2,572 research outputs found

    Defect and thickness inspection system for cast thin films using machine vision and full-field transmission densitometry

    Get PDF
    Quick mass production of homogeneous thin film material is required in paper, plastic, fabric, and thin film industries. Due to the high feed rates and small thicknesses, machine vision and other nondestructive evaluation techniques are used to ensure consistent, defect-free material by continuously assessing post-production quality. One of the fastest growing inspection areas is for 0.5-500 micrometer thick thin films, which are used for semiconductor wafers, amorphous photovoltaics, optical films, plastics, and organic and inorganic membranes. As a demonstration application, a prototype roll-feed imaging system has been designed to inspect high-temperature polymer electrolyte membrane (PEM), used for fuel cells, after being die cast onto a moving transparent substrate. The inspection system continuously detects thin film defects and classifies them with a neural network into categories of holes, bubbles, thinning, and gels, with a 1.2% false alarm rate, 7.1% escape rate, and classification accuracy of 96.1%. In slot die casting processes, defect types are indicative of a misbalance in the mass flow rate and web speed; so, based on the classified defects, the inspection system informs the operator of corrective adjustments to these manufacturing parameters. Thickness uniformity is also critical to membrane functionality, so a real-time, full-field transmission densitometer has been created to measure the bi-directional thickness profile of the semi-transparent PEM between 25-400 micrometers. The local thickness of the 75 mm x 100 mm imaged area is determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient is determined to be 1.4 D/mm and the average thickness error is found to be 4.7%. Finally, the defect inspection and thickness profilometry systems are compiled into a specially-designed graphical user interface for intuitive real-time operation and visualization.M.S.Committee Chair: Tequila Harris; Committee Member: Levent Degertekin; Committee Member: Wayne Dale

    On-line quality control in polymer processing using hyperspectral imaging

    Get PDF
    L’industrie du plastique se tourne de plus en plus vers les matériaux composites afin d’économiser de la matière et/ou d’utiliser des matières premières à moindres coûts, tout en conservant de bonnes propriétés. L’impressionnante adaptabilité des matériaux composites provient du fait que le manufacturier peut modifier le choix des matériaux utilisés, la proportion selon laquelle ils sont mélangés, ainsi que la méthode de mise en œuvre utilisée. La principale difficulté associée au développement de ces matériaux est l’hétérogénéité de composition ou de structure, qui entraîne généralement des défaillances mécaniques. La qualité des prototypes est normalement mesurée en laboratoire, à partir de tests destructifs et de méthodes nécessitant la préparation des échantillons. La mesure en-ligne de la qualité permettrait une rétroaction quasi-immédiate sur les conditions d’opération des équipements, en plus d’être directement utilisable pour le contrôle de la qualité dans une situation de production industrielle. L’objectif de la recherche proposée consiste à développer un outil de contrôle de qualité pour la qualité des matériaux plastiques de tout genre. Quelques sondes de type proche infrarouge ou ultrasons existent présentement pour la mesure de la composition en-ligne, mais celles-ci ne fournissent qu’une valeur ponctuelle à chaque acquisition. Ce type de méthode est donc mal adapté pour identifier la distribution des caractéristiques de surface de la pièce (i.e. homogénéité, orientation, dispersion). Afin d’atteindre cet objectif, un système d’imagerie hyperspectrale est proposé. À l’aide de cet appareil, il est possible de balayer la surface de la pièce et d’obtenir une image hyperspectrale, c’est-à-dire une image formée de l’intensité lumineuse à des centaines de longueurs d’onde et ce, pour chaque pixel de l’image. L’application de méthodes chimiométriques permettent ensuite d’extraire les caractéristiques spatiales et spectrales de l’échantillon présentes dans ces images. Finalement, les méthodes de régression multivariée permettent d’établir un modèle liant les caractéristiques identifiées aux propriétés de la pièce. La construction d’un modèle mathématique forme donc l’outil d’analyse en-ligne de la qualité des pièces qui peut également prédire et optimiser les conditions de fabrication.The use of plastic composite materials has been increasing in recent years in order to reduce the amount of material used and/or use more economic materials, all of which without compromising the properties. The impressive adaptability of these composite materials comes from the fact that the manufacturer can choose the raw materials, the proportion in which they are blended as well as the processing conditions. However, these materials tend to suffer from heterogeneous compositions and structures, which lead to mechanical weaknesses. Product quality is generally measured in the laboratory, using destructive tests often requiring extensive sample preparation. On-line quality control would allow near-immediate feedback on the operating conditions and may be transferrable to an industrial production context. The proposed research consists of developing an on-line quality control tool adaptable to plastic materials of all types. A number of infrared and ultrasound probes presently exist for on-line composition estimation, but only provide single-point values at each acquisition. These methods are therefore less adapted for identifying the spatial distribution of a sample’s surface characteristics (e.g. homogeneity, orientation, dispersion). In order to achieve this objective, a hyperspectral imaging system is proposed. Using this tool, it is possible to scan the surface of a sample and obtain a hyperspectral image, that is to say an image in which each pixel captures the light intensity at hundreds of wavelengths. Chemometrics methods can then be applied to this image in order to extract the relevant spatial and spectral features. Finally, multivariate regression methods are used to build a model between these features and the properties of the sample. This mathematical model forms the backbone of an on-line quality assessment tool used to predict and optimize the operating conditions under which the samples are processed

    Vision-based Online Defect Detection of Polymeric Film via Structural Quality Metrics

    Get PDF
    Nondestructive and contactless online approaches for detecting defects in polymer films are of significant interest in manufacturing. This paper develops vision-based quality metrics for detecting the defects of width consistency, film edge straightness, and specks in a polymeric film production process. The three metrics are calculated from an online low-cost grayscale camera positioned over the moving film before the final collection roller and can be implemented in real-time to monitor the film manufacturing for process and quality control. The objective metrics are calibrated to correlate with an expert ranking of test samples, and results show that they can be used to detect defects and measure the quality of polymer films with satisfactory accuracy

    Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges and Opportunities

    Get PDF
    Unformatted postprintConducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of current devices are rigid 2D systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable 3D (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene) (PEDOT), polypyrrole (PPy) and polyaniline (PANi). It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene and silver nanowires. Afterwards, the foremost application of CPs processed by 3D printing techniques in the biomedical and energy fields, i.e., wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. N.A. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 753293, acronym NanoBEAT

    Titania nanotube arrays as potential interfaces for neurological prostheses

    Get PDF
    2014 Summer.Includes bibliographical references.Neural prostheses can make a dramatic improvement for those suffering from visual and auditory, cognitive, and motor control disabilities, allowing them regained functionality by the use of stimulating or recording electrical signaling. However, the longevity of these devices is limited due to the neural tissue response to the implanted device. In response to the implant penetrating the blood brain barrier and causing trauma to the tissue, the body forms a to scar to isolate the implant in order to protect the nearby tissue. The scar tissue is a result of reactive gliosis and produces an insulated sheath, encapsulating the implant. The glial sheath limits the stimulating or recording capabilities of the implant, reducing its effectiveness over the long term. A favorable interaction with this tissue would be the direct adhesion of neurons onto the contacts of the implant, and the prevention of glial encapsulation. With direct neuronal adhesion the effectiveness and longevity of the device would be significantly improved. Titania nanotube arrays, fabricated using electrochemical anodization, provide a conductive architecture capable of altering cellular response. This work focuses on the fabrication of different titania nanotube array architectures to determine how their structures and properties influence the response of neural tissue, modeled using the C17.2 murine neural stem cell subclone, and if glial encapsulation can be reduced while neuronal adhesion is promoted

    Nano-Micro Tubes & Fibers for Biomedical Applications

    Get PDF
    Polymer based nanometer to micrometer size fibers and tubes are the bases for a wide range of industrial and medical applications and various research branches. They are capable of guiding light, carrying electricity and liquid or exchanging heat. Two production systems were established and built. These systems enable us to produce a wide range of tiny tubes & fibers. Light, nano-micro tubes & fibers, beads, nanoparticles and biological entities and agents (e.g. cells, antibodies and nerve growth factor) were used in this master work. The main focus in this work is on nerve regenerative implants and neural electrodes

    Strategies for neural control of prosthetic limbs: From electrode interfacing to 3D printing

    Get PDF
    Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user\u27s cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface

    Next generation bioelectronics: advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors

    Get PDF
    Organic bioelectronics is making an enormous impact in the field of tissue engineering, providing not just biocompatible, but biofunctional conducting material platforms. For their true potential to be reached, it is critical to integrate organic conductors with other biopolymers in a targeted manner, allowing the development of devices and scaffold architectures capable of delivering a number of physical, chemical, and electrical stimuli. Herein, we provide an overview of the methods currently being employed to tailor organic conductors for bioapplications, with a focus on the development of fabrication techniques vital to the development of the next generation of intelligent bionic devices

    A flexible strain-responsive sensor fabricated from a biocompatible electronic ink via an additive-manufacturing process

    Get PDF
    Biosensor technologies are of great interest for applications in wearable electronics, soft robotics and implantable biomedical devices. To accelerate the adoption of electronics for chronic recording of physiological parameters in health and disease, there is a demand for biocompatible, conductive & flexible materials that can integrate with various tissues while remaining biologically inert. Conventional techniques used to fabricate biosensors, such as mask lithography and laser cutting, lack the versatility to produce easily customisable, micro-fabricated biosensors in an efficient, cost-effective manner. In this paper, we describe the development and characterisation of an electronic ink made from an environmentally sustainable copolymer - x-pentadecalactone-co-e-decalactone, (PDL) incorporating silver nanowires (AgNW), which are known for their antimicrobial and conductive properties. The composites were shown to possess a low percolation threshold (1% w/w of AgNW to PDL), achieve a low electrical resistance (320 +/- 9 O/sq) and a high electrical capacitance (2.06 +/- 0.06 mF/cm2). PDL nanocomposites were biocompatible, demonstrated in vitro through the promotion of neural adhesion and prevention of astrocyte activation. An optimised ink formulation was subsequently used to fabricate strain-responsive biosensors with high spatial resolution (sub-100 mm) using a direct write additive manufacturing process. Using a customized in vitro set-up, the sensitivity of these biosensors to biologically-relevant strains was assessed under simulated physiological conditions for 21 days. Critically, these 3D printed biosensors have applications in chronic prophylactic monitoring of pressure changes within the body and related pathologies.This publication has emanated from research conducted with the financial support of the Science Foundation Ireland (SFI) Technology Innovation Development Programme, grant no. 15/TIDA/2992 and was co-funded under the European Regional Development Fund under Grant Number 13/RC/2073 and the Hardiman PhD Research Scholarship from the National University of Ireland, Galway. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 713690. The authors acknowledge the facilities and scientific and technical assistance of the Centre for Microscopy & Imaging at the National University of Ireland Galway, a facility that is funded by NUIG and the Irish Government's Programme for Research in Third Level Institutions, Cycles 4 and 5, National Development Plan 20072013.r The Basque Government GV/EJ (Department of Education, Linguistic Politics and Culture) is also acknowledged for financial support to the consolidated research groups project IT927-16 (UPV/EHU, GIC/152)
    • …
    corecore