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Much Ado About Missingness: A
Demonstration of Full Information
Maximum Likelihood Estimation to
Address Missingness in Functional
Magnetic Resonance Imaging Data
Timothy D. Nelson1* , Rebecca L. Brock1, Sonja Yokum2, Cara C. Tomaso1,
Cary R. Savage1 and Eric Stice3

1 Department of Psychology, University of Nebraska–Lincoln, Lincoln, NE, United States, 2 Oregon Research Institute,
Eugene, OR, United States, 3 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,
United States

The current paper leveraged a large multi-study functional magnetic resonance imaging
(fMRI) dataset (N = 363) and a generated missingness paradigm to demonstrate
different approaches for handling missing fMRI data under a variety of conditions.
The performance of full information maximum likelihood (FIML) estimation, both with
and without auxiliary variables, and listwise deletion were compared under different
conditions of generated missing data volumes (i.e., 20, 35, and 50%). FIML generally
performed better than listwise deletion in replicating results from the full dataset, but
differences were small in the absence of auxiliary variables that correlated strongly with
fMRI task data. However, when an auxiliary variable created to correlate r = 0.5 with
fMRI task data was included, the performance of the FIML model improved, suggesting
the potential value of FIML-based approaches for missing fMRI data when a strong
auxiliary variable is available. In addition to primary methodological insights, the current
study also makes an important contribution to the literature on neural vulnerability factors
for obesity. Specifically, results from the full data model show that greater activation in
regions implicated in reward processing (caudate and putamen) in response to tastes
of milkshake significantly predicted weight gain over the following year. Implications of
both methodological and substantive findings are discussed.

Keywords: functional magnetic resonance imaging, missing data, full information maximum likelihood estimation,
neural vulnerability factors, obesity, auxiliary variables

INTRODUCTION

Functional magnetic resonance imaging (fMRI) paradigms can offer powerful insights into neural
processes with particular relevance to health and well-being (Insel et al., 2013). Given this potential,
fMRI approaches are increasingly employed to address a wide variety of critical health research
questions ranging from the neural underpinnings of disease risk to individual differences in
response to clinical interventions (e.g., Pagliaccio et al., 2019; Stice and Burger, 2019). Despite
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notable progress in the collection and analysis of fMRI data,
concerns regarding reproducibility and rigor in fMRI studies
have arisen, with major potential implications for the field
(Poldrack et al., 2017). Although much of the discussion
regarding this “reproducibility crisis” has focused on sample
sizes (e.g., Turner et al., 2018; Bossier et al., 2020) and analytic
strategies (e.g., Botvinik-Nezer et al., 2020), an under-appreciated
issue is the handling of missing data in MRI studies. Missing data
are common in fMRI studies due to problems with movement
and other artifacts (Zaitsev et al., 2015). Unfortunately, sub-
optimal approaches to handling missing data have been the norm
for most published fMRI studies, with simplistic strategies such
as listwise or pairwise deletion representing the most common
approach1. These approaches introduce multiple potential
problems, including reduction of sample size (and power) and
potential bias in parameter estimates (Enders and Bandalos,
2001). In the context of neuroimaging studies in particular,
suboptimal handling of missingness may undermine the integrity
of theoretical frameworks in the field of behavioral neuroscience
and complicate the application of fMRI biomarkers to guide
interventions (Mulugeta et al., 2017). These problems—and
their concerning implications—are compounded in longitudinal
studies when attrition typically introduces additional patterns
of missingness on repeated measures (Matta et al., 2018). It is
increasingly clear that effectively dealing with missing data in
fMRI studies is a critical step toward addressing concerns about
reproducibility and rigor; however, examples of modern missing
data approaches with robust fMRI datasets are rare.

Fortunately, sophisticated approaches to handling missing
data are available. Full information maximum likelihood (FIML)
estimation and multiple imputation (MI) are considered gold
standard practices for addressing missing data, and both are
frequently used outside of neuroimaging studies (Enders, 2010;
Lang and Little, 2018). Despite relatively limited use in fMRI
studies, the application of modern missing data techniques holds
great potential for fMRI research. And although both FIML
and MI are rigorous and appropriate for fMRI studies, FIML
may be particularly appealing because of its relative ease of
implementation (Lang and Little, 2018) and accordingly is the
focus of the current paper. [Interested readers should refer to
Vaden et al. (2012), for a more detailed discussion of using MI
to address missingness in fMRI analyses].

The current paper provides a rare demonstration of FIML
implementation strategies with a large fMRI dataset. We
leveraged nearly-complete data to conduct analyses with the
full dataset and artificially generated missing fMRI data to
explore the relative usefulness of FIML and listwise deletion at
various degrees of missing data (20, 35, and 50%). In addition,
we aimed to identify and explore use of auxiliary variables
to augment missing data analysis. In the context of FIML
(and MI), auxiliary variables either correlate with the pattern

1For example, we reviewed studies cited in a recent meta-analysis of fMRI studies
focusing on food-related self-control (Han et al., 2018) and found that 47.4% (9
out of 19 studies) reported using listwise deletion for cases with missing data, and
another 42.1% did not even report the amount of missing data present or their
strategy for addressing missing data. None of the studies reviewed reported using
sophisticated missing data approaches such as FIML or multiple imputation.

of missingness or with one of the variables that has missing
scores. Auxiliary variables can be incorporated in the analysis
to improve estimation of parameters and standard errors in the
context of missing data without altering the model of primary
interest. As such, we aimed to identify certain demographic
characteristics or substantive measures that correlate with fMRI
scores for consideration as auxiliary variables. Further, we aimed
to examine how the inclusion of an auxiliary variable that
correlates with missingness – signaling a MAR missing data
mechanism – enhances estimation.

The identification of useful auxiliary variables and
demonstration of different approaches to addressing missing
data – FIML, and FIML with auxiliary variables – will fill a gap
in the neuroimaging literature by applying FIML techniques
to “real world” fMRI data in a robust dataset, thus providing a
useful example of FIML “in action” with neuroimaging data.
Although sophisticated missing data approaches such as FIML
are increasingly common throughout the social science literature,
examples with fMRI are rare, particularly in the context of large
samples and longitudinal data. Further, despite the potential for
auxiliary variables to improve model estimation in the context
of missing data, they are not routinely used with fMRI data. As
such, researchers might be overlooking a powerful, yet relatively
easy to implement, approach for promoting robust results that
replicate across studies.

To demonstrate this approach, we draw on data from several
studies that have used the “milkshake task” (Stice et al., 2008a),
which has become a popular paradigm for assessing neural
processes related to food reward sensitivity. In the most common
version of the task, the participant is shown a visual cue that
signals an impending taste of milkshake or tasteless solution
and then delivered a taste of either beverage while in the
scanner, to capture neural activation in response to anticipatory
and consummatory food reward, with particular emphasis on
regions associated with reward processing (Stice et al., 2011).
Individual differences in reward region activation on this task
have been linked to obesity risk, with greater activation in
regions associated with reward processing emerging as a possible
neural vulnerability factor for future weight gain (e.g., Stice and
Burger, 2019). Although the milkshake task is certainly not the
only fMRI paradigm relevant to obesity, its widespread use and
demonstrated links with obesity risk make it a good example for
the current missing data demonstration.

Our research team has used the milkshake task in several
longitudinal studies, creating a unique opportunity to use these
data to demonstrate FIML approaches within an artificially-
created missing data paradigm. In addition to fMRI data,
we have a number of demographic and behavioral variables
from questionnaires that create an opportunity to explore
correlates and use as potential auxiliary variables within the
FIML framework. The correlates of blood oxygen level dependent
(BOLD) signal on the milkshake task have received limited
attention, though there has been some suggestion of significant
correlations from small studies (e.g., Stice and Yokum, 2014).
Despite these hints at possible correlates of BOLD signals on
the milkshake task, findings to date have been limited by
small sample sizes and inconsistent measures across studies,
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leaving questions about the robustness of associations. Research
examining the correlates of BOLD signals on the milkshake
task could be valuable methodologically because measures that
correlate significantly with BOLD signals could be useful as
auxiliary variables that can improve FIML estimation for missing
data. Enders (2010) recommends correlations of r > 0.4 between
auxiliary variables and the variable with missing data, but it
is unknown if any demographic or behavioral questionnaire
variables would consistently meet this threshold of association
with BOLD signals on the milkshake task. Our unique dataset,
which includes data from the milkshake task and potentially
relevant demographic and behavioral questionnaires from 363
participants, creates a rare opportunity to address this question
in a robust sample, thus informing missing data practices with
other fMRI tasks.

In addition to the methodological focus on missing data, the
current paper has the potential to make an important substantive
contribution by examining neural measures of food reward
sensitivity as a predictor of future weight gain in the largest
data set to date. Relevant conceptual frameworks posit that high
sensitivity to food reward could be a neural vulnerability factor
for overeating and, in turn, greater weight gain over time (see
Stice and Burger, 2019, for review of reward surfeit theory).
Empirical evidence to date is mixed: some studies have found
that disrupted reward region functional connectivity and elevated
activation – both in resting state and in response to milkshake
tastes (Geha et al., 2013; Dong et al., 2015) – predicts greater
weight gain, but other larger studies have not found significant
main effect relations between reward region responsivity and
future weight gain (Stice et al., 2008a, 2015; Sun et al., 2015;
Stice and Yokum, 2018). However, no study has examined this
issue in a sample as large as the one used in current paper, which
combines samples from multiple studies that used the milkshake
task. This sample will provide a unique opportunity for a more
robust test of the role of food reward sensitivity in future weight
gain across a sample spanning diverse ages and weight statuses.
These results have the potential to inform obesity prevention and
treatment by identifying potentially modifiable risk factors that
could be targeted in novel obesity interventions.

The primary objective of the current paper is to provide
a demonstration of FIML missing data applications in the
context of fMRI data. To pursue this goal, we leveraged a
unique dataset and artificially-generated missing data paradigm
to compare the effectiveness of different missing data strategies
(i.e., listwise deletion, FIML, and FIML with auxiliary variables),
under different missing data volumes (i.e., 20, 35, and 50%
missing data) in replicating the “true” results from the full
dataset. Unique features of our dataset enhance the value of
our approach in this demonstration, including a large combined
sample (363 participants) and the use of parallel measures used
in multiple related studies to enhance robustness. We expect that
FIML approaches will perform better than listwise deletion in
reproducing “true” results from the full data under a variety of
missing data volumes, and that FIML with auxiliary variables
will show the best performance. The results of this study have
the potential to inform both robust missing data strategies
implemented in fMRI studies, generally, and the potential

use of certain auxiliary variables with the milkshake task,
specifically. The secondary goal of the current paper is to address
the substantive question of the predictive value of elevated
responsivity of reward processing regions to tastes of chocolate
milkshake on subsequent weight gain over a 1-year period in
a large sample. These substantive results will build on studies
with smaller samples examining associations between neural
vulnerability factors and future weight trajectories, providing a
more robust and well-powered analysis. Consistent with reward
surfeit theory, we hypothesize that greater activation in reward-
focused regions of interest on the milkshake task will significantly
predict greater future weight gain.

MATERIALS AND METHODS

Participants
The sample for the current paper is drawn from four studies
that all included identical or similar versions of a food receipt
fMRI paradigm (i.e., the “milkshake task”) as a measure of neural
responsivity to rewarding food stimuli. Study 1 included 37
adolescent girls (mean age = 15.5 years) who were recruited
from a larger study of female high school students with body
image concerns and participated in a 1-year prospective study
(Stice et al., 2008a). Although this sample was part of a larger
effectiveness trial, the 37 participants who completed the fMRI
protocol were recruited from the minimal-intervention control
group. The sample for Study 2 had 48 overweight and obese
young adult women (mean age = 20.8 years) recruited to
participate in a 2-year prospective study evaluating the efficacy
of a behavioral weight loss treatment (Yokum et al., 2015). It
should be noted that treatment condition in Study 2 did not
significantly predict future weight gain (Yokum et al., 2015).
Study 3 included 162 lean adolescents (82 female, 80 male;
mean age = 15.3 years) recruited for participation in a 3-
year prospective study examining the neural risk factors that
predict future weight gain (Stice et al., 2015). Study 4 consisted
of 135 lean adolescents (73 female, mean age = 15 years)
recruited for a 3-year prospective study to examine neural
plasticity of reward and attention circuitry in response to
overeating and weight gain (Stice and Yokum, 2018; Yokum
and Stice, 2019). Across the studies, adult participants provided
written informed consent, and for adolescent participants,
written informed consent was provided by legal guardians
and the adolescent provided written informed assent. All
procedures were approved by the Institutional Review Board
at the study site. Additional details regarding the sample for
each study is available in the Supplementary Materials. Data
described in the manuscript and analytic code will be made
available upon request pending approval from the relevant
Institutional Review Boards.

For the current paper, the samples from all four studies
were combined to create a large single sample for analysis.
This combined sample included 382 total participants (240
female). A total of 19 participants (<5%) were missing fMRI
data due to excessive movement or data acquisition errors. Given
the relatively small number of participants with missing data,
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and the need to have a full dataset as the foundation of the
randomly generated missingness paradigm, the 363 participants
with usable fMRI data were considered the full sample for the
current study. The racial and ethnic breakdown of the final
sample was 76.9% White, 8.6% Hispanic, 3.1% Black, 3.3%
Asian American, 1.7% American Indian/Alaska Native, and
6.4% multiracial.

Procedures
Participants in all four studies completed a similar version of the
food receipt paradigm at baseline. The food receipt paradigm
assesses blood oxygen level dependent (BOLD) response to
receipt and anticipated receipt of chocolate milkshake and a
tasteless solution. Participants were asked to consume their
regular meals but to refrain from eating or drinking (other
than water) for 4–6 h immediately preceding their scan for
standardization. In Studies 3–4, participants rated their hunger
level on 20-cm cross-modal visual analog scales (VASs) prior to
the scan. VAS ratings were anchored by 0 (not at all), 10 (neutral),
and 20 (never been more hungry). The mean (±SD) hunger
rating was 7.6± 4.4 in Study 3 and 10.9± 4.3 in Study 4.

In Study 1, the stimuli were three black shapes (diamond,
square, and circle) that signaled (cued) the delivery of either
0.5 ml of the milkshake, the tasteless solution, or no taste. We
introduced a cue that did not predict a taste to better position us
to investigate food cue-reward learning (Burger and Stice, 2014).
Stimuli were presented in 4 runs. Pairing of cues with taste was
randomized across participants. On 50% of the taste trials, the
taste was not delivered as expected to allow the investigation
of the neural response to anticipation of a taste that was not
confounded with actual receipt of the taste (unpaired trials).
There were seven events (16 repeat of each): (a) milkshake cue
followed by milkshake taste, (b) milkshake receipt, (c) milkshake
cue followed by no milkshake taste, (d) tasteless solution cue
followed by tasteless solution, (e) tasteless solution receipt, (f)
tasteless solution cue followed by no tasteless solution, and (g)
a no taste cue. Cues were presented for 5–12 s. Taste delivery
occurred 4–11 s after onset of the cues signaling delivery of the
taste. The taste cue remained on the screen for 8.5 s after the
taste was delivered, and participants were instructed to swallow
when the shape disappeared. The next cue appeared 1–5 s after
the prior cue went off.

Studies 2 and 3 used an adapted version of the food receipt
paradigm in Study 1. Images of glasses of milkshake and water
(50 repeat of each) signaled impending delivery of either 0.5 ml of
milkshake and tasteless solution (30 repeat of each), respectively.
On 40% of the trials, the taste was not delivered following the cue
(unpaired trials). Images were presented for 2 s and were followed
by a jitter of 1–7 s during which time the screen was blank. Taste
delivery occurred 10 s after image onset and lasted 5 s, followed
by a swallow cue (2 s). Participants were instructed to swallow
when they saw the ‘swallow’ cue. The trial ended with a 1–7 s
jitter. Stimuli were presented in 5 runs. Order of the runs were
randomized over participants.

Study 4 used a block version of the food receipt paradigm.
The paradigm assessed BOLD response to tastes of 4 chocolate
milkshakes varying in sugar and fat content and a tasteless

solution to determine whether sugar of fat was more
effective in recruiting reward circuitry (Stice et al., 2013): a
high-fat/high-sugar milkshake, a high-fat/low-sugar milkshake,
a low-fat/high-sugar milkshake, and a low-fat/low-sugar
milkshake. Participants were told that they would receive 4
different kinds of milkshake but were not informed about the fat
and sugar content of the milkshakes. Stimuli consisted of images
of glasses of milkshake and water (1 s) that signaled the delivery
of the 4 milkshakes and a tasteless solution. All milkshakes
were preceded by the same image of a milkshake glass. During
milkshake and tasteless solution delivery, a fixation cross was
shown. The delivery of the tastes occurred in 6 variable-length
blocks (1 block presented 4, 5, or 7 events) over 2 runs (32 events
of each taste across the 2 runs). Only one type of milkshake
was delivered per block. Participants were instructed to hold
the taste in their mouth until they saw the ‘swallow’ cue on
the screen, which followed after each taste. After a block was
completed, subjects received a rinse of the tasteless solution
followed by a swallow cue (0.5 s) and a jitter (9–11 s). The
tasteless solution followed the same pattern without a rinse. The
order of presentation of blocks was randomized.

Measures
Body Mass Index
Body mass index (BMI = kg/m2) was used to measure adiposity.
Height was measured to the nearest millimeter and weight was
assessed to the nearest 0.1 kg (after removal of shoes and coats) at
baseline and all follow-ups. BMI correlates with direct measures
of total body fat such as dual energy X-ray absorptiometry
(r = 0.80–0.90) and with health measures including blood
pressure, adverse lipoprotein profiles, atherosclerotic lesions,
serum insulin levels, and diabetes mellitus in adolescent samples
(Dietz and Robinson, 1998; Steinberger et al., 2005). Raw BMI
scores are superior to age- and sex-adjusted percentiles or
BMI z-scores for modeling change over time in longitudinal
analyses (Berkey and Colditz, 2007). All four studies included
measures of BMI at baseline and 1-year follow-up, which are
used in the analyses for the current paper. Further, focusing on
baseline and 1-year follow-up data allowed us to leverage near-
complete data at these time points which, in turn, facilitated
comparisons between the full dataset and artificially generated
missingness datasets.

Auxiliary Variables
To identify potential auxiliary variables for use in FIML analyses,
we considered two self-report measures included across the
four studies and believed to be conceptually related to food
reward sensitivity. First, the Food Craving Inventory (FCI; White
et al., 2002), which assesses craving for high-calorie foods was
completed. In addition to the standard craving ratings on the
FCI, we also assessed the degree of liking each food. Internal
consistency for both the craving and liking scales in the current
sample was high (α = 0.91 for craving; α = 0.81 for liking). Second,
we also considered the Dutch Restrained Eating Scale (DRES; Van
Strien et al., 1986; α = 0.93 in the current sample). Further, basic
demographic information – including participant age and sex –
were collected for consideration as auxiliary variables.
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Functional Magnetic Resonance Imaging
Data Acquisition
MRI data for Studies 1–3 were acquired on a Siemens Allegra
3 Tesla (3T) scanner. Study 4 MRI data were acquired on a
Siemens Tim Trio 3T MRI scanner. In all studies, functional scans
used a T2∗ weighted gradient single-shot echo planar imaging
(EPI) sequence (TE = 30 ms, TR = 2,000 ms, flip angle = 80◦)
with an in-plane resolution of 3.0 mm2

× 3.0 mm2 (64 × 64
matrix; field of view [FOV] = 192). To cover the whole brain,
32 4 mm slices (interleaved acquisition, no skip) were acquired
along the AC–PC transverse, oblique plane as determined by
the midsagittal section. Structural scans were collected using an
inversion recovery T1 weighted sequence (MP-RAGE) in the
same orientation as the functional sequences to provide detailed
anatomic images aligned to the functional scans. High-resolution
structural MRI sequences (FOV = 256, thickness = 1.0 mm) were
acquired. In Study 1, four participants showed excessive head
movement during the scan (i.e., within-run movement exceeded
3 mm or degrees in any direction), and fMRI data from 5
participants were missing (lost during data transfer). In Study 2,
2 participants showed excessive head movement, and data from 1
participant was incomplete. In Study 3, data from 2 participants
were collected with an acquisition error. In Study 4, data from 2
participants were incomplete, and data from 3 participants were
collected with an acquisition error. Data from these participants
(n = 19) were excluded from the fMRI analyses.

Functional Magnetic Resonance Imaging
Preprocessing
Neuroimaging data were skullstripped using the Brain Extraction
Tool in FSL (FMRIB Analysis Group, Oxford, United Kingdom)
and then analyzed using SPM12 (Wellcome Department of
Cognitive Neurology2) in MATLAB (Mathworks, Inc., Natick,
MA, United States). Anatomical images were segmented and
normalized to Montreal Neurological Institute (MNI) space with
the use of the DARTEL toolbox, co-registered to the mean
functional image, and segmented into six tissue types using
unified segmentation approach (Ashburner and Friston, 2005).
Functional data were preprocessed as follows: (1) slice timing
corrected; (2) adjusted for variation in magnetic field distortion
using field maps (Poldrack et al., 2011); (3) realigned to the mean
functional from that run and co-registered with the anatomical;
and (4) normalized to Montreal Neurological Institute (MNI)
space using the DARTEL template and deformation fields
output, which allows more precise alignment (Klein et al.,
2009). Functional data were smoothed to 6 mm Gaussian full-
width-at-half-maximum (FWHM) and then assessed to detect
spikes in global mean response and motion outliers in the
functional data using the Artifact Detection Toolbox (ART;
Gabrieli Laboratory, McGovern Institute for Brain Research,
Cambridge, MA, United States). Motion parameters <3 mm were
included as regressors in the design matrix at individual fixed
effect analysis. Specifically, we included regressors that reflect
movement that was below the 3 mm threshold, and participants

2http://www.fil.ion.ucl.ac.uk/spm

who exceeded the 3 mm movement threshold were not included
in analyses. Additionally, image volumes where the z-normalized
global brain activation exceeded 3 SDs from the mean of the
run or showed >1.5 mm of composite (linear plus rotational)
movement were flagged as outliers and de-weighted during
individual-level model estimation (i.e., a separate regressor for
every such image was added to the first-level design matrix) to
reduce the influence on the results.

Functional Magnetic Resonance Imaging
Analyses
At the subject level, BOLD signals were modeled in a fixed
effects analysis with separate regressors modeling each condition
of interest for each task. To identify brain regions activated by
milkshake receipt, we contrasted BOLD signals during milkshake
receipt versus tasteless solution receipt. T-maps were constructed
for comparisons of activation within participants (milkshake
receipt > tasteless solution receipt). Because the high-fat/high-
sugar milkshake in Study 4 was closest in fat and sugar content to
the milkshakes in Studies 1–3, we only included this contrast in
the analyses. For all data, we applied a high-pass filter of 128 s
to eliminate low-frequency noise and slow drifts in the signal.
First-order autoregressive error was used to correct for serial
autocorrelations. To identify brain activation at study level, we
calculated separately for each study one-sample t-tests, using the
contrast images obtained in the single subject analysis as input
data. In Studies 3–4, self-reported hunger prior to the scan was
included as a covariate of no interest.

We employed small volume correction (SVC) analyses using
peaks most commonly identified in main effects analyses of
food receipt paradigms. Search volumes were restricted within
a 10-mm radius of reference coordinates in the caudate (MNI
coordinates: −6, 12, 18; −9, 5, 1;12, 8, 4) and putamen (MNI
coordinates: −27, 3, 3; −28, −8, 4; −24, 4, 4; 27, −6, 3; 21,
−3, 3) reported previously (Felsted et al., 2010; Stice et al.,
2011, 2013; Rudenga et al., 2013). The main effect parameter
estimates at the individual level were extracted for each contrast
and SVC and analyzed with the Statistical Package for the Social
Sciences 24 (SPSS 24, SPSS Inc., Chicago, IL, United States).
The data within the SVCs were extracted using the MarsBar tool
(Brett et al., 2002).

Analytic Plan
Full Dataset Analyses
Data were analyzed using Mplus software (Muthén and Muthén,
2016). Observed missing data were minimal in the full
dataset (prior to generating missing BOLD data) with 8.5% of
participants missing BMI scores at the follow-up assessment.
We had no reason to expect a systematic pattern to the missing
follow-up data. Missing scores were addressed with FIML. To
account for univariate and multivariate non-normality, we used
MLR estimation in Mplus, which computes standard errors
that are robust to non-normality. To examine change in the
BMI scores from baseline to 1-year follow-up, we applied a
latent change score framework (McArdle and Nesselroade, 1994;
Castro-Schilo and Grimm, 2018). Within this framework, a latent
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variable is estimated which represents a within-person change
score (i.e., the degree of change over 1 year) that can vary across
participants. An advantage of a latent change score approach
relative to computation of raw change scores is that within-
person change can be quantified without dropping cases with
missing follow-up scores. Two models were specified: one with
caudate signal predicting the latent BMI change score, and one
with putamen predicting the latent BMI change score. Model
specification is depicted in Figure 1. The models were just
identified; therefore, global model fit was not assessed.

Because data were drawn from 4 different studies, we
conducted a multiple group analysis to determine if it would
be appropriate to combine data from different studies into a
combined model for the planned analyses or if the paths of
interest differed between studies such that study-level differences
needed to be accounted for in the analyses. Specifically, for the full
dataset models, we conducted multiple group analyses allowing
the path of interest in each model (i.e., caudate signal predicting
latent BMI change in one model and putamen signal predicting
latent BMI change in the other model) to vary across study
and examined fit statistics. In both models, this resulted in very
poor fit (CFI = 0.726, RMSEA = 0.356, SRMR = 1.402 in the
caudate model; CFI = 0.679, RMSEA = 0.450, SRMR = 1.373
in the putamen model), confirming that the effects are most
appropriately modeled as the same across studies. Therefore, it
was determined that the data from the 4 different studies could
be combined into a single analysis sample (N = 363).

Artificial Missingness of Blood Oxygen Level
Dependent Data
Drawing on the full dataset (N = 363), we created three alternate
datasets with generated missing data for BOLD signals. This was
achieved by using a random number generator and replacing

BOLD scores with missing values for 20% (n = 73), 35%
(n = 127), and 50% (n = 182) of the original sample in three
alternate datasets. Notably, cases with missing data in the 20%
condition were subsumed in the 35% condition, and cases with
missing data in the 20 and 35% conditions were subsumed in
the 50% condition.

To ensure that the randomization process for generating
missingness did not introduce bias, we conducted a check to
ensure that randomization to missingness was not significantly
associated with any key study variables or demographics. As
expected, randomization to missingness (reflected as a dummy-
coded vector) was not significantly associated with any study
variables, including race, ethnicity, sex, baseline BMI, 1-year BMI,
caudate signal, or putamen signal (ps > 0.05).

Identification of Auxiliary Variables for Full
Information Maximum Likelihood
Because missing data were randomly generated, there was no
systematic pattern to the missingness (i.e., data were missing
completely at random) and, as such, we had no reason to expect
any observed variables would differentiate the complete and
incomplete cases. Instead, we focused on the identification of
survey variables we anticipated would be significantly correlated
with BOLD signals (i.e., the variables with missing scores).
Participant age and sex assigned at birth have been associated
with BOLD responses to food stimuli in past research (Rolls
et al., 2015; Yeung, 2018; Morys et al., 2020). Additionally, food
craving and dietary restraint have also correlated with BOLD
response to food stimuli (Pelchat et al., 2004; Burger and Stice,
2011) and measured consistently in our datasets, making these
variables appropriate candidates for auxiliary variables. We were
particularly interested in variables meeting the recommended
threshold for auxiliary variables of r > 0.4 (Enders, 2010), but

FIGURE 1 | Latent change score models linking BOLD signals to change in Body Mass Index (BMI). N = 363.
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any candidate variables that correlated significantly at magnitude
of at least 0.2 were included in the auxiliary models. In the case
that there were no observed variables that met the recommended
threshold, we planned to generate a new variable that met this
threshold (specifically had a correlation of 0.50 with BOLD
signals and normal distribution) for inclusion as an auxiliary
variable in an additional FIML model for optimal demonstration
of auxiliary variables with FIML. (Note that this approach of
generating an auxiliary variable that correlates with BOLD signals
is purely for demonstration purposes. In a study with real missing
data, researchers cannot generate an auxiliary variable to address
missing data). Finally, consistent with a missing at random
(MAR) missing data mechanism, we also generated auxiliary
variables that correlate with missingness (i.e., the probability of
missing data is systematically related to the auxiliary variable).
A new auxiliary variable was generated for each of the missing
data conditions (20, 35, and 50%), and each variable had a
correlation of 0.50 with missingness.

Missing Data Approach Comparisons
Using the three alternate datasets with different rates of missing
data (20, 35, and 50%), we replicated the latent change score
model with caudate and putamen signals predicting change in
BMI using four different approaches to addressing missing data:
(1) listwise deletion, (2) FIML, (3) FIML with the implementation
of auxiliary variables correlating with BOLD signals, and (4)
FIML with auxiliary variables generated to correlate with
missingness. As previously noted, 31 participants (8.5%) did
not provide BMI data at the follow-up. As such, in the listwise
deletion models, cases were dropped if there was a missing score
of BOLD (across the missing data conditions) and/or follow-
up BMI. As such, analyses were conducted with n = 265 in the
20% condition, n = 216 in the 35% condition, and n = 167 in
the 50% condition. In the FIML models, all available cases were
included, regardless of missing data. Results of all missing data
models were reviewed with a focus on: (a) how closely the key
parameter estimates (i.e., BOLD signal predicting BMI change)
for each model approximated the “true” results from the full data
model (N = 363 with no missing data), including whether the
missing data models replicated statistically significant findings;
and (b) the size of standard errors and 95% confidence intervals
for key model parameters. Better performance for missing data
models was defined as (a) closer replication of key parameter
estimates and significant findings from the full data model and
(b) smaller standard errors and narrower confidence intervals.

RESULTS

Descriptive statistics and correlations are reported in Table 1.
Results of the latent change score model linking each BOLD
signal (caudate and putamen) to change in BMI from baseline
to 1-year follow-up in the full sample (N = 363) are depicted
in Figure 1 and reported in Tables 2, 3. For the caudate model,
there was a small, significant, positive association between BOLD
response to milkshake receipt and change in BMI, suggesting that
greater caudate activation was associated with greater increase in

BMI over the subsequent year. Similarly, for the putamen model,
there was a small, significant, positive association between BOLD
response to milkshake receipt and change in BMI, suggesting that
greater putamen activation is associated with greater increase in
BMI over the subsequent year. The fact that caudate and putamen
response to milkshake tastes were highly correlated (r = 0.76)
provides evidence of convergent validity regarding responsivity
of these two regions implicated in reward processing. Further,
caudate and putamen signals had significant negative associations
with baseline BMI.

Next, in preparation for missing data models, we examined
correlations between potential auxiliary variables and BOLD
signals. Participant age had a negative and significant correlation
with caudate signal (r = −0.31, p < 0.001) and putamen signal
(r = −0.36, p < 0.001). Sex assigned at birth (1 = female,
0 = male) was not associated with caudate signal (r = −0.06,
p = 0.230) but did show a significant, small correlation with
putamen signal (r = −0.11, p = 0.033) suggesting females
exhibited greater activation than males. DEBQ-Restrained Eating
Scale had a negative and significant correlation with caudate
signal (r = −0.21, p < 0.001) and putamen signal (r = −0.21,
p < 0.001). FCI subscales were not significantly correlated with
caudate or putamen signals (rs ranged from −0.09 to 0.01,
ps > 0.087). Only the variables that correlated at a meaningful
level (i.e., r > 0.20) with BOLD signal – age and DEBQ-
Restrained Eating – were retained for use as auxiliary variables
in FIML analyses. Because none of the observed variables met
the recommended threshold of r > 0.40, we also generated a
new variable with 0.50 correlation with caudate BOLD signal
and another variable with 0.50 correlation with putamen BOLD
signal to use in additional FIML analyses to demonstrate the
impact of including auxiliary variables that meet the recommend
correlation threshold. Further, auxiliary variables were generated
to correlate with missingness (r = 0.50) in each of the missing
data conditions (20, 35, and 50%). Note that each of the generated
auxiliary variables were continuous and normally distributed.

After identification of auxiliary variables, we replicated the
latent change score model tested with the full dataset using five
missing data analyses strategies: (1) listwise deletion, (2) FIML,
(3) FIML with observed auxiliary variables (age and DEBQ-
Restrained Eating), (4) FIML with new auxiliary variable (r = 0.50
with BOLD signals), and (5) FIML with the new auxiliary (r = 0.50
with missingness). Within each condition, we examined three
different rates of missing data (20, 35, and 50%). Results for
caudate signal predicting BMI latent change score are reported in
Table 2. Results for putamen signal predicting BMI latent change
score are reported in Table 3.

DISCUSSION

Modern methods for addressing missing data are available
but under-utilized in fMRI research (Mulugeta et al., 2017).
The current study leveraged a unique dataset comprised of
participants from multiple samples with a common set of
procedures, as well as a generated missingness paradigm, to
demonstrate sophisticated missing data approaches (particularly
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TABLE 1 | Descriptive statistics and correlations for the full sample (N = 363).

Variable Mean (SD) Skewness (SE) Kurtosis (SE) 1 2 3 4 5 6 7 8

(1) Parameter estimates from caudate
in response to contrast between
milkshake receipt > tasteless solution
receipt (n = 363)

−0.07 (0.45) −3.23 (0.13) 21.77 (0.26)

(2) Parameter estimates from putamen
in response to contrast
milkshake > tasteless solution receipt
(n = 363)

−0.01 (0.40) −3.34 (0.13) 19.90 (0.26) 0.76**

(3) BMI (n = 363) 22.17 (3.60) 1.50 (0.13) 3.43 (0.26) −0.20** −0.25**

(4) BMI at 1-year follow-up (n = 332) 22.65 (3.60) 1.41 (0.13) 3.68 (0.27) −0.13* −0.19** 0.92**

(5) Restrained eating (DRES; n = 363) 1.85 (0.79) 0.90 (0.13) 0.00 (0.26) −0.21** −0.21** 0.53** 0.48**

(6) FCI craving subscale (n = 345) 2.10 (0.57) 0.40 (0.13) −0.24 (0.27) −0.09 −0.09 0.07 0.09 0.08

(7) FCI liking subscale (n = 345) 2.65 (0.38) 0.12 (0.13) −0.30 (0.27) −0.03 −0.01 −0.01 0.03 −0.03 0.48**

(8) Age (n = 361) 15.91 (2.10) 1.64 (0.13) 2.13 (0.26) −0.31** −0.36** 0.61** 0.55** 0.45** 0.07 −0.01

(9) Sex (n = 363) 61.4% female,
38.6% male

– – −0.06 −0.11* 0.31** 0.26** 0.44** −0.09 −0.16* 0.28**

BMI, Body Mass Index; DRES, Dutch Restrained Eating Scale (Van Strien et al., 1986); FCI, Food Craving Inventory (White et al., 2002).
*p < 0.05, **p < 0.01.

FIML-based approaches) in action with real fMRI data. This
fills a gap in the fMRI literature where examples of modern
missing data applications are rare, particularly in the context
of large longitudinal fMRI datasets. The study also offers

TABLE 2 | Caudate signal predicting Body Mass Index (BMI) latent change score:
estimates across missing data conditions.

Missing data
rate

95% CI

N Estimate SE p-value Lower Upper

Original dataset

363 0.52 0.22 0.017 0.093 0.947

Listwise deletion

265 20% 0.59 0.29 0.042 0.021 1.157

216 35% 0.55 0.30 0.068 −0.041 1.138

167 50% 0.62 0.35 0.072 −0.055 1.298

FIML-no auxiliary

363 20% 0.59 0.28 0.034 0.045 1.128

363 35% 0.54 0.28 0.052 −0.006 1.085

363 50% 0.53 0.28 0.060 −0.023 1.082

FIML-observed auxiliaries (rs = 0.21 −0.36)

363 20% 0.58 0.27 0.033 0.046 1.119

363 35% 0.52 0.27 0.055 −0.012 1.046

363 50% 0.47 0.27 0.079 −0.055 1.000

FIML-new auxiliary (r = 0.50 with bold)

363 20% 0.54 0.27 0.043 0.017 1.065

363 35% 0.60 0.27 0.024 0.078 1.125

363 50% 0.61 0.28 0.026 0.074 1.152

FIML-new auxiliary (r = 0.50 with missingness)

363 20% 0.60 0.27 0.030 0.057 1.133

363 35% 0.55 0.28 0.052 −0.004 1.094

363 50% 0.53 0.28 0.060 −0.021 1.080

FIML, full information maximum likelihood. Estimates are unstandardized.
Significant estimates (p < 0.05) are bolded.

valuable substantive findings on the relation between food reward
sensitivity and future weight gain.

On the primary issue of the performance of FIML for missing
data, the results were partially consistent with expectations.
FIML approaches, including analyses with and without auxiliary
variables, generally performed better than listwise deletion. At
lower levels of missing data (20%), listwise deletion and FIML
resulted in similar point estimates for the main predictive paths of
interest, but FIML consistently produced smaller standard errors
and narrower confidence intervals, suggesting more reliable
estimates. Further, standard errors and confidence intervals
in the FIML models more closely approximated the “real”
results from the full dataset models. However, both FIML (both
with and without observed auxiliary variables and with the
auxiliary correlating with missingness) and listwise deletion
failed to replicate some statistically significant findings from
the full data models (particularly at higher levels of missing
data for the caudate analyses and across all levels of missing
data for the putamen analyses), although the pattern of FIML
producing smaller standard errors and narrower confidence
intervals that more closely approximated full dataset results was
again apparent. The performance of FIML with and without
observed auxiliary variables was very similar with little to no
apparent benefit to including auxiliary variables from our dataset
or a generated auxiliary that relates to missingness consistent with
MAR missing data mechanism.

The relatively underwhelming performance of FIML with
observed auxiliary variables was at first surprising. However,
the issue undermining this approach in our study was likely
the lack of strong auxiliary variable candidates in our dataset.
Despite having several demographic and potentially relevant
questionnaires to use as auxiliary variables, correlations between
these measures and BOLD signal on the milkshake task were
only small to medium in magnitude. In fact, although we were
able to identify variables that correlated with BOLD signals
at a statistically significant level, none of these variables met
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TABLE 3 | Putamen signal predicting Body Mass Index (BMI) latent change score:
estimates across missing data conditions.

Missing data
rate

95% CI

N Estimate SE p-value Lower Upper

Original dataset

363 0.60 0.26 0.019 0.100 1.106

Listwise deletion

265 20% 0.55 0.30 0.067 −0.039 1.142

216 35% 0.53 0.35 0.130 −0.155 1.205

167 50% 0.57 0.39 0.150 −0.206 1.338

FIML-no auxiliary

363 20% 0.55 0.29 0.053 −0.008 1.115

363 35% 0.52 0.32 0.108 −0.114 1.146

363 50% 0.48 0.32 0.136 −0.151 1.111

FIML-observed auxiliaries (rs = 0.21 −0.36)

363 20% 0.54 0.28 0.056 −0.015 1.100

363 35% 0.49 0.31 0.119 −0.126 1.101

363 50% 0.42 0.31 0.175 −0.188 1.033

FIML-new auxiliary (r = 0.50 with bold)

363 20% 0.62 0.28 0.026 0.074 1.174

363 35% 0.64 0.31 0.039 0.031 1.246

363 50% 0.58 0.32 0.070 −0.048 1.200

FIML-new auxiliary (r = 0.50 with missingness)

363 20% 0.55 0.29 0.053 −0.008 1.109

363 35% 0.52 0.32 0.108 −0.114 1.156

363 50% 0.48 0.32 0.134 −0.149 1.112

FIML, full information maximum likelihood. Estimates are unstandardized.
Significant estimates (p < 0.05) are bolded.

the recommended threshold for auxiliary variables of r > 0.4
(Enders, 2010). Thus, our results suggest that including auxiliary
variables with only modest correlations in FIML models yields
little if any benefit. Conversely, the results from our models using
an auxiliary variable that was generated to have a correlation
above the recommended threshold hint at the promise of FIML
with auxiliary variables when adequate variables are available.
Models including the generated variables (which correlated
r = 0.5 with BOLD signals) consistently out-performed both
listwise deletion and other FIML models as reflected by not only
smaller standard errors and confidence intervals, but also better
replication of significant findings across levels of missing data.
In fact, models with the generated auxiliary variable replicated
significant findings from the full dataset analyses in 5 of the 6
missing data scenarios (i.e., caudate and putamen across three
levels of missing data).

The results from the methodological portion of our study
suggest both opportunities and challenges for fMRI researchers.
First, it should be noted that listwise deletion generally
performed poorly in replicating the results from full dataset
analyses, particularly under conditions of higher missing data
volume. Although the relative benefits of FIML versus listwise
deletion appear to vary widely depending on the availability
of strong auxiliary variables, even the “worst case” FIML
scenarios – models without auxiliary variables – conferred some
benefits in terms of more reliable estimates. Although this

benefit did not translate into changes in the pattern of statistical
significance in our analyses, it could make a difference in
producing more accurate findings in other studies by enhancing
power. Therefore, consistent with broader recommendations
for handling missing data (Enders, 2010), we recommend that
fMRI researchers strongly consider utilizing modern missing
data approaches – such as FIML or multiple imputation –
instead of listwise deletion when presented with even modest
amounts of missing data. Second, if measures that correlate
strongly with certain fMRI tasks can be identified, the potential
benefits of FIML would be substantially increased. In addition
to more reliably accounting for unintended missing data in
fMRI studies (e.g., due to movement artifacts or other issues
with data collection), strong auxiliary variables could facilitate
the use of certain planned missingness designs (e.g., Little and
Rhemtulla, 2013). For example, large-scale studies could leverage
FIML+ auxiliary methods by randomly assigning a subset of
the sample to complete fMRI and questionnaires (containing
auxiliary measures) and another subset to only questionnaires.
Auxiliary variables could then be used in FIML+ models to
address the planned missing fMRI data for a portion of the
sample, largely approximating results that would have been
obtained from completing fMRI with the entire sample, but at
a fraction of the cost.

Despite the promise of FIML approaches, particularly with
strong auxiliary variables, our study also hints at some
challenges. In the current investigation, it was notable that
neither demographic nor questionnaire measures correlated
highly enough with BOLD signal on the milkshake task
to markedly increase sensitivity, despite the inclusion of
conceptually plausible candidate measures (e.g., food craving,
restrained eating). It may prove difficult to identify measures
that correlate strongly enough with BOLD signal to leverage the
full benefits of FIML and, in fact, there is a dearth of evidence
for specific self-report measures that consistently correlate with
BOLD signal on fMRI tasks. Until such measures are identified,
future research should aim to include multiple measures with
established reliability and validity that are at least theorized to
correlate with BOLD signal. If any of the measures correlate at
least moderately (r > 0.4) with BOLD, they could be used as
auxiliary variables in sophisticated missing data analyses. Further,
it could be helpful for fMRI software packages to integrate
advanced missing data analysis options, making these approaches
easily accessible for researchers working with fMRI data.

In addition to the methodological insights discussed above, the
current study also offers valuable substantive findings regarding
a possible neural vulnerability factor for weight gain. Consistent
with the reward surfeit theory, the results from the full data
model indicated that greater activation in regions implicated in
reward processing (caudate and putamen) in response to tastes of
milkshake significantly predicted weight gain over the following
year. [We also note the high correlation between caudate and
putamen parameter estimates (r = 0.76) as an indication of
the convergent validity of the food reward task]. Although
the prospective effects were relatively small in magnitude, this
finding converges with a prior study that found that elevated
responsivity striatal regions (nucleus accumbens and ventral
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pallidum) in response to tastes of milkshake predicted future
weight gain (Geha et al., 2013). However, similar findings did
not emerge in four other studies (Stice et al., 2008a, 2015;
Sun et al., 2015; Stice and Yokum, 2018), most likely because
small effects are not reliably detected in studies with limited
power. This result adds to a literature that has previously
reported mixed findings regarding food reward sensitivity as a
risk factor for future weight gain by examining this question
within a much larger sample with more diversity in terms of
age, sex, and weight status than previous studies. Although
the predictive effects were relatively small, the results imply
that it would be useful to evaluate whether interventions that
reduce striatal response to tastes of high-calorie palatable foods
significantly reduces future weight gain. It might be useful to
test whether food response inhibition and attention training,
wherein participants are trained to inhibit motor responses to
high-calorie foods and their attention is trained away from
high-calorie foods, reduces reward region response to tastes
of high-calorie foods and future weight gain, as this executive
control training has reduced striatal (putamen) response to
images of high-calorie foods and produced significant reductions
in body fat (Stice et al., 2017). A similar approach could
also be taken using fMRI paradigms involving presentation of
images of high-calorie foods versus low-calorie foods or non-
food control images.

The findings that caudate and putamen activations were
negatively correlated with baseline BMI, but positively associated
with future weight gain, may appear contradictory. However,
these findings are consistent with the Dynamic Vulnerability
Model of Obesity and previous findings from multiple groups.
Specifically, the Dynamic Vulnerability Model of Obesity posits
that individuals who show greater reward region recruitment
in response to tastes of high-calorie foods are at increased
risk for overeating and consequent future weight gain, but that
regular consumption of high-calorie foods reduces reward region
response to tastes of high-calorie foods (Stice and Yokum, 2016).
Consistent with this etiologic model, past studies have found that
elevated reward region responsivity to tastes of high-calorie foods
predicted future weight gain (Geha et al., 2013), but that regular
intake of high-calorie foods that results in measurable weight
gain is associated with a reduction in reward region response
to tastes of high-calorie foods (Davis et al., 2008; Johnson and
Kenny, 2010; Stice et al., 2010). Further, obese versus lean
individuals show weaker reward region responsivity to tastes
of high-calorie foods (Stice et al., 2008b; Green et al., 2011;
Frank et al., 2012).

Some important limitations of the current study should
be noted. First, the missing data demonstration provides an
example from a single fMRI task, and the degree to which
similar results would be obtained with other fMRI tasks is
unknown. Second, the relatively small effect sizes for the main
predictive path in the full data models could have limited
performance of FIML approaches in the missing data models.
Small effects may be more difficult to replicate within the context
of missing data, particularly when missing data volume is high.
It is possible that if the effects from the full data analyses
were larger, the benefits of FIML relative to listwise deletion

may have been more apparent. Third, the current examination
only focused on FIML procedures and did not include multiple
imputation, which is also considered another “gold standard”
modern missing data approach. It is therefore unknown how
multiple imputation would have performed relative to listwise
deletion and FIML. Fourth, as mentioned previously, the use
of auxiliary variables in the current study was limited by the
measures that were included in the original data collection, which
did not have a focus on facilitating missing data analysis. The
relatively low correlations between potential auxiliary measures
and BOLD signal on the milkshake task, in turn, likely led to
diminished benefits for FIML versus listwise deletion, although
the benefits were much clearer when a stronger auxiliary variable
was included, but only to the extent that the variable had a
strong correlation with BOLD scores, not with missingness.
Finally, there were some small variations in the milkshake task
methodology across the different studies that were combined,
although core features of the task were consistent and allowed
for aggregating samples.

Sophisticated methods for handling missing data, such
as FIML, are under-utilized in fMRI research. FIML-based
approaches hold considerable promise for improving model
performance in the context of missing data compared to listwise
deletion; however, the benefits of FIML are most apparent when
strong auxiliary variables are available. Future research should
consider incorporating FIML approaches to address missing
fMRI data, and researchers should seek to include multiple
auxiliary measures that are theorized to correlate strongly with
fMRI to maximize the benefits of FIML.
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