1,565 research outputs found

    Emerging Vaccine Informatics

    Get PDF
    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning

    The Role of Matrix Metalloproteinases in the Immunopathology of Cerebral Tuberculosis

    No full text
    Introduction: Central nervous system tuberculosis (CNS TB) has a high mortality. Microglial derived matrix metalloproteinases (MMPs) are implicated in the intense inflammatory response to Mycobacterium tuberculosis (M.tb) as the blood brain barrier is rich in MMP substrates. Methods: In a cellular model of CNS TB human microglial cells were stimulated with M.tb and conditioned media from M.tb infected human monocytes (CoMTb). Gene expression of all 23 MMPs and the 4 tissue inhibitors of MMP (TIMPs) was analysed by real time RT-PCR and secretion by Luminex and Western blotting. MMP gene transcription regulation was studied by luciferase promoter reporter assays and NFkB/AP-1 ELISAs. MAP kinases were studied by Western blotting. Immunohistochemistry of CNS TB biopsies and ELISA analysis of cerebrospinal fluid (CSF) was performed. Results: CoMTb up-regulated expression of MMP-1, -3 and -9, which was suppressed by dexamethasone. In contrast CoMTb did not alter TIMP-1 and reduced TIMP-2, -3 and -4 expression. M.tb up-regulated MMP-1 and -3 secretion. However, CoMTb drove MMP-1 and -3 secretion more potently than M.tb but suppressed MMP-2 secretion. Nuclear NFkB p50-p65 heterodimers and AP-1 cJun/FosB increased in CoMTb stimulated cells, with concomitant degradation of IkBα. Mutation of NFkB and AP-1 sites in the MMP-1 promoter abrogated CoMTb promoter activity. CoMTb drove early p38 and ERK MAP kinase phosphorylation. Chemical inhibition of both NFkB and p38 returned MMP-1 and 3 secretion to control levels but enhanced MMP-2 secretion that was also caspase 8 dependent. MMP/TIMP concentrations in CSF samples from TBM patients were predictive of coma severity and outcome and demonstrated that dexamethasone preferentially suppressed MMP-9. Conclusions: In CNS TB unopposed MMP-1 and -3 expression and secretion are driven by M.tb-infected monocyte networks and regulated by p38, NFkB and AP-1. CSF MMP/TIMP concentrations predict disease severity and offer a mechanism for the beneficial effect of dexamethasone therapy

    The costs and benefits of sociality in semi-free ranging Barbary macaques (Macaca sylvanus)

    Get PDF
    Infektionen mit Parasiten sind im Tierreich allgegenwĂ€rtig, und ein erhöhtes Risiko fĂŒr ParasitenĂŒbertragung gilt als einer der grĂ¶ĂŸten Nachteile des Gruppenlebens. Mit zunehmender GruppengrĂ¶ĂŸe und Anzahl an Interaktionen sollte es zu hĂ€ufigeren Kontakten mit Krankheitserregern und damit zu vermehrter KrankheitsĂŒbertragung kommen. Im Gegensatz dazu tragen soziale Integration und enge affiliative Beziehungen bei sozial lebenden Tierarten zu besserem Gesundheitszustand, höherer Lebenserwartung und höherem Reproduktionserfolg bei. Es wird daher angenommen, dass durch soziale Interaktionen positive EinflĂŒsse auf die Gesundheit, unter anderem niedrigere AnfĂ€lligkeit fĂŒr Krankheiten, entstehen, die zu Fitnessvorteilen fĂŒhren. Besonders bei wildlebenden Tieren sind die Mechanismen, ĂŒber die Sozialverhalten zu Gesundheitsvorteilen fĂŒhrt, noch weitestgehend unbekannt. JĂŒngste methodologische und theoretische Fortschritte auf den Gebieten der Krankheitsökologie und Öko-Immunologie erleichtern die Erforschung der Verbindungen zwischen Parasiten und dem Sozialverhalten des Wirts. Somit rĂŒckt die Erforschung der Dynamik zwischen Wirtstieren und Parasiten und die verbindung zwischen Sozialverhalten und Gesundheit zunehmend auch in den Fokus der Verhaltensökologie und Evolutionsbiologie. Gastrointestinale Parasiten sind ein vielversprechendes System, um die ZusammenhĂ€nge zwischen Sozialverhalten und Gesundheit zu untersuchen, da sie nicht-invasiv analysiert werden können. Allerdings sind Wirt-Parasitenbeziehungen komplex und beinhalten oft RĂŒckkopplungsschleifen: WĂ€hrend Infektionen mit Parasiten das Verhalten des Wirtes beeinflussen, bestimmen Verhalten und Physiologie des Wirtes Kontaktraten mit Krankheitserregern und AnfĂ€lligkeit fĂŒr Infektionen. Da zumeist Korrelationsstudien vorliegen, sind die kausalen ZusammenhĂ€nge zwischen den Interaktionen von Wirtsverhalten, Physiologie und Parasiteninfektionen weitestgehend unbekannt. ZusĂ€tzlich kann das Verhalten des Wirtes gleichzeitig zum Kontakt mit Krankheitserregern und der InfektionsanfĂ€lligkeit beitragen und beide Komponenten können miteinander verwoben sein, so dass es schwierig ist, die Rolle von sozialen Interaktionen fĂŒr ParasitenĂŒbetragung zu entschlĂŒsseln. Um die Ursachen und Konsequenzen von Infektionen mit gastrointestinalen Helminthen zu verstehen, werden in dieser Dissertation die ZusammenhĂ€nge zwischen gastrointestinalen Parasiten, Physiologie, Verhalten und sozialen Interaktionen bei sozialen Primaten, den Berberaffen (Macaca sylvanus) untersucht. Dabei mache ich mir die routinemĂ€ĂŸige Entwurmung einer halbwilden Population zu Nutze, die zur Freiheit von Infektionen mit Strongiliden fĂŒhrt. Durch die experimentelle VerĂ€nderung des Parasitenstatuses können eher SchlĂŒsse ĂŒber KausalzusammenhĂ€nge der Interaktionen zwischen Wirt und Parasiten, insbesondere im Bezug auf das Sozialverhalten, gezogen werden, als es in Korrelationsstudien möglich ist. Hierzu werden Verhaltensdaten (ca. 3500 Stunden) mit Analysen von molekularen Marker der Immunregulation (Neopterin im Urin), der körperlichen Verfassung (C-Peptide im Urin) und der AktivitĂ€t der Hypothalamus-Hypophysen-Nebennieren-(HPA)-Achse und die Bestimmung des Infektionsstatuses verbunden. Um die methodische Ungenauigkeit der nicht-invasiver Parasitenanalysen zu berĂŒcksichtigen, werden Patch-Occupancy-Modelle zur AbschĂ€tzung der Infektionswahrscheinlichkeiten und des Risikos der Wiederansteckung genutzt. ZusĂ€tzlich wird analysiert, ob infektionsbezogene VerhaltensĂ€nderungen eine Folge von Krankheitsverhalten oder der Vermeidung infizierter Artgenossen sind. Dies lĂ€sst RĂŒckschlĂŒsse auf den Einfluss von Parasiteninfektionen auf das Sozialverhalten zu, die möglicherweise auf die soziale Evolution der Tiere ĂŒbertragen werden können. Ich ĂŒberprĂŒfe auch, ob soziale Fellpflege als möglicher direkter Übertragungsweg das Risiko einer Ansteckung mit Darmparasiten vorhersagt. Infektionen mit Strongiliden, zumeist Oesophagostomum spp., waren in der Studiengruppe allgegenwĂ€rtig und zeigten meist geringe Ei-Ausscheidungsraten, aber große interindividuelle Unterschiede in der Wiederansteckungswahrscheinlichkeit. Diese Infektionen verursachten keine offensichtlichen Symptome oder eine VerĂ€nderung der körperlichen Verfassung. Sie riefen dennoch Anzeichen fĂŒr Krankheitsverhalten hervor, messbar als stĂ€rkere AktivitĂ€t der HPA-Achse und geringere AktivitĂ€t infizierter Tiere. Die Entwurmung rief keine VerĂ€nderungen der Neopterinlevel hervor. Diese stiegen jedoch im Alter an, was auf Immunoseneszenz hindeutet. Da Infektionen mit weiteren Helminthen vorwiegend in Ă€lteren Individuen vorkommen, könnte dies darauf hindeuten, dass Immunoseneszenz die FĂ€higkeit der Tiere, Parasiteninfektionen einzudĂ€mmen, beeinflusst. Die Rate, mit der die Tiere sich Artgenossen annĂ€herten, hing nicht mit dem eigenen Parasitenstatus, sondern dem des Partners zusammen, was auf eine Vermeidung infizierter Artgenossen hindeutet. Wiederansteckung wurde durch Marker fĂŒr ParasitenanfĂ€lligkeit und -kontakt bestimmt. Der stĂ€rkste PrĂ€diktor fĂŒr eine schnellere Wiederansteckung war eine Ko-Infektion mit weiteren gastrointestinalen Helminthen. Es gab keine Hinweise darauf, dass HPA-AchsenaktivitĂ€t oder Immunfunktion starke PrĂ€diktoren fĂŒr eine Wiederansteckung sind. Eine gute körperliche Verfassung fĂŒhrte zu einer tendenziellen Erhöhung des Ansteckungsrisikos, was wahrscheinlich ein Zeichen fĂŒr Toleranz gegenĂŒber Darmparasiteninfektionen in Berberaffen ist. Der Übertragunsweg von Strongyliden ĂŒber die Umwelt wurde bestĂ€tigt: Tiere, die viel Zeit in Gebieten mit hoher Kotkontamination verbrachten, d.h. wahrscheinlich hĂ€ufig Kontakt mit infektiösen Parasitenstadien hatten, hatten auch ein erhöhtes Ansteckungsrisiko. Starke soziale Bindungen zu Partnern des anderen Geschlechts verringerten das Infektionsrisiko, wahrscheinlich auf Grund positiver Effekte sozialer Interaktionen auf die Funktion des Immunsystems. Im Gegensatz dazu fĂŒhrten soziale Fellpflege mit einer Vielzahl an Partnern und enge Bindungen mit gleichgeschlechtlichen Partnern zu einer höheren Ansteckungswahrscheinlichkeit, was eine soziale Komponente bei der ParasitenĂŒbertragung nahelegt. Dabei deutet die Diskrepanz zwischen den Effekten von Bindungen zu getrennt- und gleichgeschlechtlichen Partnern wahrscheinlich darauf hin, dass spezifische Verhaltensweisen unterschiedlich stark zum Kontakt mit Parasiten und der InfektionsanfĂ€lligkeit beitragen. Zusammenfassend legen die Ergebnisse nahe, dass Infektionen mit gastrointestinalen Parasiten das Sozialverhalten nichtmenschlicher Primaten beeinflussen können. In Anbetracht der zweischneidigen Rolle sozialer Beziehungen erscheint das AusprĂ€gen weniger, starker Bindungen als mögliche Strategie, die Vorteile von Beziehungen voll auszukosten und gleichzeitig die Nachteile zu minimieren - mit dem Vorbehalt, dass einige Interaktionsmuster mehr Vorteile mit sich bringen können als andere. Durch meine Ergebnisse ergeben sich eine Reihe neuer Fragen, die in zukĂŒnftigen Studien beantwortet werden sollten, insbesondere ob Primaten Parasitentoleranzstrategien nutzen können, um die Kosten von Parasiteninfektionen einzudĂ€mmen. Zu entschlĂŒsseln, welche Komponenten des Sozialverhaltens mit Kontakt zu Krankheitserregern und der AnfĂ€lligkeit fĂŒr Infektionen zusammenhĂ€ngen ist wichtig, um die Variation des Infektionsrisikos zwischen einzelnen Tieren und deren Beitrag zur Übertragung von Krankheiten innerhalb einer Population zu verstehen. Zu untersuchen, ob Unterschiede in der Reaktion auf Parasiteninfektionen Langzeitfolgen fĂŒr Gesundheit und Fitness vorhersagen, ist ein wichtiger nĂ€chster Schritt, um den Einfluss der Wirt-Parasitenbeziehung auf das Verhalten möglicherweise die soziale Evolution von Wirtstieren zu verstehen.Parasite infections are ubiquitous throughout the animal kingdom, and increased risk of parasite transmission has been suggested as one of the major costs of group living. With bigger group size and higher interaction frequencies, transmission is expected to increase due to higher pathogen exposure. In contrast, social integration and close affiliative relationships are known predictors of increased health, longevity and reproductive success in social animals. Sociality is thus hypothesized to offer fitness benefits by improving health, including reduced susceptibility to infectious diseases. The underlying mechanisms mediating the health benefits of social interactions are still largely unclear, particularly in wildlife. Recent methodological and theoretical advances in the fields of disease ecology and eco-immunology make studying the links between host sociality and parasites more feasible. Consequently, understanding host-parasite dynamics and the role of sociality for health has received increasing attention in behavioural ecology and evolutionary biology. Gastrointestinal (GI) helminths are a powerful tool to study the links between sociality and health, as they can be assessed noninvasively. However, host-parasite interactions are complex and can function as feedback loops: parasites alter their host’s physiology and behaviour, which in turn predict exposure and susceptibility to parasite infection. Often the directionality of the links between host behaviour, sociality and physiology and infection isn’t clear due to the correlational nature of conducted studies. Additionally, host behaviour can contribute to both exposure and susceptibility simultaneously and both factors can be intertwined, so understanding the role of sociality for parasite transmission is challenging. In this thesis I investigate the host-parasite dynamic between GI helminth infections and a social primate, the Barbary macaque (Macaca sylvanus), aiming at understanding the causes and consequences of GI helminth infection. Capitalizing on strongyle nematode clearance by routine anthelmintic treatment in a semi-free ranging population, I can take a step beyond correlational studies and draw more causal inferences about the direction of host-parasite interactions, placing a special focus on social behaviour. I combine behavioural observation data (~ 3500 hours) with analyses of molecular markers of immune regulation (urinary neopterin, uNEO), physical condition (urinary C-peptide, uCP) and hypothalamic-pituitary-adrenal (HPA) axis activation and parasite status assessment. This enables me to assess the consequences of parasite clearance and investigate the predictors of reinfection with GI helminths. To account for uncertainty of noninvasively assessed parasite status, I use patch occupancy modelling to estimate infection probabilities and individual reinfection risk. I test whether infection related behavioural changes are attributable to sickness behaviour or avoidance of infected conspecifics to extrapolate the impact of GI helminth infections on social behaviour and potentially evolution. With regard to parasite transmission, I test whether grooming predicts reinfection risk, indicating transmission due to social contact. Strongyle nematode infections, mostly caused by Oesophagostomum spp., were ubiquitous within the study population, with generally low egg shedding and large inter-individual variation in reinfection risk. Infections did not cause overt symptoms or affect physical condition. They nonetheless elicited sickness behaviour responses, namely increased HPA axis activation in combination with reduced activity. Anthelmintic treatment did not alter uNEO levels, but uNEO increased with age, implying immunosenescence. As coinfections with further GI helminths occurred mostly in old individuals, immunosenescence might influence an individual’s ability to cope with GI helminth infections in general. Individual frequency to initiate proximity to others was not predicted by an individual’s, but by the potential partner’s infection status, indicating avoidance of infected individuals. Reinfection was predicted by measures of both susceptibility and exposure. The strongest predictor of earlier reinfection was coinfection with further GI helminth taxa. I found no evidence for HPA axis activation and immune function as strong predictors of reinfection. Being in good physical condition tended to increase reinfection risk, indicating the presence of parasite tolerance strategies in Barbary macaques. Time spent in areas likely contaminated with faeces, a measure of exposure to infective parasite stages, emerged as a predictor of increased infection risk, confirming the direct environmental transmission route of strongyle nematodes. High social bond strength with opposite sex partners decreased reinfection probability, probably due to reduced susceptibility resulting from immunomodulatory effects of affiliative interactions. In contrast, grooming a high number of partners and strong bonds with same sex partners emerged as predictors of increased infection probability, implying a social component of transmission. Social interactions can thus have an ambivalent effect, contributing to both protection from and increased risk of GI helminth infections. The discrepancy between same and opposite sex bond effects is likely attributable to differences in interaction patterns, resulting in different relative contributions of same and opposite sex bonds to exposure and susceptibility. In conclusion, the results suggest that GI parasite infections can influence social behaviour in nonhuman primates. Given the dual role of social interactions for GI helminth transmission, a possible strategy to maximize benefits while limiting costs of sociality could be selective formation of strong bonds with a small number of partners, with the caveat that particular interaction patterns might be more beneficial than others. My results lead to a range of questions which need to be addressed by future research, particularly whether primates mitigate costs of infection by employing tolerance strategies. Causally linking components of social behaviour to exposure and susceptibility will be important for understanding individual variation in infection risk and contribution to transmission through a population. Investigating whether variation in responses to GI helminth infections predict long-term health and fitness outcomes will be vital to assess the impact of host-parasite dynamics on behaviour and potentially host social evolution

    Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients

    Get PDF
    COVID-19, the illness caused by infection with the novel coronavirus SARS-CoV-2, is a rapidly spreading global pandemic in urgent need of effective treatments. Here we present a comprehensive examination of the host- and virus-targeted functions of the flavonolignan silibinin, a potential drug candidate against COVID-19/SARS-CoV-2. As a direct inhibitor of STAT3-a master checkpoint regulator of inflammatory cytokine signaling and immune response-silibinin might be expected to phenotypically integrate the mechanisms of action of IL-6-targeted monoclonal antibodies and pan-JAK1/2 inhibitors to limit the cytokine storm and T-cell lymphopenia in the clinical setting of severe COVID-19. As a computationally predicted, remdesivir-like inhibitor of RNA-dependent RNA polymerase (RdRp)-the central component of the replication/transcription machinery of SARS-CoV-2-silibinin is expected to reduce viral load and impede delayed interferon responses. The dual ability of silibinin to target both the host cytokine storm and the virus replication machinery provides a strong rationale for the clinical testing of silibinin against the COVID-19 global public health emergency. A randomized, open-label, phase II multicentric clinical trial (SIL-COVID19) will evaluate the therapeutic efficacy of silibinin in the prevention of acute respiratory distress syndrome in moderate-to-severe COVID-19-positive onco-hematological patients at the Catalan Institute of Oncology in Catalonia, Spain

    Impact Of Autologous Mesenchymal Stem Cell Infusion On Neuromyelitis Optica Spectrum Disorder: A Pilot 2-Year Observational Study

    Get PDF
    Aims: We evaluate safety and efficacy of autologous bone marrow-derived mesenchymal stem cells (MSCs) as a potential treatment for neuromyelitis optica spectrum disorder (NMOSD). Methods: Fifteen patients with NMOSD were recruited. All patients received a single intravenous infusion of 1.0 × 10 8 autologous MSC within 3ñ€“4 generations derived from bone marrow. The primary endpoints of the study were efficacy as reflected by reduction in annualized relapse rates (ARRs) and inflammatory lesions observed by MRI. Results: At 12 months after MSC infusion, the mean ARR was reduced (1.1 vs. 0.3, P = 0.002), and the T2 or gadolinium-enhancing T1 lesions decreased in the optic nerve and spinal cord. Disability in these patients was reduced (EDSS, 4.3 vs. 4.9, P = 0.021; visual acuity, 0.4 vs. 0.5, P = 0.007). The patients had an increase in retinal nerve fiber layer thickness, optic nerve diameters and upper cervical cord area. We did not identify any serious MSC-related adverse events. At 24 months of MSC infusion, of 15 patients, 13 patients (87%) remained relapse-free, the mean ARR decreased to 0.1; the disability of 6 patients (40%) was improved, and the mean EDSS decreased to 4.0. Conclusions: This pilot trial demonstrates that MSC infusion is safe, reduces the relapse frequency, and mitigates neurological disability with neural structures in the optic nerve and spinal cord recover in patients with NMOSD. The beneficial effect of MSC infusion on NMOSD was maintained, at least to some degree, throughout a 2-year observational period

    Recalibrating immunity in cancer and autoimmune inflammation by lectin-driven regulatory circuits

    Get PDF
    Endogenous lectins play key roles in cell homeostasis by decoding the informationencrypted in glycans present on the cell surface or extracellular matrix. Galectins, a familyof soluble lectins, have emerged as central regulators of innate and adaptive immuneresponses. In this article we review seminal work demonstrating the immunoregulatoryroles of Galectin-1 (Gal-1), a proto-type member of the galectin family, and highlightcentral mechanisms that control its functions in cancer and autoimmune inflammation.Understanding the cellular pathways that control Gal-1 expression and function in tumorand inflammatory microenvironments will set the bases for the design of rational therapiesbased on positive or negative modulation of this endogenous lectin in cancer andautoimmune diseases.Fil: Bach, Camila Agustina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Cutine, Anabela MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Laporte, Lorena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Mahmoud, Yamil DamiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Manselle Cocco, Montana Nicolle. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Massaro, Mora. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Merlo, JoaquĂ­n Pedro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Perrotta, Ramiro Martin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Sarbia, NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Veigas, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Rabinovich, Gabriel AdriĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; Argentin

    Gene Expression Analysis in the Thalamus and Cerebrum of Horses Experimentally Infected with West Nile Virus

    Get PDF
    Gene expression associated with West Nile virus (WNV) infection was profiled in the central nervous system of horses. Pyrosequencing and library annotation was performed on pooled RNA from the CNS and lymphoid tissues on horses experimentally infected with WNV (vaccinated and naĂŻve) and non-exposed controls. These sequences were used to create a custom microarray enriched for neurological and immunological sequences to quantitate gene expression in the thalamus and cerebrum of three experimentally infected groups of horses (naĂŻve/WNV exposed, vaccinated/WNV exposed, and normal)
    • 

    corecore