305 research outputs found

    Ciliary flocking and emergent instabilities enable collective agility in a non-neuromuscular animal

    Full text link
    Effective organismal behavior responds appropriately to changes in the surrounding environment. Attaining this delicate balance of sensitivity and stability is a hallmark of the animal kingdom. By studying the locomotory behavior of a simple animal (\textit{Trichoplax adhaerens}) without muscles or neurons, here, we demonstrate how monociliated epithelial cells work collectively to give rise to an agile non-neuromuscular organism. Via direct visualization of large ciliary arrays, we report the discovery of sub-second ciliary reorientations under a rotational torque that is mediated by collective tissue mechanics and the adhesion of cilia to the underlying substrate. In a toy model, we show a mapping of this system onto an "active-elastic resonator". This framework explains how perturbations propagate information in this array as linear speed traveling waves in response to mechanical stimulus. Next, we explore the implications of parametric driving in this active-elastic resonator and show that such driving can excite mechanical 'spikes'. These spikes in collective mode amplitudes are consistent with a system driven by parametric amplification and a saturating nonlinearity. We conduct extensive numerical experiments to corroborate these findings within a polarized active-elastic sheet. These results indicate that periodic and stochastic forcing are valuable for increasing the sensitivity of collective ciliary flocking. We support these theoretical predictions via direct experimental observation of linear speed traveling waves which arise from the hybridization of spin and overdamped density waves. We map how these ciliary flocking dynamics result in agile motility via coupling between an amplified resonator and a tuning (Goldstone-like) mode of the system. This sets the stage for how activity and elasticity can self-organize into behavior which benefits the organism as a whole

    A Dynamic Approach to Rhythm in Language: Toward a Temporal Phonology

    Full text link
    It is proposed that the theory of dynamical systems offers appropriate tools to model many phonological aspects of both speech production and perception. A dynamic account of speech rhythm is shown to be useful for description of both Japanese mora timing and English timing in a phrase repetition task. This orientation contrasts fundamentally with the more familiar symbolic approach to phonology, in which time is modeled only with sequentially arrayed symbols. It is proposed that an adaptive oscillator offers a useful model for perceptual entrainment (or `locking in') to the temporal patterns of speech production. This helps to explain why speech is often perceived to be more regular than experimental measurements seem to justify. Because dynamic models deal with real time, they also help us understand how languages can differ in their temporal detail---contributing to foreign accents, for example. The fact that languages differ greatly in their temporal detail suggests that these effects are not mere motor universals, but that dynamical models are intrinsic components of the phonological characterization of language.Comment: 31 pages; compressed, uuencoded Postscrip

    Complexity and Human Gait

    Get PDF
    Recently, the complexity of the human gait has become a topic of major interest within the field of human movement sciences. Indeed, while the complex fluctuations of the gait patterns were, for a long time, considered as resulting from random processes, the development of new techniques of analysis, so-called nonlinear techniques, has open new vistas for the understanding of such fluctuations. In particular, by connecting the notion of complexity to the one of chaos, new insights about gait adaptability, unhealthy states in gait and neural control of locomotion were provided. Through methods of evaluation of the complexity, experimental results obtained both with healthy and unhealthy subjects and theoretical models of gait complexity, this review discusses the tremendous progresses made about the understanding of the complexity in the human gait variability. Recientemente, la complejidad de la marcha humana se está convirtiendo en un tema de gran interés en el campo de la ciencia del movimiento humano. De hecho, mientras las fluctuaciones complejas de los patrones de la marcha fueron, durante mucho tiempo, consideradas como resultado de procesos al azar, el desarrollo de nuevas técnicas de análisis, las llamadas técnicas no lineales, ha abierto nuevas vías para el entendimiento de tales fluctuaciones. En particular, mediante la conexión de la noción de complejidad con la de caos, se están obteniendo nuevos conocimientos sobre la adaptabilidad de la marcha, las condiciones patológicas en la marcha y el control neural de la locomoción. Mediante métodos de evaluación de la complejidad, los resultados experimentales obtenidos tanto con individuos sanos como no sanos y con modelos teóricos de la complejidad de la marcha, esta revisión habla de los enormes progresos efectuados sobre el entendimiento de la complejidad en la variabilidad de la marcha humana

    Quantifying the locomotion of C. elegans and their response to photo stimulation

    Get PDF
    Identifying the function of different locomotive genes in model organisms is crucial for genetics research. One popular approach is to analyze the behavior and motion of animals in hope of understanding subtle genetic or neural mechanisms. The nematode C. elegans has emerged as an increasingly popular organism for the study of sensory systems, specifically photo transduction, due to the fact it is still photosensitive without having eyes. Light stimulus has been shown to elicit evasive locomotive behavior in C. elegans, however little has been done to quantify this movement. Modeling the worm motion as a static sine wave, we used the parameters of wavelength, amplitude, and worm speed to differentiating between stimulated and non-stimulated worm behavior. C. elegans have four main modes of locomotion: straight, shallow turn, omega turn, and reversal. These three parameters were determined across all four locomotive modes for two worms. We found that worm speed is a promising parameter for differentiating between locomotive modes, and between unstimulated and photo-evasive locomotion. Due to high error, the amplitude and wavelength were inconclusive locomotive parameters
    corecore