

Distortion: kC = [- 0.22; 0.09; 0.0017; 0.0017 ; 0] ± [0.029; 0.197; 0.0016; 0.0017; 0]. 

Pixel error: err = [0.293; 0.422]. 
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This calibration result has been used for the visual measurement tool developed in this 

research. The MATLAB calibration toolbox has been used to verify the performance of 

this real-time visual measurement system. 

6.4 A real-time 3-D measurement based video camera 

This section presents a real-time visual measurement system which consists of a camera 

and image processing software to measure the position of a sample board attached in the 

end-effector. The software is programmed in C++ using functions of the OpenCV 

library. A GUI makes this visual measurement tool more convenient for practical 

applications.  

6.4.1 Set-up of the vision-based measurement system 

The first component of the visual measurement system is the sample board. Most 3-D 

vision-based measurement systems have used structured light systems as the calibration 

sample [6.15], [6.16]. In [6.11] a range of popular types of structured light samples in 

computer vision were reviewed. Such systems are often composed of one or two 

cameras and a projector which emits structured light patterns onto the object surface. 

The projector can produce structured light patterns which are easily distinguished or 

detected by their different features. The cameras then capture and process images of the 

structured light sample. This system has been very popular in 3D 

reconstruction/measurement fields where accuracy depends on the technology of the 

light emitting devices (liquid-crystal or laser-based) and the camera resolution [6.12]. 

However, this is costly and inconvenient to attach to the manipulator. A low-cost 

sample was built in which four light points (LEDs), in two different colours, were used 

to form a calibration pattern. This sample board consists of four points fitted in a square 

of 61 mm x 61 mm as shown in Figure 6.6. It is small and light enough to fix to the end-

effector without changing its dynamic characteristics and is simple for real-time 

processing. However, using the LEDs as active light sources for the visual measurement 

system can lead to some disadvantages. Specifically, high illumination, lack of 

distinction between coloured parts and interference due to the fluctuation of the power 

supply can affect the accuracy of the visual measurement system.  
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The second component of the visual measurement system is a Trust 380 USB 2.0 

SPACEC@M webcam (USB port, 640 x 480 resolution, 30 frames/second video 

stream) which was used to capture images of the sample board attached at the end-

effector.  

Figure 6.7 shows the structure of the robotic system consisting of the manipulator and 

the visual measurement system.  

   

1 0 

3 2 

61 mm 

61 mm 

Figure 6.6 – Sample board attached to the end-effector as the calibration pattern. 
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Figure 6.7 – Three-dimensioned visual measurement system. 
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The position of the origin of the sample board (i.e., point 0 in Figure 6.6) is seen as the 

position of the manipulator end-effector with respect to the camera reference system. 

Thus, the reference point has to be distinguished from other points on the image plane. 

To achieve this, LEDs with two different colours, red for the origin point and green for 

the others were used. This solution together with a new approach to extract image points 

based on the angle comparison is a convenient approach for 3-D vision based 

measurement. This is distinct from other solutions mentioned in [6.3] where the 

discrimination was based on the difference of sizes or edge distances between the 

sample points. Other solutions mentioned in [6.11]-[6.13] using coded strips for the 

structured light system, which is costly due to the expensive projector and active 

camera. Therefore, the proposed approach is simple, low cost and practically 

convenient.   

6.4.2 OpenCV library  

OpenCV, a popular image processing library, was used to develop the image processing 

software. It is a collection of C/C++ functions and classes of popular Image Processing 

and Computer Vision [6.17] algorithms. OpenCV is free for both non-commercial and 

commercial use. It consists of the modules:  

 cv - Main OpenCV functions.  

 cvaux - Auxiliary (experimental) OpenCV functions.  

 cxcore - Data structures and linear algebra support.  

 highgui - GUI functions.  

As presented in [6.18], the OpenCV library includes image processing functions and 

computer vision algorithms for:  

 Image data manipulation (allocation, release, copying, setting, conversion).  

 Image and video I/O (file and camera based input, image/video file output).  
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 Matrix and vector manipulation and linear algebra routines (products, solvers, 

eigenvalues, SVD).  

 Various dynamic data structures (lists, queues, sets, trees, graphs).  

 Basic image processing (filtering, edge detection, corner detection, sampling 

and interpolation, colour conversion, morphological operations, histograms, 

image pyramids).  

 Structural analysis (connected components, contour processing, distance 

transform, various moments, template matching, Hough transform, polygonal 

approximation, line fitting, ellipse fitting, Delaunay triangulation).  

 Camera calibration (finding and tracking calibration patterns, calibration, 

fundamental matrix estimation, homography estimation, stereo correspondence).  

 Motion analysis (optical flow, motion segmentation, tracking).  

 Object recognition.  

 Basic GUI (display image/video, keyboard and mouse handling, scroll-bars).  

 Image labelling (line, conic, polygon, text drawing).  
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6.4.3 Image processing software for 3-D visual measurement  

Software was developed using the OpenCV library, Visual C++ and displayed as a GUI 

to produce a convenient interface for users. Figure 6.8 presents the flowchart of this 

software.  

 

Figure 6.8 - Flowchart of the image processing software. 
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Image acquisition: This sub-programme starts capturing images of the sample board in 

the workspace. A video stream at a speed of 30 frames/second is established. Each 

frame creates a 3-D image data array in the RGB colour space using the order [Blue, 

Green, Red] as defined in [6.18].  

Extract image point coordinates: This sub-programme extracts the image coordinates 

of 4 light points in the image plane (Figure 6.9). Image data are first filtered to 

recognise the different colour points and then converted to binary space (black and 

white pixels) to determine the areas of these points. Contours of the four light points are 

extracted from the background. Each point centre is determined based on its own 

contours. In this step, the order of these image points follows the order of contour 

sequence (the order in which each point contour was loaded [6.18]). This order is 

obviously different from the order of object data in the object-position vector.   

 

Figure 6.9 – Images of the sample points in the image plane.  

Arrange the order of lighting point images corresponding to the sequence of light 

point in the sample board: This is a novel solution to distinguish the different image 

points based on an angle comparison algorithm. The aim of this sub-programme is to 

match each image point (Figure 6.9) with its corresponding object point (Figure 6.6) as 

required by the estimation algorithm. It is performed by the following procedure. 
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2. Calculate the distances in pixel units between image point 0’ and all other image 

points. The longest distance corresponds to image point 2’ and the two remaining are 

either point 1’ or point 3’. 

3. Define two adjacent angles θ21 and θ23 from three lines 101, 102, and 103 as shown in 

Figure 6.9. According to the real arrangement of the four object points in the sample 

board, points 1’ and 3’ (in image plane) are distinguishable by comparing these angles 

from the following equations:   

 021 >θ , and 023 <θ  (6.19)

where 

 1221 θθθ −=   (6.20)

 3223 θθθ −=  . (6.21)

θ1, θ2 and θ3 are the angles of lines 101, 102 and l03 respectively. 

This algorithm can automatically recognise image points corresponding to the sample 

object points exactly. It arranges the order of image points in the data array 

corresponding with the order of sample points in the sample board.   

Calculate the extrinsic parameters of camera :  

The function cvFindExtrinsicCameraParams2(Object_point, Image_point, 

&Intrinsic_matrix, &Distortion_coeffs, Rotation_vector, Translation_vector) [6.17] is 

used. The rotation vector and translation vectors are the position and orientation of 

object points with respect to the camera coordinate system. The position of the 

manipulator end-effector is the position of the reference point (point 0 in Figure 6.6) in 

the sample board.    
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6.4.4 Summary of results  

Figure 6.10 presents the image of the sample board attached to the manipulator end-

effector on the computer screen. The image processing software has recognised the 

coordinates of the image points in the correct order to match with the LED points in the 

sample board.   

 

 

Figure 6.11 presents the GUI of the visual measurement software where 3-D 

coordinates of the manipulator are displayed in the window ACTUAL POSITION OF 

PA10 ROBOT. When the manipulator operates in the workspace, its position is 

measured almost in real-time with respect to the camera location. 

Figure 6.10 - The view of the manipulator end-effector in the camera window.  
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The real-time visual measurement system has been tested by using the Camera 

calibration toolbox in MATLAB [6.14] with the same data. Both approaches produced 

similar results. However, as the key factor in determining measurement accuracy is how 

well images of the light points could be extracted in pixel units, this visual measurement 

tool is limited due to the low quality of hardware (camera and sample board). The 

simple sample board was a self-manufactured device with common LEDs whose images 

vary significantly according to the camera view and fluctuate due to variation in the 

power supply. For example, two different camera views affect the accuracy of the visual 

measurement as shown in Figure 6.12. In case (b) the shapes of the LEDs’ images are 

deformed compared to case (a) and the position (coordinates) of image points which are 

determined as the centre of each point may deviate from the real position. As a result, 

using this incorrect image data in the estimation algorithm leads to a measurement error.  

A deviation value of one pixel in the image plane leads to an approximate error of 1.8 

mm in the 3-D coordinates corresponding to the camera resolution of 640x480 and the 

distance between the manipulator and the webcam in the experiment. 

Figure 6.11 - GUI of the application software using the 3-D visual measurement system. 
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In the practical work, the measured position is not consistent, even with the same set of 

joint angles sent to the servo-controllers. This situation is more serious in the Z direction 

where the variation was about 6-12 mm, instead of 2-6 mm in the other two directions 

when measuring the same point multiple times.  

This error level is acceptable for practical work and could be improved if a high 

resolution camera and a better light sample board were obtained. 

6.5 Conclusion 

A real-time 3-D visual measurement system, consisting of a light sample board, one 

video webcam and image processing software, has been presented. It includes a novel 

solution to automatically detect the image data for real-time applications. It is 

convenient to apply this measurement system to a robot manipulator where the sample 

board is easily attached to the manipulator end-effector. The proposed system is 

portable, reasonably accurate and low cost. 

(a) - a good view for measurement (b) - a poor view for measurement 

Figure 6.12 - Two views of the sample board with respect to the camera that affect the 

accuracy of the visual measurement system. 
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CHAPTER 7 

PRACTICAL INVESTIGATION OF RADIAL BASIS FUNCTION 

NETWORK PERFORMANCE  

7.1 Introduction 

A solution using a radial basis function network with regularly spaced position centres 

to approximate the inverse kinematics transformation of a robotic manipulator was 

demonstrated through various simulations in Chapters 4 and 5. This chapter 

demonstrates the proposed approach by applying it to a practical robotic system 

consisting of a Mitsubishi PA10-6CE manipulator. The experiments have been 

conducted for two different situations. In the first case, the RBFN has been trained to 

approximate the inverse kinematics transformation using an offline training phase. In 

the second case, an additional online retraining phase has been used to cope with a 

variation in the visual measurement structure of the robotic system. This chapter starts 

with a brief description of the components of the practical robotic system. The 

implementation procedures for the practical experiments in two- and three-dimensional 

space are presented. The results are shown to demonstrate the effectiveness of the 

proposed approach and conclusions are stated.  

7.2 Components of the robotic system 

Practical experiments have been developed and performed using the existing facilities in 

the Intelligent Robotics Laboratory [7.1]. The robotic system is controlled via an 

Internet interface as shown in Figure 7.1. The following elements of the system can be 

identified: 

 The Mitsubishi PA10-6CE manipulator with servo controller. This is a six-link 

multipurpose arm connected to an industrial PC (IPC) via an ARC-Net interface. 

 The IPC running under the QNX Neutrino real-time operating system is used to 

execute control programmes and communicate with an application PC (APC) via 

an Internet interface.   
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 A standard webcam mounted on a vertical shaft that permits rotation captures the 

manipulator images in the workspace.  

 The main application programmes were written in C++ and run on the APC. 

 

 

7.2.1 Mitsubishi PA10-6CE manipulator 

This PA10-6CE manipulator is a general-purpose robot manufactured by Mitsubishi 

Heavy Industries. Figure 7.2 shows a diagram of its range of movements and a 

photograph of the actual manipulator. The technical specifications and servo-control 

driver of the PA10-6CE [7.2] are presented in Appendix A. 
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Joint servo controller Visual measurement software  

Robot Control Server Inverse kinematics based RBFN 

Robot Control Client   
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Figure 7.1 - General structure of the robotic control system.  
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Figure 7.2 – General purpose robot manipulator Mitsubishi PA10 – 6CE.  

(a) – Schematic of manipulator joints 

(b) – Mitsubishi PA10 manipulator  
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7.2.2 Robot control server  

An open-architecture computer system for remote control of a robotic system has 

previously been developed [7.1], [7.4]. It includes a robot control server and a network 

communication module running on an industrial personal computer (IPC) under the 

QNX operating system environment. The application programming interface (API) and 

necessary drivers on the IPC have been already developed to interface with the PA10 

manipulator. This provides a flexible tool for programming the control application 

algorithms.  

The QNX operating system is ideal for real-time applications [7.5]. It provides all the 

essential ingredients of a real-time system, such as multitasking, priority-driven pre-

emptive scheduling and fast context switching. It is also flexible in that the developers 

can easily customise the operating system to meet the needs of their applications. QNX 

achieves its high efficiency, modularity and simplicity through two fundamental 

principles: a micro-kernel architecture and message-based inter-process communication 

[7.5]. The robot control server programme (robot server) performs two programming 

tasks, control and communication, synchronously under two threads of the QNX. From 

a user’s point of view, this robot server can be seen as a hidden layer between the user’s 

application algorithm and the joint servo-controllers. Thus, a control task (e.g., joint 

position or velocity) is sent from the user’s programme to the joint servo-controllers 

without any attention as to how it is transformed to a reference signal (e.g., voltage, 

current) for the controller. The robot server is also seen as a remote communication 

partner where the application programme communicates to the server through some 

standardised commands. For example, the application programme of this practical work 

communicates to the robot server via the internet interface to set new joint positions for 

the robot and to receive the status reply. It is implemented by a command using the 

format: “j nn nn nn nn nn nn nn” [7.1], where nn = 10 x joint angle [degrees].  

This is an open-architecture control system, which means that the control layer 

(application programmes) can be replaced and easily manipulated. Figure 7.3 presents 

the block diagram of the open-architecture control system. This allows the users to 

develop and test any desired control algorithm in a high-level programming language 

without directly accessing the base control level.  
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Figure 7.3 - Block diagram of the open-architecture control system. 

7.2.3 Application programmes 

Application programmes were developed in Visual C++ and run on the application 

computer to perform the inverse kinematics transformation of the PA10 manipulator. 

Two programmes were developed, one for the two-dimensional workspace and the other 

for the three-dimensional workspace. Figures 7.4 and 7.5 show the GUIs’ developed for 

these experiments. There are three main software modules: communication, visual 

measurement and RBFN.  

Communication module: This establishes a connection between the application 

programme and the robot server. If there are any control commands issued, it provides a 

communication pathway to pass the control data packet to the robot server via the 

internet interface. 

Visual measurement module: This image processing software analyses image data 

from the webcam and then estimates the position of the PA10 manipulator in the 

workspace. There are two different visual measurement packages, one for the two-

dimensional application and the other for the three-dimensional application. The first 

Control algorithm - 3 Control algorithm - 1 Control algorithm - 2 

Robot control sever 

ROBOT SYSTEM 
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Joint servo-controller 
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one is based on an image-based scheme in which the position of the LED attached to the 

end-effector is directly determined by image coordinates (pixel units) in the image 

plane. The second uses a 3-D visual measurement tool (described in Chapter 6) to 

determine the Cartesian coordinate position of the end-effector with respect to the 

camera base. Both were developed using the OpenCV library [7.7]. 

RBFN module: This module implements both the training and operational phases. Two 

different software packages were developed to perform the inverse kinematics 

approximation of the PA10 in the two-dimensional and three-dimensional workspace.  

 

Figure 7.4 - GUI of the application software for 2-D workspace experiments. 
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Figure 7.5 - GUI of the application software for 3-D workspace experiments. 

7.3 Description of the robotic system for practical experiments 

This section presents the set-up of the practical experiments using two different 

schemes for the two-dimensional (2-D) and three-dimensional (3-D) workspaces. For 

each case the structure of the manipulator (controlled by two or three joints), the RBFN 

and the visual measurement system are different. Thus, the application software for each 

experiment has been separately developed.   

7.3.1 Structure of the robotic system for the 2-D experiments  

This is implemented using an image-based control scheme in which the position of the 

LED attached to the end-effector is directly determined in the webcam plane as shown 

in Figure 7.6. The position of the LED is observed as the position of the end-effector. 
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Figure 7.7 shows the general structure of the robotic system for the 2-D experiment. 

The RBFN is used to approximate the inverse kinematics transformation of the PA10 

manipulator from the image coordinate space to the joint angle space [7.8], [7.9]. This 

RBFN transforms a desired position (in the image plane) to the corresponding desired 

set of joint angles. The joint servo-controllers then use this set of joint angles as 

reference commands to move the PA10 in the workspace. Using this simple vision 

system, the position of the PA10 manipulator is represented by image coordinates in 

pixel units, instead of the world coordinates with respect to the base frame, so the 

geometry of the manipulator is not required. 

The PA10 manipulator is controlled to move in two dimensions by only allowing 

movement of the shoulder-swing (S2) and elbow-swing (E1) joints (Figure 7.2 (a)). The 

technique of using an RBFN, consisting of two inputs (x, y) and two outputs (θ1, θ2), to 

approximate the inverse kinematics transformation of the two-link manipulator is 

illustrated in Figure 7.7.  
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Figure 7.6 – Simple visual measurement system for the 2-D workspace.  
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Figure 7.7 – General structure of the robotic system for 2-D experiments.  

A simple visual measurement system based on a webcam and image processing 

software is used. The webcam captures the LED scene and sends video frames with a 

resolution of 640 x 480 [pixels] to the image processing software with a transmission 

speed of up to 30 frames per second. This system can perform measurements without 

any knowledge of camera calibration parameters and the vision geometry (i.e., distance 

from the camera to the manipulator). Therefore, this visual measurement system can 

directly determine the relative position of an unknown geometric robotic system in the 

image plane.  

7.3.2 Structure of the robotic system for the 3-D experiments  

The position of the PA10 manipulator is determined by the 3-D coordinates of the light 

sample board attached to the end-effector with respect to the camera frame as shown in 

Figure 7.8. This position, as described in Chapter 6, is the 3-D coordinates of the first 

point (reference) of the light sample board with respect to the webcam base. By using 

this 3-D visual measurement system, the workspace of the PA10 manipulator is 

represented in the camera coordinate system (Xc, Yc, Zc), instead of the world coordinate 

system with respect to the base frame. The coordinate system attached to the base can 

be determined from the camera coordinate frame by a homogenous transformation 

matrix. Although this is feasible, it makes the measurement system more complex and 

increases the system errors as well.   
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Figure 7.8 - Determination of the PA10 manipulator position in the 3-D workspace. 

The visual measurement system consists of a webcam, a light sample board and image 

processing software (described in Chapter 6). This light sample board is a self-

manufactured device in which light points are produced from four standard 5mm 

L.E.D’s and powered by a 220VAC/6VDC adaptor. The image processing software 

estimates the position (3-D coordinates) of these light points with respect to the camera 

location according to the images of these points in the webcam plane.  

Figure 7.9 shows the block diagram of the robotic system for the 3-D experiments. The 

RBFN, consisting of three inputs (Xc, Yc, Zc) and three outputs (θ1, θ2, θ3), is used to 

transform a desired position in the 3-D workspace to the corresponding set of joint 

angles. The PA10 manipulator is controlled to move in the 3-D workspace by only 

allowing movement of the shoulder-rotate (S1), shoulder-swing (S2) and elbow-swing 

(E1) joints (Figure 7.2 (a)).  
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7.4 Practical determination of the inverse kinematics of the robotic system  

7.4.1 Experimental description  

The experiments using an RBFN to approximate the inverse kinematics were performed 

using two different structures of the robotic system for the 2-D and 3-D workspaces. 

These can be described as follows: 

 Firstly, the hidden layer of the RBFN was built with a set of pre-defined centres 

regularly distributed in the workspace. Figures 7.10 and 7.11 present the 

distribution of 10 pixel x 10 pixel grids for the 2-D workspace and 20 mm x 20 

mm x 20 mm cubes for the 3-D workspace. These centres had to be chosen in the 

operational region which is constrained due to joint angle limits. The number of 

hidden centres was 167 points (2-D) and 653 points (3-D) for the two 

experiments. The spread of Gaussian functions was experimentally selected as a 

proportion of the centre distance. 
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Figure 7.9 - General structure of the robotic system for 3-D experiments. 
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 Secondly, training data was manually collected as constrained patterns, which are 

as close to the centres as possible, by using the joint servo-controllers and the 

visual measurement system. For the 2-D experiment, the patterns were formed as 

{(x, y); (θ1, θ2)} where the inputs are image coordinates in pixel units. For the 3-D 

experiment, the patterns were formed as {(Xc, Yc, Zc); (θ1, θ2, θ3)} where the 

inputs are 3-D coordinates with respect to the webcam base. The quality (or 

accuracy) of collected data depends on careful observation and a poor pattern 

means that its input deviates from the pre-defined position (centres). This 

deviation was no higher than 30% of the centre distance. Collected data for the 3-

D experiment involved unpredictable interference due to the low quality of the 

visual measurement system (the light sample board and webcam), the fluctuation 

of the power supply and the positional errors of the joint servo-controllers. 

Consequently, sometimes the measured position is not consistent, even with the 

same joint angles sent to the servo-controllers. This situation is more serious in 

the Z direction in which the variation was about 6-12 mm, instead of 2-6 mm in 

the other two directions when measuring the same point several times. This effect 

is not due to the performance of the inverse kinematics function because at this 

stage only the joint servo-controllers have been used. In order to reduce this 

variation, each training pattern should be sampled at least three times with the 

same set of joint angles and the input value of each training pattern is determined 

by the mean value.    

 Thirdly, the linear weights were adjusted by either the strict interpolation or the 

least mean square (LMS) algorithms [7.6] with previously collected training data. 

At this stage, various spread values can be investigated to select a suitable RBFN 

structure that produces a good approximation of the inverse kinematics 

transformation. 

 Finally, to verify the network performance a test data set was presented as a 

number of desired positions in the workspace. The robotic system, which uses the 

RBFN to perform the inverse kinematics transformation, moved to actual 

positions dependent on the response of the RBFN. The error between the desired 

and actual position was calculated to verify how well the RBFN approximates the 

actual inverse kinematics function. This practical error is affected not only by the 

quality of the RBFN but also measurement error and joint servo-controller error.  
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The test data set consists of 20 and 50 test points for the 2-D and 3-D experiments 

respectively.   
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Figure 7.10 - Distribution of the hidden-layer centres in 2-D workspace. 
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Figure 7.11 - Distribution of the hidden-layer centres in 3-D workspace. 
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7.4.2 Experimental results  

Table 7.1 describes the RBFN performance in the 2-D workspace after training by the 

strict interpolation and LMS algorithms. The columns show the performance criteria 

(e.g., mean absolute error between desired and actual positions in x and y coordinates, 

MAE_X, MAE_Y) and the rows contain various spread values used for each training 

method.  

TRAINING METHOD APPLIED MAE_X (Pixel) MAE_Y (Pixel) 

Spread = 6 (Pixel) 2.35 2.95 

Spread = 7 (Pixel) 0.9 1.55 

Spread = 8 (Pixel) 0.95 2.1 

Spread = 9 (Pixel) 0.95 2.2 

STRICT 
INTERPOLATION  

Spread = 10 (Pixel) 1 2 

Spread = 6 (Pixel) 2.45 3.2 

Spread = 7 (Pixel) 1.25 1.6 

Spread = 8 (Pixel) 1.3 1.95 

Spread = 9 (Pixel) 1.5 2 

LEAST MEAN 
SQUARE  

Spread = 10 (Pixel) 1.4 2.05 

Table 7.1 - Performance results of the experiment in 2-D workspace. 

This shows that the RBFN with a spread of 7 pixels produced the best performance after 

training by both methods.  

Figures 7.12 and 7.13 present the RBFN performance with a spread of 7 pixels. Figure 

7.12 presents the distribution of desired and actual positions in the workspace and 

Figure 7.13 shows the errors between the desired and actual positions using the strict 

interpolation and LMS methods to compare their effectiveness.  
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Figure 7.12 - RBFN performance (centre distance of 10 pixels, spread of 7 pixels). 
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Figure 7.13 – Error between desired and actual positions. 

Figure 7.13 shows that most of the actual positions were close to the desired positions 

with an error of 1 or 2 pixels (one pixel is approximately equivalent to 1.8 mm). The 



159 

RBFN trained by the strict interpolation method had a slightly better performance than 

when trained by the LMS algorithm. These results demonstrate that the RBFN can 

produce an appropriate approximation of the inverse kinematics transformation of the 

robotic system in the 2-D workspace. However, there was one position which deviated 

significantly from the actual desired position. This happened in all experiments with 

different spreads because this test point was located near the edge of the workspace 

where the RBFN may have insufficient basis functions to produce an adequate 

generalisation in that region. This situation is similar to the simulation results in Chapter 

4 with the test points located near the edge of the workspace.  

Compared to the simulation results presented in Section 4.3.2, the experimental results 

are poorer. For the simulation case, an error smaller than 3% of the centre distance was 

achieved (where the maximum deviation of training data was no higher 30% of the 

centre distance). If the centre distance is selected at 10 mm, then the error is smaller 

than 0.3 mm. In the practical work, the additional errors are because of the visual 

measurement system and the joint servo-controllers. The visual measurement error 

always exists as there is at least an error of 0.5 pixels due to the discrete form of image 

data.  

Table 7.2 presents the 3-D experimental results. The columns show the mean absolute 

errors between desired and actual positions in X, Y and Z coordinates (MAE-X, MAE-

Y, MAE-Z) and the rows contain the spread values. The 3-D visual measurement 

system measured the position of the PA10 manipulator with respect to the webcam 

reference. Thus, the coordinate values are in metric units (mm), instead of pixel units as 

used in the 2-D experiments.  

As shown in Table 7.2, the RBFN with a spread of 24 mm produced the best 

performance after training by both methods. Figures 7.14 and 7.15 show the 

experimental results with a spread of 24 mm. Figure 7.14 presents the distribution of the 

desired and actual positions in the workspace and Figure 7.15 shows the errors between 

the desired and actual positions using the strict interpolation and LMS methods to 

compare their effectiveness. 
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METHOD APPLIED MAE_X    
(mm) 

MAE_Y 
(mm) 

MAE_Z 
(mm) 

Spread = 16 (mm) 5.75 10.69 7.66 

Spread = 18 (mm) 3.54 6.19 7.32 

Spread = 20 (mm) 2.52 4.06 8.09 

Spread = 22 (mm) 2.33 3.00 7.63 

STRICT 
INTERPOLATION  

METHOD 

Spread = 24 (mm) 2.07 2.43 7.52 

Spread = 16 (mm) 6.04 10.68 8 

Spread = 18 (mm) 3.69 6.55 8 

Spread = 20 (mm) 3.08 5.05 7.89 

Spread = 22 (mm) 2.12 3.52 7.51 

LMS 

Spread = 24 (mm) 2.1 3.52 6.49 

Table 7.2 - Performance results of the experiment in 3-D workspace.  
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Figure 7.14 – RBFN performance (centre distance of 20 mm, spread of 24 mm).  
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Figure 7.15 - Errors between desired and actual positions. 

The experimental results demonstrate that the RBFN can produce an adequate inverse 

kinematics transformation of the robotic system in the 3-D workspace. Similar to the   

2-D workspace case, the experimental results are poorer than the simulation results 

(Section 4.4.2). The practical performance is affected by not only the RBFN but also 

other components of the robotic system, such as the visual measurement system and the 

joint servo-controllers. When compared to the 2-D workspace experimental results with 

an image-based control scheme, the 3-D workspace experiments are affected more 

significantly by the operation of the visual measurement system. This is because the    

3-D measurement involves a conversion error from the 3-D view to 2-D data adding 

further estimation errors. Additional errors are due to the low quality of the light sample 

board and the fluctuation of power supply. Thus, the 3-D visual measurement system 

errors are higher than the 2-D visual measurement system errors.  

7.4.3 Summary of results 

In general, using the pre-defined centres of the hidden layer as regularly-spaced 

positions means that the hidden layer structure remains the same and therefore is able to 

generalise throughout the whole workspace. As the inverse kinematics transformation of 
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this robotic system does not contain high frequency components, the strict interpolation 

method seems to be a suitable solution if the training patterns can be collected around 

the centres. The experimental results demonstrate that the proposed method can produce 

a well-generalised RBFN with a small number of hidden units. This is similar to the 

simulation case with random training data whose the maximum deviation from the 

centres is no higher than 30% of the centre distance. 

It is observed that when the distance between the centres becomes smaller, better 

generalisation can be achieved. Therefore, the RBFN needs more hidden units to 

improve the accuracy of the inverse kinematics function. Obviously, there is a practical 

limit to the number of centres of the hidden layer due to lack of computer memory and 

the complex architecture of the network. In addition, most of the practical errors are due 

to additional errors (visual measurement system). The improvement of the RBFN alone 

does not lead to an improvement in the overall performance of the robotic system. 

7.5    Practical work using online retraining to modify the RBFN  

The approach described in Chapter 5 is used to modify online the RBFN to cope with a 

change in the robotic system structure. This was only implemented for the 2-D 

workspace with the image-based control scheme (Figure 7.7) as the 3-D workspace 

experiments were too problematic to investigate the online training progress due to the 

inaccuracy of the 3-D visual measurement system.  

The experimental procedure is similar to the previous experiment with an additional 

online retraining step. The practical experiment is described as follows. The RBFN 

trained in the previous experiment was used to provide the inverse kinematics 

approximation of the robotic system. The best RBFN, which had been trained by the 

strict interpolation method with a spread of 7 pixels (Table 7.1), was used. A test data 

set, consisting of 12 test points, was used as a rectangular trajectory. The performance is 

presented in Figure 7.16. 
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Figure 7.16 - Performance of the RBFN trained by the strict interpolation method. 

To alter the set-up of the robotic system, the webcam was rotated through an arbitrary 

angle so that it changed the image transformation of the visual measurement system 

correspondingly. Consequently, the inverse kinematics approximation stored in the 

existing RBFN no longer matches with the new structure of the robot-vision system. 

Figure 7.17 presents the performance of the RBFN with the new condition of the visual 

measurement system and the errors introduced are obvious from inspection. 
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Figure 7.17 - Performance of the existing RBFN with a new condition of the visual 

measurement system. 
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Figure 7.18 - Error between desired and actual positions with a new condition of the 

visual measurement system. 
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To obtain the new correct function, an online training process was applied using the 

delta rule (Chapter 5) instead of being retrained by the strict interpolation method from 

the start again. In this procedure, the linear weights are adjusted with each recent 

training pattern obtained from moving the PA10 manipulator in the workspace. 

However, as mentioned in Chapter 5, the improvement of the RBFN by the online 

learning process is dependent on the spread, the learning rate and training patterns. As 

suggested from the simulations in Chapter 5, this experiment was implemented by 

updating the linear weights with 10 training points that were collected according to the 

free interference rule. The learning rate was chosen as a small value (e.g., 0.1-0.2) to 

maintain the smoothness of the inverse kinematics approximation. A new retraining 

loop, which is then repeated, used the same existing 10 training points to continuously 

update the linear weights. Thus, after incremental updating with a sufficient number of 

training points, the RBFN can adapt to the new condition of the visual measurement 

system and the performance of the robotic system is clearly improved. Figures 7.19 and 

7.20 shows the performance of the RBFN after training with 100 training patterns (10 

training points applied to 10 retraining loops). 
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Figure 7.19 - Performance of the RBFN after online retraining with                            

100 training patterns. 
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Figure 7.20 - Error between desired and actual positions after online retraining with 100 

training patterns. 

As mentioned before, the online learning process is affected by the position of the 

training patterns, the learning rate and the spread. Therefore, if different training 

parameters are applied, the improvement of the RBFN in the online retraining phase 

will vary and the overall performance of the robotic system will change as well.  

Since the RBFN acts as a locally tuned function, only hidden units close enough to the 

training pattern positions contribute noticeably to the network output. As a result, only 

the linear weights connected to these hidden units are adjusted via online training. It 

means that the positions of the training data have an important impact in the online 

training process. The closer the training pattern to the test points, the stronger the effect 

in modifying the linear weights of the RBFN in that area. Different patterns presented to 

the RBFN can produce different improvement effects in the approximation function. 

Thus, the distribution of training patterns should cover the entire workspace to modify 

the whole of the inverse kinematics function. 

The choice of learning rate is an important variable in the delta rule algorithm. The 

variation in learning rate can lead to completely different training results. Therefore, in 
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order to maintain the smoothness of the inverse kinematics approximation over the 

whole workspace, a small learning rate (η = 0.1- 0.2) should be adopted even though it 

made the training process slower. This is the reason that the retraining process required 

a hundred training points for the small test area. The actual number of training patterns 

for these experiments was collected at a maximum of 10 points and they were used 

repeatedly in the incremental mode with a small learning rate to ensure the stability of 

the learning process. In other experiments, when using the same training patterns with a 

larger learning rate (e.g., 0.3 to 0.5), the RBFN performs well in the test area after 

training with only two retraining loops (e.g., 20 training points). However, its response 

in other neighbouring areas appeared to be worse due to the learning interference.  

7.6 Conclusion 

This chapter has presented the practical results produced from an investigation of the 

effectiveness of using an RBFN to approximate the inverse kinematics. The 

experiments were performed for two different situations. In the first case, an RBFN was 

trained to approximate the inverse kinematics transformation of the robotic system, 

including the PA10 manipulator and the visual measurement system, through an offline 

training phase using the strict interpolation and the LMS methods. The second 

experiment investigated a variation in the structure of the robotic system and proposed a 

solution using an additional online retraining phase based on the delta rule. 

Experimental results verified the effectiveness of the proposed approach and practical 

limitations were discussed. 
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CHAPTER 8 

CONCLUSIONS 

8.1 General conclusions 

In this thesis, several solutions to determine the inverse kinematics of robotic 

manipulators have been presented. Two analytical approaches, the geometric and 

algebraic, are traditional algorithms used to solve the inverse kinematics problem. 

Several alternative approaches using two of the most popular neural networks, MLPNs 

and RBFNs, were reviewed with regards to their abilities to approximate the inverse 

kinematics of unknown geometry manipulators. However, it is appropriate to propose 

some modifications to improve the performance of these existing approaches, especially 

in terms of practical applications.  

A new approach using an RBFN with regularly-spaced position centres has been 

proposed to solve the inverse kinematics problem. Constrained data whose inputs are 

collected approximately around the centre positions in the workspace was also 

suggested. Two training methods, strict interpolation and the least mean square 

algorithms were introduced to update the network weights in an offline training phase. 

The effect of centre distances, spreads and training methods on the network’s 

performance was investigated through various simulations. The effect of training data 

randomly collected around the centre points was also examined. A suggestion for the 

maximum deviation has been mentioned to improve the network’s performance. The 

simulation results showed that using these proposed ideas improved the RBFN 

performance significantly. Moreover, an RBFN has a local mapping characteristic in 

which the RBFN will only respond to any inputs that fall in the trained area of the 

workspace. If a new input which is beyond the trained area is presented to the RBFN, it 

will respond by a “do nothing” action or by resetting all joint angles (zeros). Therefore, 

according to this property, the inverse kinematics approximation could avoid the 

violation of the mechanical limitations of joint angles, but its operation is also limited to 

a specific area dependent on the training data. This is useful for practical work when all 

training data are actually collected in the range of the joint angles. The operational 

phase is thus restricted to the trained region.     
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An online retraining approach was proposed to deal with the incorrect operation of the 

network because the initial network training occurred in an environment that is not 

exactly the same as the environment where the system is actually deployed. This online 

retraining approach can be effectively applied for systems whose characteristics change 

due to environmental variations. Various simulations to investigate the effects of the 

spread, learning rate and presented training patterns on the network’s performance were 

conducted for a two-link and a three-link manipulator. The results demonstrated the 

effectiveness of the approach. 

A real-time visual measurement system based on a video camera was developed to 

estimate the position of a robotic manipulator in a 3-D workspace. It consists of a 

camera, a light sample board and image processing software. This system is portable, 

low cost and has reasonable accuracy.  

Practical experiments were performed with a Mitsubishi PA10-6CE manipulator and the 

visual measurement system. The performance of the inverse kinematics transformation 

using an RBFN was examined for operation of the manipulator in two- and three-

dimensional spaces. The practical results were compared to the simulation results. 

Advantages and disadvantages of the proposed approach were discussed. The results 

demonstrated the effectiveness of the proposed approach for practical applications.  

8.2 Author’s contributions 

Chapter 4 proposed a new approach using an RBFN with regularly-spaced position 

centres to solve the inverse kinematics problem. This requires a sufficiently small 

number of centres and can achieve a satisfactory accuracy for the inverse kinematics 

approximation through the whole workspace. The concept of using constrained data that 

are collected close to the centre positions enhances the generalisation of the RBFN. The 

maximum deviation for training data that was randomly collected around the centre 

positions was suggested based on experimental evidence to ensure a good performance 

is achieved in the operational phase. Simulation results verified this approach.  

Chapter 5 proposed a new approach using the delta rule to update the linear weights 

through an online retraining phase. It was effectively applied to modify an incorrect 
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network due to operational environment variations, instead of retraining the network 

from the start again. A simple rule was suggested to select appropriate training points so 

that the effect of learning interference was minimised. The three factors (learning rate, 

spread value and the position of training points) that can affect the online retraining 

phase were investigated though various simulations. The key recommendations were 

presented to ensure a successful online retraining phase. 

Chapter 6 presented a novel real-time 3-D visual measurement system. A light sample 

board consisting of four LED points with two different colours was a simple and 

economic solution. Image processing software was developed to be convenient for the 

users. It included an efficient solution to automatically extract the appropriate image 

data based on a real-time angle comparison algorithm. This visual measurement system 

is portable, low cost and has reasonable accuracy for use in a practical robotic system. 

The most important contribution of this thesis is that it demonstrates that a neural 

network solution can be effectively applied to approximate the inverse kinematics of a 

practical robotic system. In Chapter 7, two different experimental schemes were 

presented. The first used an image-based control scheme where the image coordinates in 

pixel units represented the manipulator position in the 2-D workspace. The second 

scheme used the visual measurement system developed in Chapter 6 to determine the 

position of the manipulator in the 3-D workspace. Experimental results verified the 

effectiveness of the proposed solution to deal with common practical situations. This 

approach is a promising solution for high performance control applications using 

remotely controlled robots (e.g., underwater intervention or space exploration).  

8.3 Suggestions for future work 

Although the proposed approach has been verified for a two- and three-link 

manipulator, it should be investigated further for some more complex configurations 

such as greater than three D.O.F manipulators. This can be feasibly implemented for 

simulation cases in which the mathematical expression of the inverse kinematics is used 

to create training data. However, it is more difficult for practical work because a new 

measurement system will be required to estimate the orientation of the end-effector with 

respect to a fixed coordinate frame.      
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The solution using regularly-spaced position centres for a radial basis function still has 

performance limitations in operational areas near the edge of the workspace due to the 

lack of necessary radial basis function nodes in these areas. Thus, the network’s 

performance will be improved if additional nodes can be added in these areas. This 

could be implemented in an incremental mode, which does not require the inverse of the 

interpolation matrix each time, by using a technique known as the inverse of a 

partitioned matrix or an orthogonal least squares learning approach.  

In the online retraining phase (Chapter 5), the distribution of training patterns and the 

learning rate both influence the incremental modification of the linear weights. To keep 

the retraining process smooth and fast, the learning rate should not be a constant and 

should be related to the distribution of training patterns. For example, if a new pattern 

presented to the network is far away from previously used patterns, the learning rate can 

be large. In contrast, it should be small to keep the training function surface smooth 

when the current pattern presented is close, or the same, as previous patterns. This 

aspect requires further investigation. 

As presented in Chapter 4, a set of random training data used to train an RBFN where 

the maximum deviation is set to a specific value (30% and 20% of the centre distance 

for a 2-link and 3-link manipulator respectively) produces a good approximation of the 

inverse kinematics transformation. Therefore, a new way of collecting data should be 

investigated. The training data could be sampled following a distribution in the joint 

angle space instead of a regularly-spaced distribution in the workspace. The set of 

collected data can then be sorted according to the maximum deviation from the 

predefined centre points. This approach is a more convenient technique than the current 

way of collecting data in the practical experiments.          

 

 


