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Abstract 11 

Recently, the complexity of the human gait has become a topic of major interest within the field of human 12 

movement sciences. Indeed, while the complex fluctuations of the gait patterns were, for a long time, 13 

considered as resulting from random processes, the development of new techniques of analysis, so-called 14 

nonlinear techniques, has open new vistas for the understanding of such fluctuations. In particular, by 15 

connecting the notion of complexity to the one of chaos, new insights about gait adaptability, unhealthy 16 

states in gait and neural control of locomotion were provided. Through methods of evaluation of the 17 

complexity, experimental results obtained both with healthy and unhealthy subjects and theoretical models 18 

of gait complexity, this review discusses the tremendous progresses made about the understanding of the 19 

complexity in the human gait variability. 20 

 21 
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1. Introduction 25 

Despite the numerous operations involved during human gait (activation of the central nervous system, 26 

transmission of the signals to the muscles, contraction of the muscles, integration of the sensory 27 

information, etc.), the way in which humans move appears stable with quite smooth, regular and repeating 28 

movements1. Besides, investigations using biomechanical (i.e., kinematics, kinetic and electomygraphic) 29 

measures seem to confirm this impression with patterns relatively constant across the gait cycles. However, 30 

closer and more careful examinations of the gait patterns highlighted complex fluctuations over time, the 31 

patterns never repeating exactly as themselves2-4. Until recently, these variations were considered as noisy 32 

variations, resulting from some random processes. However, recent literature from different scientific 33 

domains has shown that many phenomena previously described as noisy are actually the results of 34 

nonlinear interactions and have deterministic origins, conveying important information regarding the 35 

system behavior5-7. 36 

Therefore, arrays of investigation have been conducted to characterize and understand the complex 37 

fluctuations observed in gait2-4,8-17. Using tools from nonlinear dynamics, these studies demonstrated that 38 

this complexity is responsible for the flexible adaptations to everyday stresses placed on the human body 39 

during gait. They also established a link between the alterations of this complexity and the unhealthy states 40 

in gait. Therefore, the aim of this review is to present, in the more exhaustive manner as possible in view of 41 

the space constraints, the progresses made recently about the understanding of the complexity in the 42 

human gait.  43 

The first section of the review is dedicated to the definition and the function of complexity using well-44 

known physiological rhythms. The second section is interested in normal gait, investigating its complexity 45 

through the most commonly used nonlinear parameters. In a third section the relationship between gait 46 

complexity and unhealthy states is presented. Then, in a last section some models of gait complexity, with 47 

an emphasis on the possible neural mechanisms responsible for this complexity, are presented. 48 

2. What is complexity? 49 

Like the beating of the heart, the cycles of the respiration or the impulses of the nerve cells, bodily 50 

rhythms are ubiquitous in humans and central to life6,18-20. Accordingly, they have been coming under 51 

increasingly closer examination. A common finding is that these rhythms are rarely strictly periodic, but 52 

rather complex, fluctuating in an irregular way over time (nice illustrations of complex human rhythms are 53 

available in Glass20). The most interesting fact is that these irregular fluctuations, initially viewed as the 54 

result of some stochastic (noisy) processes6, were recently found to have deterministic origins. Results 55 

obtained from experiments investigating beat-to-beat intervals of the human heart, the so-called R-R 56 

intervals, are perfect illustrations of such determinism. Anybody who listen the beats of the heart feels that 57 

the rhythm is regular with a roughly constant R-R interval between the beats. However, using techniques 58 

from nonlinear dynamics which will be detailed next, studies highlighted that the R-R intervals varied over 59 

time (Fig. 1), and more interesting, proved that the R-R interval at any time depends on the R-R interval at 60 

remote previous time21-26. The irregular fluctuations in the beating of the heart, which appear first to be 61 
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erratic, are then fully deterministic, this “constrained kind of randomness” meaning that the heart 62 

dynamics (i.e., its behavior over time) is chaotic. Hence, the concept of complexity for which we take 63 

major interest in the present work is profoundly connected with the one of chaos and can be defined, as 64 

proposed by Stergiou et al.27, as the irregular (variable) fluctuations that appear in physiological rhythms 65 

which take the form of chaos. 66 

Please insert Fig. 1 here 67 

Considering now that bodily rhythms are complex in the sense that they display chaotic fluctuations 68 

over time, an interesting question is the one of the function of complexity. Numerous studies suggested that 69 

the chaotic temporal variations represent capabilities to make flexible adaptations to everyday stresses 70 

placed on the human body21,25,28. A reduction or deterioration of the chaotic nature of these temporal 71 

variations represents a decline in the “healthy flexibility” that is associated with rigidity and inability to 72 

adapt to stresses21,25,28. Findings from experiments in cardiology illustrate again such phenomenon. While 73 

either random or periodic (i.e., constant) variations in the R-R interval of the heart beat are associated with 74 

disorders, chaotic heart rhythms are related to healthy states (e.g., Goldberger et al.28). Using the above 75 

idea as a foundation, Stergiou et al.27 have proposed a model to explain the rhythms complexity as it 76 

relates to health. In this theoretical model, greater complexity is characterized by chaotic fluctuations and 77 

is associated with a healthy state of the underlying system while lesser amounts of complexity are 78 

associated with both periodic and random fluctuations where the system is either too rigid or too unstable 79 

(Fig. 2). Both situations characterize systems that are less adaptable to perturbations, such as those 80 

associated with unhealthy states. The notion of predictability has also been implemented in the model, 81 

mainly to differentiate between the random and periodic rhythms. Indeed, low predictability is associated 82 

with random and noisy systems, while high predictability is associated with periodic highly repeatable and 83 

rigid behaviours. In between is chaotic, highly complex, based-behaviours where the systems are neither 84 

too noisy nor too rigid (Fig. 2). Therefore, the complex fluctuations of the human rhythms are intrinsic and 85 

vital to the operation of the underlying systems, a deterioration of complexity being harmful to their 86 

operation. 87 

Please insert Fig. 2 here 88 

Directly related to the previous concerns is the human gait. Indeed, human gait is also rhythmic by 89 

nature, involving repeatable motions of the joints and successive step and stride cycles. Accordingly, does 90 

such a rhythmic activity also characterized by some complex (chaotic) fluctuations? And if the fluctuations 91 

are chaotic, is there some reasons to believe that their alteration reflect unhealthy states? Studies bring 92 

significant answers to these interrogations. 93 

3. Complexity of the human gait 94 

To investigate the complexity of the human gait, many investigations have examined whether the 95 

rhythms related to human walking, such as the linear or angular rhythmical motions of the joints and the 96 

stride-time interval, display chaotic fluctuations over time using two different kinds of analyses based on 1) 97 

state space examination and 2) self-similarity evaluation2-4,8-11,12-14. 98 

3.1 State space examination 99 
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The state space analysis represents a technique which consists in representing the dynamics of the joint 100 

movements in an abstract, multi-dimensional space, where the coordinates represents simply the values of 101 

some state variables characterizing the joint4,29-31. In such a space, the set of all possible states that can be 102 

reached corresponds to the phase space. The sequence of such states over the time-scale defines a curve in 103 

the phase space called a trajectory and as time increases, the trajectory converges towards a low-104 

dimensional indecomposable subset called an attractor which gives information about the asymptotic 105 

behaviour (periodic, chaotic or random) of the joint4. However, since one cannot measure experimentally 106 

all the components of the vector characterizing the state of the joints, the authors have reconstructed the 107 

state space from one-dimensional joint kinematics data sets, by using the time delay method derived from 108 

the Takens' embedding theorem32,33. Specifically, different scalar kinematics measures were used to 109 

reconstruct state space including joint angles4,34, linear joints displacements or accelerations12,14,35-37 and 110 

Euler angles at the joints38. Hence, given a time series (Fig. 3A)  111 

 ix
N

i 1

                               (1) 112 

of N kinematics joint data sampled at equal time intervals, the reconstructed attractor consists of a set of m-113 

dimensional vectors  1,...,1,  mNivi
 of the form  114 

   12 ,...,,,  miiiii xxxxv                                                            (2) 115 

where  is the time delay, chosen to maximize the information content of ix , and m the embedding 116 

dimension that must be large enough to “unfold” the attractor (Fig. 3B). Choice of the delay was generally 117 

accomplished by looking for the first minimum of the average mutual information function39 whereas the 118 

embedding dimension was selected where the percentage of the global false nearest neighbours approached 119 

zero40. Despite variations in the kinematics parameters used to reconstruct the state pace as mentioned 120 

above, all highlighted appropriate embedding dimensions higher than two (most of time around five), 121 

indicating that the attractors underlying the joints movements during human walking exceed a periodic 122 

attractor, converging possibly towards a strange attractor and suggesting that the observed movement’s 123 

patterns fluctuate over time in a chaotic way3,12-14. 124 

Moreover, different index looking at the structure of the attractors were also calculated to strengthen 125 

the presence of chaos in gait, including the largest Lyapunov exponent (λ1) and the correlation dimension 126 

(DC), the former measuring the average exponential rate of divergence of neighbouring trajectories of the 127 

attractor29,41 and the latter the way in which the attractor’s geometry varies over many orders of the 128 

attractor’s length scales42,43. Technically, λ1 is calculated in gait using the algorithm developed by 129 

Rosenstein et al.41, which applies well to time series of finite length, following: 130 

    jj Dtiid ln.ln 1   ,              (3) 131 

where t  is the sampling period of the time series and  id j is the Euclidean distance between the jth pair 132 

of nearest neighbours after i discrete-time steps, i.e., s . ti  . Euclidean distances between neighbouring 133 

trajectories are calculated as a function of time and averaged over all original pairs of nearest neighbours. 134 

The λ1 is then estimated from the slope of the linear fit to curve defined by: 135 
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 ,               (4) 136 

where .  denotes the average over all values of j (Fig. 3C). On the other hand, the correlation dimension 137 

is estimated by measuring how the average number of points within an (hyper) sphere of radius r centred 138 

on the attractor scales with r, based on the calculation of the correlation integral44: 139 
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where  .  is the Heaviside function, i.e.,  
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and 
CD  is then obtained by extracting the slope of the ln/ln plots of  rC  vs. r (Fig. 3D). In line with the 145 

results from the embedding dimensions, the λ1 and DC values picked out through the literature are 146 

systematically positive and higher than one3,12,14,35,36, reinforcing the idea that a “low-deterministic” chaos 147 

is present in the gait data. 148 

Please insert Fig. 3 here 149 

However, even though previous results strongly favour a chaotic nature of the fluctuations present in 150 

the gait patterns, all are hindered by the fact that the identification of chaos in time series is a very difficult 151 

process since purely random signals can mimic chaos and have sometimes been misdiagnosed as chaotic or 152 

vice versa45,46. Thus, methods known as surrogate analyses have been used in gait to prevent such 153 

misdiagnoses3,4,14,47. Technically, these analyses consist in the creation of a random counterpart of the 154 

original data, by destroying its nonlinear structure. This counterpart is then embedded in an equivalent 155 

state space as the one of the original time series and similar topological parameters as those obtained from 156 

the original time series are calculated (e.g., λ1 and DC). Accordingly, differences in the parameters 157 

evaluated from the original data set and its surrogate counterpart indicate that the fluctuations over time in 158 

the original data are veritably chaotic and not randomly derived. The surrogate algorithms of Theiler et 159 

al.46 and Theiler and Rapp48 has been used in the past and related results support the notion that 160 

fluctuations in human gait have a deterministic pattern2,3,14. However, these algorithms have been shown 161 

of limited utility when applied to time series with strong pseudo-periodic behaviours as it is the case in gait 162 

(see Fig. 3A and 3B). Thus, Small et al. 49 have consequently proposed another algorithm, the so-called 163 

pseudo-periodic surrogate (PPS) algorithm, to preserve such periodicities (i.e., to preserve intra-cycle 164 

dynamics while destroying inter-cycle dynamics). In a recent work conducted on gait data, Miller et al.47 165 

showed that both algorithms attest for the presence of chaotic fluctuations in gait, with more robust and 166 

suitable results using the PPS algorithm. Hence, using methods related to state space examination, the 167 
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fluctuations in the gait patterns have been found to be chaotic, demonstrating the complexity of the human 168 

gait. 169 

3.2 Self-similarity evaluation 170 

The complexity of the human gait has also been evaluated using methods that evaluate the self-171 

similarity of the time series, by examining the presence of repetitive patterns in their fluctuations over time. 172 

Among these methods, two have been extensively used in the gait literature: the Approximate Entropy and 173 

the Detrended Fluctuation Analysis. The Approximate Entropy (ApEn) is strictly speaking a “regularity 174 

statistic” that quantifies the unpredictability of fluctuations in a time series and reflects the probability that 175 

similar patterns of observations will not be followed by additional similar observations50,51. This means that 176 

a time series containing many repetitive patterns has a relatively small ApEn value, while a less predictable 177 

(i.e., more complex) time series has a higher ApEn value. In human gait, computation of the ApEn has been 178 

done from kinematics data including joint angle time series4,47,52  and step count values53. Specifically, the 179 

computation of ApEn, better identified as ApEn(N,r,m), requires a time series consisting of N kinematics 180 

data (as the one defined in equation 1) and two additional input parameters, m and r, the former specifying 181 

the pattern length window and the latter a criterion of similarity. Note that a value of two data points for m 182 

and a value of 0.2 times the time series standard deviation for r were used in gait studies. Hence, a vector 183 

 ipm  is denoted as a subsequence (or pattern) of m kinematics data, beginning at measurement i within 184 

the N input data points. Two patterns,  ipm  and  jpm , are similar if the difference between any pair of 185 

corresponding measurements in the patterns is less than r. Considering now the set mP  of all patterns of 186 

length m [i.e.,      1,...,2,1 mNppp mmm ] within the N data points, it is possible to define 187 

 
 

1


mN

rn
rC im

im                 (8) 188 

where  rnim  is the number of patterns in mP  that are similar to  ipm . The quantity  rCim  corresponds 189 

to the fraction of patterns of length m that resemble the pattern of the same length that begins at interval i. 190 

 rimC is then calculated for each pattern in mP  and the quantity  rCm is defined as the mean of these 191 

 rCim  values. The quantity  rCm expresses then the prevalence of repetitive patterns of length m in the 192 

N data points. Finally, the approximate entropy of the N data points, for patterns of length m and similarity 193 

criterion r, is defined as the natural logarithm of the relative prevalence of repetitive patterns of length m 194 

compared with those of length m+1 as follows:  195 

 
 
 








 rC

rC
rmNApEn

m

m

1

ln,,                (9) 196 

In gait, the ApEn values obtained from joint kinematics and step count values were found generally in the 197 

range [0.1-0.2] 4,47,52,53, which corresponds to small values given the fact that the ApEn algorithm generates 198 

numbers ranged from 0 (periodic data) to 2 (random data)50. Accordingly, the probability that similar 199 

patterns are followed by additional similar patterns in the gait time series is high, reflecting a high level of 200 
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predictability. Despite such results would seem to prove that chaotic fluctuations are present in the gait 201 

patterns, an important point which needs to be mentioned here is that ApEn is not genuinely able to 202 

dissociate between chaotic and random fluctuations of the gait patterns. To counter such a limitation, 203 

Miller et al.47 have also applied surrogation techniques to their ApEn calculations and obtained ApEn 204 

values from the surrogated gait data (both Theiler and PPS algorithms) larger than the original ApEn values, 205 

concluding on the presence of subtle chaotic fluctuations that appear in gait. 206 

The Detrended Fluctuations Analysis (DFA) represents a modification of classic root mean square 207 

analysis of random walk and evaluates the presence of long-term correlations within the time series, which 208 

correspond to a statistical dependence between fluctuations at one time scale and those over multiple time 209 

scales2,54. In human gait, the authors have considered time series of stride-time interval2,8,9,55 and step 210 

width56. Methodologically, the series x(t) of N data points is first integrated by computing for each t the 211 

accumulated departure from the mean of the whole series: 212 

    



i

t

xtxiX
1

               (10) 213 

This integrated series is divided into non-overlapping intervals of length n. In each interval, a least squares 214 

line is fit to the data (representing the trend in the interval) (Fig. 4A and 4B). The series X(t) is then locally 215 

detrended by substracting the theoretical values Xth(t) given by the regression. For a given interval length n, 216 

the characteristic size of fluctuation for this integrated and detrended series is calculated by: 217 

      



N

k

th kXkX
N

nF
1

21
            (11) 218 

This computation is repeated over all possible interval lengths (in practice, the shortest length is around 10 219 

data points, and the largest N/2, giving two adjacent intervals). Typically, F(n) increases with interval 220 

length n. A power law is expected, as 221 

  nnF                 (12) 222 

where α is the scaling exponent, or self-similarity parameter. α is then expressed as the slope of a double 223 

logarithmic plot of F(n) as a function of n (Fig. 4C), and can vary between 0 and 1.5. Especially, when α is 224 

0.5, the original series was generated by an independent random process (white noise) and if α is higher 225 

than 0.5 and lower than or equal to 1, the series is characterized by long-term correlations and self-226 

similarity. Looking at the stride-time interval, Hausdorff et al.2 observed α values around 0.75 indicating 227 

that fluctuations in the interval are, on average, related to variations in the interval hundreds of strides 228 

earlier in a scale-invariant manner, so-called fractal manner. These long-term correlations in the stride-time 229 

interval were found again in another work looking at subjects who walk for one hour at preferred, slow and 230 

fast paces with an averaged α value of 0.958. Subsequent studies reiterated these findings in normal walking 231 

and running investigating the stride-time interval57-59 or new input data as time series of step width56. The 232 

fluctuations of the stride interval and the step width in human gait are then structured rather than random 233 

over time. This “long-memory process”, with each value depending upon the global history of the series, 234 

reinforces again the chaotic character of the human gait. 235 

Please insert Fig. 4 here 236 
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In sum, all the studies using state space examination and self-similarity evaluation tools stress the fact 237 

that normal human gait is intrinsically chaotic and according to our definition of complexity is highly 238 

complex, providing flexibility to adapt to perturbations that occur during displacement. The next section 239 

will examine how such complexity in human gait evolves with health- and disease-related aging. 240 

4. Relationship between gait complexity and health- and disease-related aging 241 

4.1. State space examination 242 

Several researchers evaluated the effect of aging on gait complexity. A striking example of such studies 243 

is the one by Buzzi et al.14, in which the authors investigated the nature (organization) of gait variability 244 

present in elderly and young women. Based on the assumption that aging may lead to changes in motor 245 

variability, the authors used nonlinear state space examination tools (largest Lyaunov exponent λ1 and 246 

correlation dimension DC) to compare kinematic variables between the two age groups. Thirty gait cycles 247 

(i.e., 8-min data collection) were recorded, allowing the examination of an average of 2441 data points for 248 

each variable. The selected kinematic variables were the hip, knee, and ankle y-coordinates (vertical 249 

displacement) and the relative knee angles. The elderly exhibited significantly larger λ1 values (hip: 0.22 vs. 250 

0.18, knee: 0.14 vs. 13, ankle: 0.10 vs. 0.08, knee angles: 0.15 vs. 0.11) and DC values (hip: 3.44 vs. 3.02, 251 

knee: 3.54 vs. 2.94, ankle: 3.35 vs. 2.89, knee angles: 2.63 vs. 2.35) than the young for all parameters 252 

evaluated indicating more divergence in the movement trajectories along with more degrees of freedom at 253 

each joint. An additional observation from the results is that the λ1 increased from the ankle toward the hip, 254 

which can be due to the ground restriction at the lower end and thus, decrease in the available degrees of 255 

freedom. The knee and particularly the hip are also associated with a greater amount of musculature, thus 256 

producing an increasing variety of movements (i.e., increased degrees of freedom available at these joints). 257 

The authors hypothesized that the elderly exhibit more noise (i.e., less complexity as described in our 258 

model) in their gait patterns, likely explaining the higher incidence of falls in the elderly. 259 

Other researchers seek to understand how individuals compensate for a disease. For instance, Dingwell 260 

et al.12 investigated the effect of diabetic neuropathy on the lower extremity joint angles and the triaxial 261 

accelerations of the trunk collected during a 10-min walk at self-selected pace. The results showed that 262 

neuropathic patients exhibited smaller λ1 values in comparison with matched healthy controls (mean λ1: 263 

0.03 vs. 0.04, respectively). These patients also exhibited slower walking velocities (mean velocity: 1.24 264 

m.s-1 vs. 1.47 m.s-1, respectively). This latter finding was explained as a compensatory strategy to maintain 265 

dynamic balance. More recently, Myers et al.60 investigated the limitations caused by peripheral arterial 266 

disease, a chronic obstructive disease of the arteries of the lower limb caused by atherosclerosis. The 267 

resultant decrease in blood flow can result in symptoms of pain in the lower limb on exercise known as 268 

intermittent claudication. Exercise induced pain is experienced in the calves, thigh or buttocks restricting 269 

activities of daily living and thus reducing quality of life. These limitations are more pronounced in older 270 

patients, making them more prone to falls, possible need for nursing home placement and subsequent loss 271 

of functional independence. In this study, the authors examined whether the largest Lyapunov exponent, a 272 

measure of the sensitive dependence on the initial conditions, has clinical potential as a tool for early 273 

detection and/or prediction of the onset of peripheral arterial disease (PAD). For this purpose, joint angle 274 

variability of the lower extremities was evaluated in claudicating patients as compared with matched 275 
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controls during treadmill walking. Participants walked for three minutes or until the onset of claudication, 276 

whichever came first. Each joint angle time series included at least 30 strides before the onset of 277 

claudification. PAD patients had significantly higher λ1 for all joints compared with controls (hip: 0.095 vs. 278 

0.078, knee: 0.098 vs. 0.074, ankle: 0.105 vs. 0.078, respectively), indicating increased randomness in their 279 

gait patterns and loss of motor control. Interestingly, these differences in λ1 values were observed in the 280 

pain free condition, meaning that pain itself was not the source of increased divergence in the lower 281 

extremity movement trajectories. Most likely, the altered kinematic strategy for the control of gait reflects a 282 

combination of myopathy and neuropathy. The nature of these myopathic and neuropathic changes and 283 

the way they are associated with the clinical and biomechanical findings of leg dysfunction may hold the 284 

key to understanding the PAD pathophysiology. 285 

4.2. Self-similarity evaluation 286 

4.2.1. Approximate entropy 287 

Kurz and Stergiou61 used the statistical concept of entropy to explore the certainty present in the lower 288 

extremity joint kinematics during gait. Specifically, their study addresses the question of whether the 289 

neurophysiological changes associated with aging hinder the ability of the nervous system to appropriately 290 

select neural pathways for a stable and functional gait. The results supported the authors’ hypothesis that 291 

aging is associated with less certainty in the neuromuscular system for selecting joint kinematics during gait. 292 

They speculated that less certainty may be due to neurophysiological changes associated with aging. Such 293 

neurophysiological changes can result in inaccurate information from the visual, vestibular, and 294 

somatosensory receptors (proprioceptive, cutaneous, and joint receptors). Thus, the aging neuromuscular 295 

system may not receive appropriate information to be certain that the selected kinematic behavior will 296 

provide a stable gait. Such uncertainty may be responsible for the increased probability of falls in the 297 

elderly. 298 

Later, Khandoker et al.62 applied ApEn for variability analysis of minimum foot clearance (MFC) data 299 

obtained from healthy elderly and falls-risk elderly (i.e., with balance problems and a history of falls). 300 

Minimum foot clearance, which occurs during the mid-swing phase of the gait cycle, has been identified as 301 

a sensitive gait variable for detecting change in the gait. In fact, at the MFC event, the foot travels very 302 

close to the walking surface (i.e., mean MFC height is approximately 1.29 cm) and even closer as 303 

individuals age ( 1.12 cm). A decreased mean MFC height combined with its variability provides a strong 304 

rationale for MFC being associated with the risk of tripping and/or losing balance. Participants completed 305 

about 10 to 20 minutes of self-paced walking. For each participant, a dataset of 400 adjacent MFC points 306 

was used. Each dataset was divided into smaller sets of length (m = 2), thus creating 200 smaller subsets. 307 

Then, the number of subsets that are within the criterion of similarity (i.e., 0.15 of the standard deviation of 308 

400 MFC points) was determined. The same process was repeated for the second subset till each subset was 309 

compared with the rest of the dataset. The results reveal that ApEn, used with m = 3, in falls-risk elderly 310 

(i.e., mean ApEn = 0.18) was significantly higher than that in healthy elderly (i.e., mean ApEn = 0.13), 311 

indicating increased irregularities and randomness in their gait patterns and an indication of loss of gait 312 

control. Interestingly, mean MFC was also higher in falls-risk elderly, supporting the authors’ hypothesis 313 

that increasing MFC height could be a strategy to minimize tripping, and therefore risk of falling. MFC 314 
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variability, as assessed by ApEn, could potentially be used as a diagnostic marker for early detection of falls 315 

risk in older adults. 316 

Lately, Cavanaugh et al.53 explored the natural ambulatory activity patterns of community-dwelling 317 

older adults. Using a step activity monitor, the ambulatory activity data (i.e., series of one-minute step 318 

counts) were collected continuously (24 hours per day) for two weeks. Each series of one-minute step 319 

counts contains a two-dimensional temporal structure: (1) a vertical structure composed of one-minute step 320 

count values of varying magnitude, and (2) a binary horizontal structure composed of minutes containing 321 

either some activity (step count > 0) or no activity (step count = 0). Fluctuations in the vertical and 322 

horizontal structures form a unique pattern that reflects the individual’s ambulatory activity pattern. 323 

Participants were divided into three groups based on the mean number of steps per day: highly active (steps 324 

 10,000), moderately active (5,000  steps   10,000 steps), and inactive (steps < 5,000 steps). ApEn was 325 

one of the nonlinear measures used to examine the complexity of daily time series composed of one-minute 326 

step count values. Specifically, ApEn determined the probability that short sequences of consecutive one-327 

minute step counts repeated, at least approximately, throughout the longer temporal sequence of 1,440 328 

daily one-minute intervals. The authors used a short sequence length of 2 and a criterion of similarity of 0.2 329 

times the standard deviation of individual time series for all participants. The results highlighted the 330 

unpredictability of minute-to-minute fluctuations in activity of highly active participants and the relative 331 

greater regularity in the activity patterns of less active participants. Specifically, highly active participants 332 

displayed greater amounts of uncertainty (i.e., mean ApEn = 0.50) in the vertical structure of the step count 333 

time series than either moderately active (i.e., mean ApEn = 0.40) or inactive participants (i.e., mean ApEn 334 

= 0.28). Given the fact that step count data demonstrated a deterministic pattern, greater uncertainty was 335 

interpreted as greater complexity. Therefore, the authors inferred that a higher level of activity might be 336 

associated with an enhanced ability to adapt walking behaviour to sudden changes in task demands or 337 

environmental conditions, an important feature of healthy aging. This study provided a field-based 338 

methodological approach that offers an “ongoing view” of walking, that is, an opportunity to study the 339 

manner in which an older adult interacts naturally with the customary environment, beyond the splotlight 340 

of the clinical and laboratory settings. 341 

4.2.2. Detrended Fluctuation Analysis 342 

Hausdorff et al.2,8 observed that the gait of healthy young adults exhibits long-range, self-similar 343 

(fractal) correlations. The authors collected stride time intervals during overground walking using force 344 

sensitive switches, and analyzed them using the Detrended Fluctuation Analysis. They found that the 345 

scaling exponent (i.e., a measure of the degree to which a stride interval at a given time scale is correlated 346 

with previous and subsequent stride intervals over different time scales) is α = 0.76 in self-paced conditions. 347 

Interestingly, the scaling exponent α remained relatively constant (α ranging from 0.84 to 1.10) in slow and 348 

fast paced conditions. Subsequent studies supported these findings, demonstrating that the fractal property 349 

of the fluctuations in the stride interval is also present during treadmill walking or running57-59. From a 350 

neurophysiological control viewpoint, it appears that the presence of long-term, dependence (or “memory” 351 

effect) in gait is intrinsic to the locomotor control system and exist for a wide range of gait velocities. 352 

Another study compared the stride interval fluctuations of healthy elderly (i.e., free of underlying disease) 353 
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vs. young adults9. The scaling exponent α was significantly lower in the elderly compared to the young (α = 354 

0.68 vs. 0.87, respectively), indicating a loss of long-range correlations with aging. Although α differed in 355 

the two age groups, the traditional measures (mean and coefficient of variation of stride time intervals) 356 

were not altered with age. Therefore, it appears that the DFA scaling exponent α is a sensitive measure able 357 

to detect even subtle age-related changes in locomotor function. 358 

In the effort to characterize the biological “clock” that controls locomotion, Hausdorff et al.8 examined 359 

fluctuations in the stride interval during metronomically-paced walking. Healthy young adults walked in 360 

time with the metronome’s beat set to the subject’s natural stride time interval. The metronomic conditions 361 

breakdown the typical long-range correlations of the stride intervals typically found in self-paced walking, 362 

meaning that successive stride intervals became uncorrelated. The authors explained this breakdown by 363 

suggesting that supraspinal influences (i.e., locomotor pacesetter above the level of the spinal cord) could 364 

override the normally present long-range correlations generated peripherally. In other words, the 365 

intervention of attentional and intentional processes focused on external pacing would provoke a kind of 366 

“over-simplification” of the system, yielding the deterioration of long-range correlation in stride interval 367 

fluctuations. However, Delignière and Torre63 recently re-examined Hausdorff et al.’s data and showed 368 

that in metronomic conditions stride intervals cannot be considered as uncorrelated, but rather, contained 369 

anti-persistent correlations (0.34<α<0.41). The authors concluded that the intrinsic complexity of the 370 

system is still at work in metronomic conditions, but expresses differently in overt performance. According 371 

to them, the presence of long-range dependencies in stride time intervals is determined by a central 372 

timekeeper possessing fractal properties. In metronomic conditions, an auto-regressive correction process 373 

would control the discrepancy between the periods produced by this timekeeper and those imposed by the 374 

metronome. 375 

To gain insight into the basis of the presence of long-term dependence, Hausdorff et al.9 investigated 376 

the effects of a neurodegenerative condition, the Huntington’s disease, on long-range correlations in stride 377 

time fluctuations. The rationale behind the study of patients with Huntington’s disease is that they are 378 

generally adults between 30-40 years old with impairment limited primarily to the central nervous system 379 

(i.e., free of other comorbidities and peripheral disease), thus providing a “contrast” to aging to better 380 

understand the mechanisms underlying the existence of stride-interval correlations. Most of the 381 

Huntington’s disease-related changes have been observed in the basal ganglia, with a loss of striatal 382 

projection neurons. Reduced stride-interval correlations were observed for the patients with Huntington’s 383 

disease (α =0.60) compared with healthy controls (α = 0.88), indicating the apparition of an “unhealthy”, 384 

uncorrelated (or anti- persistent) dynamics. Besides, among the patients with Huntington’s disease, α was 385 

inversely correlated with disease severity. The authors suggested that the striatal pathology (that leads to a 386 

decrease in fine motor control) might also impair the long-term dependence and fine control required for 387 

stride-interval correlations. Collectively, these results lay emphasis on the importance of the central nervous 388 

system in the generation of the fractal property of gait. 389 

More recently, Hermann et al.64 investigated whether the scaling exponent α could be used as a 390 

predictor of falls in older adults with a higher-level gait disorder that is an altered gait that is not a result of 391 

lower extremity or peripheral dysfunction and cannot be attributed to well defined chronic disease (e.g., 392 
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idiopathic “cautious” gait of the elderly65). Among these patients, all measures (of muscle function, balance, 393 

and gait, including gait speed and stride time variability) were similar in fallers and non-fallers (including 394 

fear of falling). Only the scaling exponent α was significantly decreased in fallers (i.e., α = 0.75 in fallers vs. 395 

0.88 in non-fallers), indicating that the walking pattern of the fallers was more random and spatio-396 

temporally less organized. Changes in the temporal ordering of the stride interval pattern in fallers have 397 

been suggested to reflect changes in specific cognitive domains. Hausdorff et al.66 demonstrated that, to a 398 

large degree, the cognitive profile of fallers is similar to that of patients with Parkinson’s disease (PD), with 399 

prominent deficits in executive function and attention. However, unlike PD patients, fallers were 400 

abnormally inconsistent in their response times when performing a Go/No-go response inhibition 401 

paradigm. Using sensitive neuroimaging techniques, Bellgrove et al.67 found that those individuals with 402 

increased inconsistent response times activate inhibitory regions to a greater extent, perhaps reflecting a 403 

greater requirement for top-down executive control. Collectively, these findings suggested that fallers may 404 

have damage to specific neural networks, in particular those subserving executive function and attention. 405 

5. Modeling gait complexity 406 

Complexity in human gait has also been considered from a modelling standpoint in order to gain 407 

insights into the origins of the chaotic dynamics2,17,68-71. Indeed, even if studies well-established that chaos 408 

relates to flexibility in gait, generating stable and variable patterns, they did not bring information about the 409 

principles that govern such a chaotic aspect. Within this line of research, different efforts have then been 410 

made to identify quite simple models (also called templates72) able to reproduce chaos, and, more 411 

interesting, which can be used to investigate how chaos in gait can be controlled by the neural system. 412 

One effort for exploring chaotic locomotion has been made using a passive dynamic double pendulum 413 

model that walks down a slightly sloped surface, where one leg is in contact with the ground and the other 414 

leg swings freely with the trajectory of the system’s center of mass15-17,69 (Fig. 4A). Using the step time 415 

interval as an output of the model, the authors showed a cascade of period-doubling bifurcations as a 416 

function of the slope, starting with a period of one for the low slopes (i.e., same time interval for every step 417 

of locomotion) characterizing a periodic (limit-cycle) gait pattern and multiple periods for the high slopes 418 

(i.e., different time interval for the steps of locomotion) leading to a chaotic gait pattern (Fig. 4B). A state 419 

space examination was also conducted from the simulated step time interval data series and the largest 420 

Lyapunov exponents were found to be first null and later positive, confirming the successive bifurcations 421 

from a periodic to a strange (chaotic) attractor with the slope. Hence, despite its simplicity, the model 422 

produced chaotic walking patterns with no active control, meaning that chaos may actually underlie the 423 

normal dynamics of the neuromuscular system. Also, a major aim of the authors was to connect such 424 

complex locomotive dynamics with active neural control mechanisms to understand how the nervous 425 

system can take advantage and utilize the properties of the attractors generated by the model, and 426 

especially of the strange attractor. Using an artificial neural network (ANN) that modulates hip joint 427 

actuation (i.e., by setting the joint stiffness) during the leg swing, Kurz and Stergiou15,17 showed the 428 

possibility to induce transitions between the period-n gait patterns (i.e., any step time intervals) of the 429 

model. In particular, while the model would be unstable and fall down for highly slope values, the ANN 430 
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was capable of selecting a hip joint actuation that transitioned the locomotive system to a stable gait that 431 

was embedded in the chaotic attractor and prevented falls. Also, faced an unforeseen perturbation, the 432 

ANN was capable of selecting a hip joint actuation that rapidly transitioned the locomotive system to a 433 

stable gait, preventing falls again. Hence, such results strongly support that chaos provide flexibility in the 434 

neuromuscular system by providing a mechanism for transitioning to stable gait patterns that are embedded 435 

in the chaotic system (as required in the ever-changing walking environment) and that changes in the 436 

chaotic structure of gait pattern observed in the literature may be related to the neural control of the gait 437 

pattern. 438 

Please insert Fig. 5 here 439 

Another significant modelling effort of the human locomotion that governs the stride time interval 440 

series has been made using a family of stochastic network of neurons, or central pattern generators (CPG), 441 

capable of producing syncopated output2,68. Specifically, these models take the form of a random walk 442 

moving on a finite-size correlated chain of virtual firing nodes, each node generating an impulse of 443 

particular intensity that induce an output signal of particular frequency. Using such a network structure, the 444 

authors were capable of producing stride time interval time series with long term correlations as those 445 

observed normally in human walking (i.e., 15.0  ). West and Scafetta70 and Scafetta et al.71 have 446 

then proposed an extension of these models, called the super-CPG, in which the authors coupled a 447 

stochastic CPG to a Van der Pol oscillator. In others words, while the first models only aimed to reproduce 448 

the chaotic properties of gait using a schematic neural structure, this model is based on the assumption that 449 

human locomotion is regulated both by the nervous system (through the stochastic CPG) and the motor 450 

control system (through the oscillator). The model assumes that each cycle of the oscillator, which 451 

represents the lower limb, is initiated with a new virtual inner frequency produced by the stochastic CPG. 452 

However, the real stride-interval coincides with the actual period of each cycle of the Van der Pol oscillator, 453 

its period depending of the inner frequency coming from the stochastic CPG but also on the amplitude and 454 

the frequency of an external forcing function. Accordingly, the gait frequency and then the time stride 455 

interval are slightly different from the inner frequency induced by the neural firing activity. The authors 456 

then modulated the strength of the forcing function in order to force the frequency of the cycle as in under 457 

metronome-triggered gait conditions (i.e., conscious stresses). It was observed that the properties of the 458 

generated time series were similar to those observed from the experiments with an increase in randomness. 459 

As a consequence, these results seem to prove that the control of the chaotic gait structure would come 460 

from low and high nervous centres, including spinal neural networks (i.e., CPGs) and more “voluntary” 461 

nervous structures (i.e., the central nervous system). 462 

6. Conclusions 463 

In this review, most commonly used nonlinear tools for the exploration of gait complexity were 464 

described as well as their potential importance to provide insight into mechanisms underlying 465 

“pathological” conditions of human gait. Far from being a source of error, evidence supports the necessity 466 

of an optimal state of variability for health and functional movement. Healthy systems exhibit “organized” 467 

variability. In gait, disease (e.g., idiopathic fallers) or unhealthy (e.g., physical inactivity) states may 468 

manifest with increased or decreased complexity of lower extremities walking behaviour as it was found in 469 
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elderly fallers compared with healthy controls and in inactive older adults compared to those that are more 470 

active. Unhealthy state is also associated with a loss of self-similarity and long-range dependence. For 471 

instance, DFA, a measure of long-range persistence (dependence), was found to be decreased in fallers, and 472 

even more in patients with Huntington’s disease, with the apparition of an uncorrelated (or anti- persistent) 473 

dynamics. These findings are completely in line with earlier findings in human physiology, suggesting that 474 

the pathological state should be better conceptualized as a part of “dynamic reordering” rather than as 475 

manifestations of a disordering process73. The concepts of variability and complexity, and the nonlinear 476 

tools used to measure these concepts open new vistas for research in gait dysfunction of all types. Besides, 477 

the recent modelling effort of the human locomotion provided the groundwork to better understand how 478 

motor control strategies and the mechanical constructs of the locomotion system influence the chaotic 479 

properties (complexity) of the gait. 480 
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Figures and captions 

 

 

Fig. 1. Heart time series. A. An electrocardiogram (ECG) record, representing the electrical activity of the 

heart over time. The R-R interval represents the time duration between two consecutive R waves. B. R-R 

interval time series. Even though the interval is fairly constant, it fluctuates about its mean (solid line) in an 

apparently erratic manner. The data used for the traces A. and B. were obtained from the free web 

resources available on Physionet (http://www.physionet.org). 

http://www.physionet.org/
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Fig. 2. Theoretical model of complexity as it relates to health. Adapted from Stergiou et al.27 
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Fig. 3. State space analysis in human gait. A. A one-dimensional joint kinematics data set which is the hip 

angle over time in the saggittal direction. B. Reconstruction of the state space from the time series using the 

time delay method. For convenience, the state space is presented here with three embedding dimensions 

  2,,  iii xxx . Preferred states are visited in the space, corresponding to the attractor. Note that one 

complete orbit around the attractor constitutes one cycle of movement. C. Local section of the attractor 

where the divergence of neighbouring trajectories across i discrete time steps is measured by  id j
. The 

largest Lyapunov exponent 
1  is then calculated from the slope of the average logarithmic divergence of all 

pairs of neighbouring trajectories (   id jln ) versus ti .  s. D. Evaluation of the way in which the number 

of points within a sphere of radius r centred on the attractor scales with r. As the number of points,  rC , 

increases as a power of r , the correlation dimension 
CD  is then calculated from the slope of the ln/ln plot 

of  rC vs. r . The hip kinematics data were obtained from resources of the Nebraska Biomechanics Core 

Facility (University of Nebraska at Omaha). 
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Fig. 4. Illustration of the detrended fluctuation analysis (DFA). A. The original time series. B. The original 

times series is integrated and divided into non-overlapping intervals of length n. In each interval, a least 

squares line is fit to the data and the series is locally detrended by substracting the theoretical values given 

by the regression. The characteristic size of fluctuation  nF  for the integrated and detrended series is then 

obtained. C. Once the previous computation is repeated over all possible interval lengths, a power law 

between  nF  and n  is expected. The scaling exponent   is then expressed as the slope of a double 

logarithmic plot of  nF  as a function of n .  
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Fig. 5. A. Passive dynamic walking model that has a chaotic gait pattern. B. Bifurcation diagram of the 

gait patterns generated by the model as a function of the slope. The period is similar to the number of 

different step time intervals chosen by the walking model during a steady state gait. For example, period-1 

means that the model adopt one step time interval during the gait and then a periodic pattern, period-2 that 

the model alternates between two different step time intervals revealing a quasi-periodic pattern, and so on 

until chaotic patterns. 
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