965 research outputs found

    Neural processing of basic tastes in healthy young and older adults - an fMRI study

    Get PDF
    AbstractAgeing affects taste perception as shown in psychophysical studies, however, underlying structural and functional mechanisms of these changes are still largely unknown. To investigate the neurobiology of age-related differences associated with processing of basic tastes, we measured brain activation (i.e. fMRI-BOLD activity) during tasting of four increasing concentrations of sweet, sour, salty, and bitter tastes in young (average 23years of age) and older (average 65years of age) adults. The current study highlighted age-related differences in taste perception at the different higher order brain areas of the taste pathway. We found that the taste information delivered to the brain in young and older adults was not different, as illustrated by the absence of age effects in NTS and VPM activity. Our results indicate that multisensory integration changes with age; older adults showed less brain activation to integrate both taste and somatosensory information. Furthermore, older adults directed less attention to the taste stimulus; therefore attention had to be reallocated by the older individuals in order to perceive the tastes. In addition, we considered that the observed age-related differences in brain activation between taste concentrations in the amygdala reflect its involvement in processing both concentration and pleasantness of taste. Finally, we state the importance of homeostatic mechanisms in understanding the taste quality specificity in age related differences in taste perception

    A core eating network and its modulations underlie diverse eating phenomena

    Get PDF
    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye, Fudge, and Paulus (2009) proposed to explain the neurocircuitry of eating, including a ventral reward pathway and a dorsal control pathway. In a review across multiple literatures that focuses on experiments using functional Magnetic Resonance Imaging (fMRI), we first show that neural responses to food cues, such as food pictures, utilize the same core eating network as eating. Consistent with the theoretical perspective of grounded cognition, food cues activate eating simulations that produce reward predictions about a perceived food and potentially motivate its consumption. Reviewing additional literatures, we then illustrate how various factors modulate the core eating network, increasing and/or decreasing activity in subsets of its neural areas. These modulating factors include food significance (palatability, hunger), body mass index (BMI, overweight/obesity), eating disorders (anorexia nervosa, bulimia nervosa, binge eating), and various eating goals (losing weight, hedonic pleasure, healthy living). By viewing all these phenomena as modulating a core eating network, it becomes possible to understand how they are related to one another within this common theoretical framework. Finally, we discuss future directions for better establishing the core eating network, its modulations, and their implications for behavior

    Pleasure from Food:Different perspectives on aging

    Get PDF

    The effect of taste on swallowing: A scoping and systematic review

    Get PDF
    Consuming foods and liquids for nutrition requires the coordination of several muscles. Swallowing is triggered and modified by sensory inputs from the aerodigestive tract. Taste has recently received attention as a potential modulator of swallowing physiology, function, and neural activation; additionally, taste impairment is a sequela of COVID-19. This review presents factors impacting taste and swallowing, systematically summarizes the existing literature, and assesses the quality of included studies. A search was conducted for original research including taste stimulation, deglutition-related measure(s), and human participants. Study design, independent and dependent variables, and participant characteristics were coded; included studies were assessed for quality and risk of bias. Forty-eight articles were included after abstract and full-text review. Synthesis was complicated by variable sensory components of stimuli (taste category and intensity, pure taste vs. flavor, chemesthesis, volume/amount, consistency, temperature), participant characteristics, confounding variables such as genetic taster status, and methods of measurement. Most studies had a high risk of at least one type of bias and were of fair or poor quality. Interpretation is limited by wide variability in methods, taste stimulation, confounding factors, and lower-quality evidence. Existing studies suggest that taste can modulate swallowing, but more rigorous and standardized research is needed

    Pain, smell, and taste in adults: a narrative review of multisensory perception and interaction

    Get PDF
    Every day our sensory systems perceive and integrate a variety of stimuli containing information vital for our survival. Pain acts as a protective warning system, eliciting a response to remove harmful stimuli; it may also be a symptom of an illness or present as a disease itself. There is a growing need for additional pain-relieving therapies involving the multisensory integration of smell and taste in pain modulation, an approach that may provide new strategies for the treatment and management of pain. While pain, smell, and taste share common features and are strongly linked to emotion and cognition, their interaction has been poorly explored. In this review, we provide an overview of the literature on pain modulation by olfactory and gustatory substances. It includes adult human studies investigating measures of pain threshold, tolerance, intensity, and/or unpleasantness. Due to the limited number of studies currently available, we have structured this review as a narrative in which we comment on experimentally induced and clinical pain separately on pain-smell and pain-taste interaction. Inconsistent study findings notwithstanding, pain, smell, and taste seem to interact at both the behavioral and the neural levels. Pain intensity and unpleasantness seem to be affected more by olfactory substances, whereas pain threshold and tolerance are influenced by gustatory substances. Few pilot studies to date have investigated these effects in clinical populations. While the current results are promising for the future, more evidence is needed to elucidate the link between the chemical senses and pain. Doing so has the potential to improve and develop novel options for pain treatment

    The effect of taste on swallowing function

    Get PDF
    This study investigated the effects of taste on swallowing frequency and cortical activation in the swallowing network. The effects of salivary flow and taster status were also examined, along with genetic taster status. The effects of a 3ml bolus compared sour, sour with slow infusion, sweet, water, and water with infusion. Swallowing frequency was significantly higher 0-15 seconds after bolus delivery than 16-30 seconds. Swallowing frequency was higher in the sour conditions, whereas sweet and water did not differ. Functional near-infrared spectroscopy recordings measured changes in blood oxygenation (HbO) in the right and left hemispheres in the premotor, S1 and supplementary motor area in response to swallowing a bolus indicated a significant interaction of side and channel. Event-related analyses of HbO following bolus administration of taste solutions were significantly higher in the sensory than the premotor area in the right hemisphere. A block average analysis of the response to taste between 17 and 22 seconds after bolus administration revealed significant differences between hemispheres and regions. Genetic taster status was not significant in any of the analyses. The highest activation in response to sour taste was in the premotor regions of both hemispheres. The results indicated that sour taste effectively increased swallowing frequency and cortical activation while increasing salivary flow in comparison to water and sweet taste. In conclusion, sour taste may have peripheral effects on salivary flow while up-regulating the activation of the swallowing network at the cortical level

    Much Ado About Missingness: A Demonstration of Full Information Maximum Likelihood Estimation to Address Missingness in Functional Magnetic Resonance Imaging Data

    Get PDF
    The current paper leveraged a large multi-study functional magnetic resonance imaging (fMRI) dataset (N = 363) and a generated missingness paradigm to demonstrate different approaches for handling missing fMRI data under a variety of conditions. The performance of full information maximum likelihood (FIML) estimation, both with and without auxiliary variables, and listwise deletion were compared under different conditions of generated missing data volumes (i.e., 20, 35, and 50%). FIML generally performed better than listwise deletion in replicating results from the full dataset, but differences were small in the absence of auxiliary variables that correlated strongly with fMRI task data. However, when an auxiliary variable created to correlate r = 0.5 with fMRI task data was included, the performance of the FIML model improved, suggesting the potential value of FIML-based approaches for missing fMRI data when a strong auxiliary variable is available. In addition to primary methodological insights, the current study also makes an important contribution to the literature on neural vulnerability factors for obesity. Specifically, results from the full data model show that greater activation in regions implicated in reward processing (caudate and putamen) in response to tastes of milkshake significantly predicted weight gain over the following year. Implications of both methodological and substantive findings are discussed

    Decision making and brand choice by older consumers

    Get PDF
    Older adults constitute a rapidly growing demographic segment, but stereotypes persist about their consumer behavior. Thus, a more considered understanding of age-associated changes in decision making and choices is required. The authors's underlying theoretical model suggests that age-associated changes in cognition, affect, and goals interact to differentiate older consumers’ decision-making processes, brand choices, and habits from those of younger adults. They first review literature on stereotypes about the elderly and then turn to an analysis of age differences in the inputs (cognition, affect, and goals) and outputs (decisions, brand choices, and habits) of the choice process.older consumers; decision making; choice

    Genetic Taster Status as a Mediator of Neural Activity and Swallowing Mechanics in Healthy Adults

    Get PDF
    As part of a larger study examining relationships between taste properties and swallowing, we assessed the influence of genetic taster status (GTS) on measures of brain activity and swallowing physiology during taste stimulation in healthy men and women. Twenty-one participants underwent videofluoroscopic swallowing study (VFSS) and functional magnetic resonance imaging (fMRI) during trials of high-intensity taste stimuli. The precisely formulated mixtures included sour, sweet-sour, lemon, and orange taste profiles and unflavored controls. Swallowing physiology was characterized via computational analysis of swallowing mechanics plus other kinematic and temporal measures, all extracted from VFSS recordings. Whole-brain analysis of fMRI data assessed blood oxygen responses to neural activity associated with taste stimulation. Swallowing morphometry, kinematics, temporal measures, and neuroimaging analysis revealed differential responses by GTS. Supertasters exhibited increased amplitude of most pharyngeal movements, and decreased activity in the primary somatosensory cortex compared to nontasters and midtasters. These preliminary findings suggest baseline differences in swallowing physiology and the associated neural underpinnings associated with GTS. Given the potential implications for dysphagia risk and recovery patterns, GTS should be included as a relevant variable in future research regarding swallowing function and dysfunction
    • …
    corecore