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SUMMARY 

Quick mass production of homogeneous thin film material is required in paper, 

plastic, fabric, and thin film industries.  Due to the high feed rates and small thicknesses, 

machine vision and other nondestructive evaluation techniques are used to ensure 

consistent, defect-free material by continuously assessing post-production quality.  One 

of the fastest growing inspection areas is for 0.5-500 micrometer thick thin films, which 

are used for semiconductor wafers, amorphous photovoltaics, optical films, plastics, and 

organic and inorganic membranes. 

As a demonstration application, a prototype roll-feed imaging system has been 

designed to inspect high-temperature polymer electrolyte membrane (PEM), used for fuel 

cells, after being die cast onto a moving transparent substrate.  The inspection system 

continuously detects thin film defects and classifies them with a neural network into 

categories of holes, bubbles, thinning, and gels, with a 1.2% false alarm rate, 7.1% escape 

rate, and classification accuracy of 96.1%.  In slot die casting processes, defect types are 

indicative of a misbalance in the mass flow rate and web speed; so, based on the 

classified defects, the inspection system informs the operator of corrective adjustments to 

these manufacturing parameters. 

Thickness uniformity is also critical to membrane functionality, so a real-time, 

full-field transmission densitometer has been created to measure the bi-directional 

thickness profile of the semi-transparent PEM between 25-400 micrometers.  The local 

thickness of the 75 mm x 100 mm imaged area is determined by converting the optical 

density of the sample to thickness with the Beer-Lambert law.  The PEM extinction 

coefficient is determined to be 1.4 D/mm and the average thickness error is found to be 

4.7%.  Finally, the defect inspection and thickness profilometry systems are compiled 

into a specially-designed graphical user interface for intuitive real-time operation and 

visualization. 

 



 

1 

CHAPTER 1: INTRODUCTION 

1.1 Thin Film Nondestructive Evaluation  

Automated inspection systems and nondestructive evaluation (NDE) have become 

ubiquitous in manufacturing systems because the technology is an inexpensive and 

reliable method to measure product requirements.  NDE robustly and autonomously 

identifies defects or other flaws in components or assemblies in real-time, so 

manufacturing companies can increase production rates while minimizing costs 

associated with scrap components and paid labor from human inspectors.  As automated 

inspection technologies have matured and more engineers have become aware of their 

capabilities, current manufacturing lines are not only designed for cost and quality, but 

also designed for inspection (DFI).  DFI-incorporated manufacturing systems typically 

use some form of machine vision along with software analysis to ensure the resulting 

output is functional, maintained within tolerance, and/or defect-free.   

In the last two decades the thin film market has rapidly expanded and diversified.  

This has lead to a wide range of industries now requiring highly accurate and consistent 

manufacturing of thin film materials, such as semiconductor wafers [1, 2], photovoltaics 

and photoconductors [3], plastics [4, 5], graphic arts papers and films [6], optical films 

[7], and various organic and inorganic membranes [8, 9].  Additionally sol-gel coatings 

on polymer films are gaining scientific interest because they can be used in photography, 

radiography, holography, reprography (for printers, photocopiers, etc.), optical coatings 

(e.g., colored, anti-reflectant, electro-optic polymers, photo-anodes) and protective 

coatings (e.g., adherent, corrosion resistant) [6, 10].  To mass produce these thin film 

products, there exist a number of technologies such as doctor blade extrusion, film 

applicator blade, melt compression, stencil printing, and slot die extrusion [11], however 

in all these techniques it is necessary to ensure the quality of the final product.   

Increasingly thin film industries are turning to non-destructive evaluation 

techniques to give manufacturers confidence in the quality of the final product.  In [5], 

Gamage and Xie note the shortcomings of the long-held conventional approach of 

statistical sampling and human inspection for polymer casting inspection tools; the 
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bottom line revealed that statistical sampling resulted in 14.8% or $550,000/year in total 

production scrapped and 2% or $88,000/year lost due to customer returns, which also 

hurt the image of the company.  These losses were incurred solely from the statistical 

sampling method the company employed: inspectors used a light table to examine a 

sample from the end of each polymer roll.  Gamage and Xie pointed out that this sample 

represented as little as 0.01% of the total product and was often not inspected for some 

time after production.  As a result, the cast material occasionally contained defects which 

did not appear in the statistical sample; or if the sample did contain defects, there was a 

delayed response before identification—costing the company money in wasted material 

and reduced efficiency.   

In human inspection, one or more inspectors are stationed along the 

manufacturing line to flag catastrophic defects.  Especially in high speed manufacturing 

applications, human inspectors are prone to error—missing defects and/or sighting false 

defects.  Additionally, human inspectors have difficulty with fatigue, inconsistency 

between inspectors, and turnover and training [5].  Labor costs have also made 

continuous human inspection unattractive from the managerial point of view.  

Furthermore, inspectors often physically place a flag on the fast-moving web, which may 

result in injuries.  Therefore, by creating an automated inspection system,  

1. costs from labor and materials are decreased, 

2. the quantity of waste material and wasted production time are reduced,  

3. the overall quality of the product is maintained and/or assessed, reducing the 

number of customer returns, 

4. and, the safety of the staff is improved. 

The benefits from automated web inspection systems have led to widespread 

implementation in textile, plastics, foils, and other thin film lines. 

1.2 Machine Vision Systems for Defect Detection  

Traditionally, trained experts performed the highly tedious and often dangerous 

task of inspecting resulting parts from a manufacturing process.  However, in some 

environments such as underwater inspection, nuclear and chemical industries, and high 

temperature applications, it is unsafe and impractical to employ inspection experts.  
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These challenges lead to the advancement of machine vision, which is an inexpensive 

nondestructive evaluation technique.  Although machine vision systems vary depending 

on the application, environment, and objectives, the typical setup includes a computer 

capturing images from one or more cameras mounted above or around the illuminated 

area of interest, as shown in Figure 1.1.  In general, digital images are captured to 

identify, locate, inspect, count, measure, or otherwise analyze physical objects in order to 

determine shape, color, or spatial relationships.  Features are extracted and analyzed with 

image processing by applying mathematical or logical operations on the digital data in 

order to reduce noise, adjust for lens distortion, remove unwanted reflections, lighten, 

darken, threshold, or otherwise alter the image to make feature detection simpler.  Often 

time-constrained or computationally intensive operations are processed with in-camera 

digital signal processors (DSPs), application specific integrated circuits (ASICs), or field 

programmable gate arrays (FPGAs) [12].  Image analysis then manipulates the processed 

image to produce a much smaller data set of binary or numerical feature variables, such 

as those in Table 1, which indicate the quality of the product.  This computation is done 

by employing qualitative, heuristic, statistical, model-based, or other computational tools 

like neural networks or fuzzy logic.  The choice of the tool is based on the application 

and selected to improve the quality of the final data by reducing escape rates (defects that 

go undetected) and false alarms (acceptable quality which is flagged as a defect).   

 
Figure 1.1: Typical industrial vision system [12]. 
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Table 1.1: Features extracted from inspected products with vision systems [12]. 
Dimensional Dimensions, shape, positioning, orientation, alignment, roundness, corners 
Structural Assembly (Holes, slots, rivets, screws, clamps), foreign objects (dust, bur, swarm) 
Surface Pits, scratches, cracks, wear, finish, roughness, texture, seams-folds-laps, continuity 
Operational Incompatibility of operation to standards and specifications 

 

Although available for industrial inspection systems since the early 1970s, 

machine vision has not been universally adopted in manufacturing systems because each 

application requires unique illumination and heuristic approaches to image processing 

and analysis [13-15].  Without general-purpose tools, engineers have been forced to 

create custom machine vision solutions for each inspection problem, which along with 

the required computing power and cost, kept machine vision usage from becoming more 

widespread.  However, with the help of computer advancements and the need to quickly 

and inexpensively produce more accurate parts, vision systems have been growing in use, 

particularly for industries with high manufacturing or processing rates.  Currently 

machine vision inspection is applied to a wide range of manufacturing systems including 

electronics manufacturing, textile production, metal machining, glass manufacturing, 

machine parts, printing products, food quality, integrated circuits assembly, and many 

other fabrication processes [13].  For these reasons, vision systems have become 

ubiquitous in manufacturing systems with large batch production, high quality 

manufacturing, or fabrication in specialized environments because of their ability to 

provide low cost reliable solutions to quality control problems of metrology and defect 

identification.     

1.3 Profilometry Techniques for Thickness Measurements 

In cases requiring specific physical characteristics for product functionality, 

nondestructive testing (NDT) tools are commonly incorporated into the manufacturing 

process.  Many NDT techniques are capable of determining thin film topography, 

thickness, surface characterization, chemical composition, multilayered structures, 

dimensional variations, damage, or defects.  Since thin film thicknesses on the order of 

0.5-500 μm are now being mass produced in numerous niche markets, NDT tools for 

these materials are employed for a range of measurements.  As Power recapitulates, NDT 

of thin film is capable of identifying a variety of defect such as, “processes of corrosion 
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and weathering, the segregation of phases in films composed of polymer blends, near 

surface oxidation processes induced optically or by thermal contact, the out-diffusion of 

additives such as stabilizers, plasticizers and/or lubricants, processes of thermal or 

photodegradation, changes in crystallinity or morphology…, and, also processes affecting 

adhesion between surfaces” [16].  In many cases, thin film failure can be predicted or 

detected by measuring the material thickness, especially when tolerance across and 

through the thickness are not maintained.  Regardless of possible mechanisms causing the 

thickness variation—either during manufacturing or operation—monitoring thickness 

provides assurance that the thin film will function according to specifications.   

It was not until the mid 1980s that depth profilometry on the 0.5-500 μm scale 

became truly nondestructive by basing the metrology on optical absorption, reflection, 

photoluminescence, and elastic and inelastic scattering [16].  Earlier techniques (such as 

gas chromatography, infrared spectroscopy, and microtitration analysis) required 

extracting layers of known thicknesses to profile the sample, thereby destroying the 

samples.  Over the course of the last 25 years, a wide range of optical depth profilometry 

techniques have been developed to provide localized thickness measurements for thin 

films.  To make the measurements, principles of microscopy, spectroscopy, photoacoustic 

and photothermal imaging, radiometry, photometry, and interferometry were employed.  

These metrology tools were an improvement over traditional methods because they 

provided quick, accurate, and repeatable measurements without requiring any special 

lighting or atmospheric conditions.  These technologies are discussed in more detail in 

the following chapter. 

1.4 Research Motivation and Objectives 

Thin films are manufactured in bulk for a broad range of commercial products 

which require material homogeneity and maintenance of tight thickness tolerances.  It is 

practical and economical to employ computerized machine vision and/or nondestructive 

evaluation tools for quality assurance purposes in mass production systems because they 

improve the inspection accuracy, reduce human error, and allow faster production speeds.  

Hence, the primary research question addressed by this thesis is: what hardware and 

software tools should be implemented to create a robust, real-time, accurate NDE system 
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for (a) determining the bi-directional thickness profile and (b) identifying and classifying 

defects in semi-transparent thin film during production in order to improve 

manufacturing quality? 

Unfortunately, off-the-shelf inspection systems are not capable of quantifying thin 

film defects or measuring full-field thickness profiles.  Defect inspection typically is 

performed with vision systems, but due to environmental and material variations, 

specialized systems must be designed for different manufacturing situations; and 

although there have been defect identification and classification systems developed for a 

number of applications, the situation of semi-transparent material cast onto a transparent 

substrate has not been studied.  Similarly, instrumentation for full-field thickness 

measurements of semi-transparent material has not been addressed. Non-contact NDE 

tools for thickness profilometry are typically single point measurements or in the case of 

moving webbing, line scan tools.  Thus, to recreate the bi-directional thickness profile, 

the instrument must be scanned laterally (which is difficult for high speed applications) 

or a linear array of instruments is required (which adds cost and may not be possible due 

to space constraints).  This work investigates inspection methods by employing a single, 

stationary instrument to recreate the full-field thickness profile in real-time on a dynamic 

roll-feed production line. 

The objective of this work is to manufacture high precision defect-free thin film 

material by informing the manufacturer of errors in thickness, defect quantities, and 

tooling adjustments to improve production.  The goal of the thickness profilometer and 

defect inspection instrumentation is to measure errors in either material thickness or 

homogeneity, such that tooling parameters (e.g., tank pressure, web speed) can be 

modified to produce acceptable material.  In some manufacturing cases, a misbalance in 

tooling parameters is indicated by the types of defects present in the resulting film, and 

therefore operational parameter recommendations or adjustments can be made 

autonomously based on the results of the inspection system.  Thus, with only limited 

knowledge of production operations, a manufacturer can improve thin film fabrication by 

following the inspection system recommendations.  To provide this capability, a 

graphical user interface containing the thickness and defect inspection subsystems has 



 7

been designed to visually display results of the inspection process and allow quick 

modifications to the system as necessary.   

A custom designed roll-feed imaging system (RFIS) has been developed to bulk 

manufacture defect-free thin film materials and to test prototype NDE solutions. A case 

study, utilizing the RFIS system, has been performed based on a high temperature 

polymer electrolyte membrane (PEM) material used in fuel cells (FCs), which is 

particularly challenging to manufacture [11].  Furthermore, PEMFC production is 

currently limited by manufacturing cost and product durability resulting from defects, 

among other things.  Fuel cells are currently manufactured at low volume because they 

are not cost competitive with traditional energy sources.  However, as fuel cell 

manufacturing and inspection technologies progress, manufacturing costs will drop and 

production quality will improve.  Quality improvements are particularly crucial because 

fuel cell implementation has been stifled by poor durability results due to membrane 

degradation.  Studies have indicated defects and nonuniformity in the membrane is 

closely linked to the lifetime of the fuel cell system [17].  Hence, with better 

manufacturing and inspection systems, it is anticipated that PEMFC durability will be 

improved.  Although, this research has been applied to materials used in the fuel cell 

industry, it has a much broader impact in areas requiring thin film quality control, such as 

the paper, plastics, fabric, wafer, and food industries.  

1.5 Thesis Structure 

This thesis describes thin film defect and thickness inspection background, theory, 

experimental setup, and results.  Chapter 2 contains a survey of vision systems employed 

for defect detection and classification, as well as background on non-contact, 

nondestructive thickness profilometry techniques.  Chapter 3 discusses the design and 

construction of the roll-feed manufacturing system and integrated inspection station.  

Chapter 4 explains the additional analysis, programming, and calibration required for the 

fuel cell membrane inspection case study and Chapter 5 presents the experimental results 

from this study.  Chapter 6 discusses the results of the case study and assesses the 

inspection system and Chapter 7 concludes the thesis with a summary of contributions to 

engineering and science, and recommendations of future work.  



 8

 

CHAPTER 2: BACKGROUND ON INSPECTION SYSTEMS 
AND THIN FILM THICKNESS PROFILOMETRY 

 
 Thin film manufacturing processes (e.g. extrusion, coating, sputtering, film 

deposition, condensation, thermal evaporation, or casting methods) produce sheet 

materials with a range of magnetic, electrical, mechanical, optical, layering, and 

dimensional characteristics.   Due to the wide scope of material characteristics and 

processing methodologies, there is no universal thin film inspection system.  Instead, to 

ensure their products meet quality standards, manufacturers either employ human 

inspectors, develop specialized NDE or machine vision systems, or use a combination of 

the two.  The decision to use human or automated inspection depends on manufacturing 

processes, batch quantities, line speed, worker safety, and cost.  Roll-feed systems are 

turning to automated inspection systems as the technology matures and hardware and 

software prices decrease relative to inspector wages [5].  Paper and plastic production 

have been especially quick to shift to automated inspection systems because the web 

speeds which these systems operate (1-5 m/s), are too quick for human inspectors to 

identify small defects.   

 In thin film web systems, defects are generated in two ways: (1) poor batch 

material or solution yields particulates, gels, and other defects infused in the final 

product; or (2) incorrect processing parameters yield holes, die lines, streaks, fisheyes, air 

entrainment, or thickness variations.  To produce defect-free material, the solution must 

be properly prepared and the processing parameters must be set correctly.  The work in 

this thesis focuses on identifying and quantifying different defects in order to inform the 

manufacturer which operating parameter adjustments are required to improve film 

quality.  Furthermore, thin films must be fabricated at the specified thickness for 

assembly and functionality.  Therefore, this review focuses on roll-feed related 

technologies which perform defect identification and classification, as well as full-field 

thickness profilometry to ensure uniformity in the material. 
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2.1 Machine Vision Systems for Defect Detection and 
Classification 

Although challenging, there have been number of web manufacturing inspection 

systems designed to monitor product quality with machine vision.  Xu and Floeder noted 

difficulties with real-time, continuous inspection were due to high data rates and 

environmental conditions, but companies—e.g., Cognex, Datacube, Honeywell, 

Systronics, and Webview—have still created commercially available systems for 

$20,000-$1,000,000 [15].   These systems are typically composed of linear or 2-D array 

cameras, lighting, image processing system, user interface, and other sensors and 

controls.  They inspect the quality or grade of the material by capturing images and 

extracting qualitative information about the web through intensity, saturation, or hue of 

the image.   

Many machine vision-based or NDE defect detection systems measure the 

electromagnetic energy (luminous intensity) of light being reflected, transmitted, or 

refracted from the material.  These measurements are often performed by radiometric and 

photometric instruments consisting of CCD (charge-coupled device) photodetectors.  

Radiometry measures all irradiance from a point or surface, whereas photometry only 

measures the visible wavelengths (360-830 nm) [18].  Thus, depending on the inspection 

application, different electromagnetic bands are measured to determine the quality of the 

material.  Although this work focuses on roll-feed manufacturing, attention has been 

given to defect detection and classification across a broad range of fabrication areas 

because of the commonality in inspection approaches.  Inspection of plastic, wood, paper, 

circuit boards, and glass generally share similar techniques where reflected or transmitted 

visible radiation is measured via image thresholding, grayscale measurements, or 

photodiode comparisons.   

2.1.1 Plastics Inspection  

Plastic sheet production is a common application for web inspection systems.  

These systems typically run continuously, at high feed rates, and with limited human 

inspection.  For this reason, the plastics industry has been one of the key contributors to 

roll-feed imaging development.  Smith investigated roll and web defects common to cast 
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films, tenter-frame processes, co-extrusions, and laminations, including film, foil, paper, 

fabrics and non-woven materials [19].  He found that web defects can be classified into 

categories of property defects, point defects, linear defects, space-filling patterns, and 

flatness defects.   

In roll-to-roll manufacturing, web quality is an important consideration for 

machine vision analysis; often the shape of the webbing or substrate indicates problems 

with the product, such as material variations or other defects in the material.  To et al. 

created a system to measure wrinkles across the width of 300 mm wide web materials 

with structured light [20], shown in Figure 2.1.  Using a planar laser, they were capable 

of monitoring the shape of the reflected light with an off-axis area scan camera; and then 

by performing data reduction on the bright pixel bead, they determined out-of-plane web 

deflections. 

 

 
Figure 2.1: Wrinkle inspection system [20]. 

 

In 1992, Kona et al. created a robust method of inspecting plastic bags for 

pinholes using an area camera by taking microscopic images of vibration-flex tested 

specimens [21].  By mapping the 1.2 x 1.239 mm images to 6-bit grayscale, thresholding 

the photos to pull out light regions (pinholes) and dark regions (potential pinhole 

boundaries), and using Papert’s boundary tracing algorithm, the authors were able locate 

pinholes as small as 40 mm2 for different plastic bag thicknesses.   
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Bowman et al. created a prototype system to detect clear gels and black spots in 

gusseted plastic bag roll-feed manufacturing [4].  They employed two inspection stations 

with backlighting and 2048-element line-scan cameras to search for each of the defects 

separately.  The authors graded each of the bags continuously by identifying and 

classifying defects.  By exploiting the optical characteristics of the gel (bending the light 

like a lens) and black spots (absorbing incident light), a robust system for identifying the 

defects was created.  Bowman et al. made a correlation between light input and the 

scatter thereof to differentiate dark and light spots, because dark spots absorbed the light 

whereas clear gels scattered the light.  The authors reported excellent reliably detecting 

spots down to 0.25 mm with bag grading processing times of 1.8 s/bag, which was not 

possible for a human inspector.  

Gamage and Xie inspected defects in clear cast films with a real-time vision 

system [5].  They replaced human inspection with a vision system in a 2 m wide 

polypropylene casting system operating at 50 m/min.  The defects in the material could 

be classified as wrinkles, gels, coating voids, and streaks, seen in Figure 2.2, but the 

authors focused on identifying gels and die lines (streaks).  By inspecting the shadow cast 

by Mie scattering (refraction of collimated light, shown in Figure 2.3), they were able to 

identify 87% of ~360 μm gel granules and 94% of ~320 μm die lines at a web speed of 

0.8 m/s and nearly 100% of the defects at 0.1 m/s.  To do this, an 800 x 600 digital image 

was imported into LabVIEW, smoothed, converted to binary with a histogram-based 

threshold, and denoised with a lowpass filter to remove small particles.  This image was 

then segmented into the defect regions for automatic classification via shape and 

grayscale analysis.   

 

 
Figure 2.2: Defects in a polypropylene cast extrusion manufacturing process [5].  Only the gels and 

die lines were specifically identified by the Gamage and Xie vision system. 
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Figure 2.3: The optical conceptualization for gel detection [5]. 

 

Another web-based defect identification system is reflectometry.  Reflectometry 

compares the ratio of intensity of incident radiation to reflected radiation at the specular 

angle.  Reflectometry and X-Ray Reflectometry (XRR) are primarily used to characterize 

surfaces and determine roughness in thin films and multilayered polymers [7].   In 

multilayered materials the Abeles matrix method is typically applied to calculate the 

specular reflectance, similar to neutron reflectometry and ellipsometry.  The basis for 

these methods comes directly from phenomena associated with electromagnetic radiation 

passing between different media; thus, by using the Fresnel equations and Snell’s law 

(described in detail in [22]), surface non-uniformity is detected. 

Larena et al. found a correlation between surface roughness of a multilayer 

polymer film and reflected diffuse and specular radiation [6]. To create the rough surface 

they added an emulsion agent to adhere spherical granules to the surface.  The 

measurements of different surface roughnesses were done at angles of 20º, 60º, and 85º.  

It was found that for all angles the reflectometer value decreased with average roughness 

because granule roughness scattered the incident rays.  The authors also characterized 

photo-degradation from oxidation using this same method in [23].  They discovered 

similar correlations between degradation and reflectance.  Larena et al. later investigated  

measuring surface roughness in multilayer polymer films with optical transmittance of 

different wavelengths [7]. They found that in the visible, near infrared (NIR), and certain 

bands of the infrared (IR) spectra, different roughnesses changed the transmittance 

according to a power law. 
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Due to the commercialization potential for plastic inspection systems, there is 

limited published research but multiple web inspection patents.  These systems often rely 

on specialized sensors or precision lasers.  Weber invented an inspection system which 

first generated a scanning laser line with a mirror wheel and then expanded the beam with 

concave mirrors [24, 25].  This laser line was then reflected off the surface of the web 

material and directed by another series of concave mirrors to a photo-receiver; if a defect 

was present, the reflected light would not reach the photo-receiver.  Matzan created 

another defect identification system with a pair of side-by-side planar lasers [26].  If any 

defect (e.g., a hole in the material) passed through the parallel laser planes one of the 

lasers would impinge on the surface at a slightly different height, which was measured by 

photo-detectors and indicated a flaw.  

2.1.2 Wood, fabric, and paper inspection 

Wood processing plants and sawmills are a well-established areas for machine 

vision systems.  There is significant work in vision-based cutting, inspecting, and grading 

in the field.  For example, surface quality of wood veneer has been a significant area for 

the development of inspection systems because the aesthetic aspects of the veneer rely 

heavily on the number, type, and size of defects.  Human inspection of the veneer grading 

is limited to an accuracy of 55% [27], which led to the development of automated visual 

inspection (AVI) tools.  The sub-tasks involved in the AVI were to detect the defects 

[28], perform image segmentation [29-32] and classify the defects [33-35].   

In wood grading, detecting defects using AVI systems is challenging.  Often it is 

not possible to detect all the types of defects (like those shown in Figure 2.4) using a 

single edge detection or thresholding algorithm.  For example, Pham et al. completed 

defect detection with global adaptive thresholding for hard rot; multi-level thresholding 

for holes, splits, and rotten knots; row-by-row adaptive thresholding for sound knots, pin 

knots, colored streaks and worm holes; and vertical profiling for streaks [31].  Then Pham  

et al. used an Accumulation of Evidence fuzzy logic tool to eliminate false objects and a 

self-organizing neural network clustering method to combine separated regions 

representing the same defect [34].  The advancements of Pham et al. lead to 

implementation of more advanced systems for which features of the defect were extracted 
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from a segmented region of interest around the defect.  Features were either object-based 

(size, shape, etc.) or tonal-based (mean grey level, grey level standard deviation, number 

of dark pixels, etc.).  These features were then normalized and entered as inputs into a 

neural network.  Feed-forward neural networks with one hidden layer have shown the 

best results [29, 33].  The neural network classified defects with 87% mean accuracy 

compared to 63% for non-neural networks techniques [35]. 

 

 

 
Figure 2.4: Comparison of wood veneer defects [35]. 

 

 It should be noted that very similar defect identification and neural classification 

systems exist for the textile industry.  Mitropulos et al. performed similar steps of image 

processing and detection, segmentation, and classification for wrinkle and spot defects on 

woven structure [36].   They report a classification accuracy of 82%.  Other defect 

detection and classification systems for fabric web systems have used fuzzy classification 

[37], Bollinger brands [38], and Gabor filters [39]. 

Parker patented an array of illumination and sensor units to inspect paper in real-

time [40].  The types of defects the inventor was interested in are shown in Figure 2.5.  

The inspection stations used a lens to focus the light onto the web while fiber optic 

cabling routed the reflected illumination to photodiodes.  The electrical signals were then 
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converted to digital, multiplexed, and sent to a computer to analyze the data to determine 

which, if any, of the defect types were present. 

 

 
Figure 2.5: Defects occurring in paper manufacturing: (a) flocculation, (b) macro forming faults, (c) 

unstable streaks, (d) periodic variations, (e) random variations [40]. 
 

2.1.3 Glass Inspection Systems 

A glass inspection system was developed by Lasor/Systronics called the 2f1 

Vision System which detected defects in the glass and recorded optical deflection in the 

lengthwise and width directions [41].  Up to 12 cameras were mounted on the system 

with each camera pixel representing a 0.1 x 0.1 mm area.  The system used web-speed-

synchronized line-scan cameras to detect an alternating 2 or 4 LED configuration located 

behind the web.  The testing configuration in Figure 2.6(a) resulted in different intensity 

values for normal material and defective material, shown in Figure 2.6(b).  It was found 

that using the sum of I1 and I2 (brightness), the difference of I1 and I2 (deflection), and 

first deviation of I1 and I2 (refractive power), the type of defect could be determined.  The 

system then plotted a web map showing the grayscale level for the glass, and the 

locations of the spot defects, allowing operators to avoid these areas when finalizing the 

product.  This system demonstrated that transmission properties through transparent 

material are capable of indicating defects and that displaying inspection results in real-

time is of significant value for the manufacturing operator.  The display allowed the 

manufacturers to make quick decisions about the product quality and change 

manufacturing parameters of the glass production line if necessary. 
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(a) 
 

(b) 
Figure 2.6: The 2f1 Vision System. (a) Optical principle of the system. (b) The types of image signals 

indicating no defect, a defect and a dark obstruction [41]. 
 

2.2 Thin Film Thickness Determination 

In the thin film manufacturing processes, the material thickness must be kept as 

close to tolerance as possible.  If the material is produced thin, there is a greater chance 

that it will fail due to corrosion, impact, or static or fatigue loads; if the material is 

produced thicker than specified, bulk material is wasted and there is added cost from 

production and handling; and if the material varies in thickness across the web, uneven 

loading would cause stress concentrations and greater potential for failure.  Therefore, it 

is vital that thin film manufacturing systems inspect the thickness of the material.  Similar 

to defect detection, it is imperative that the process used to inspect film thickness be 

nondestructive. There are many technologies which determine thickness for thin films, 

ranging from mechanical to magnetic, as shown in Table 2.1.  The selection of thickness 

measurement tools is based on the range, accuracy, and precision of the instrument, as 

well as the environment and material characteristics.  For instance, techniques are often 

limited by material state, corrosivity, viscosity (e.g., a micrometer is not applicable for 

thickness measurements of fluid materials).  In other cases the material characteristics 

allow specific instruments to be used, e.g. magnetic induction is only applicable on 

ferromagnetic materials and interferometry is limited to thin materials.  In this work, 

optical thickness techniques are further explored because they offer excellent versatility 

and robustness for the roll-feed system.  
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Table 2.1: Nondestructive thickness measurement techniques, modified from [42]. 
Technique Range Notes on accuracy or precision 
Mechanical 

Caliper, micrometer 
Weighing 

 
1 μm-100 mm 
Area dependent 

 
±3 μm accuracy 

Electronic gages 0-1 m Precision dependent on noise 
Optical/focusing, shadowing, comparing 

Microscope 
Comparators/projectors 
Laser caliper 

 
5 μm minimum 
25-250 nm 
100 μm-100 mm 

 
~1% accuracy 
 
6 μm precision 

Capacitive gages <1 μm – 1 cm  
Inductive gages (eddy current sensors) 0 – 1.5 mm 2.5 μm precision 
Magnetic induction 0-4 mm 10% accuracy 
Hall effect gage 0-10 mm 1-3% accuracy 
Far-field/time-of-flight 

Sonar/ultrasound 
 
0.5-250 mm 

 
25 μm accuracy 

Far-field/resonance 
Interferometry (spectral and spatial) 
Ellipsometry 

 
1 nm-100 μm 
0.3 nm-10 mm 

 
About λ/50 accuracy 
0.1 nm accuracy 

Far-field/absorption, scattering, emission 
Gamma-ray backscatter 
Beta-transmission 
Beta-backscatter 
X-ray fluorescence 
Infrared absorption 

 
Range to 25 mm 
2 mm-1mm 
100 nm-50mm 
0-30 mm 
Material dependent 

 
0.5% precision 
0.2% precision 
3-20% precision 

2.2.1 Optical Thin Film Thickness Profilometry 

Optical thickness profilometry tools have many advantages over traditional 

thickness measurement techniques.  They are non-contact, nondestructive measurements 

with high accuracies and real-time readings.  Heavens [22] breaks down the optical tools 

for thin film thickness measurement into the following categories: 

• Interferometric and fringe-displacement methods generate interference of 

electromagnetic radiation to produce periodic signals related to the light 

wavelength and thickness of the material. 

• Photometric methods relate the intensity of light to the thickness of the material 

either through transmission, reflection, or backscatter. 

• Polarization methods use p- and s-polarized light properties to measure the 

thickness.  The different polarizations of light reflect from the surface of materials 

differently, so by comparing the different irradiances, the thickness of the material 

can be calculated. 

• Stepped angle methods adjust the angle of the incident radiation to generate data 

about the thickness.  For instance, in attenuated total reflectance infrared 
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spectroscopy, the absorption and depth of penetration depend on the angle of 

incidence. 

• Spectrophotometric methods rely on spectral measurements of the transmitted 

or reflected light.   

A selection of optical thickness tools are described in Table 2.2.  The method for 

full-field thickness measurements is limited depending on budget constraints and the 

desired measurement precision, accuracy, and range.  For films less than 25 μm, beta and 

x-ray gauges are not sensitive enough to measure changes in thickness, and IR and UV 

absorption gages are known to have difficulty measuring thickness when there are 

chemical changes or temperature variations [43].  Furthermore, gamma-ray and other 

transmission thickness gages are not designed to give full-field results.  Alternatively, 

interferometric and densitometry techniques are economical and well-suited for thickness 

measurements between 1-400 μm.  To this end, the succeeding section will further 

describe these optical techniques. 

 
Table 2.2: Selected Laser and Optical Thickness Profilometry Techniques. 

Nondestructive Evaluation 
Technique Brief Explanation 

Interferometric and Fringe-Displacement Methods 

Interference spectroscopy 

Incident light reflects on the top and back surfaces of the thin film to 
create interference [44].  Adjusting the wavelength of light used, a 
period pattern of reflected light intensity is used to determine the 
material thickness. 

Multiple-beam interference 
fringes (e.g. Fizeau fringes) 

The top surface of the material and the substrate are silvered on one 
edge.  A monochromatic source is used to create a fringe pattern by 
reflecting the light off the silvered surfaces and reference mirror [45].   

Haidinger fringes and Fabry-
Perot interferometry 

Circular fringes are created by using wide angle illumination via the 
reflections from the front and back surfaces.  The diameter or number 
of fringes can be used to estimated the thickness of the material [46]. 

Scanning white-light 
interferometry 

Similar to the Michelson interferometer configuration, a white light 
source is split with one path reflected off the sample and the other path 
reflected off a scanning reference mirror.  When the path lengths are 
equal, the wavelengths deconstructively interfere and a fringe pattern is 
created.   

Photometric Methods 

Confocal microscopy 
A laser with a very small pinhole aperture irradiates the sample and 
images of the sample are taken.  After correcting for different nonlinear 
effects, the intensity profiles correspond linearly to true thickness [47]. 

Confocal laser scanning 
microscopy (CLSM) 

The subject is illuminated with a single laser point and optically 
sectioned by raster scanning point-by-point to create the 3D surface 
[48].   
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Table 2.2: Selected Laser and Optical Thickness Profilometry Techniques (continued). 
Nondestructive Evaluation 
Technique Brief Explanation 

Fluorescence microscopy 

Fluorophore molecules absorb a certain wavelength of light (generally 
UV) and re-emit a different wavelength (usually visible light).  Using 
this principle, a UV light is used with a microscope to view a dyed or 
naturally fluorescent sample.  The intensity of the fluorescence is then 
correlated to the thickness of the material [49]. 

Densitometry and Absorptiometry Methods 

Light profile microscopy 

Collimated light passes through the material in the thickness direction 
while images are captured through a microscope, which views the film 
in the through-plane direction.  From this simple setup, the thickness 
along with optical absorption, photoluminescence, light scattering, and 
other depth-dependent properties of the material can be determined 
from the images taken of the sample [50]. 

Optical computed tomography 
(CT) 

Photo-detectors record the absorption of laser beam or collimated light 
through sample material at different angles (often by a rotating the 
sample) [51].  A 3-D representation is recreated of the sample by 
triangulating areas of specific density based on the absorption data. 

Transmission Densitometry Thickness is determined by quantifying the attenuation of transmitted 
radiation by photometrically measuring the influx and efflux. 

Reflection Densitometry Thickness is measured by quantifying the amount of reflected radiation. 
Laser-based Thermal Methods [16] 

Photopyroelectric effect 
spectrometry and photothermal 
spectroscopy 

Material is heated with a laser and the conduction through the material 
is measured with a pyroelectric detector on the back of the material or 
substrate. Due to the well-understood relations between material 
thickness and conduction, the thickness of the material can be 
determined from the thermal signals. 

Photoacoustic spectroscopy 
 

A laser warms a sample with a gaseous medium on the surface.  The 
thermal expansion of the medium forces acoustic waves through the gas 
to a microphone which records the results over a 20 kHz bandwidth 
[52].  The thickness is related to the recorded acoustic frequencies. 

Photothermal infrared 
radiometry (PT-IR) 

The IR radiation emitted from a sample heated with a laser is measured 
(often with an IR camera) to determine the spatial temperature change 
in the material, and based on conduction calculations determines the 
material thickness. 

Attenuated total reflectance 
(ATR) or internal reflection 
spectroscopy 

A high refractive index medium is placed on the front of a 0.1-10 μm 
sample so that an IR laser passes through the medium above the critical 
angle and an evanescent wave propagates into the sample.  The spectral 
content of the evanescent wave is then measured to determine the 
thickness. 

Polarization Methods 

Ellipsometry 

Ellipsometry can classify nanometer-thick films by sending light 
through a polarizer, off the surface of the material, through another 
polarizer and then into a detector.  The light reflects off the top and 
bottom surfaces of the thin film, which creates interference that is 
measured by the change in polarization state.  Metrologically, 
ellipsometry also gives information on refractive index and dielectric 
properties. 

Polarization interference 
microscope (and Savart plate 
method [22]) 

Two interference images are produced by using a polariscope made 
from birefringent crystals cut 45º to the axis [53].  Then using a 
polarizer and analyzer, the thickness of transparent samples can be 
found similar to a Michelson interferometer. 
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2.2.1.1  Interferometry 

Interferometry takes advantage of wave-like phenomena of light in order to 

produce constructive or deconstructive interference.  When electromagnetic waves are in-

phase, they amplify the radiation signal, whereas when the waves are out-of-phase, the 

waves cancel each other and there is a signal reduction.  This basic principle of wave 

interference has lead to a number of interferometry techniques used to measure opaque 

thin films including holographic interferometry (holography), white light interferometry, 

and electronic speckle pattern interferometry.  In holography, the surface of the object is 

recorded and then replayed on the object.  When the physical surface remains in the same 

location, the waves constructively amplify the signal and there is no fringe pattern, 

however when the surface translates or deflects by half a wavelength, there is 

deconstructive interference and dark bands appears in the fringe pattern.  By measuring 

fringes directly or with a Fourier transform, the displacement and strain of the surface can 

be determined [54], but it becomes challenging at displacements larger than 50 μm 

because the fringes become dense [55].   

 White light interferometry works on the same interference principle, except that 

all the visible wavelengths of light are split into two pathways; one impinges on the 

surface of the object and the other off a reference mirror.  When these waves are 

recombined, the only way all the wavelengths constructively interfere is when the 

distances off the mirror and the object are equal [56].  Hence, by adjusting the distance 

that the control beam takes, the height of the upper surface is found.  There are multiple 

white light interferometry configurations possible to determine thin film thickness. 

Flournoy et al. have illustrated multiple methods of determining transparent material 

thickness using interferometry, including generating Brewster’s fringes with the web 

material, using an optical wedge, or employing a Michelson interferometer [43]. 

Some industrialized systems use interferometry to ensure sheet glass is the proper 

thickness and has no distortions.  Pilkington Glass Lahti Ltd. created an off-line 

interferometry system to inspect the glass slope and an on-line system to measure 

thickness [57].  The off-line system measured the fringe pattern from the interference of 
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laser light reflected off the top and bottom surfaces of the glass in a 10 x 10 mm area.  

The fringe pattern indicated the slope of the surface with submicron accuracy for a 10 

mm range.  The on-line system used a CCD camera to measure the interferometric signal 

generated from a laser reflecting off the top and bottom surfaces of the 1-6 mm plate 

glass [13].  The accuracy was reported to be 0.01 mm and the system scanned back and 

forth across the lateral dimension of the glass surface with 3.8 m of travel. 

Over the past decade, thin film measurements and methods of determining 

characteristics of coatings on polymer substrates have been investigated [3, 6, 7, 23]. 

Applying interference spectrometry, Larena et al. developed a technique to determine the 

total thickness of multilayered materials using IR absorption and Beer’s law to find the 

thickness of a 1-10 μm photoconductor coating on a PET substrate [3].  Their 

interference spectrometry system used the internal reflectance of the material to create 

interference fringes and simultaneously determine the refractive index and thickness for 

100 nm to 5 μm thick films [44].  To test the system, photoconductor layers were 

observed with the spectrophotometer.  From the results, the optical thickness of the 

material was found using a relationship between periodicity of maxima and minima in the 

interference spectrum and the optical thickness.  Unfortunately, this method did not 

determine the thickness of the coating alone, but rather included all the layers.  The 

authors believed there were no interference fringes created from the coating-substrate 

interface because the index of refraction was similar between PET substrate and the 

coating.  

As early as 1937, Blodgett and Langmuir found that interference fringes from 

low-angle reflected polarized light could be used to determine thickness in crystalline 

thin films [58], given the refractive index of the film and substrate.  Shelley et al. found 

that optical low coherence reflectometry (OLCR) using a Michelson interferometer was 

capable of determining the thickness of 10-75 μm PET films while in motion, but  the 

calculations required 1 min to find the thickness [59].  Another technique called Variable 

Angle Monochromatic Fringe Observation (VAMFO) was studied with respect to a wide 

range of transparent thin films, where laser light reflected and refracted as it impinged the 

surface of the thin film.   Photometer extrema only occurred when the refracted path was 

a multiple of half the wavelength, so by rotating the sample and measuring the extrema, 
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the thickness of the material could be determined.  After investigating 28 semiconductor-

related materials, Warnecke and LoPresti found that if the refractive index of the material 

was known, the thickness of the film could be found with the reflectance results [60].  

Pliskin discovered that refractive index and the thickness of a transparent layer could be 

found with the VAMFO when two wavelengths were used [61].  However, in all cases 

this required the sample be carefully rotated with respect to the incident laser beam, as 

shown in the general VAMFO setup in Figure 2.7.   

 

 
Figure 2.7: Laser-VAMFO setup with (a) He-Ne laser, (b) momochromator, (c) xenon lamp, (d) 

mirror, (e) goniometer, (f) sample, (g) detector [60]. 
 

Goodman further investigated reflectance interferometry and demonstrated that an 

approximation of refractive index and the thickness of the material can be determined 

with a single sweep using Constant Angle Transmission Interference Spectroscopy 

(CATIS) [62].  The concept relied on successive reflections of the incident light in the 

substrate to create interference patterns before reaching the detector.  A drawback of this 

system was that uncertainty caused significant deviation from the surface profile analyzer 

results.  Goodman reported that CATIS provided results within 6% of the thickness for 

submicron thick wafers [62]. However, the method required the sample be uniformly 

deposited on a flat substrate and neither absorb nor scatter light. Assuming the base of the 

thin film was placed on a flat surface, the surface topography indicated the thickness of 

the material.   

Real-time, full-field moiré measurements have shown excellent resolution for 

surface characterization.  In projection moiré or shadow moiré techniques, interference 

patterns are used to determine surface topography for an entire (preferably opaque) 

surface.  Projection moiré uses two images of laser grating to create interference patterns, 

which computer algorithms can analyze to reproduce the surface geometry.  This 
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approach was studied to identify circuit board warpage during soldering processes [63], 

whereby a laser was expanded and then reflected through a Michelson interferometer to 

create the grating pattern.  The interferometer reference mirror was attached to a 

piezoelectric transducer and two images of the grating were captured at different times; 

then the images were superposed to create the moiré pattern.  Shadow moiré has also 

been implemented to measure circuit board warpage [64].  Shadow moiré patterns 

appeared from the interference of the suspended grating above the surface and the grating 

shadow on the surface.  These two sets of periodic lines were imaged with a CCD 

camera, shown in Figure 2.8, such that the fringe pattern could be equated to out-of-plane 

board bending through computer analysis.  Fringes occurred every 8.47 μm and the 

resolution of the system using an 8-bit camera was between 0.01-0.1 fringe order or 

0.085-0.847 μm. 
 

 
Figure 2.8: Shadow moiré pattern of a computer motherboard [64]. 

2.2.1.2  Densitometry 

 As shown in Figure 2.9, when electromagnetic radiation passes through a semi-

transparent material, some radiation is reflected, absorbed, and transmitted.  By the 

conservation of energy, the respective fractions of the flux can be written as 

 
 1tR A T+ + =  (2.1) 

 
where R is reflectance, A is absorbance, and the total transmittance (Tt) is the sum of 

specular and diffuse transmittance (Tt = Ts + Td).  The transmission or transmittance 

factor is defined by the emergent to incident flux ratio, given by 
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where Φe is the efflux (radiative flux exiting the material), Φi is the influx (radiative flux 

entering the material), and the optical transmission density, D, defined as 

 
 10log tD T= −  (2.3) 

 
which is synonymous with absorbance.  Therefore, the transmission density of the 

material can be found with flux measurements with and without the sample in front of a 

radiation source.   

 

 
Figure 2.9: Cross section of a thin film material showing (R) reflection, (A) absorption, (Td) diffuse 

transmission, and (Ts) specular transmission. 
 
 To fully describe densitometry measurements the angular substance of the influx 

and efflux beams, spectral power distribution of the influx beam, and the spectral 

sensitivity of the receiver must be described [65].  For this reason, a joint American 

National Standards Institute (ANSI)/International Organization for Standardization (ISO) 

standard was created to normalize densitometry influx and efflux cone angles, Θi and Θe, 

respectively, shown in Figure 2.10.  Historically, specular densitometry attempted to 

capture all efflux radiation with an integrated sphere (e.g., Θe = 90º) [66].  However, with 

the development of the ANSI IT2.19-1994 and ISO 5-2 standards, it is now required to 

mate the back of the material with an opal glass diffuser and use a small angle lens with a 

large aperture (f/4.5-f/1.6) to measure the radiometric flux [67].  The ANSI standard 

R Td

Ts 

A 
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allows for diffuse influx, diffuse efflux, and projection density measurements.  Off-the-

shelf point measurement instruments which adhere to the ANSI standard are available 

from Tobias Associates, Inc. [68] and X-Rite, Inc. [69] with aperture diameters of 1, 2, 

and 3 mm.  Commercially available transmission densitometers are capable of measuring 

optical densities of 0.0-6.0 with ±0.01 repeatability [70].  However, there are no 

commercially available full-field instruments. 

 

 
Figure 2.10: Influx and efflux geometry for densitometry measurements [67]. 

 
Thin film densitometry has been used for a wide-range of applications where the 

optical density changes proportionally with the parameter of interest.  Teasdale et al. 

measured the amount of dissolved sulfide in thin films by imaging the sheet with a flat-

bed scanner [71].  The scanner was configured such that if there was no sulfide gel the 8-

bit image would read slightly darker than pure white and at the highest concentration the 

image would not saturate to black.  Photon transmission methods have also been used to 

monitor the formation of plastic films.  Experimental work has investigated the void-

closure coalescence of latex particles via optical clarity [72], polymer-polymer 

interactions in annealed films [73, 74], and molecular weight effects on latex formation 

[75].  Further, reflection spectrodensitometers use reflections off web material to verify 

the color of printed material, paints, plastics, textiles, and analyze powdered chemicals.  

X-ray scanning densitometry was used to study changes in waferboard samples during 

Θe 

Θi 



 26

various mechanical tests [76], and ExxonMobil Chemical, Inc. used transmission 

densitometry to measure the thickness of metalized films with optical densities typically 

between 2.0 to 3.0 [77].   

 Densitometry measurements are also heavily used in biology and medical 

applications. Densitometry is often employed for analyzing x-rays for bone density 

measurements, radiation dosimetry [78], ophthalmology [79] or in mammography [80].  

Also, transmission densitometry is implemented for scientific applications where 

parameters of interest are dependent on photographic translucency.  For instance, laser 

transmission densitometry and reflectance densitometry were explored to characterize 

protein immunoblot membranes in tissues via gel electrophoresis [81].   

 Of the surveyed medical applications for densitometry, only one investigated full 

field densitometry, in which breast arterial calcification was calculated by full field X-ray 

digital mammography with a phantom overlay [80].  The phantom was a calibration sheet 

with calcium deposits of known thickness and mass.  This sheet was then used to create a 

gray level to calcium (Ca) mass conversion, given the X-ray dosage.  The authors report 

excellent linearity between the log signal intensity and Ca mass, 9% systematic error and 

a maximum uncertainty of 15%.  This study indicated full field transmission 

densitometry was possible but with less accuracy or repeatability than localized 

densitometry measurements.   

 Densitometric measurements are also widely used to characterize chemical 

solutions using spectrophotometers.  Optical density, D,  is related to the Lambert-Beer 

law—also referred to as Beer’s law—in which the chemical properties of the material 

define the absorbance, i.e.,   

 
 D A ctε= =  (2.4) 

 
where, ε is the molar absorptivity, c is the concentration of the solution, and t is the path 

length of the radiation through the sample (usually in a cuvette).  Thus, with knowledge 

of the concentration of the solution (mol/L) and the molar absorptivity (L/mol-cm), the 

thickness of the sample can be calculated. 

Although, Beer’s law is widely used for quantifications of chemical solutions, it 

has been rarely utilized for thin film thickness measurements—likely because (a) molar 
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concentrations are not known for the material and (b) ε and c can be combined to form a 

more practical absorption/depth attenuation or extinction coefficient, a = ε c.  However, 

Beer’s law has been cited in some thin film thickness profilometry experiments.  The 

extinction coefficient which describes the linear relationship between density and 

thickness has been shown to exist for thin carbon films [82] and Beer’s law has been used 

to verify interference spectroscopy results for photoconductor coatings [3].  Similar 

Lambert-Beer law results were found for PET films with IR transmittance radiation using 

a Mattson Galaxy FT-IR spectrophotometer [83].   

X-ray densitometric imaging operates as a NDE tool for a variety of agricultural 

products.  Kotwaliwale et al. used the system configuration in Figure 2.11 to generate x-

ray attenuation coefficients of pecans and their shells in order to perform quality 

evaluation via nutmeat quantification [84].  They used a 1024 x 1024 camera and Gd2O2S 

scintillator screen to convert the x-ray radiation to grayscale.  The signal was digitized to 

12 bits and used to create linear fits for the nutmeat and shell attenuation coefficients 

using samples of known thickness.  Although there were variations in extinction 

coefficients between nuts, detector variations were less than 4%, with 80% of this error 

attributed to random noise and 20% from pixel sensitivity variation.   

 

 
Figure 2.11: System configuration for evaluating pecan quality using x-ray densitometry and digital 

camera [84]. 
 
There are also a number of thickness profilometry patents which rely on the decay 

or transmission radiation to determine the thickness of the materials.  Ashford of the 

Aluminum Company of America patented a method for using beta ray radiation to 

measure the thickness of metallic web material [85].  IR transmission measurements have 

also been used to inspect paper webbing to determine humidity and basis weight [86].  
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Flook and Moore of DuPont patented a transversely scanning UV signal/sensor pair to 

determine thickness at different locations across a web of cast material [87].  Kimberly 

Clark created a similar system for analyzing the quality of tissue product by illuminating 

the webbing and recording two frequencies of electromagnetic radiation with an array of 

filter spectrometers [88].  One of the frequencies was used as a reference signal to adjust 

for baseline changes and help remove noise from web flutter and surface conditions, and 

the other frequency measured the density of the tissue.  The inventors claimed the 

composition of material could be determined based on either reflectance or absorbance 

using Beer’s law.   

2.3 Summary 
Inspection systems are common in the plastics, wood, fabric, paper, glass, and 

thin film industries.  These systems determine the quality of the product with machine 

vision and nondestructive evaluation tools by quantifying the defects and/or thickness of 

the material directly or by post-processing the data.  Defect detection systems generally 

use machine vision to capture images of the product and flag defective regions when 

there are localized radiometric differences.  Defect classification determines the type of 

defect with heuristic rules, a neural network, or some other classifier.  Although fabric 

and wood inspection systems often classify defects for the purpose of grading, polymeric 

inspection generally does not classify the defects because differentiating defects adds 

little value to the inspection system and the types of defects are generally limited.   

Of the broad range of thickness instruments, optical thickness profilometry 

techniques were most applicable for non-contact thickness measurements of thin film 

material in a dynamic roll-feed environment.  Based on the thickness range, accuracy, 

and ability to make full-field measurements, interferometry and densitometry were 

further studied for implementation on the roll-feed system.  Both of these techniques have 

advantages and disadvantages.  Interferometry has excellent accuracy but requires more 

hardware and scanning to make measurements.  Densitometry is less accurate but the 

thickness is determined with quick, simple full-field measurements.  The following 

chapter considers these tradeoffs when designing the thickness profilometry instrument 

for the roll-feed system. 
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CHAPTER 3: EXPERIMENTAL SETUP AND ROLL-FEED 
SYSTEM CONFIGURATION 

 
The roll-feed imaging system (RFIS), shown in Figure 3.1, is a continuous roll-

feed system that incorporates imaging and thickness profilometry to analyze defect 

generation in semi-transparent thin film using various casting and extrusion processes 

(e.g. slot die extrusion).  The RFIS has been designed to be modular, adjustable, and 

adaptable for different types of cast materials and different inspection systems.  The 

structure was constructed with 80/20 Inc. components to allow for variable positioning of 

the manufacturing tooling components, heating elements, and inspection station because 

different materials required different system configurations. Additionally, there were a 

wide range of NDE and machine vision systems in literature (as discussed previously in 

Chapter 2), so the RFIS was designed to accommodate different inspection technologies 

and sensors.  The system can be subdivided into the following modules: 

• roll-feed and web control system – controls the speed and tension of the 

webbing 

• tooling system – produces the extrusion with a temperature- and pressure-

controlled tank, die, and piping 

• temperature control system – ensures tank, die, and platen temperatures during 

casting 

• inspection system – measures the thickness and quantifies defects in the 

manufactured product with a graphical user interface 

The web, tooling, and inspection systems are illustrated in Figure 3.2.  Components of the 

temperature control system are pictured in Figure 3.3, along with web and inspection 

control hardware, where the temperature control system provides tooling and platen 

heating with Watlow PID (proportional-integral-derivative) controllers.  The web tension 

control is performed with National Instruments LabVIEW 7.1 program and the inspection 

system is operated with a dedicated MATLAB 2008a graphical user interface (GUI) on a 

second computer.  The RFIS modules are discussed in more detail in the following 

sections.   
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Figure 3.1: The roll-feed system with inspection instrumentation. 

 

 
Figure 3.2: The web, tooling, and inspection systems of the roll-feed imaging system. 
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Figure 3.3: Physical system with web, heating, and inspection control systems. 

 

3.1 Roll-feed Web System and Control 

Acting not only as webbing, but also as a substrate to cast material, polyethylene 

terephthalate (PET) is streamed across the system as shown in Figure 3.4.  The webbing 

is pulled through the system with a motor coupled to a take-up roller.  The tension is 

controlled by a brake attached to the substrate roll which adjusts the resistance torque, 

Qresistance. 
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Figure 3.4: Roll-feed webbing configuration.  The blue arrows indicate the direction of rotation. 

 
The roll feed system is controlled with a Tesson DC motor and Cleveland Motion 

Controls brake.  A potentiometer is used to adjust the web speed between 0 and 0.25 m/s 

depending on the casting process by regulating the voltage across the motor.  Although, 

limited by the hardware of the current design, web speeds of 1 m/s and higher are 

possible for casting membrane material, and likely a requirement for industry-scale 

versions of the die cast system [89].   

The brake is used to adjust the web tension by varying the voltage with a 1000 Hz 

pulse width modulated (PWM) signal.  The signal is controlled with National Instruments 

(NI) LabVIEW [90] and is sent through a NI PXI-1010 DAQ card connected to a NI PXI-

8186 Embedded Controller with a SCB-68 I/O board.  The web tension is controlled with 

a feedback control system using Ultra Cartridge Transducer load cells, which are 

mounted at the ends of the roller shown in Figure 3.1.  

 The system operator determines the desired tension to keep the substrate taut 

around the rollers.  Since PET has high bending stiffness, friction in the system alone 

does not keep the substrate in full contact with the rollers, shown in Figure 3.5.  If the 

substrate is not held taut against the platens, out-of-plane vibrations or deflections may 

cause non-uniform casting, as described in 2.1.1.  The control system, shown in  

Figure 3.6, is a model-based, feedback control system which maintains constant 

web tension as the casting applies forces on the web and the diameter of the feed and 

take-up rolls change.   
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Figure 3.5: Webbing without tensioning. 

 
 

 
 

Figure 3.6: Web tension control loop. 
 

The control can be described as a series of steps:  

1. Based on experience, the desired tension (Tdesired) is input into the system by the 

operator.  Generally, this is between 60-75 N. 

2. Tdesired is subtracted from the measured tension to determine the error in tension 

(Terror), which is also the desired change in tension (ΔT). 

3. The controller takes ΔT and based on the control algorithm, adjusts this value to 

correct for system lag and overshoot issues. 

4. A model of the system converts the ΔT to the equivalent change in Pulse Width 

Modulation (ΔPWM) duty cycle signal. 

5. The signal is sent from the PC through the NI system to trigger the transistor and 

apply the brake, which changes the resistance torque of the feed roller. 

6. The new tension is measured by the two load cell sensors and sent back into 

LabVIEW. 

7. The data from the load cells is averaged and converted from a load to a tension 

with the constant transfer function, KT. 

8. This tension is then fed back into the LabVIEW control program to maintain 

constant tension in the webbing. 
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In addition to the control system, the LabVIEW program—shown in Appendix A—

allows the user to fix the PWM signal.   

The following sections explain how the transfer functions were determined and 

calibrations were completed.  Specifically, Section 3.1.1 finds the calibration curves for 

the conversion from load cell voltage to load cell force (VLC  FLC) and the transfer 

function taking the mean load cell force to web tension (FLC  T); Section 3.1.2 

determines the predicted web tension as a function of duty cycle (PWM  T); and 

Section 3.1.3 shows the results for different controllers. 

3.1.1 Load Cell Model and Calibration  

The load cells were calibrated by measuring the voltage from the Cleveland-

Kidder Ultra Cartridge Transducers by hanging known masses on the roller, as proposed 

by Roisum [91].  Cleveland-Kidder generally connects their load cells to an amplifier 

circuit in order to boost the signal strength and smooth the output, but for the RFIS the 

amplification was done in the LabVIEW program.  Like a strain gauge, the transducers 

were configured in a Wheatstone Bridge circuit with a 5 V differential placed across the 

circuit.  To determine the relationship between the load and voltage, the load cells were 

zeroed in software to account for the weight of the roller and ensure the calibration 

curves would have a y-intercept of zero.  Weights of 5.0, 10.0 and 15.0 lbs were attached 

at the load cell location and the mean DC voltage was read from LabVIEW.   

As shown in Figure 3.7, there is a linear relationship between the change in 

voltage and the applied force.  When the system is operated, the LabVIEW program 

initially re-zeros the load cells to account for any drift in the transducers.  Over the range 

of loads expected in the webbing, the following relationship has been derived: 

 

 1000( ) LC
LC LC

V CF V
m

−
=  (3.1) 

 
 
where FLC is the average load measured by the load cell, VLC is the voltage for the load 

cells averaged over a 0.100 s time period, C is a constant which zeros the voltage when 

there is no web tension, and m is the slope of the ΔVLC/FLC linear fit. 
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Load Cell Calibration Curves
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Figure 3.7: Calibration Data and Least Squares Linear Fit Line. 
 
A static analysis was used in order to convert the load cell force measurement to 

web tension.  The force recorded by the load cells was a function of the tension in the 

web and the angle that the web intersected the load cell roller.  The load cell only 

recorded the vertical component of the force acting on the roller, so as Figure 3.8(a) 

illustrates, the vertical force can be found by 

 
 cos cosloadcells input input output outputF T Tφ φ= ⋅ + ⋅  (3.2) 

 
where Tinput and Toutput are web tensions for the substrate coming into contact and 

separating from the load cell roller at angles of φinput and φoutput, respectively.  By 

assuming the rolling resistance is small, the input and output tensions are equivalent, so 

Tinput = Toutput = T and the static equation simplifies to 

 
 ( )cos cosloadcells input outputF T φ φ= +  (3.3) 

 
 
Thus, the transfer function, KT, is  
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(a) Tension of the web acting on the load 
cell roller. (b) The vector loops of the webbing with three rollers. 

Figure 3.8: Static analysis of the webbing across the load cell roller. 
 

Since the webbing runs tangent to the rollers, to determine the input and output 

angles—which due to system geometry were the same—a vector loop was created for the 

left side of Figure 3.8(b), 

 
 1 1 1

ˆ ˆ
web lcr r r l i h j+ − = +  (3.5) 

 
where lcr  and 1r  are vectors from the roller centers to the tangent webbing and webr  is the 

web vector from the r1 roller to the rlc roller.  In scalar form, this becomes, 

 

 1 1

1 1

cos sin cos

sin cos sin
output web output lc output

output web output lc output

r r r l

r r r h

φ φ φ

φ φ φ

+ + =

− + − =
 (3.6) 

 
 
with two unknowns: the length of the web, rweb, and the angle, φoutput.  The roller 

diameters are 1.90”, h1 = 4.30” and l1 = 2.00”, so the angle is 1.3º and KT is 0.500.  

3.1.2 Brake Model 

The electromagnetic particle brake is located on the feed roller and is controlled 

with a duty cycling signal from the LabVIEW control program.  Static analysis of the 
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web system has shown that since the friction acting on the web is significantly lower than 

the tension force, the tension in the web can be approximated by a function of brake duty 

cycle.  The torque induced by the brake is proportional to the brake current, shown in 

Figure 3.9.  Note the internal resistance of the brake is 23.1 Ω, so at 100% duty cycle, the 

circuit becomes a voltage divider circuit with 5.95 V and 0.26 A across the brake, so the 

maximum brake torque is ~5.8 N-m, as indicated in Figure 3.9.  One key advantage to 

using an electromagnetic brake over a conventional DC brushless brake is that the time 

constant is much smaller because there is little internal inductance.  This means that the 

frictional torque applied to the web acts quickly when the duty cycle is changed by the 

control.  Additionally, there is no back electromotive force (EMF) because the brake does 

not rely on coiled wire to generate the angular resistance.   

 

 
 

Figure 3.9: Torque vs current in the Cleveland-Kidder electromagnetic particle brake [92]. 
 
The relationship between duty cycle and voltage across the brake was determined by 

placing a voltmeter across the brake as the duty cycle was adjusted.  Unfortunately, the 

voltage across the brake did not scale linearly with the duty cycle due to the time-

dependant electrical components in the control circuit and brake. As a result, the transfer 

function between duty cycle and web tension were determined directly, as shown in the 

calibration curves in Figure 3.10.  The relationship between duty cycle (DC) and voltage 

explains some of the nonlinearity and hysteresis error.  It is believed that the strong 

hysteresis error was caused by a combination of web stretch, roller and webbing 

backlash, slop in the take-up roller mounts, and roller friction.  The load cell data was 

also noisy because the web tension force drifted between the left and right load cells due 

to roller misalignment.  Despite the system nonlinearity and sensor error, the final 
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calibration curves in Figure 3.10 can be represented as linear functions with coefficients 

of determination of 2 0.988increasingDCR =  and 2 0.968decreasingDCR =
 
using Eqs. (3.7) and (3.8). 

 
 9.40 41.5increasingDCT DC= +  (3.7) 

 9.66 60.9decreasingDCT DC= +  (3.8) 

 
This showed the necessary linearity required to apply the proportional controller.  Also 

since the slopes of these transfer functions were similar, it was not necessary to create 

separate control strategies for the increasing and decreasing tension scenarios. 
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Figure 3.10: Web tension vs duty cycle calibration control curves. 

 

3.1.3 Control Results 

Since the braking control system can be represented linearly and the system did 

not have strict constraints on the settling time, percent overshoot, or damping, a 

proportional controller was created.  The proportional constant, Kp, was adjusted to find 



 39

an acceptable control routine by watching the system respond to a 0-150 N step in desired 

tension.  To produce these results the following steps were taken: 

1. Web was slackened and the load cells were zeroed. 

2. Linear web velocity was set to ~3 cm/s. 

3. The natural tension in the web was allowed to stabilize (at ~35-50 N). 

4. The control was initiated and the tension from the load cells was recorded. 

5. If another test was performed, the duty cycle was zeroed and the web tension 

was allowed to restabilize. 

The results for trials with Kp1 = 5x10-3, Kp2 = 10x10-3, Kp3 = 20x10-3, and Kp4 = 30x10-3 

are shown in Figures 1-4 in Appendix B.  It was found that for increasing Kp values the 

controller responded quicker which resulted in shorter rise times but larger percent 

overshoot values.  The settling time, Ts, could not be calculated for the different 

controllers because the ±2% gap around the setpoint was never terminally entered due to 

system noise.  The plant became severely underdamped with Kp3 and marginally stable 

with  Kp4, depending on initial conditions and system noise.  The challenges with stability 

can be attributed to the system response time, which is driven by the time that it takes to 

tighten and provide slack in the webbing.  The system itself did not become significantly 

unstable because at large tensions the motorized roller and take-up roller slip, but Kp3 and 

Kp4 are not suitable controllers because of their oscillatory behavior.  It is more desirable 

to maintain the tension close to the setpoint than to reduce the overshoot or settling time, 

so Kp2 was chosen as the control. The parameters and models discussed in Sections 3.1.1-

3.1.3 are used in the web tension control program to maintain a constant web tension. 

3.1.4 Web Speed Measurements 

Although not directly fed into the control loop for the web tension, another 

important factor of the web system was controlling web speed.  The web speed was 

determined with a BEI Technologies EX11 series miniature incremental rotary optical 

encoder attached to the motorized roller, shown in Figure 3.11.   
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Figure 3.11: The drive system.  The motor is connected to a belt drive (green) which reduces the 
angular velocity and increases the torque delivered to the motorized roller (blue).  The angular 
velocity of the motorized roller is then increased as it is passed to the take-up roller (orange). 

 

Since the take-up roller and motorized roller have the same linear velocity at the 

frictional contact joint, the linear web speed, V, is calculated by 

 
 motorized measuredV r θ=  (3.9) 

 
 
where rmotorized is the radius of the motorized roller and the measured angular velocity of 

the roller, measuredθ , is calculated in LabVIEW by reading in the number of optical counts, 

nencoder, and dividing by 1024 to get the revolutions, 

 

 
1024

encodernrevolutions =  (3.10) 
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and then converting to rad/s, 
  

 2measured
revolutions

time
θ π ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (3.11) 

 
 
By substitution, the web speed is given by  

 

 2
1024

encoder
motorized

nV r
time

π ⎛ ⎞= ⋅ ⎜ ⎟⋅⎝ ⎠
 (3.12) 

3.2 Tooling System 

There are a wide range of manufacturing techniques which can be adapted to the 

RFIS to create thin films, such as those investigated by Harris et al. [93]: doctor blade, 

film applicator blade, melt compression, stencil printing, and slot die extrusion.  

However, slot die extrusion is implemented for this research, because it was found to be 

the best alternative for handling high viscosity, non-Newtonian polymeric solutions [89].  

The T-shaped slot die was manufactured from 316 stainless steel due to its chemical 

resistance and mechanical properties.  The slot die, shown in Figure 3.12, was assembled 

by bolting two die halves together which were offset by a thin 316 stainless steel shim.  

As shown in Figure 3.13, the full casting system was constructed such that a pressurized 

tank was connected to the slot die via straight piping and a ball valve, which controlled 

the release of material.  The tank lid was equipped with the thermocouple probe, 150 psi 

pressure relief valve, and pressure gauge to ensure operator safety and that casting 

parameters were met.  The tank and die heating system are discussed further in Section 

3.3. 
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Figure 3.12: T-shaped slot die.  Material enters from the top and is extruded through a very thin 

rectangular slit at the bottom. 
 
 

 
Figure 3.13: The casting tank and die setup. 

 
To prepare the system for a batch run, the die was assembled and connected to the 

pipe and valve.  This subassembly was then clamped into place on an 80/20 vertical rail 

system with plastic linear bushings and the tank was threaded into place.  The system was 

heated to the proper temperature, the solution added to the tank, and the tank pressurized.  

A feeler gauge of the desired stand-off height was placed under the die to ensure proper 

spacing between the die and substrate.  The height of either side of the rail system was 

adjusted with worm gears attached to rail guide blocks.  This method was believed to 

produce a gap to within ±10 μm of the desired height.  The error was due to slop in the 

rail system and feeler gauge inaccuracy. The tooling system was susceptible to 

perturbations due to vibrations from the roll-feed motor and the environment, as well as 

misalignments in the two die plates and shim.  These issues were investigated by Romero 

and Carvalho, who found that higher frequency noise in the inlet flow rate caused less 
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variation in the thickness; higher die stand-off height frequency (10 Hz vs 500 Hz) led to 

greater thickness variation; and when the stand-off height was varied, the overbite 

(downstream plate lower than upstream) exacerbated the thickness variation at lower 

frequencies, whereas the underbite yielded higher variation at high frequencies [94].  

Their work illustrated that slot die systems are susceptible to certain forms of noise and 

die misalignment leads to different thickness errors.  Thus, when assembling the die for 

each run, the shim and two die sides were carefully aligned.   

3.3 Temperature Control System  

In order to cast highly viscous, polymeric materials onto the substrate, the tooling 

system and casting surfaces were maintained at an elevated temperature.  For this reason, 

a heating control system was installed to change the material viscosity within the tank, 

piping, die, and on the platens.  The system has four heating circuits with type J 

thermocouples and EZ-ZONE PID auto-tuning controllers which run i) the tank band 

heaters, ii) the die cartridge heaters, iii) heated platen 1, and iv) heated platen 2.  The tank 

is wrapped with two 800 W Watlow band heaters and two 400 W Watlow cartridge 

heaters are inserted into the back plate of the T-slot die.  The two heated platens act as the 

lower surface for casting and are 6,500 W custom built Star Electric Inc. cast aluminum 

heaters with bayonet thermocouples running to the center of the blocks.  The top surfaces 

were fly cut to a flatness specification of 0.001” to ensure uniformly flat surface.  The 

tank has a bayonet thermocouple centered in the tank lid, which contacts the interior tank 

wall approximately 1.5 mm of the bottom surface of the tank. The thermocouple is put in 

contact with the tank wall to accommodate controller overshoot and prevent material 

overheating and degradation.  Another thermocouple is attached to the exterior of the die 

near one of the cartridge heaters to control die heating.  Since the thermocouples for the 

platens are located inside the blocks, the thermocouples do not directly measure the 

surface temperatures.  So for different desired surface temperatures the thermal system 

was measured by an infrared pyrometer and external thermocouple until the controller 

setpoint was found which provided the proper surface temperatures.  Based on this study, 

the controller setpoint temperatures for the platens are set approximately 8ºC above the 

desired temperature to obtain the proper surface temperature. 
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Four different outlets were installed to provide the 208 VAC power to the four 

different heating circuits.  Since the amperage for each of the circuits is large (two 15 A 

and two 40 A circuits), each of the outlets have a separate breaker to ensure the breaker 

will trip in the event of an electrical short. 

Each of the heating stations is activated independently by flipping a toggle switch 

on the main panel of the enclosure.  There are four LEDs next to the four controllers to 

indicate when the heaters receive wall power, shown in Figure 3.14.  This allows the 

operator to easily determine the duty cycling rate and if the heater controller is 

functioning correctly.  The tooling system (e.g., die, pipe and tank) is insulated with 

fiberglass fabric sown into wraps with Velcro attachments, shown in Figure 3.15.  The 

insulation is wrapped around the tooling system to provide better thermal uniformity and 

reduce power usage, during system operation. 

 

 
Figure 3.14: The heating control panel mounted on the electrical enclosure. 

 

 
Figure 3.15: Insulation on the die and tank viewed from the downstream side. 
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3.4 Inspection System 

The inspection system is composed of defect identification and thickness 

profilometry sub-components which utilize the same hardware (backlight, diffuser, lens, 

and camera) and are integrated into the same graphical user interface (GUI) software 

program.  However, the defect detection system and thickness profilometer are 

independent in the computer program and only the image data is shared between them, as 

shown in Figure 3.16.  The thickness profilometry hardware and calibration are discussed 

in Section 3.4.1 and the defect identification system conceptualization and design are 

investigated in Section 3.4.2.  Last, the graphical user interface, which integrated both 

these systems, is elaborated in Section 3.4.3. 

 

 
Figure 3.16: Overview of the image station hardware and software. 

3.4.1 Thickness Profilometry System 

Determining design specifications for the optical thickness profilometry system 

was not trivial, due to the range of sizes, thicknesses, and optical characteristics of the 

material and substrates utilized on the system.  Further, due to casting variability from 

configuration or operational issues—e.g., uneven die heating, die shim misalignment, 

improper die orientation—measurements across the entire web were necessary to perform 

quality assurance operations.  In addition, when casting parameters are adjusted or other 

undesired perturbations change the casting thickness, there is a real-time need to visualize 
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the thickness in the direction of travel.  As a result, a full-field profilometer was 

incorporated into the system to measure the web thickness.  

Since thickness variability and surface roughness are specific to the material and 

application, producing accuracy requirements for the thickness profilometer was difficult.  

As stated earlier, one of the RFIS objectives was to make a modular and flexible 

manufacturing and inspection system.  However, based on the perceived industrial needs 

for the cast material, a design objective was formulated: thickness measurement errors 

should be less than ±10 μm (or 4-5%) for 200-250 μm films.  Based on the state-of-the-

art profilometry methods discussed in Section 2.2, only a small subsection of techniques 

and no off-the-shelf products were capable of fully meeting all the design constraints.  

The design criteria included: 

• The instrument must find thicknesses at as many locations across the web 

as possible to (a) match experimental studies with numerical simulations 

and (b) identify errors or miscalibrations in the tooling system. 

• The instrument must be non-contact. 

• The instrument must make in-line thickness measurements while the web 

is moving. 

• The instrument cannot determine thickness based on scanning methods 

because at high web speeds it will be unable to render full-field 

measurements. 

Additionally, it is assumed that the material is not magnetic or dielectric.  Therefore, 

optical (interferometric) and absorption-based (X-ray, gamma ray, beta-ray, UV, IR, or 

visible transmission) methods were determined to be the best options for in-line thickness 

profilometry.  After investigating the potential of these systems, transmission densito-

metry with visible light was found to be the best candidate profilometry tool, although 

CCD array detectors have photometric/radiometric measurement limitations (i.e. large 

numbers of pixels, nonuniformities, aliasing effects, subpixel response, and dependence 

on operating conditions [18]).  Transmission densitometry was chosen over 

interferometry and other densitometry techniques because it was: 

1. Applicable to a dynamic roll-feed environment 
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2. Capable of full-field nondestructive thickness measurements on a 25-500 

μm range with an estimated 5 μm resolution 

3. Simple: not requiring complex optics or controls 

4. Inexpensive: a diffuse backlight, industrial camera, and lens were needed, 

as opposed to larger systems with multiple lenses, mirrors, or specialized 

sensors 

5. Robust: web speed, web flutter and other vibrations would not disrupt 

measurements, and it was easily recalibrated for changes in temperature, 

camera and backlight orientation and location, and new cast material 

6. Repeatable: re-zeroing the system was very simple  

7. Could utilize the same hardware as the defect detection system, reducing 

costs and inspection system space requirements on the roll-feed machine 

8. The system was adaptable for the following changes: 

i. web speed – the camera operated at 30 fps so it could inspect the 

entire product at ~1 m/s (although a strobe light may be required 

for these speeds) 

ii. casting width – the camera height could be changed or camera lens 

replaced for cast material width adjustments  

iii. cast material or substrate – backlight could be replaced with 

different LED arrays to tailor the wavelength transmitted through 

the material, or if the new material were very dense, reflection 

densitometry could be pursued with off-axis or annular lighting 

iv. thickness range – the intensity of the backlight could be adjusted 

for more or less dense materials 

When specifying full-field thickness profilometry hardware, the illumination is 

critical.  Commercial densitometer measurements are recorded with a monochromatic 

light source and a small aperture to the sensor.  It was desired to maximize the material 

absorption, so multiple attempts were made to locate the maximum absorption 

wavelength for cast samples using spectrophotometers.  However, due to difficulty 

associated with handling the material in its fluidic state and the samples being very thick 

(optically dense), obtaining the peak absorbance using spectrophotometers was 
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unsuccessful.  As a result, halogen light is used to backlight the thin film.  Although this 

is not optimal for specific materials, the logarithmic radiation attenuation described by 

Beer’s law is wavelength-independent, so maximization of extinction rates through the 

material is unnecessary.  For different materials, optical filters can be applied to the 

system to artificially adjust sample density. 

The final transmission densitometer was simple, robust, inexpensive, and good 

repeatability and accuracy were expected based on the literature. The final system, 

conceptualized in Figure 3.17 and shown in Figure 3.18, was constructed with a Fostec 

fiber optic diffuse blacklight connected to a Fostec ACE halogen light source, opal glass 

diffuser, and a Lumenera LM135M camera with a 25 mm Pentax lens.  This system 

measured the optical density of the material by estimating influx and efflux radiation of 

the sample using grayscale values of the image.  The optical density was then converted 

to the thickness of the material using the Beer-Lambert law.  The Beer’s law extinction 

coefficient, which converts optical density to thickness, must be derived experimentally 

for each material, but once this value is determined, the full-field thickness of the 

material can be measured in real-time. 

 

 
Figure 3.17: Thickness profilometry schematic. 
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(a) The system without blackout curtains. (b) The system with blackout curtains. 

Figure 3.18: The inspection station (a) without and (b) with the blackout fabric. 

3.4.1.1  Camera Selection 

Due to the applicability and abundance of digital video cameras, vision systems 

have become increasing popular for manufacturing inspection and therefore a wide range 

of camera options exist.  One the most critical decisions was selecting a proper sensor, 

because optical depth profilometry measurements are highly sensitive to image sensor 

(imager) readings since the grayscale values are converted directly to thickness values.  

Therefore, any noise in the image is passed to the thickness measurements, so by 

understanding imager characteristics, noise effects and other errors can be mitigated.  

Most modern web inspection systems use line scan techniques to improve the resolution 

of the captured images [95], however image capture must be coordinated with web 

position using time-delay integration (TDI).  On the RFIS, the encoder did not measure 

the web location well—due to slack in the substrate and slipping between the motorized 

and take-up rollers—and high resolution images (greater than 1600 pixels in width) were 

not necessary, so an area scan camera was chosen.  The two main types of photon-

detecting sensor readout circuits are charge-coupled device (CCD) and complementary 

metal–oxide–semiconductor (CMOS).  These camera readouts have different advantages 
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and disadvantages, shown in Table 3.1.  One of the most significant CMOS 

disadvantages is its low sensitivity to light, which requires longer integration times, and 

therefore is susceptible to more environmental noise.  As a result, a camera with a CCD 

sensor was selected for the densitometer. 

 
Table 3.1: Comparison of camera sensors, adapted from [96].  

CCD CMOS 
+ low noise images - fixed pattern noise 
+ pixel-to-pixel uniformity - pixel-to-pixel nonuniformity  
+ electronic shutter without artifacts - electronic shutter effects 
+ 100% fill factor - less than 100% fill factor 
+ high sensitivity to light - low sensitivity to light 
- high power consumption + low power consumption 
- multiple voltages required + windowing (random pixel readout) 
- clocks required (added system complexity) + additional control circuitry on sensor chip 
 

For the RFIS, selecting the proper camera options was critical for effective defect 

and thickness inspection.  The camera needed to have high resolution to capture small 

defects; while also having high linearity, high dynamic range, low temporal and spatial 

noise, high light sensitivity, and high fill factor to produce accurate densitometry 

measurements.  While there have been some proposed methods to select a camera with 

application modeling [95], it is far more common to experimentally validate proposed 

camera configurations are satisfactory.  To help hone in on critical camera parameters, 

early experimental work on the RFIS was performed with an 800 x 600 Banner 

PresencePLUS P4 color camera.  Based on experimentation with membrane material and 

an analogous solution, the following conclusions were made regarding defect 

identification: 

1. Higher resolution would help identify small bubble defects which were often on 

the order of 1-2 pixels in diameter.   

2. Increasing the resolution would provide better information on the defect regions 

to the classification system. 

3. The color information (in RGB and HSI color spaces) was unhelpful in 

identifying the membrane defects.  Therefore a black and white camera sensor 

was acceptable for the vision system. 

4. Since the web speeds for the prototype roll-feed system were small (under 20 

mm/s), the frame rate did not need to be high. 
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5. Images would blur slightly if the exposure was set too long. 

Furthermore, camera dynamic range and signal-to-noise ratio (SNR) play a critical role in 

thickness profilometry measurements, so it was important to find a 12-bit CCD area scan 

camera with a high SNR.  Point Gray Research, Cooke, and PCO high performance 

cameras were considered, but a 1392x1040 Lumenera LM135M was ultimately selected 

based on device cost and image quality.   

3.4.1.2  Transmission Densitometry Model 

The approach taken to model the transmission densitometer was to couple Beer’s 

law with a model of the CCD camera.  The European Machine Vision Association 

(EMVA) has created a standard model for CCD cameras [97], shown in Figure 3.19.  In 

the model, a number of photons, np, are photo-absorbed into the semiconductor sensor 

based on the wavelength-dependent quantum efficiency, η(λ), and converted to a number 

of electrons, ne = η(λ) np.  These photo-induced electrons combine with dark noise, 

ne_dark, which are additional electrons collected on the semiconductor due to thermal 

energy and other effects.  All the electrons are then sent through the amplifier and 

discretized to the digital value, z. (For additional information on CCD sensor processes, 

see [18, 98]). 

 

 
Figure 3.19: Block diagram of the mathematical pixel model from [97]. 
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where Φe is the efflux from the material.  To model steady-state illumination, the 

radiation fluxes are converted to the average number of photons collected by one pixel 

during the integration time, p integrationtμ = Φ ⋅ .  Using the EMVA model, the grayscale 

readout from a pixel is represented by  

 
 ( )( )_graylevel p e darkKμ η λ μ μ= 〈 + 〉  (3.14) 
 
where K is the camera system gain (grayscale/electron),  μe_dark is the average number of 

fictive dark electrons collected on the photosite during the exposure and 〈•〉  performs the 

ADC by mapping continuous current values to discrete grayscale values [0, 2bits-1].   

 Density of the material is related to thickness by Beer’s Law, D = at, so the 

thickness of the material can be calculated at one location using the gray value of the 

pixel corresponding with the influx and efflux.  The thickness is calculated by 
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 (3.15) 

 
where the extinction coefficient, a, is a function of the material and illumination 

wavelengths, and μp is a function of aperture and integration time. 

 Therefore, once the influx gray level has been determined, the thickness is 

estimated simply by reading the gray level of the pixel corresponding to material in that 

location.  By adjusting the aperture, integration time, and gain, the function becomes a 

combination of the previously determined zero thickness value and the measured efflux 

value 
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 (3.16) 

 
with a determined experimentally.  An example of this function is shown in Figure 3.20 

for a hypothetical material with a = 1.61.  The curve assumes that the mean influx gray 
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level is 4095 at 0 thickness.  The difficulty with gray value error (from discretization, 

dark noise, etc.) in thick films measurements is illustrated by the dashed lines.  At larger 

thicknesses, the accuracy of the instrument is handicapped because grayscale resolution, 

signal noise, and ADC yield larger measurement errors. 

 

 
Figure 3.20: The gray value vs thickness for densitometry measurements.   

   
However, these types of limitations are common among optical depth profilometry 

techniques because underlying most of these techniques are inverse problems.  Forward 

theory takes a known depth profile and experimentation provides profile data, whereas in 

the inverse problem, measured data is used to reconstruct a model of an unknown 

thickness profile [16].  Inverse problems are inherent in optical thickness profilometry 

systems because the thickness is not measured directly with a micrometer, caliper, or 

other instrument; but rather, a non-contact optical instrument measures a thickness-

dependent effect such as thermal waves, transmission radiation, or fringe patterns.  For 

transmission densitometry, a photosensor (CCD camera pixel) is used to reconstruct the 

depth profile by measuring a depth sensitive parameter (grayscale), as opposed to the 

thickness directly.   

Unfortunately, there are a number of difficulties that arise from inverse problems 

because they are ill-posed, i.e., they do not have the properties of existence, uniqueness, 
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and stability for all measured data values.  The issues of existence and uniqueness 

manifest themselves in the densitometer measurement from the analog-to-digital 

conversion (ADC) and noise in the camera.  Densitometer results are not unique because 

the image is discretized from a continuous spectrum with stochastic noise so there are 

different thickness values which produce the same digital value.  Further, there exist 

different thickness values which are measured as the same grayscale.  Thus, there is not a 

1:1 mapping from any grayscale value, z, to a unique thickness, t.  These challenges will 

be discussed further in Section 5.3. 

3.4.1.3  CCD Sensor and Camera Noise 

CCD cameras are the primary measurement detectors for radiometry.  They 

provide precise measurements from the near IR to the x-ray wavelengths of the 

electromagnetic spectrum with high quantum efficiency, high linearity, large dynamic 

range, and low noise [98].  However, there are a number of sources of noise that must be 

minimized for accurate radiometric measurements.  Various noise sources, their causes, 

and specific mitigation strategies for the RFIS are shown in Table 3.2.   

Of the errors in Table 3.2, the most significant source of noise in the radiometric 

measurements is from the dark current.  To quantify and design additional mitigation 

measures for the dark current, the EMVA model introduced in the proceeding section will 

be studied further.   

Photons arrive at the sensor with a Poisson distribution [99], so the mean number 

of incident photons equals the variance (μp = 2
pσ ).  Thus, the variance in the gray level is  
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So the temporal portion of the gray level variance is a combination of the photo-induced 

variance and the dark signal variance, described by 

 



 55

 2 2 2
_ _

_

graylevel temporal p dark signal

photo induced

Kσ ημ σ= +  (3.18) 

 
The mean of the digitized dark signal noise, Kμe_dark, and variance, 2

_dark signalσ , were 

determined statistically by capping the lens and taking multiple readings of the gray level.   

 
Table 3.2: Sources of radiometric error from CCD arrays (modified from [18]). 

Source of Noise Explanation Mitigation Strategy 

Quantum efficiency 
The quantum efficiency (ratio of irradiant 
photons to produced electrons) is dependent on 
imager temperature and wavelength 

Maintain the system at a 
constant temperature with 
the ventilation system 

On-chip amplifier and 
electronics response 
(amplifier and 1/f noise) 

Analog amplifier gain and offset can be affected 
by temperatures and voltages – these effects are 
generally small for good power supplies 

Ventilation system circulates 
cool ambient air, computer 
USB supplies uniform 
voltage 

Off-chip electronics 
(amplifier and ADC) 
nonlinearity 

Temperature can affect the gains in the amplifier 
and the digitization process introduces ‘rounding’ 
errors 

Ventilation system circulates 
cool ambient air 

Fixed pattern noise and 
photo-response 
nonuniformity (PRNU)   

Certain photosites consistently responding more 
or less sensitively to captured photons than others 

This does not affect the 
densitometry measurement 

Dark current and dark 
signal nonuniformity 
(DSNU) 

Thermal energy produces electrons on the sensor. 
Strongly varies with temperature – the error 
doubles approximately every 8ºC  

Ventilation system circulates 
cool ambient air 

Reset noise 
After the capacitor used for converting electrons 
to voltage is reset, there is a variable number of 
remaining electrons in the capacitor 

 

Stray light Ambient light can artificially and significantly 
amplify radiometric measurements 

Blackout fabric surrounded 
the test setup 

Dead pixels Photosites which no longer are sending voltage 
information 

Max exposure demonstrated 
that there were no dead 
pixels. 

Analog-to-digital 
conversion 

Quantizes the signal and can introduce error in 
the conversion from a continuous analog range to 
discrete values 

Nothing can be done to 
correct for this, but it is a 
very small value—at most 
0.5/4095 = 0.01% of the full 
dynamic range 

Saturation and 
blooming 

Saturation occurs when the photosite ‘well’ is at 
full capacity.  In some cases, when saturation 
occurs, the pixel will bloom, or spillover into 
another photosite.  

The maximum exposure was 
kept below saturation 

Dirt/debris on the opal 
glass, substrate, lens or 
imager 

All optical surfaces which have light pass 
through them must be perfectly clean so that the 
light is not refracted or absorbed. 

All optical surfaces were 
cleared with optical cleaning 
wipes 

Vignetting 
The periphery of the imager does not receive the 
same light intensity because of illumination 
falloff away from the optical axis 

Aperture is reduced to a 
pinhole, discussed in Section 
3.4.1.5 

 
The spatial variance results from nonuniformity in the sensor sites.  The spatial 

noise does not directly affect the accuracy of the densitometry system since each pixel 
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uses the ratio of efflux to influx photons for the density measurement.  Thus, different 

pixel photo-sensitivities do not affect the accuracy of the instrument.  However, due to 

vignetting and fixed pattern noise (FPN) not all the pixels use the full dynamic range 

(pixel bit depth) since the in-camera gain amplifies all values returned from the camera. 

It is common to measure the camera error as a ratio of the pixel level to camera 

noise, called the signal-to-noise ratio (SNR), 

 

 _p grayscale grayscale dark

p grayscale

SNR
μ μ μ
σ σ

−
= =  (3.19) 

 
which for the Lumenera LM135M camera is specified by the manufacturer as 60 dB 

(SNR = 3) [100].  However, the SNR changes depending on the amount of light incident 

on the sensor, as shown in Figure 3.21.  The SNR is improved when photo-induced signal 

increases with respect to dark current noise. 

 

 
Figure 3.21: The signal-to-noise ratio vs. the number of photons for η = 50%, σe_dark = 64 electrons, 

μe_saturation = 65,000 electrons [99].  The image quality improves with light intensity.   
 

Although dark current noise reduces the accuracy of the thickness measurements, binning 

options help provide more accurate readings.  Higher resolution cameras often offer 

binning, which groups two or more photosites, adds their signals and reads them as one 

photo-detector.  This is the same concept as averaging a region of pixels in post 

processing.  In both cases, the SNR is improved.  A single photosite reads the grayscale 

value with a normal probability distribution function _( , )graylevel dark signalNorm μ σ [99]. 

Therefore, the mean for N number of averaged photosites becomes  
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so the signal to noise ratio is 
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Thus, the averaging or binning of N pixels will improve the SNR by a factor of N .  

This noise reduction technique is used for RFIS densitometry measurements by averaging 

regions of 10 x 10 pixels to improve the SNR by 10.  Further increasing the size of this 

region would improve the SNR, but it would also decrease the number of density 

readings.   

3.4.1.4  Optical Distortions from Lensing 

Ideally the radiance of a point in an imaged scene maps directly to the digital 

image intensity of that point.  However, due to vignetting—a gradual darkening away 

from the optical axis—this is not the case.  Vignetting in this document will encompass 

the combination of various optic effects including lens geometry, light refraction, and 

pupil aberrations.  Optical vignetting occurs when periphery pixels do not share the same 

lines of sight as interior pixels.  Thus, by reducing the aperture, the irradiance on each 

pixel is more uniform because the sensor is exposed to fewer off-axis rays, shown in 

Figure 3.22 and Figure 3.23.  Essentially, some of the object rays normally incident on 

the peripheral photosites are obstructed by the lens barrel.  Aggarwal et al. found that 

with a 16 mm lens, even with a relatively small field of view (10º) would yield grayscale 

variations as large as 31% [101].  When using a 16 mm lens with the RFIS, the variance 

was found to be even higher (>100%), illustrated in Figure 3.23. 
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Aperture: f/1.4, Exposure: 1 ms, Gain: 1 Aperture: f/16, Exposure: 60 ms, Gain: 1 
Figure 3.22: Vignetting on the roll feed imaging system for a large pupil (f/1.4) and a pinhole 

aperture (f/16).  Note that the f-number is larger for smaller pupil diameters. 
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aperture = f/1.4
aperture = f/16

 
Figure 3.23:  The effect of aperture on vignetting, shown by taking a grayscale profile diagonally 

across the images in Figure 3.22.  The image with the larger aperature saturates in the center, 
whereas the smaller aperature does not. 

 
Vignetting is particularly pronounced when there is significant off-axis lighting, because 

these rays do not converge at the focal point and create nonuniformity across the sensor. 

As shown in Figure 3.24, when the aperture is decreased from A-A’ to B-B’ the pupil is 

illuminated more evenly and sensor pixels are not exposed to the off-axis light.  Although 

it appears that the side of the sensor would be brighter in Figure 3.24, when all the off-

axis rays enter the sensor, the center of the sensor receives the greatest irradiance, and 

therefore appears the brightest. 
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Figure 3.24: Off-axis lighting causing vignetting in a double-Gauss lens, like those used on the roll-

feed system [101].  As the aperture is reduced, the off-axis rays directed to the edge pixels are 
blocked. 

 
 

 
Figure 3.25: Geometrical setup with a uniform Lambertian luminaire irradiating the camera sensor 

through a single lens [99]. 
 

Even with the aperture reduced to a pinhole and a uniform light source centered 

on the optical axis, vignetting still occurs because of lens geometry.  This is evident with 

a simplified lens model developed by Dierks [99].  As shown in Figure 3.25, a uniform 

light source is subtended by a cone with an interior half-angle ϕ, such that 
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where q is the mount radius, p is the flange focal length, r is the luminaire radius, and w 

is the distance from the optical axis to the edge of the sensor.  The lens used on the RFIS 
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was a Pentax C-1614 16 mm C-mount lens with q = 12.5 mm and p = 17.5 mm.  The 

Lumenera 1392x1040 pixel sensor format was ½” (6.5 mm x 4.8 mm), so the largest 

distance to a pixel from the optical axis was 4.04 mm and ϕ  = 25.9º.  The cosine-fourth 

law [102] states that the pixel irradiance, Φpixel, decreases proportionally with the cosine 

of the half-angle to the fourth power, 

 

 
2 4

2
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4

e
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q
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π ϕΦ ⋅
Φ =  (3.24) 

 
So, for the Pentax lens and Lumenera camera geometry, there is a ~3.5% drop in the 

irradiance on the corner pixels in comparison to the center pixels.  However, Aggarwal et 

al. noticed that in practical applications the cosine-fourth law significantly underestimates 

the true photometric drop-off and found that pupil aberrations accounted for a significant 

amount of the grayscale drop-off when the aperture was small [101]. 

Pupil aberrations create additional darkening away from the optical axis via 

nonlinear refractions through the lens.  The aberrations are not caused by imperfections in 

the lens, but rather from the refraction through spherical lenses.  Lens calculations rely on 

a paraxial approximation—or a small angle assumption—which presumes the light rays 

converge to a single point [103].  In reality, spherical aberration cause the light to 

converge within a region which creates additional nonuniformity through 

1. pupil centroid shift – as the aperture is reduced, the centroid of the pupil may 

shift, causing the optical axis to not align with the center of the pupil 

2. pupil shape – when the pupil is constricted the shape becomes polygonal, but the 

geometry is often irregular so pixels are unevenly irradiated 

3. sensor tilt – the sensor was not held perpendicular to the optical axis of the lens 

Another form of aberration which leads to vignetting is astigmatism, in which a point off 

the optical axis has the point converge on the sensor at different locations depending on 

the plane through which the optical axis is viewed [103].  Furthermore, there are spatial 

distortions caused by the lens, commonly called barrel or pincushion distortion, because 

they appear to bend the sides of the image inward or outward.  Distortion changes the 

magnification of the image relative to the distance away from the optical axis.  Therefore, 

on the RFIS a lens with a large focal length was desired to mitigate distortion. 
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Some research has gone into correcting vignetting effects in images [104, 105], 

however these algorithms only normalize the data using mapping functions or nonlinear 

look-up tables.  They do not improve radiometric measurements because they denoise the 

image via pixel normalization.  Thus, the vignetting effects were minimized on the RFIS 

by reducing the aperture and using a lens with a long focal length.  In the final RFIS 

optical setup, vignetting effects reduced corner pixel influx grayscale values by 

approximately 35% of the full dynamic. 

3.4.1.5  Camera and Lens Calibration 

The Lumenera LM135M parameters were selected to improve densitometry 

measurements.  There were a number of tradeoffs considered when choosing the camera 

operating settings, listed in Table 3.3.  The settings were carefully selected based on their 

influence on the objectives, however in many cases the objectives had conflicting 

adjustments recommendations, so they were balanced through an iterative method.   

 
Table 3.3: The camera objectives for densitometry and defect detection. 

Objective Sub-objectives Parameters Adjustments to Achieve Objective 

Maximize SNR 

↑ aperture, ↑ integration time, ↑ gain, ↑ binning, ↑ backlight 
intensity, ↓  lens focal distance.  Maximizing the amount of light will 
increase the SNR and provide more accurate readings as per Figure 
3.21. 

Minimize 
saturation 

Reduce the light reaching all the sensors such that very few—
preferably none—of the pixels reach a gray value of 4095. ↓ aperture, 
↓ integration time, ↓ gain.   

Maximize 
densitometry 
accuracy 

Reduce spatial 
error/noise and 
vignetting 

↓ aperture, ↑ binning, ↑ lens focal distance. Depending on when the 
noise enters the signal, ↑ gain, see [99].   

Maximize 
densitometry 
resolution 

Maximize 
dynamic range of 
each pixel 

This requires balancing aperture, gain, and integration time to not 
saturate the pixels, while keeping them as close to saturation as 
possible when there is no material (D = 0). 

Capture clear 
images Reduce blur ↓ integration time 

 
It was desired to have all the pixels just below the saturation level (4095) when 

there was no material on the backlight.  To do this, the gain, aperture and integration time 

were set.  Since the in-camera gain is part of the system gain, K, which amplifies the dark 

current noise along with the light-induced signal, the camera gain was kept to the lowest 

value (1).  The aperture influenced inter-pixel gray value variation (i.e., vignetting), so a 

small aperture was set, f/8—albeit, not the smallest possible, which was f/16.   f/8 
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allowed four times more sensor illumination, so the exposure could be reduced which 

alleviated blur and temporal noises.  Also, Aggarwal et al. showed that there was little 

difference in vignetting effects between f-numbers of 4 through 16 [101].  Since there 

were different offsets and gains for each of the pixels (some of the pixels were ‘hotter’ or 

‘colder’ than others) and there was strong vignetting in the optical setup, the integration 

time was carefully selected to maximize the gray values across the sensor, while also 

minimizing the number of saturated pixels.  The pixel gray value histograms for 

integration times of 22, 23.5 and 25 ms are shown in Figure 3.26.  With large integration 

times (25 ms), there was significant saturation, but with lower integration times (22 ms), 

there were nearly no saturated pixels.  The saturation trend versus integration time is 

plotted in Figure 3.27.  At approximately 23.5 ms the number of saturated pixels 

increased drastically, so the integration time was chosen to be 23.25 ms, because this 

maximized the densitometry resolution while minimizing the saturation error.  For this 

integration time, less than 0.25% of the pixels were saturated for influx measurements. 
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Figure 3.26: The histogram of pixels with exposures of (a) 22 ms, (b) 23.5 ms, and (c) 25 ms. 
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Figure 3.27: Number of saturated pixels for different integration times (gain = 1, f/8). 
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 Even after calibration, not all the pixels were capable of measuring just below a 

gray value of 4095 at D = 0 due to fixed pattern noise and vignetting effects.  Once the 

camera gain, exposure, and aperture were set, the distribution of pixel locations for D = 0 

was known.  The grayscale influx determines the efflux grayscale-to-density mapping for 

each of the pixels.   The ‘Optimal Pixel,’ shown in Figure 3.28, utilizes the full range of 

digital values in the camera and therefore has the greatest SNR, because it produces more 

photo-induced current for a given density.  In the case of the ‘Dark Pixel’ curve, there is 

less photo-induced current with respect to dark current, so the SNR is poor.  However, 

the number of bits responsible for this signal is still more than 11 (a gray value of 2048), 

so the pixel still provides good resolution.  Lastly, the ‘Saturated Pixel’ curve is shown in 

Figure 3.28.  In reality, this curve truncates at 4095 because it maximizes the ADC 

output.  Therefore, it is undesirable to have saturated pixels because densities from D = 0 

to the density associated with a digital value of 4095 have the same measurement, 

resulting in thickness errors for all densities.   The degree of the error is dependent on the 

number of gray levels that are truncated, e.g. 

 
 ( ) ( )_ 2 1bits

truncated p e darkz K n nη= + − −  (3.25) 
 
 
However, it is impossible to know ztruncated via experimentation because the ADC loses 

this information.  The truncation results in a density shift given by 
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z z
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 (3.26) 

 
where z influx_unsaturated and zefflux_unsaturated are not truncated if above 4095.  When the efflux 

grayscale is in the range [0, 4095], zefflux_unsaturated = zefflux_saturated and the shift in density 

simplifies to   

 
 ( ) ( )log logshift influx_unsaturated efflux_unsaturatedD z z= −  (3.27) 
 
where zinflux_saturated = 4095 for a 12 bit camera.  The density shift versus number of 

truncated gray values is shown in Figure 3.29.  The result shows that the density shift 
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increases nearly linearly with the number of truncated gray values, and that even for 

small truncations, there is significant density error.  Therefore, the number of saturated 

pixels and the degree of saturation must be minimized because the density shift maps 

directly to thickness error.   
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Figure 3.28: Grayscale vs density for different influxes. 
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Figure 3.29: Density error from saturated pixels vs number of gray values truncated. 

 

3.4.1.6  Quantification of Densitometry Noise 

Using the procedure outlined in [97, 99, 106], the camera parameters were 

calculated through a series of tests.  Initially a dark run was performed (leaving the lens 

cap on) to measure 2 2 2
_ _ _graylevel temporal dark e darkKσ σ=  and _ _graylevel dark e darkKμ μ= .  Then 
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light-induced runs calculated, μp, μgraylevel, and 2
_graylevel temporalσ , by stepping through the 

range of integration times available in the camera. The mean gray values and temporal 

gray value variance for the dark and light-induced cases were determined by 
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where N is the total number of photosites and i and j are the indices for the x and y 

directions, z is the measured grayscale at that location, and A and B represent different 

photos.  The total grayscale variance was found by looking at adjacent pixels in a single 

image 

 ( ) ( )( )22
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1 , ,graylevel total i k i k
i k

z x y z x y
N
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The results from the EVMA photon transfer calibration method are shown in Appendix 

C.  The results show that for the integration times used on the RFIS, the mean dark 

grayscale was around 2.1, although one pixel was consistently 10 gray levels larger than 

all other pixels.  As a result, this “hot pixel” was removed from all further studies and 

densitometry measurements.  Excluding this pixel, the maximum temporal grayscale 

from dark current was typically between 18-20.  The temporal variance for numerous 

dark image pairs was always between 0.71 and 0.78; and for multiple dark images the 

grayscale variance was about 2.75.  From the data in Appendix C, the overall system gain 

was found to be 0.1716 using the regression line formula, 
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Since the dark grayscale shift occurred as a result of the capacitor unsuccessfully 

removing all the charge (reset error) and dark electrons collecting at the pixel with a 

Poisson distribution, the dark grayscale probability of each pixel can be modeled with a 

normal distribution,  



 66

 
 ( ) ( )( )_ _ _( ( , )) , , ,dark i j graylevel dark i j graylevel dark temporal i jP z x y Norm x y x yμ σ=  (3.32) 

 
 
Therefore, by averaging a number of images, the grayscale variance at each pixel 

decreases.  However, averaging images this way is only practical for calculations of the 

grayscale influx because the grayscale efflux is determined while the material on the web 

is moving.  As the number of images, M, included in the influx gray level estimation 

increases, the standard deviation approaches 0, and the probability approaches the mean, 

i.e. ( )( ) ( )_, ,dark i j grayscale dark i jP z x y x yμ= , by the law of large numbers.  The density 

probability function can then be defined as 
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with the assumption that photo-induced gray values have no variance.  This equation 

illustrates that (a) even averaging the influx images, there will be dark grayscale values in 

the influx, and (b) the noise is a larger portion of the efflux signal in the case of small 

photo-induced gray levels.  The camera has μgraylevel_dark = 2.1 and the σgraylevel_dark_temporal 

= 0.9, so the dark grayscale values represent a small portion of the signal when the photo-

induced grayscale value is large, but for dense material measurements, these errors 

reduce density accuracy.  Therefore, this limitation must be taken into consideration 

when selecting this instrument for measurements of specific materials. 

3.4.1.7  Densitometry Calibration 

The densitometry system was calibrated to remove error in the measurements.  

The tests were run at night with the lights turned off and a thick blackout fabric placed 

around the testing system to eliminate extra photo-induced gray values from skewing 
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results.  When the backlight was off, this setup had a mean gray level of 2.44 and a 

variance of 0.93—slightly higher than _graylevel darkμ and 2
_graylevel temporalσ .  When the room 

lights were on, but the fabric was in place, the mean and variance increased to 11.25 and 

2.1.   

The first study determined if the location on the backlight affected the density 

measurements.  In order to determine the accuracy of the densitometry instrument at 

these locations, an X-Rite Standard Densitometer Calibration Sheet conforming to ANSI 

PH2.19-1986 and ISO 5/2-1985 standards was used as reference for density values of 

0.06, 0.26, 1.46, 2.87, and 3.62 ±0.02 D.  A series of images of the X-Rite calibration 

sheet were taken so that four locations with varying degrees of vignetting (or 

μgraylevel_influx) had images of 0.00, 0.06, 0.26, and 1.46 calibrated densities.  D = 2.87 and 

3.62 values were not used, because these measurements approached the dark current 

noise floor, and therefore did not assist in the calibration.  An average of 15 images of the 

backlight without material was used to find the influx grayscale values for all the pixels.  

To reduce the temporal noise in the measurements, the grayscale, z, was averaged over 11 

x 11 pixel areas, so the density was found by 
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where i and j were indices of the 11x11 areas.  The locations of these regions and the data 

for each of the regions are shown in Appendix D.  A summary of the empirical results is 

shown in Table 3.4.  All the density measurements were smaller than the “true” density 

from the calibration sheet, but the discrepancy was far larger than could be attributed to 

grayscale dark current or ambient lighting.  Therefore, all the measurements under-

predicted the density and would under-predict the thickness of thin films.  The degree of 

density under-prediction and the thickness error for a theoretical material with an 

extinction coefficient of 1.2 D/mm are shown in Table 3.4.  Note that the grayscale errors 

for 0.06 D were the largest, but this did not produce the largest density or thickness errors 

because of the logarithmic mapping from grayscale to density.  The source of the density 

shift can likely be attributed to the X-Rite sheet being calibrated for a different light 

source and sensor.  Transmission is wavelength dependant, so density changes based on 
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the illumination source and sensor.  Since the Fastec halogen light did not provided the 

same spectral influx and the sensor did not have the same quantum efficiency as the X-

Rite densitometer, there was a drift in all the density measurements, shown by the density 

error values. 

 
Table 3.4: The error results for each of the measurements. 

 Density Grayscale 
Error 

Density  
Error 

Thickness Error 
for a = 1.2 D/mm 

0.00 D 31.6970 -0.0034 -2.83 μm 
0.06 D 94.4620 -0.0039 -3.25 μm 
0.26 D 18.1606 -0.0061 -5.08 μm 

Region 1 
(μgraylevel_influx = 2687) 
 

1.46 D 44.5791 -0.0877 -73.08 μm 
0.00 D 43.6088 -0.0047 -3.92 μm 
0.06 D 119.3951 -0.0054 -4.50 μm 
0.26 D 37.3957 -0.0085 -7.08 μm 

Region 2  
(μgraylevel_influx = 3503) 
 

1.46 D 64.5811 -0.1189 -99.08 μm 
0.00 D 46.4303 -0.0057 -4.75 μm 
0.06 D 294.5364 -0.0066 -5.50 μm 
0.26 D 80.2958 -0.0104 -8.67 μm 

Region 3 
(μgraylevel_influx = 3992) 

1.46 D 54.9904 -0.1406 -117.17 μm 
0.00 D 17.3273 -0.0028 -2.33 μm 
0.06 D 223.6601 -0.0032 -2.67 μm 
0.26 D 152.8370 -0.0051 -4.25 μm 

Region 4 
(μgraylevel_influx = 4087) 

1.46 D 82.8027 -0.0741 -61.75 μm 
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Figure 3.30: The measured density vs true density.  The blue line shows perfect matching, so the 

difference between the red and blue lines represents the mean error.  
 



 69

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Measured Density

D
en

si
ty

 E
rro

r

 

 

 
y = 0.128*x + 0.00701

 
Figure 3.31: Density error vs measured density with a linear fit used for calibration. 

    
Since the error had the same trends regardless of the location on the image, a 

universal correction for each of the pixels was applied to match the calibration data.  

First, densities of 0.00, 0.06, 0.26, and 1.46 were found for 9 images at various locations 

on the backlight, shown in Figure 3.30.  Then the density correction function was 

derived, based on a least-squares line through the error data in Figure 3.31, such that  
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 (3.35) 

 
 

Using the calibrated equation for density, 129 images of the calibration sheet were 

taken and the four densities were calculated.  The locations of the measurements are 

shown in Figure 3.32.  The results for the calibrated and uncalibrated equations are 

shown in Figure 3.33.  It was found that the corrected densitometry readings were 

significantly more accurate.  The errors for the calibrated system are displayed in Figure 

3.34 and quantified in Table 3.5.  The errors for the full-field densitometer were slightly 

larger than commercially available systems.  For instance, the X-Rite 361T has a ±0.01 D 
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repeatability and ±0.02 D linearity for densities between 0–5 D [70].  The full-field 

system also did not have the same range as off-the-shelf systems.  However, the full-field 

system offers the ability to measure an area which is 1200 times larger than available off-

the-shelf systems.   

The results show that with increasing density, the absolute mean error and error 

range increased.  It should also be noted that the spike in error standard deviation at high 

densities was due to poor SNR, but when comparing the standard deviation and error 

range percentages to the other densities, the high density measurements at 1.46 D 

performed comparably to 0.26 D.  Although, densities on the order of 1.46 D were not 

required for thickness measurements studied in this thesis.  For semi-transparent 

materials with extinction coefficients in the range of 0.5-2 D/mm (e.g., the material 

studied in Chapter 4), 1.46 D measurements correspond to 730-2920 μm thick samples, 

which are outside the 25-400 μm manufacturing range studied in this work.  However, 

these measurements indicated how sensor noise affects density measurements at lower 

gray values.  It should also be noted that the mean error results were not considered a 

limitation of the instrument.  The X-Rite calibration sheet guaranteed density accuracies 

to within ±0.02 D, so much of the mean error was likely caused by this variation and 

explains why 0.06 D measurements were consistently low and the 0.26 D measurements 

were consistently high.   
 

Locations of density samples: Blue = 0.00 D, Red = 0.06 D, Green = 0.26 D, Black = 1.46 D

 
Figure 3.32: Corrected densitometer measurement locations. 
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Figure 3.33: Comparisons of the measurements using the direct method (left) and the calibrated 
densitometer (right). 

 

 
Figure 3.34: Error in the calibrated densitometer. 

 
Table 3.5: Error Results for the Densitometry Test. 

True Density Mean Error Standard Deviation Max Error Min Error Error Range 
0.00 D 0.0026 D 0.0051 D (N/A) 0.0100 D -0.0200 D 0.03010 D (N/A) 
0.06 D -0.0111 D 0.0061 D (10.1%) 0.0000 D -0.0316 D 0.0316 D (52.6%) 
0.26 D 0.0290 D 0.0065 D (2.5%) 0.0480 D 0.0145 D 0.0335 D (12.8%) 
1.46 D 0.0710 D 0.0352 D (2.4%) 0.0774 D -0.1022 D 0.1796 D (13.3%) 
 

 The last verification of densitometric accuracy and resolution was performed 

using ten 130 μm sheets of the PET material.  The influx grayscale was determined with 

20 averaged images without material.  Then 10 images were taken with 1 to 10 sheets of 

PET on the opal glass and the density at four 11 x 11 pixel locations was found for each 
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of the images and averaged, as shown in Figure 3.35.  These results showed a slightly 

nonlinear densitometry trend which was likely caused by additional surface reflections 

with more sheets.  Since light reflected off the front and back surfaces for each layer, 

more sheets artificially increased the density.  Also each of the sheets added more dirt, 

scratches, and surface imperfections which increased density results and measurement 

variance.  However, from these results, the number of layers was visible and the density 

for a single sheet and extinction coefficient were estimated to be ~0.005 D and 0.038 

D/mm.   
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Figure 3.35: Ten density measurements for 1 to 10 PET sheets in 4 locations (left) and their average 
(right). 

 

3.4.2 Defect Identification System 

Based on different methodologies discussed in Chapter 2, several methods were 

investigated for inspecting the thin film after casting.  These defect identification system 

configuration tests were performed with a readily available, non-volatile analogous 

solution (molasses), in place of traditional polymeric material, based on its rheological 

and optical characteristics, e.g., viscosity and semi-transparency.  Some of the methods 

considered included: 

1. Using a reflected low angle laser line to detect the defects.  The plane of the laser 

would reflect specularly except when a surface anomaly caused the beam to reflect 

at a lower or higher angle.  The camera would pick up a bright bead of light unless a 

defect caused the light ray to diverge.  The setup is shown in Figure 3.36.  In 
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practice this method worked, but was very sensitive, even for very small surface 

defects.  Additionally, it was not possible to discern the different types of defects 

from one another using this method; it was only useful for identifying that there was 

nonuniformity in the casting. 

 

  
(a) (b) 

Figure 3.36: Low angle laser concept with (a) the laser path for good material, and (b) the camera 
mounting system. 

 
 

2. Direct imaging of the casting menisci using a side-mounted camera provided 

information on the pressure and web speed.  A backlight was used to illuminate the 

back of the die and generate a silhouette of the die and cast material, as utilized in 

[107].  The experimental setup and results, shown in Figure 3.37, illustrated that 

reflection from the substrate and membrane solution led to difficulties viewing the 

menisci.  Unfortunately, the low reflectance angle ensures a large percentage of the 

light will reflect off the solution and substrate to the sensor.  Improved results may 

be possible with a smaller or collimated backlight, which would project a silhouette 

of the casting to the camera; however, a microscopic camera would still be required 

to get acceptable spatial resolution of the small region of interest (ROI). 
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(a) (b) 

Figure 3.37: Imaging the die directly to measure the menisci.  (a) The system configuration, and (b) 
the resulting image. 

 
3. Mounting the laser line below the material and viewing the line characteristics from 

a top mounted camera.  While the line did brighten and distort when a defect was 

present, the line quality was poor and false positives were common. 

4. Mounting the laser line below the material and monitoring the line behavior on a 

projection screen, seen in Figure 3.38.  This method was similar to the one Gamage 

and Xie [5] implemented on their system (see Figure 2.3), but since the laser light 

refracted for all defects it was difficult to classify the defects. 

5. Projecting the laser line from above the web and imaging the reflection, as depicted 

in Figure 3.39.  Since the specular laser light reflection was not aligned with the 

camera lens, when bright spots appeared in the captured image, these areas indicated 

a defect, shown in Figure 3.39(b).  However the bright flash of light was brief and 

unless the camera was operating with a high frame rate, the defect may go 

undetected. 

6. Using a diffuse backlight to illuminate the semi-transparent material.  The material 

passed over a Plexiglas panel while a 4” x 5” Fastec fiber optic diffuse backlight 

illuminated the sample.  This system is shown in Figure 3.40.  Based on this 

thorough investigation, it was found that using a diffuse backlight to illuminate the 

semi-transparent material in combination with an overhead camera worked best for 

defect identification.  This method also provided a more efficient means of 

classifying the defects of interest, e.g., pinholes, air entrainment, gels, and thinning, 

because they appeared differently in the captured image.  
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(a) (b) 
Figure 3.38: Transmission laser with projection screen.  (a) The system configuration, and (b) the 

imaged result when the laser hit bubble defects. 
 
 

Figure 3.39: The reflected planar laser method, with (a) the setup and (b) the image of the laser 
striking a bubble defect. 
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(a) (b) 

 
(c) (d) 

Figure 3.40: The backlight system without the opal diffuser.  (a) The system in operation, (b) the 
backlight and support structure, (c) the full system without cast material, and (d) the system in 

operation from another angle. 
 

3.4.3 Inspection Control System  

As shown in Figure 3.3, web handling was controlled with a National Instruments 

LabVIEW 7.1 program (discussed in Section 3.1) and the inspection system was 
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controlled with a MATLAB 2008a graphical user interface (GUI).  These programs were 

located on separate computers to allow manufacturers the ability to monitor or control the 

web and inspection systems simultaneously.  The GUI program received digital image 

data from the Lumenera camera via a USB 2.0 connection.  Then image processing and 

image analysis was performed on the image data to extrude the thickness profile and 

defects in the manufactured product.  The GUI was created to allow manufacturers 

simple and intuitive control over the inspection system.  The system was coded to include 

the full-field thickness profilometer and defect inspection system, along with a number of 

system adjustments for changing the camera settings, image processing values, and other 

classification and processing options.  The interface is shown in Figure 3.41.  This 

discussion only covers the real-time processing mode of the GUI, however single 

snapshot and post-processing modes were also available.   

 

 
Figure 3.41: Screen shot of the graphical user interface with a non-cast sample of analogous material. 
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To perform the defect identification and classification, the GUI system captured 

images and processed them to extract defect regions (discussed in Section 4.3).  These 

regions then had a set of characteristic features extracted and sent to an artificial neural 

network (ANN) to classify the defects as holes, bubbles, thinning, or gels (discussed in 

Section 4.4).  The GUI was designed to be versatile and capable of operating on a range 

of cast materials, but there were some material-specific options in the final version.  One 

of the material-specific features was a tool which informed the manufacturer of 

improperly set casting parameters (e.g., tank pressure, web speed) based on the type of 

defects in the material (discussed in Section 4.3).  This tool determined if the casting 

parameters were set too high or low based on the existence of certain defects, e.g., via the 

following pseudocode algorithm: 

IF  total defects < 5 
Status: Casting is good. 
Changes: None. 

ELSE IF defect 1 > defect 2 
Status: “Above” the casting window. 
Changes: Lower parameter 1 and/or increase parameter 2. 

ELSE 
Status: “Below” the casting window. 
Changes: Increase parameter 1 and/or decrease parameter 2. 

END 

The primary goal of the GUI was to provide real-time information to the 

manufacturer about the quality of the product and what adjustments could be performed 

to remedy poor manufacturing.  When the system was running in real-time, the program 

operated according to the flow chart in Figure 3.42, the details of which are covered in 

Chapter 4. The primary features of the system were:  

1. setting the camera and image processing parameters 

2. visualizing defect identification and classification results in real-time 

3. visualizing thickness measurements in real-time 

4. autonomously determining the location on the casting window (Section 4.3) based 

on classified defects, then notifying the user of the adjustments which should be 

made to improve the casting 
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Figure 3.42: GUI real-time processing flow chart. 
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3.5 System Summary 

In Chapter 3, the roll-feed imaging system (RFIS) used to cast and inspect 

polymeric thin film is described.  The imaging system has been designed to measure the 

thickness and identify, classify, and quantify defects generated in semi-transparent 

polymeric materials in real-time using NDE techniques.  The remainder of this thesis 

investigates the feasibility of using such technology for the inspection of polymer 

electrolyte membrane (PEM) used for fuel cells. 
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CHAPTER 4: FUEL CELL MEMBRANE CASTING AND 
INSPECTION 

 

4.1 PEMFC Background 

Although fuel cell usage first occurred in the 1960s as part of the Apollo Missions 

[108], they remain poised to revolutionize the automotive industry [109], improve 

electric grid stability through storage [110], and provide on-demand power for off-grid 

communities or individuals with technologies such as wind-to-hydrogen (W2H2) [111].  

There are many different types of fuel cells (FCs), including polymer electrolyte 

membrane (PEM) FCs (also known as proton exchange membrane FCs), phosphoric acid 

FCs, solid oxide FCs, and many more, which operate at different temperatures based on 

the chosen fuel, oxide, and electrolyte.  To demonstrate the RFIS discussed in Chapter 3, 

polymeric materials used in PEMFCs are considered, because of all the FC technologies, 

PEMFCs are experiencing the most development and are expected to penetrate the 

transportation and energy sectors in the next two decades [109, 110].   

  The PEMFCs are composed of two bipolar plates and repeating membrane 

electrode assemblies (MEAs), shown in Figure 4.1.  Each MEA is composed of two 

electrodes separated by the polymer membrane.  The bipolar plates separate the fuel (H2) 

and oxidant (O2 or air) streams.  The bipolar plate has machined or stamped serpentine 

channels to distribute the reactant flows to the gas diffusion layers (GDLs) mated to the 

anode (-) the cathode (+).  When the fuel and oxidant are present at the anode and 

cathode, the electrochemical potential is large enough to pass the H+ cations across the 

ionomer membrane, but because of the chemical properties of the PEM material, the 

electrons must pass around an external circuit creating an electrical current similar to a 

conventional battery.  As shown in Eq. (4.1), water and heat byproducts emerge on the 

oxidant side of the PEM, which are exhausted with the oxidant stream. 

 

 2 2 22 2H O H O heat+ → +  (4.1) 
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Figure 4.1: Fuel cell assembly with (1) Bipolar plates, (2) Gaskets, (3) Electrodes, (4) Catalysts, (5) 

Polymer Electrolyte Membrane [112]. 
 

For the last 40 years, the state of the art PEMFC electrolyte material has been 

Nafion®, a perfluorosulfonic acid/polytetrafluoroethylene copolymer [113].  Although 

Nafion has remained the market leader, scientists have been working to create more 

efficient and less expensive ionomer membranes, such as polybenzimidazole doped with 

phosphoric acid (PBI/PA) [114].  New classes of PEM allow for high temperature 

PEMFC operation (between 120-200ºC) which is infeasible with state-of-the-art 

membranes.  The increase in operating temperature provides higher efficiencies and 

current density, reduces the need for water management, and allows for higher platinum 

catalyst tolerance to carbon monoxide poisoning [115-117].  However, both types of 

ionomers have manufacturability challenges. 

4.2 Motivation for Inspecting Polymer Electrolyte Membranes  

Since commercial development of both low and high temperature PEMFCs is in 

its infancy, there lies a host of challenges associated with their mass production.  One of 

the major hurdles is producing PEMFCs cost competitively for transportation and 

electrical grid storage, as compared to traditional or other alternative energy sources.  A 

National Renewable Energy Laboratory (NREL) report indicated that in order for fuel 

cells to become cost competitive, they must be less than $125/kW for transportation and 

less than $750/kW for stationary applications [109].  However, since fuel cells are 

currently manufactured at low volume, the current price is $3,000/kW with 

approximately $1,200/kW for manufacturing [118].  Moreover, up to $600/kW (i.e., 13-
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20%) of the total cost is from the membrane and its manufacture [119, 120], although 

these studies do not take into account wasted material from defective production.  NREL 

has stated that the total stack price may increase 5-50% solely from quality control 

checks and conditioning after assembly [109].  Thus, technological developments to 

fabricate defect-free, uniform membranes inexpensively and reliably will help reduce the 

overall cost of the PEMFC.   

Durability of fuel cells is another impediment to wide spread commercialization 

of fuel cell systems.  The US Department of Energy has set the their 2010 target 

durability at 5,000 hours (150,000 miles) for automotive applications in order to be 

competitive with the current vehicle technologies [121].  The reliability of fuel cell 

membranes is currently limited by the formation of pinhole or tear defects—either in 

manufacturing or operation—which lead to gas crossover due to chemical, mechanical, 

and/or thermal degradation [17].  There have been a number of initiatives to identify the 

source of the pinholes, but there is no consensus to date.  Luke first investigated the 

problem and concluded that the membrane was not getting proper water transport, drying 

and then cracking [17].  Another theory, originating from a study by La Conti et al., 

found that MEA failure was due to peroxide formation and degradation of the polymer 

[122].  More recently Peineche et al. determined the surface roughness of the GDL could 

cause pinhole creation and Stucki et al. found that the membrane dissolution was the 

cause of local stress and backed this up with experimental evidence of pinhole formation 

solely from electrolyzation [123].  Stanic and Hoberecht put forth a hybrid theory that 

claimed membrane aging, localized heating (from electrochemically-induced current 

densities), fuel cell component configuration, and operating conditions caused pinhole 

failures of the fuel cell [124].  Stanic and Hoberecht also experimentally tested 30 

membranes between ~30-170 μm and concluded that pinhole defects occurred due to 

stress concentrations where the membrane thickness was reduced.  Furthermore they 

found that other pinholes had precipitates in the membrane which caused polymer 

blistering.  Harris et al. and Bhamidipati et al. showed experimentally and numerically 

that holes and bubbles will form during membrane fabrication [89, 125]. 

The first step in assuring the membrane can withstand harsh automotive or other 

portable product environmental conditions is to maintain high quality standards in the 
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manufacturing process.  If the cast membrane contains any holes or pinhole defects, the 

fuel cell will not function; and if there is thinning or air entrainment regions, the 

membrane will likely fall far short of the desired 5,000 hrs of operation.  Moreover, since 

these studies often point to membrane creep causing the failure, maintaining a uniform 

membrane casting without particulates or other stress concentration zones is critical to 

longer fuel cell life.  In short, there must be a strong quality control system to ensure 

optimal membrane fabrication.  The RFIS is believed to offer such control. 

4.3 Defect Detection in Cast Polymer Membranes 

In certain thin film manufacturing situations the types of defects are an indication 

of improperly set casting parameters, e.g., casting temperature, pressure, and web speed.  

The range of casting parameters which generate acceptable material defines a “casting 

window.”  Outside of this window, different defects occur based on the misbalance of 

casting parameters.  Thus, by monitoring and classifying the types of defects, the location 

on the casting window can be determined, and therefore the necessary adjustments in the 

casting parameters ascertained.   

Experimental work based on slot die extrusion has shown that the casting window 

depends on rheology, capillary number, particle size and concentration because these 

properties change inter-particle forces, i.e., Brownian, van der Waals, electrostatic, steric, 

and hydrodynamic forces in the material [107].  Chu et al. showed that when the flow rate 

was too high or casting speed was too small, material built up behind the die; if the flow 

rate was too low relative to casting speed, air entrainment would occur; and if the flow 

rate and casting speed were both high, die lines would occur [107].  Liu et al. showed that 

changing material properties affected the slot die casting window [126].  In addition to 

experimental analysis, numerical simulations of the slot-die casting process also 

exemplified the careful balance between inlet flow rate and web speed [127].   

4.3.1 Selection of Defects to Identify 

The RFIS produced a range of defects depending on the location on the casting 

window, specified by the flow rate and substrate speed.  When the web speed was too 

large or the tank pressure (i.e., mass flow rate) was too small, the material could not fill 
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the volume beneath the die and holes and thinning occurred.  If the web was moving too 

slowly in relation to the tank pressure, too much material was extruded from the die and 

the coating bead expanded beyond the die and air pockets appeared in the material.  

There were also dark gels and particulates due to poor material handling practices, not 

fully cleaning the tooling system between batches, or debris on the substrate.  Therefore, 

the defects of interest are illustrated in Table 4.1.   

 
Table 4.1: Defects present in fuel cell membrane castings. 

Defect Backlit Image Side View Qualifications 

Hole or Pinhole 

  

There is no material covering the 
substrate in a localized area. 

Air Entrainment or 
Bubble 

  

A pocket of air below the 
material surface. 

Thinning 

  

Concavity on the surface of the 
material. 

Gel or Particulate 

  

A dark contaminant in the thin 
film, often caused by hydrolyzed 
material. 

 
By design, not all the defects in the membrane were detected by the imaging 

system. A primary objective of the RFIS was to autonomously direct the processing 

parameters into the casting window, so identifying defects which occurred far from the 

casting window would only add superfluous system complexity, and the processing 

parameters would be adjusted prior to reaching these extremes.  The unidentified defects 

were die lines (caused by wrinkling in the substrate), uneven die flow, or gels in the die, 

and a repeating pattern of thinning or bubbles.  These defects are shown in Figure 4.2.  

Holes, thinning, and air entrainment were the only defects which were necessary for the 

control system.  However, gels occurred within the casting window because they were in 

the batch solution, so they were also identified and classified to ensure they were not 

mistaken for other defects.  For a more thorough discussion of the causes of these defects 

and how they occur, see [125, 127-129].   
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Figure 4.2:  Defects occuring far from the casting window at low pressures or high web speeds. 

 

4.3.2 Image processing 

In general, it is preferred to adjust camera settings and lighting to optimize defect 

contrast rather than to post-process images, but it is often unavoidable to process the 

images in order to extract features of interest.  As a result, standard techniques for image 

processing, including point transformations, spatial transformations, and morphological 

operations have been developed.  The objective of these processing techniques is to 

remove noise and enhance features of interest, e.g. the defect regions.  Using preliminary 

image data from the RFIS, a wide range of image segmentation methods (many of which 

are covered in [130]) were attempted, including: 

1. Thresholding the grayscale image 

2. Thresholding using Otsu’s method [131] 

3. Attempting to take advantage of the spectral content of the images by 

thresholding the red, green, or blue values individually  

4. Converting the RGB image to the HSI or CMY color space and 

thresholding each of the tristimulus values 

5. K-means clustering 
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7. Reconstruction and then thresholding 
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9. Split-and-merge algorithm 
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10. Watershed segmentation 

The most promising of these methods was thresholding after taking the top-hat operation, 

which essentially returned an image containing all the objects which were brighter than 

the localized background and smaller than a binary kernel.  The steps of the operation are 

shown in Figure 4.3 based on a MATLAB example image.  Notice that when the image is 

directly thresholded (upper middle), processing does a poor job of identifying the rice 

grains in the lower part of the image, but the thesholded top-hat image (lower right) does 

identify them.  The same processing steps are also performed for dark regions, in which 

case it is called the bottom-hat operation.  The top-hat and bottom-hat operations also 

help remove the vignetting effects in the images, so that all the defects have equal chance 

of being detected.  Otherwise either the center or the periphery defects would be 

thresholded at a relatively larger value and more likely classified.  After taking the top 

and bottom-hat operations, using similar steps as Gamage and Xie [5], candidate defect 

regions were located.  The operations in the defect identification program are shown for 

the four types of defects in Figure 4.4.  The operations are as follow:  

• 1 – The image is captured from the area camera. 

• 2 – If the image is color it is turned to grayscale.  The image then is separated into 

two parallel processing operations.  The left side finds defects which are lighter than 

the local background and the right side finds defects which are darker than the local 

background. 

• Left 3 – The top-hat operation highlights the light regions. 

• Left 4 – The image is thresholded at a gray value selected by the user.  (Otsu’s 

method and using functions based on grayscale standard deviation were attempted, 

but with little success.) 

• Left 5 – The closing operation is performed where a structuring element dilates and 

then erodes the blob regions.  This removes noise around the light blobs, but also 

combines multiple defects if a large structuring element is used.  For this reason, 

only a 2 pixel radius disk is used. 

• Left 6 – Bounding boxes are placed around the blobs and then expanded by 25% in 

each direction to capture some of the surrounding area (similar to the methodology 

of Pham and Alcock [34]).   
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• Right 3 – The bottom-hat operation finds the dark regions. 

• Right 4 – The image is thresholded. 

• Right 6 – Bounding boxes are placed around the blobs and expanded by 25% on 

each side. 

• 7 – The boxes from the light and dark processes are compared and combined.  If 

any of the regions are completely enclosed in another box, the smaller boxes are 

deleted.  This helps remove the redundant regions associated with bubbles, and in 

some cases gels.  (For this application, this method performed the desired task, but 

other joining schemes have been suggested in [34].) 

• 8 – The final defect regions are obtained, which are then segmented and classified. 

Original Thresholded Original Opened Image

Top-hat Transformed Image Image Adjusted to 0-255 Thresholded Top-hat

 
Figure 4.3: The steps in the top-hat operation.  The original image is morphologically opened to 

generate a background mask (upper right) which is then subtracted from the original (lower left), 
renormalized (lower middle), and thresholded (lower right).  Rice.png image from MATLAB [132]. 
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Figure 4.4: Image processing procedure to convert the original color image to segmented defect 

regions 
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4.4 Defect Classification in Cast Polymer Membranes 

The classification of the defects into categories of holes, bubbles, gels, and 

thinning was a challenging engineering problem because of the diversity of parameters 

which accompany the same defect type.  For instance, a hole may have an area of 30 

pixels or 3000 pixels.  Human vision and comprehension is particularly good at detection 

and classification of defects, so the difficulty in automating this process is often 

underestimated.   

This section describes the motivation and steps in creating a classification tool for 

the RFIS.  Casting defects appeared when certain casting controls were too high or low, 

so by classifying the defect types, corrective tuning of these controls was possible.  In 

order to create the classification tool, defect parameters—i.e., extracted region-of-interest 

(ROI) features—from each of the defect regions were collected and analyzed.  A data 

mining tool was used to determine which classification method should be implemented.  

The results showed that neural networks were the most accurate classifier, so the network 

structure was further studied to optimize classification accuracy before being 

implemented within the inspection system. 

4.4.1 Defect Data Mining 

Classification routines—e.g., decision trees and lists, instance-based classifiers, 

multilayer perceptrons, Bayesian networks, etc.—all work by dividing the parameter 

space into different classification regions.  The parameters must contain information that 

can be used to separate different defect types by dividing the parameter space.  Thus, the 

input vectors to any classification routine must be populated with features which are 

characteristic to certain defects.  For example, difficulty arises when segregating holes 

and bubbles from one another because they have the general geometric form.  However, 

bubbles have a darker ring around the white region, so by taking the Laplace transform of 

the ROI, patterns to discern the two defects are revealed.  

Ultimately, a collection of 59 parameters were believed to designate regions of 

interest as specific defect types.  These candidate inputs fell in broad categories of size, 

histogram, topography, geometry, and topology shown in Appendix E.  The set of 

features was heavily influenced by the work of Packianather et. al [33], but as opposed to 
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using uniform 85x60 pixel images for all defects, the segmented images had no size limit.  

As a result, directly counting pixels was not applicable so the percentage of pixels for 

each of the regions was determined.   

Once this list was finalized, images of the membrane solution were taken over a 

range of casting parameters to produce different defects.  75 images were selected and 

segmented to create 6,663 individual defect regions, which were saved with their 59 

features.  The majority of the defects were bubbles, so only 2,100 of the 6,663 regions 

were hand classified, resulting in 246 hole defects, 774 bubble defects, 766 thinning 

defects, and 314 gel defects.  It should be noted that there was often difficulty classifying 

holes and thinning since they have the same general trends, and in some cases thinning 

looks nearly identical to a hole.  Fortunately, if these defects are later misclassified, 

because they generally appear in the same location on the casting window, the system 

recommendations will remain the same.  Some consideration was given to combining 

hole and thinning defects, but thinning can occasionally appear in the high pressure/low 

web speed casting window location where holes do not appear, so it was desired to have 

them differentiated. 

At this point all the data was normalized by assuming the features, Z, formed a 

Gaussian distribution.  By subtracting the feature average, μ, and dividing by the feature 

standard deviation, σ,  

 ZZ μ
σ
−′ =  (4.2) 

 
99.7% of the normalized features Z’ were expected to fall within the range of -3 to 3.  

This was important for some of the classification schemes (e.g., neural networks) because 

training the classifier used an error minimization method.  If one defect was numerically 

larger than the others, the training would favor this feature over the others. 

Next, the input-output data was analyzed for trends in the data mining software 

WEKA 3.6 [133] to remove unnecessary feature inputs.  Initially, the number of features 

was reduced from 59 to 19 using a WEKA tool which considered the predictive nature of 

each feature as well as the redundancy between features [134].  Removing superfluous or 

redundant features from the classification program makes the classification routine 

quicker.  To remove features, the tool measured the inter-class and intra-class variation of 
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the parameter space.  The intra-class variation described how well the features of a given 

class were clustered, whereas the inter-class variation quantified the separation of classes.  

It was important to minimize the overlap of different defects in the feature space, so the 

mean of the four data sets required a large separation (e.g., large inter-class variation), but 

small intra-class variations were also important so that the distributions were not broad.  

For example, a clear division between the holes/thinning and gels/bubbles can be seen 

using the mean grayscale from the bottom-hat and the ROI center grayscale value shown 

in Figure 4.5; however, this was not the case for the ROI median grayscale and top-hat 

skewness, shown in Figure 4.6.  Thus, the median grayscale and top-hat skewness were 

not included in the final feature set. 
 

 
Figure 4.5: Scatter plot of defect data with good inter-class variation.  Normalized bottom-hat mean 

grayscale vs. normalized center point grayscale.  Key: blue – hole, red – bubble, green – thinning, 
cyan - gel.  

 

 
Figure 4.6: Scatter plot of defect data with poor inter-class variation.  Normalized grayscale median 

vs. normalized top-hat skewness.  Key: blue – hole, red – bubble, green – thinning, cyan - gel. 
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After eliminating redundant and unhelpful features from the feature set, the final 

19 features were: 

1. Standard deviation of the grayscale image 

2. Skewness of the grayscale image 

3. Percentage of grayscale pixels less than the mean grayscale (μ) 

4. Percentage of grayscale pixels greater than μ + 40 

5. Dark outliers: threshold grayscale at μ + 1.5σ and count white pixel percentage  

6. 3rd lightest pixel in the top-hat 

7. Mean bottom-hat value (μbh) 

8. Bottom-hat mode 

9. Bottom-hat standard deviation 

10. Bottom-hat peakedness (Kurtosis) 

11. Percentage of bottom-hat pixels less than μbh 

12. Blob region eccentricity of an ellipse fit around the region 

13. Blob region extent (% of white pixels in bounding box) 

14. Blob region Euler number (Nblobs – Nholes) 

15. Laplace transform of grayscale, threshold at 12, and count white pixel percentage 

16. Profile is monotonically decreasing (Y/N) 

17. Profile increases more than 20 levels (Y/N) 

18. Profile increases more than 60 levels (Y/N) 

19. Center Pixel Grayscale 

Features 1-11 were histogram-based parameters derived from of the grayscale, top-hat, 

and bottom-hat images of defect regions.  Examples of a hole, a bubble, thinning, and a 

gel grayscale, top-hat, and bottom-hat regions and their associated histograms are shown 

in Table 4.2 and Figure 4.7, respectively.  The ability of these features to divide the 

parameter space can be seen with the histograms.  For example, Feature 6 is the 3rd 

lightest pixel in the top-hat.  As shown in Figure 4.7, the hole value for this feature is 

245, the bubble is 100, thinning is 126, and the gel is 52.  Hence, there was a clear 

separation in the four defect types based on this parameter, albeit additional samples 

would be required to make any definitive claim about the merit of the feature. 
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Table 4.2: Exemplary grayscale, top-hat, and bottom-hat defect regions. 

 Gray Image Top-hat Image Bottom-hat Image 
Hole 

   
Bubble 

   
Thinning 

   
Gel 
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Figure 4.7: Original image, top-hat and bottom-hat histograms of defect types. 

 
 
Features 12-15 were based on the blob regions.  These blob regions are located in Figure 

4.4 at Step 6.  The eccentricity was a measure of the blob circularity, so elongated defects 

were differentiated from circular ones.  The blob extent measured the percentage of the 

white pixels in the bounding box and the Euler number was the number of blobs minus 

the number of holes; both of which measured the defect geometry by indicating if there 

were cavities or other nonuniformities in the blob shape.  Features 15-19 were based on 

the topology of the defect region.  Feature 15 was generated by taking the Laplace 
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transform of the image, as shown in Figure 4.8, binarizing the image, and then counting 

the white pixel percentage.  Laplace transformations are often used for edge finding, so 

this showed how rapidly the grayscale profile changed in the vicinity of the defect.  

Features 16-19 utilized the averaged grayscale profiles measured from the center of the 

region to the corners, shown in Figure 4.9.  These profiles were normalized based on the 

center pixel grayscale (Feature 19), such that the center of the profile began at the origin, 

as shown in Figure 4.10.  Feature 16 determined if the profile only decreased away from 

the center, which indicated a hole or thinning.  Feature 17 queried if the profile at some 

point increased 20 gray levels, which typically indicated a gel or bubble; and Feature 18 

determined if the grayscale levels increased 60 pixels, which generally indicated a gel.  

Based on these features there was enough information to segregate the defect types with 

different classification tools.  Each defect provided feature information to the classifier 

about the region, and using the a priori information from the hand classified data, the 

classifier assigned the region to a defect category based on how closely it matched the 

other defects of the same type. 
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Figure 4.8: The histogram of the Laplace transform, the image of the region of interest, and the 

Laplace transform image for the four types of defects. 
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Figure 4.9: Grayscale profile vectors from the center of the defect region to each of the corners. 

 
 

Figure 4.10: Profiles from the center of the defect region to the corners sampled 500 times.  
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4.4.2 Determining the Best Classification Tool 

There are a range of classification methods which divide the parameter space into 

the different defect types.  Each method has its own advantages and disadvantages.  For 

instance, decision trees are simple, and therefore fast, but cannot produce the 

sophisticated divisions possible with a neural network.  For the membrane defect 

classification problem, a decision table, decision tree, Bayesian network, and neural 

network were investigated. 

 Decision tables are essentially a method of stringing together successive IF-

THEN-ELSE statements which divide the parameter space [135].  Based on the defect 

classification problem, WEKA created 162 rules using features 1, 3, 5, 14, and 16.  The 

decision table correctly classified 87.33% of the defects with the confusion matrix shown 

in Table 4.3. 

Decision trees operate under a similar methodology as the decision table.  By 

creating a series of logic statements, e.g.,  

 
IF σ > 1  

classify as hole  
ELSE  

classify as gel 
 END 

 
A pruned decision tree was created using the C4.5 algorithm [136].  The final tree 

included 45 leaves, 89 forks, and classified 93.33% of the defect correctly, shown in the 

confusion matrix in Table 4.4. 

A Bayesian network was generated to perform the classification with different hill 

climbing and genetic search algorithms.  Bayesian networks describe probabilistic 

relationships between the features and the defect types [137].  The best Baysian network 

classifier produced a network with 91.67% accuracy and a confusion matrix shown in 

Table 4.5. 

Multiple multilayer perceptron neural networks were also generated with 12, 14, 

16, and 18 hidden layer nodes.  All of them performed slightly better than the decision 

tree, but the 16 node hidden layer had the best accuracy with 94.19%.  The confusion 

matrix is shown in Table 4.6. 
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Table 4.3: Confusion matrix for the decision table.   

Classified as the Following Defects  
Holes Bubbles Thinning Gels 

Holes 160  6  79  1 
Bubbles 7  745  0 22 
Thinning 55  12  699 0 A

ct
ua

l 
D

ef
ec

ts
 

Gels 17  63  4 230 
Accuracy 66.9% 90.2% 89.4% 90.8% 

 
Table 4.4: Confusion matrix for the decision tree. 

Classified as the Following Defects  
Holes Bubbles Thinning Gels 

Holes 192  0  52  2  
Bubbles 0  754  1  19  
Thinning 41  0  722  3 A

ct
ua

l 
D

ef
ec

ts
 

Gels 0  17  5  292  
Accuracy 82.4% 97.8% 92.6% 92.4% 

 
Table 4.5: Confusion matrix for the Bayesian network. 

Classified as the Following Defects  
Holes Bubbles Thinning Gels 

Holes 193 0 53 0 
Bubbles 0  763  1 10 
Thinning 97  0  678 1 A

ct
ua

l 
D

ef
ec

ts
 

Gels 1  22  0 291 
Accuracy 66.3% 97.2% 92.6% 96.4% 

 
Table 4.6: Confusion matrix for a neural network. 

Classified as the Following Defects  
Holes Bubbles Thinning Gels 

Holes 201 0 45 0 
Bubbles 0 757 1 16 
Thinning 39 0 725 2 A

ct
ua

l 
D

ef
ec

ts
 

Gels 0 16 3 295 
Accuracy 83.8% 97.9% 93.7% 94.2% 

 
In each of the confusion matrices, the difficulty in separating thinning from holes 

and gels from bubbles is shown.  The holes and thinning have very similar characteristics 

and it is even difficult for human inspectors to distinguish between the two.  In the case 

of gels and bubbles, for larger defects the differences are clear, but when the defects are 

less than 10 pixels in size, they have nearly identical characteristics.  Therefore small 

bubbles can occasionally be classified as gels, and vice versa.   

Since the neural network performed the best of the four classification methods, it 

is implemented as the classifier in this work.  However, the decision tree produced 



 99

similar results and would likely be quicker to run in the code.  Therefore, if faster 

processing time is required, a decision tree is identified as a good option. 

4.4.3 Neural Network Background 

Neural networks are a type of learning algorithm based on the biological structure 

of neurons in the brain and are used to solve complicated problems where the complexity 

of the data does not lend itself to direct solutions.  Applications include data processing 

(e.g., filtering, clustering, separation, compression), time series prediction, regression 

analysis, data mining, and classification (e.g., pattern and sequence recognition) [138].  

Neural networks (NNs) have been shown to be highly robust for classification problems.  

For the RFIS application, the NN was used to differentiate between the different types of 

defects based on mathematical characteristics of the defective region.  Once the types of 

defects were known, the location on the casting window could be found, and the proper 

casting parameter adjustments performed.  The application of a NN to solve classification 

problems requires five basic steps: 

1. Identify a set of input vector parameters through data mining 

2. Create the structure of the network 

3. Train the network with input-output vector pairs 

4. Test the network with known solutions 

5. Run the network with new data 

In the biological network, billions of neurons exchange information through axon-

dendrite interactions.  Some neurons send stimulating signals and others send suppressing 

signals, so only when the sum of these signals cross the threshold will the neuron send a 

signal to other neurons [138].   The model for a single neuron with n input signals is 

shown in Figure 4.11, where [ ]1,...,
T

nx x=x are input signals, [ ]0 1, ,..., T
nw w w=w  are 

synaptic weights, w0 is a bias value, and f is the activation function with signal s given by 

 

 
1

n

i i
i

s x w
=

= ∑  (4.3) 
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Perceptrons are one type of neuron that NNs often utilize.  They are either bipolar 

(outputting -1 or 1) or unipolar (outputting 0 or 1).  The bipolar perceptron is shown in 

Figure 4.11.   

 

Generic Neuron. 
 

Bipolar Perceptron. 
Figure 4.11: Model of a neuron and perceptron [138]. 

   
 A single perceptron acts to divide the n-dimensional input space into two half 

spaces.  Perceptrons use a type of algorithm called supervised learning (or learning with 

teacher) to modify the weights.  Perceptron learning is performed by using a priori 

knowledge of input signals ( ) ( ) ( )1 ,...,
T

set set n sett x t x t= ⎡ ⎤⎣ ⎦x  and the associated desired 

output (target) signals d(tset) for tset = 1, 2, … ntraining, where ntraining is the number of 

training data sets.  For a given tset, there is a training sequence composed of an input 

vector x and a desired output d.  The learning with teacher algorithm follows these basic 

steps [138]:  

1. Randomize the perceptron weights. 

2. Calculate the outputs of the neuron for the next training sequence. 

3. Compare perceptron output with the desired output. 

4. Adjust weights to minimize the error between d and the perceptron output.   

a. if ( )( ) ( )( )set sety t d t≠x x  then ( ) ( ) ( )( ) ( )1i set i set set i setw t w t d t x t+ = + x  

b. if ( )( ) ( )( )set sety t d t=x x  then ( ) ( )1i set i setw t w t+ =  

5. Training takes the next training sequence, tset = tset + 1 and goes back to step 2. 
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This algorithm is repeated until the error for all tset is smaller than some assumed 

tolerance for an independent set of input-target data.  Each time all the training data are 

used in the algorithm it is called one epoch.   

 There are other types of neurons which use more sophisticated schemes of 

weighting updates, such as the Adaptive Linear Neuron (Adaline model), the Hebb 

neuron model and the sigmoidal neuron model.  The sigmoidal neuron, which is used in 

this thesis, does not use a binary activation function, but a continuous function, which for 

the bipolar case is  

 

 ( ) 1
1

x

x

ef x
e

β

β−

−
=

+
 (4.4) 

 
The weights are updated for each training set by creating an error vector for each of the 

weights, 

 

 ( )
2

0

1
2

n

i i
i

E d f w x
=

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑w  (4.5) 

 
and then the steepest decent method is used to update the weights 
 

 ( ) ( ) ( )1 i
i set i set

i

E w
w t w t

w
ξ

∂
+ = −

∂
 (4.6) 

 
where ξ is the learning coefficient.  From these basic neuron building blocks and error 

reduction methodologies, highly robust classification neural networks are constructed.   

4.4.4 Neural Network for Defect Classification 

The neural network classification system takes segmented defect ROI features 

and determines which defect type the region most closely matches.  This is done in three 

steps, shown in Figure 4.12: 

1. Each of the defect regions have 19 features extracted from them. 

2. The features are used as the input vector for the neural network. 

3. Outputs 1-4 form a vector representing holes, bubbles, thinning, and gels.  

Although the desired output contains only ones and zeros, as shown in Table 4.7, 
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a “winner-takes-all” algorithm is employed, such that the classification is based 

solely on the defect with the largest output value.   
 

 
Figure 4.12: The neural network classification process. 

 
Table 4.7: Desirable neural network outputs. 

Defect Desired Output Vector 
Hole [ 1, 0, 0, 0 ]T 
Air Entrainment [ 0, 1, 0, 0 ] T 
Thinning [ 0, 0, 1, 0 ] T 
Gel [ 0, 0, 0, 1 ] T 

 

4.4.5 Network Structure, Training, and Optimization 

The structure of the neural network describes the number of input neurons, hidden 

neurons and layers, and output neurons.  The number of neurons was chosen to achieve 

the best classification results, minimize the hand-classified input-output pairs required to 

train the NN, and reduce the number of training runs to produce an accurate network.  To 

do this, the number of input neurons was first minimized—as previously described with 

the WEKA data mining software—to reduce computational time in NN classification and 

image processing.  Then the number of hidden layer nodes was selected based on NN 

Monte Carlo training simulations with a analogous solution network.  The mean 
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classification error for different numbers of hidden layer nodes is shown in Figure 4.13 

for the analogous solution network training.  Since the analogous material network had a 

different set of training data and structure (e.g., 18 inputs, 3 outputs), only the general 

trend of Figure 4.13 should be considered.  It shows that small networks did not have 

enough complexity to map all the inputs to correct defects; medium network sizes had the 

best mean classification accuracy; and with large networks, the average network accuracy 

gradually became worse.  However, larger networks produced the best classifiers—but 

due to their complexity, they also occasionally produced very poor networks, and these 

outliers increased the misclassification mean.   
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Figure 4.13: The average percentage of defects misclassified for 2500 NN training runs vs the 

number of hidden layer sigmoid neurons for the analogous solution.  This network contained 18 
inputs and 3 outputs because gels were not classified. 

 

As expected, for the PEM material network, the top performing networks had 

more hidden layer nodes (25+).  After running 1000 training runs for 14-30 and 54 nodes, 

the greatest accuracy was 96.86% with 30 hidden nodes.  Unfortunately, larger networks 

took longer to train and required more training data to optimize the network weights.  

However, with 2,100 input-output sets of training data, good results were expected for 

large networks, since the total number of weights was  
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 ( ) ( )1 1weights inputs hidden hidden outputN N N N N= + + +  (4.7) 
 
The strong network results for higher numbers of nodes indicated that increasing the 

number of nodes would produce better classifications, but in doing so the computation 

time also increased.  Packianather and Drake [33] had 3 times as many hidden layer 

nodes as input nodes but their system had 13 outputs.  For the RFIS classification 

computation time was important, because for each ROI, the time-consuming processes of 

creating an input vector and running the network were required.  In some cases, when the 

batch material was poor, there were over 1,000 identified defects in the captured image, 

which led to long processing times since the number of weights is proportional to the 

number of mathematical operations.  Considering all these factors, it was determined that 

the minimum network complexity which still produced 96% classification accuracy 

would be the optimal network.  Therefore, based on the results in Table 4.8, the final 

network contained 19 input nodes, 16 hidden nodes, and 4 output nodes.  It should also 

be noted that since only the general trends were needed to determine where on the casting 

window the casting was located, any classification above 90% would give acceptable 

results. 

 
Table 4.8: Minimum number of defects for different numbers of hidden layer neurons. 

Number of hidden layer 
neurons 

Minimum number of errors for 
1000 training sets 

14 86 (95.9%) 
16 77 (96.3%) 
18 67 (96.8%) 
20 82 (96.1%) 
24 76 (96.4%) 
30 66 (96.9%) 
54 70 (96.7%) 

 

In order to train the neural network, a set of input vectors with known outputs was 

created and imported into MATLAB.  Then using the Neural Network Toolbox, the 

collection of input-output pairs was randomly separated as follows: 

• 70% or 1470 were used for training, which the network used for error 

reduction. 
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• 15% or 315 were used for validation, which were used to stop the training 

when generalization terminated. This insured that the back propagation 

routine was not over-constraining the NN to the training data. 

• 15% or 315 were used for independent testing of the network. 

The training was executed using a scaled conjugate gradient back propagation training 

routine.  The training was terminated when the validation data did not decrease 

performance error over 6 epochs, shown in Figure 4.14.  The test data was an 

independent means of measuring the accuracy of the NN, as it had no effect on the 

training or validation of the network. 

 

 
Figure 4.14: Mean squared error of the data sets during each epoch of NN training.   

 
After selecting the network structure, the network was trained until the accuracy of the 

network was 96% or better.  The final network confusion matrix had an accuracy of 

96.05% and is shown in Table 4.9.  

 
  Table 4.9: Confusion matrix for a neural network. 

Classified as the Following Defects  
Holes Bubbles Thinning Gels 

Total 

Holes 198 0 48 0 80.5% 
19.5% 

Bubbles 0 770 1 3 99.5% 
0.5% 

Thinning 19 0 746 1 97.4% 
2.6% 
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Gels 0 10 1 303 96.5% 
3.5% 

Total 91.2% 
8.8% 

98.7% 
1.3% 

93.7% 
6.3% 

98.7% 
1.3% 

96.1% 
3.9% 

 

Termination 
point 
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 Of the 83 misclassifications, 67 of these were holes being misclassified as 

thinning or vice versa.  Since these defects are present in the same location of the casting 

window, the misclassification is acceptable.  However, when bubbles are classified as 

holes/thinning or vice versa, this could potentially indicate the incorrect location on the 

casting window and falsely inform the user of parameters changes.  Fortunately, only 

once was a bubble misclassified as a thinning, and never were thinning/holes 

misclassified as bubbles. 

4.5 Summary 

The RFIS inspection subsystem was prepared for image processing and 

classification of FC membrane material by experimenting with different image 

processing and classification methods.  It was found that the best method to classify 

defects in this material was to perform the top-hat and bottom-hat operations to locate 

defective regions of interest and then send region data to a neural network for 

classification.   After defects are classified, a GUI indicates which casting parameters 

must be changed, if any, to correct for existing defects.  The complete process is shown 

in Figure 4.15.  With the defect identification and classification systems finalized, the 

RFIS was prepared for experimental validation, as discussed in Chapter 5. 
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Figure 4.15: Defect processing flow chart with user-input variables. 
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CHAPTER 5: EXPERIMENTAL RESULTS 
 

5.1 Defect Identification 

Defect identification is a challenging problem for machine vision systems when 

the environment or subject changes.  For the RFIS, the thickness and types of defects 

varied widely depending on the casting parameters and die geometry.  Since there was a 

wide range of defect types and sizes, shown in Table 5.1, selecting thresholds and 

structuring element sizes to capture only the holes, gels, thinning, and bubbles, was not 

trivial.  However, once the proper structuring element sizes and thresholds were 

determined for the white and black processing paths, the candidate defect regions were 

correctly located on the image.  To first determine these processing parameters, a single 

snapshot of the material was captured and the image processing parameters were adjusted 

until acceptable results were recorded.  Then real-time processing of the web was 

initiated with the previously optimized parameters.   

 
Table 5.1: The maximum, minimum, and estimated mode of defect sizes. 

 pixel size size (mm) 
  min typical max min typical max 
Holes (and Pinholes) 6 12 25 0.438 0.876 1.825 
Gels (and Particulates)  1 8 22 0.073 0.584 1.606 
Thinning 4 10 14 0.365 0.730 1.022 
Bubbles (i.e., Air Entrainment) 1 12 18 0.073 0.876 1.314 
Bubbles in the batch material 1 4 12 0.073 0.292 0.876 
Bubbles in periodic defects 4.5 30 45 0.328 2.190 3.284 
Thinning in periodic defects 15 30 55 1.095 2.190 4.015 
Die lines from web wrinkle (width) 20 35 60 1.460 2.555 4.379 
Die lines from gel in die 7.5 12 20 0.547 0.876 1.460 
 

5.1.1 Batch Material Defects 

Image processing required a relatively uniform casting to perform the top-hat 

operation with large structural element sizes.  When there were many dark defects the 

hot-hat operation had difficulty correctly determining the background value.  This was 

particularly prevalent when the batch material contained many small bubbles (which 

appeared as dark spots) because the localized gray value average was lowered.  This 
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caused good material to be falsely identified as light defects.  Since the primarily goal of 

defect classification was to determine the location on the casting window, variations in 

the batch material—such as bubbles, changes in extinction coefficient, etc.—were 

unimportant because they appeared regardless of the casting window location.  These 

false alarms were most prevalent in the light defect detection, but this phenomenon could 

also happen in the bottom-hat operation; however, because the bottom-hat operation used 

a smaller structural element (usually 12, as opposed to 20 for the top-hat) and the light 

defects were typically spaced farther apart, this was rarely a problem.  A comparison 

between identifying all the defects in bad batch material and only the defects larger than 

10 pixels is shown in Figure 5.1.  Therefore, when the batch material contained small 

bubbles, before the top-hat operation was taken, the dark pixels (from the bottom-hat 

threshold) were removed from the image and replaced with the average grayscale from 

the 25 pixel region surrounding the dark pixel.  Then the image was smoothed with a 3x3 

spatial transformation to remove localized variations.  Finally, the resulting image was 

processed for light defects as normal.  The process is shown in Figure 5.2.  An example 

of normal processing and this new method are shown in Figure 5.3.  The original top-hat 

shows many light regions which correspond to good material.  As a result, a large number 

of false alarms occur in these locations.  In contrast, on the right side, the new top-hat 

method located the defects with much higher accuracy and there were significantly fewer 

places which risked being thesholded into false alarm regions.  The danger in using this 

method was that small light defects would be smoothed out of the image and 

unidentified.  However, if there were bubbles, they would appear in the dark 

thresholding, so only small thinning and hole defects were potentially ignored.  Small 

thinning regions were nearly always accompanied by larger holes and thinning, so it was 

believed that leaving these defects unidentified and unclassified was acceptable. 
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Defect Locations Defect Locations

all defects defects with 10 pixels or more 
Figure 5.1: Comparison between identifying all the defects and only the defects with a size greater 
than 10 pixels. 
 

 

 
Figure 5.2: Image processing steps when batch material contains bubbles. 
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(a) original grayscale (b) grayscale after pre-processing 

(c) original top-hat (d) new top-hat 
Figure 5.3: Improving top-hat results by removing small bubble defects from the image. 

 

5.1.2 False Alarms and Escapements 

The two types of defect identification processing errors were false alarms 

(flagging good film as defective) and escapements (not identifying a defective region).  

After processing more than 100 images using the modified processing scheme described 

in Section 5.1.1, the RFIS proved to identify defects robustly if the image processing 

parameters were set correctly.  25 images of poor casting were identified by hand and 

with the image processing algorithms.  This resulted in 2758 identified defects, 33 false 

alarms, and 196 escapements—or a false alarm rate of 1.2% and an escape rate of 7.1%.  

The false alarms were generally located around other defects because the film disruption 

or the spatial operations misinterpreted the mean grayscale.  The escapement rate was 

most often a result of missing very light thinning.  These regions may have been 

unidentified with the algorithm because the smoothing operation or because the region 
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was less than 10 pixels in size.  Escapements also occurred in some situations where 

multiple defects were identified as a single defect.  From this analysis the following list 

of recurrent errors were identified: 

1. Around certain defects, there was a region of disturbed thin film which was 

falsely identified as another defect.  For instance, in Figure 5.4, a gel defect 

caused thinning on the periphery, which artificially created three light defect 

regions.  Although these regions were thinning defects, they were not indicative 

of the casting window, and therefore were false alarms. 

 

 
                Figure 5.4: Superficial light defects created by gels in the casting. 

 
2. Thinning was often difficult to capture, because depending on the grayscale 

variation of the particular defect, it could often slip under the threshold.  For 

instance, the thinning on the left of Figure 5.5 was below the threshold but the 

other three thinning regions were not. 

 

 
                                Figure 5.5: Thinning (on the left) escaping detection. 

 

3. Defects which were close together could be identified as a single defect because 

they were thresholded into the same blob region. 

4. As with all inspection systems, at some point the pixel resolution limits the size 

of the defects which can be identified.  In the case of the RFIS each of the pixels 

represented a 73x73 μm region of webbing, so anything below that size escaped 
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detection.  As shown in Table 5.1, the defects on this order were holes, bubbles 

and gels.  Figure 5.6 shows examples of bubbles on this order. 

 

 
Figure 5.6: Image of membrane with different bubbles sizes. 

 

5. Due to the image processing algorithms, e.g., top- and bottom-hat operations, 

there were occasionally false identifications around other defects because the top- 

and bottom-hat operations measured the local background.  Therefore false 

alarms were often the result of periodic defects where the mean background was 

not identified correctly, as shown in Figure 5.7.  However, these types of defects 

occurred 10-20 psi below the casting window, so this limitation would be rarely 

encountered. 

 

 
Figure 5.7: False dark identifications due to dense periodic thinning. 
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5.2 Defect Classification  

The neural network was used to take segmented defect regions of interest and 

classify them into one of the four defect categories.  After training the network with 

2,100 hand classified defects, the network reported 96% classification accuracy, with the 

majority of the misclassifications resulting from hole/thinning confusion.  To verify the 

neural network was operating correctly, the images used for the training data were 

classified, as shown in Figure 5.8.  After the neural network was shown to produce 

accurate classifications, additional images were classified with the network, such as in 

Figure 5.9.  It was found that the new classification images performed less accurately 

than the images which the training data was extracted.  However, this reduction in 

accuracy remained acceptable for determining the defect trends and locating the position 

on the casting window. 

 

 
Figure 5.8: Defect identification and classification results. 
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Figure 5.9: Defect identification and classification results. 

 

5.2.1 Casting Window Analysis 

Experimental work was required to verify numerical simulations of the slot die 

extrusion process conducted by Bhamidipati et al. [125].  Multiple points on the casting 

window were obtained experimentally by fixing the web speed.  Casting points were 

collected every 5 psi for fixed web speeds of 1.0, 1.5, 2.5, 4.0 and mm/s.  One of these 

vertical passes (or slices) through the casting window is shown in Figure 5.10.  The 

experimental casting window showed the casting window trends in Figure 5.11.  When 

the web speed was too large, the volumetric flow rate was not capable of meeting the 

required thickness, and voids were created.  When the pressure was too high with respect 

to web speed, there was excess material extruded from the die, the solution flowed 

upstream of the die, caused dripping, and resulted in castings with air entrainment. 
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Figure 5.10: Images from a vertical slice of the casting window at V = 1 mm/s.  The pressure and 

defects are shown for each of the images. 
 

30 psi: thinning/holes, bubbles, die lines 

40 psi: thinning/holes, bubbles 

50 psi: nearly no defects 

60 psi: bubbles 

45 psi: thinning/holes, few bubbles 

55 psi: bubbles 

65 psi: bubbles, slight thinning 

35 psi: thinning/holes, bubbles, die lines 
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Figure 5.11: Fuel cell membrane casting window results (adapted from [127]).  The image shows the 

defect trends for different locations on the tank pressure vs web speed plot. 

 

Counting the number and type of defects, with the image processing system and 

by hand, corroborated the defect trends for the P versus V casting window plot in Figure 

5.11. The defect trends are summarized in Figure 5.12 for one web speed.  For web 

speeds of 1.0, 1.5, 2.5 and 4.0 mm/s the defect trends were consistent with those in Figure 

5.12.  At high pressures there was more air entrainment due to dripping, and at low 

pressures, there were holes and thinning defects in the membrane.  The casting window 

did not have strict edges, as shown in Figure 5.11 and Figure 5.12.  Instead, there were 

gradually increasing numbers of defects as the parameters were adjusted away from the 

defect minimum.  Thus, the casting window boundaries were ambiguous and could only 

be defined if an acceptable defect quantity was specified.  The maximum web speed 

which produced good castings was not determined because of hardware limitations, but it 

was expected to exist based on the literature review and numerical simulations.   

 



 118

0
10

20
30

40
50

60
70

80
90

100

30 40 50 60 70
Pressure (psi)

D
ef

ec
ts

Holes/Thinning Gels Bubbles

Holes/Thinning Air Bubbles 

Casting window

 
Figure 5.12: Vertical slice through the casting window.  Defects per image vs pressure passing 

through the casting window at ~1 mm/s.   
  

5.2.2 Misclassifications 

Although, the training reported 96% classification accuracy, the system did not 

consistently produce that paramount accuracy.  The primary reason for this deficiency 

was that the specific types of defects were not included in the training data—e.g., large 

non-circular bubbles, defects less than 10 pixels, oddly shaped holes and thinning.—so 

the division of the defect feature space with the NN did not factor in these features.  As a 

result, there were hardly any large bubbles included in the training data, so they were 

often classified as gels, shown in Figure 5.13.  Furthermore, because defects less than 10 

pixels were not included in the training data, when the minimum defect size was 

decreased, the small bubbles were classified as gels.  Thus, a more thorough collection of 

possible defects should be included in the training data in the future. 
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Figure 5.13: Misclassification of bubbles as gels. 

5.3 Thickness Profilometry 

The transmission densitometer produced full-field density values for the imaged 

area.  Since the 12 bit images were averaged in 10 x 10 pixel regions, there were 139 x 

104 thickness measurements for the influx and efflux images.  These two images were 

used to calculate the density at 14,456 locations on the imaged membrane. 

5.3.1 Determining the Membrane Extinction Coefficient 

In order to determine the extinction coefficient for the membrane, the true thickness of 

membrane in liquid form was determined by a digital Mitutoyo Absolute Thickness Gage 

while the density was found using the transmission densitometer.  The membrane was 

cast onto the PET substrate, and then a small sheet of PET with an identification number 

and location marker was placed on top of the cast membrane.  By sandwiching the 

membrane between the PET sheets, the material was no longer exposed to the moisture in 

the air, and therefore, did not hydrolyze.  This allowed time to cut out the samples and 

measure them with the micrometer.  The marked locations were imaged with the 
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densitometer while passing through the inspection system to determine the density.  0.01 

D was subtracted from the density to account for the two PET sheets (see Figure 3.35), 

and the thickness of two PET sheets was subtracted from the micrometer thickness 

measurement.  The density measurements were subject to a number of challenges as 

shown in Figure 5.14.  There were new sources of densitometric error because (a) placing 

the top sheet of PET on the membrane would occasionally trap air between the membrane 

and PET, (b) there were bubbles and other defects in the membrane which caused 

localized density changes, and (c) handling the numbered reference sheets may have left 

smudges on the sheets, although latex gloves were worn to minimize this. These new 

sources of potential error are possible causes for the large thickness deviation seen in the 

calibration data in Figure 5.15.   

 

 
Figure 5.14: Complications with density measurements. 
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Determining the Extinction Coefficient for the Fuel Cell Membrane Solution
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Figure 5.15: Finding the extinction coefficient for the fuel cell material using a trend line of 

micrometer and density measurements. 
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Figure 5.16: True thickness (from the micrometer) vs densitometer thickness 

 
 

Based on the linear regression of 100 independent thickness measurements, it was 

found that Beer’s law matched the experimental data well.  The extinction coefficient for 
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the membrane was determined to be 1.403 D/mm using the trend line in Figure 5.15.  The 

extinction coefficient was then used to convert densities to thickness values, shown in 

Figure 5.16.  The average error was 4.7% with a standard deviation of 3.73%, and a 

maximum error of 15.3%.  However, the thickness comparison was subject to errors in 

both the densitometer as well as the Mitutoyo micrometer.  The sample in the micrometer 

had to be kept flat so that the clamping anvil recorded the correct thickness.  Therefore, 

variation in the reference thickness may have caused a portion of the densitometer 

thickness error. 

Further, it was believed that the spring in the thickness gage could compress the 

thin film slightly—even with its high viscosity—so the membrane thickness was 

compared to frozen membrane thickness.  The sample was measured, placed in liquid 

nitrogen for 10 s and then re-measured.  It was found that the sample was very brittle 

after being frozen and the freezing process expanded the film by approximately 30%.  

Therefore only the non-frozen measurements were used for the thickness to density 

correlation.  It was also proposed to create a step between the substrate and top of the 

membrane and use a Zygo white light interferometer to measure the thickness through 

non-contact means, but the scanning range of the instrument was limited to 100 μm, so it 

was impractical for the large thickness ranges needed for an extinction coefficient fit.   

 During another set of tests, using a different batch of membrane material but the 

same method for determining the extinction coefficient, the coefficient was found to be 

0.62—drastically different than the first test.  This was due to the change in material 

chemistry, clearly identified by lower viscosity, entrained small bubbles, and different 

optical properties.  Changes in material chemistry were problematic because they affected 

the transmission characteristics of the material and the extinction coefficient had to be 

recalculated for each chemical composition.  Without doing so for each new chemistry, 

the thickness profilometry would provide inaccurate depth profilometry results and 

therefore only qualitatively measure thickness uniformity. 

5.3.2 Thickness Results 

Using the MATLAB graphical user interface, thickness measurements were made 

of the efflux to determine the background noise.  A typical example image of the 
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background noise is shown in Figure 5.17.  The background density noise was found to 

be at most ±0.006 D, or approximately ±4 μm for the membrane material.  To verify the 

calibration results in Section 3.4.1.7, the densitometric accuracy at 0.00, 0.06, 0.26, and 

1.46 D was investigated with the X-Rite densitometry calibration sheet, shown in Figure 

5.18.  As expected from the previous densitometry calibration results, measurements of 

0.00 and 1.46 D were the most accurate, 0.06 under-estimated the density, and 0.26 over-

estimated the density, which matched the results from Table 3.5.  Based on these results, 

the variation in thickness (as seen in Figure 5.15) was determined to be the combination 

of instrumentation error, local grayscale deviations, and variation in “true” thickness 

from the micrometer measurements.  

Since the calibration sheet only had four calibrated densities, it was difficult to 

determine what portion of the error was from instrumentation (e.g., backlight intensity 

variability, optical surface smudging, camera noise) and what portion was due to the 

experimental design (e.g., density variations in the membrane, PET films, etc.).  Cast 

membrane thicknesses were typically specified between 200-400 μm on the RFIS and the 

extinction coefficient for this material was about 1.4 D/mm, so the density values for the 

system ranged between 0.280 D and 0.560 D.  When comparing these densities to known 

densitometry errors in Figure 3.34 and Table 3.5, it was found that the large 

instrumentation errors and variance associated with dense measurements (i.e. 1.46 D) 

were avoided.  Furthermore, the density from the calibration sheet showed the 

instrumentation was reasonably consistent (maximum error range of 0.0335 D for 129 

0.26 D calibration tests), but the membrane density measurements varied significantly 

more (e.g., 0.14 D range at 0.43 D with fewer tests).  Thus, the difference in these values 

can be attributed to variability inherent in the experiment due to the membrane and PET.  

It was likely that there were local variations in grayscale from debris or scratching on the 

PET surfaces.  Additionally, defects and localized thickness variations changed the 

density measurement while the reference thickness from the micrometer did not account 

for surface roughness.  Thus, it is believed that the accuracy of the instrument contributed 

only a small portion of the thickness noise to the measurements and it was the design of 

the experiment which caused the majority of the error in the results. 
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Figure 5.17: Background noise in the densitometer with the influx values determined with 20 

averaged images. 
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(a) (b) 

 
(c) 

Figure 5.18: The density of the calibration sheet (a) in grayscale, (b) color contour plot, and (c) a 
topographical representation.  The density for sample 10x10 regions in the 0.00 D, 0.06 D, 0.26 D, 

and 1.46 D areas are indicated.   
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In another experiment, the volumetric flow rate of the tooling system was 

calculated with the thickness profilometer.  The flow rate was prescribed in the numerical 

simulations so it was important to obtain the volumetric flow rate versus pressure 

relationship.  Using thickness measurements of relatively defect-free castings, the 

volumetric flow rate for different pressures was calculated by 

 

 
10

10 1

end end

imaged ij
i j

Q w V t
−

= =

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (5.1) 

 
where V was the web speed, wimaged was the width of the imaged membrane, and tij was 

the thickness at location (i,j).  The image was cropped in the x-direction to remove edge 

effects from affecting the calculation.  A plot of these measurements is shown in Figure 

5.19.  The results show a linear trend between the volumetric flow rate and pressure.  The 

mean thickness across the web was determined more accurately than the local 

measurements because the data points were an average of nearly 10,000 local 

measurements. 
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Figure 5.19: Volumetric flow rate vs pressure determined with the thickness profilometer. 
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5.4 GUI results 

As discussed in Section 3.4.3, the GUI displayed the membrane thickness and 

defect results.  The system operated fully autonomously, collecting image data at regular 

intervals, and processing it to produce and display defect and thickness results.  As new 

material entered the inspection station, a snapshot of the membrane was taken and the 

following operations were performed:  

• the locations and types of defects were determined and displayed 

• the thickness profile was calculated and displayed 

• the location on the casting window was heuristically ascertained and 

displayed 

Once classification of an image was completed, the GUI allowed the user to 

visualize image processing results (i.e., top- and bottom-hat and thresholded images) as 

well as identification and classification results using the following display options: 

• Raw – the original image 

• Top-hat – the top-hat operation of the grayscale image 

• White threshold – the result of thresholding the top-hat 

• Bottom-hat – the bottom-hat of the grayscale image 

• Black threshold – the thresholded bottom-hat image 

• Thickness – the thickness profile with color map showing the localized material 

thickness 

• All boxes – bounding boxes shown with the color-indicated blobs (shown in 

Figure 5.20) 

• Gels/Holes/Bubbles/Fisheyes boxes – displayed specific bounding boxes on the 

raw image  (as shown in Figure 5.20) 

• All defects – the raw image with all the defects labeled (shown in Figure 5.20) 

The processed images were highly useful for both setting the image processing 

parameters and understanding errors in the GUI defect identification system.  The 

classification images were designed for the manufacturer to better visualize the 

manufacturing defects.  These images clearly indicated locations where the material was 



 128

defective and what type of defects were present.  An example of these are shown in 

Figure 5.20. 

 
Defects: holes - cyan, bubbles - red, fisheyes - blue, gels - green

(a) All defects 

 

 
(b) All boxes 

(c) Holes (d) Gels 

(e) Thinning (f) Bubbles 
Figure 5.20: Results from the defect identification and classification with the GUI. 
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The GUI also tallied the defect types and alerted the user to the status of the 

casting parameters, as shown in Figure 5.21.  The defect table showed the number and 

percentage of defects for the most recently classified image as well as the total number 

and percentage of defects for the entire batch run.  Based on the classification results, the 

current location on the casting window was displayed.  As the casting window analysis 

indicated in Section 5.2.1, there were two regions of poor manufacturing: the region 

“below” the casting window where the web speed was too high for the current tank 

pressure, and the region “above” the casting window, where the web speed was too low 

for the tank pressure.  The three casting window locations are illustrated in Figure 5.22.  

Thus, by integrating all this information, the GUI displayed pictorial recommendations 

and written instructions of corrective measures necessary to return to the interior of the 

casting window.   

 

 
Figure 5.21: Defect tallies, casting window location, and suggested parameter adjustments. 

 

   
(a)  

Casting: good casting 
Adjustments: none 

(b)  
Casting: slow web, high pressure 

Adjustments: ↑ web speed, ↓  pressure 

(c)  
Casting: fast web, low pressure 

Adjustments: ↓ web speed, ↑ pressure 
Figure 5.22: Casting window locations and recommendations in the GUI. 

 
The GUI also provided the bi-directional thickness profile of the imaged area 

using the transmission density system, shown in Figure 5.23.  The baseline influx was 

determined by capturing and averaging 20 successive 12 bit images with only the 

substrate on the backlight.  Then when images were captured of the membrane, the 
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thickness profile was generated based the extinction coefficient entered by the user.  This 

showed simple-to-understand thickness results for the user, such that if the thickness was 

not within tolerance, changes to the casting operating parameters could be made. 

 

 
Figure 5.23: The thickness profilometry system. 

 
The processing speed was the greatest challenge for the interface because for each 

defect that was located, the program was required to segment the ROI, calculate NN 

inputs, and classify the defect with the neural network.  When there were a large number 

of defects, such as in Figure 5.20, this would take a significant amount of time.  Using an 

inspection computer with 1.86 GHz Intel Core 2 processors and 2 GB of RAM, it took an 

average 0.017 s for each of the defects to be fully processed.  Thus, the web speed was 

limited for castings with a large number of defects if 100% of the material was required 

for inspection.  At high feed rates, the image processing would be unable to keep up with 

the image data rate, and some of the material would not be inspected.  On the RFIS, the 

web speed was never set to a speed which the GUI could not continuously monitor, but 

for faster manufacturing operations this limitation must be considered. 
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CHAPTER 6: DISCUSSION OF RESULTS 

 
A roll-to-roll casting system was designed and constructed to fabricate a range of 

thin films.  The cast film was passed through an inspection system to continuously 

determine the thickness and quality of the casting, as well as determine the location on 

the casting window by classifying the types of defects.  The inspection system had an 

escape rate of 1.2%, false positive rate of 7.1%, and classification accuracy was 96.1%.  

The density of the material was determined with a maximum error of 0.029 D and 

maximum standard deviation of 0.0065 D, but due to localized grayscale variation of the 

material, the thickness measurement had an average accuracy of 95.3% and standard 

deviation of 3.73%. 

6.1 Defect Inspection  

 Although finding the correct threshold values and structural element sizes for the 

image processing took time and experience, once they were correctly set, the 

identification and classification system worked well near the casting window.  If the 

casting shifted away from this location, the number of defects increased and caused (a) 

longer processing times, (b) greater density of defects and therefore more false positives, 

and (c) threshold adjustments to account for the different types of defects.  For instance, 

when the casting was mostly good, defects were easily detected so the thresholds could 

be set aggressively to catch any grayscale deviation, whereas when the casting was 

outside the casting window, thinning, bubbles, or holes clustered together, so less 

aggressive thresholds were required in order to avoid combining blob regions and false 

positives.   

The image processing variables had a large impact on defect identification and 

classification.  When set correctly the system performed satisfactorily, but defect 

identification was highly sensitive to the threshold values.  In some cases, changing the 

thresholds by as little as 3-5 gray levels drastically escalated the false alarm or 

escapement rates—typically due to small blobs entering or exiting the binarization.  

Therefore, the inspection system operator must be skilled in selecting the proper 
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thresholds and prepared to adjust them as necessary.  The structural element sizes also 

were critical to defect identification because they provided the top- and bottom-hat  

images for thresholding.  Fortunately, the structural elements were highly robust and a 

20-pixel disk for the hot-hat and a 12-pixel disk for the bottom-hat produced acceptable 

results for nearly all images. 

Despite reporting a 96.1% classification accuracy with the training data, when 

operating the NN in real-time, the number of misclassifications were significantly higher.  

This can be attributed to two factors: 1) the NN relied on top- and bottom-hat results so 

when the image processing values were not optimally adjusted these input features were 

different than in the training data, and 2) the training data was extracted from a single 

batch material which did not produce certain defect characteristics, so these defects were 

commonly misclassified.  For example, there was one defect type severely unrepresented 

in the training data: large and often irregularly shaped bubbles at low pressure.  As a 

result, these defects were commonly misclassified as gels or occasionally holes, shown in 

Figure 5.13.   

6.2 Casting Window Determination 

The location on the casting window was determined in the GUI using a heuristic 

algorithm; however, the casting window defect trends changed slightly based on the 

batch solution chemistry.  It was noticed that each batch had different chemical 

compositions, so the surface tension, adhesion, and cohesion properties changed 

depending on which of the manufacturer-supplied bottles was chosen for the test.  In 

some cases this caused the periodic thinning effects at low pressures to be replaced by 

periodic bubbles.  As a result, the location on the casting window was incorrectly 

determined.  Thus, in order to accurately determine the casting window location, the 

specific defect trends for the chemical composition must be known.  In such cases, there 

would need to be supplemental or modified GUI rules applied to the casting window 

calculations to account for the changes in batch material.   
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6.3 Transmission Densitometry Depth Profilometry 

The accuracy and repeatability of the full-field densitometer did not meet the 

design requirements.  The average thickness error was 4.7% of the measured thickness 

which corresponded to an average error of 11.8 μm at 250 μm.  The design objective was 

to measure the thin film within ±10 μm of the true thickness. Furthermore, the 

measurement error had a standard deviation of 3.73% (9.3 μm at 250 μm), so instrument 

repeatability was also poor.  However, some of this error and variation can be attributed 

to the local variations and defects in the membrane.  Calibration results showed that the 

instrument had a standard deviation of 4.6 μm (2.5%) for membrane thicknesses of 186 

μm. 

The extinction coefficient for the thin film was crucial to densitometry because 

this value described the range of measurable thicknesses. The membrane solution had an 

extinction coefficient of 1.4 D/mm, which was fortunate given the desired thickness 

measurement range, because it avoided high density measurements.  At higher densities 

the variance is greater due to dark noise.  Thus, for highly dense materials, there is a 

narrow range of thicknesses which can be accurately measured using the densitometer, as 

shown in Figure 6.1.  However, if the extinction coefficient is small, very thick films can 

be measured, but the thickness measurements would be inaccurate because even small 

amounts of noise in the density would be magnified in the conversion to thickness, i.e., 

divided by the small coefficient, as shown in Figure 6.1. 

Therefore, only a limited range of extinction coefficients are suitable for accurate 

measurements between 200-400 μm.  Using the model in Eq. (3.33) with influx grayscale 

= 4095 and efflux noise, Norm(μgraylevel_dark,σgraylevel_dark_temporal) = 10, the trade-offs were 

quantified for different extinction coefficients in Table 6.1.  From the table, it can be seen 

that the error has a local minimum where the dark camera noises are low but the material 

is dense enough to provide grayscale variation with depth.  Plots of the error versus 

extinction coefficient for different dark noise levels are shown in Figure 6.2.  This shows 

the best extinction coefficient for transmission densitometry is around 1.1 D/mm.  

Depending on the required accuracy and amount of noise in the system, the range of 

acceptable thickness coefficients changes.  For instance, if the dark noise was 20 
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grayscale levels, and 10 μm of error was acceptable, materials with extinction 

coefficients of 0.30-2.85 could be measured at 400 μm. 

 

 
Figure 6.1: Theoretical density vs thickness profiles for two materials with a density measurement ±1 

σ shown to illustrate how noise is introduced into the measurement. 
 

Table 6.1: Thickness errors for 400 μm measurements of different hypothetical thin films. 
Extinction 
Coefficient 

Density at 
400 μm 

Grayscale at 
400 μm 

Density with 
zdark = 10 

Density 
error 

Density 
% error

Thickness 
error (μm) 

Thickness 
% error 

0.1 0.04 3735.59640 0.0388 0.0012 2.90 11.61 2.90 
0.5 0.20 2584.40128 0.1983 0.0017 0.84 3.35 0.84 
1.0 0.40 1630.64697 0.3973 0.0027 0.66 2.66 0.66 
2.0 0.80 649.17225 0.7934 0.0066 0.83 3.32 0.83 
3.0 1.20 258.44013 1.1835 0.0165 1.37 5.50 1.37 
5.0 2.00 40.96000 1.9051 0.0949 4.74 18.97 4.74 

10.0 4.00 0.40960 2.5949 1.4051 35.13 140.51 35.13 
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Figure 6.2: Theoretical thickness error at 400 μm vs extinction coefficient for different dark currents. 
 

Depending on the thickness range of the material, a specific extinction coefficient 

can be determined which minimizes thickness error.  This extinction coefficient may 

exist at a certain wavelength, so by tailoring the wavelength of light which passes 

through the material with monochromatic backlighting (e.g., with an LED array) or 

optical filters, the absorption could be optimized for accuracy.  For example, if the RFIS 

manufactured a thin film at 400±200 μm which had spectrophotometer results shown in 

Figure 6.3, the optimal wavelength could be determined.  As shown in Figure 6.2, an 

extinction coefficient of about 1.1 D/mm was best for 400 μm measurements; thus, to 

match this absorbance, a wavelength should be selected such that the density is 0.44 D, 

based on: 

 
 optimal optimal meanD a t=  (6.1) 
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The wavelengths which provided the optimal material density (absorbance) are indicated 

in Figure 6.3.  However, this calculation does not take into consideration the quantum 

efficiency of the camera sensor, so to truly find the wavelength which minimizes error, a 

more thorough analysis of the full instrument must be performed.   

 

 
Figure 6.3: The spectral absorbance of a theoretical material shown with the two wavelengths which 

minimize error. 
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CHAPTER 7: CONCLUSIONS, CONTRIBUTION, AND 

FUTURE WORK 
 

7.1 General Conclusions 

Overall, the roll-feed imaging system prototype showed good preliminary results 

for a range of new inspection concepts.  When the image processing parameters were set 

correctly, the defect identification and classification systems were highly accurate (better 

than 96%) and could determine the location on the casting window.  The thickness 

profilometry tool was limited by material types and thicknesses, but with additional 

exploration, would be highly accurate, economical tool for measuring full-field, thin film 

thicknesses. 

7.2 Contributions to Engineering and Science 

The scope of this work was broad so the contributions to the engineering field 

cover a wide range of scientific and engineering topics.  The primary contributions were: 

1. expanding image processing techniques to a roll-feed imaging system, to detect, 

classify, and quantify defects for semi-transparent polymeric materials 

2. exploring new defects and feature sets for neural network classification 

3. creating a new technology to provide non-contact, real-time, full-field, 

nondestructive thickness profilometry with inexpensive components 

4. autonomously generating casting parameter changes to improve manufacturing in 

real-time using the concept of a casting window 

The image processing methodology developed in this thesis is expandable to a large 

variety of industries which utilize semi-transparent web materials, such as the 

pharmaceutical, microelectronics, biomedical, chemical, and food industries. 

 Based on the data mining results, a neural network classification routine using 19 

characteristic features was selected to determine the defect type.  The inclusion of top- 

and bottom-hat features in the NN input vector was novel to defect classification.  Also, 

NN classifiers have be extensively studied for use in textile and lumber industries, but 
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this work expands NN classification to polymer-based products, which, as a field, have 

had limited classification studies. 

A bi-directional thickness profilometry technique was created based on the ANSI 

standard for diffuse transmission density measurements and a CCD sensor array.   The 

densitometry tool is applicable to many industries since it records the localized variation 

in semi-transparent films quickly.  Unfortunately, the instrument is limited by the range 

of densities which provide accurate thicknesses, but for materials with extinction 

coefficients near 1.1 D/mm, 200-400 μm measurements can be consistently recorded with 

errors less than 20 μm.  Employing a camera with a better SNR, e.g., one with active 

cooling, would further improve the thickness accuracy.   

A graphical user interface was created, which utilized a priori information about 

the casting window to inform the user of proper casting parameter adjustments.  By 

counting the types of defects in the membrane solution, the system determines the casting 

window location and informs the user to change casting properties, if necessary.  

Evaluating the manufactured product with monitoring equipment is highly common, and 

the automotive and food industries often use machine vision to ascertain manufacturing 

quality.  However, these tools are commonly used to measure a single variable, such as 

the length of a weld, number of rivets, bar code, hose twist, or some other geometric or 

topological feature, which identifies a problem.  What separates the RFIS is that once 

these variables are quantified, advisable solutions are surmised via casting causality 

relationships.  If a hose is twisted, a rivet missing, or a weld is poor, there are a variety of 

reasons these errors could have occurred.  Whereas, with the casting system (assuming 

uniform material properties and heating), there are only two parameters—tank pressure 

and web speed—which play a dominate role in the casting, so prognostic 

recommendations can be directly provided to the operator. 

7.3 Future Work 

A prototype system has been created to manufacture and inspect slot die cast 

materials.  Many of the hardware and software solutions should be refined to provide 

better accuracy, repeatability, and speed.  Additionally, due to variations in solution 
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chemistry, many inspections system features must be reconsidered to accommodate 

variations in rheology and optical characteristics.  

7.3.1 Casting System Modifications 

In terms of the casting system, many of the control programs, preparation 

procedures, and hardware fixtures should be improved with higher quality components or 

instruments.  The web tension controller does not strictly maintain the setpoint due to 

roller irregularities, frictional changes from the cast material, and load cell error.  With 

better rollers there will be more uniform loading on the load cells and the tension will be 

more stable.  When preparing a casting, a number of components lead to imprecise 

castings.  The slot die stand off height is set using a feeler gauge and coarse worm gears.  

To create a gap with less than 10 μm error, sensors (e.g., linear encoders) should be 

installed.  Additionally, the plastic bushings which hold the tank and die system should 

be replaced with high quality guide blocks and rails to reduce slop in the die location. 

7.3.2 Inspection Hardware  

There are a number of hardware modifications which would improve defect 

identification and classification, as well as densitometric accuracy.  First, the spatial 

resolution could be greatly improved with a line scan camera.  This would provide better 

image quality of defect regions and classification would likely be improved, albeit at the 

cost of processing time.   

Densitometric accuracy could be improved via hardware modifications.  First, a 

liquid or air cooled industrial camera would reduce the number of dark current electrons 

and boost the SNR.  Additionally, using a longer lens would reduce vignetting effects and 

allow for more pixels to operate in the high SNR grayscale region.  However, this would 

reduce the amount of light incident on the sensor, so integration times would need to be 

larger, which would increase the dark current and image blur at large web speeds.  Thus, 

there is a difficult optimization problem involving these parameters to produce the 

greatest thickness accuracy.  This problem should be studied in more detail in the future.   

There are a range of avenues for expanding the transmission densitometry 

technology to additional materials and opportunities for optimizing the system for 
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specific materials.  As discussed in Section 6.3, the influx wavelength could be tailored to 

the material and sensor to minimize the thickness errors with optical filters or a 

monochromatic LED backlight.  Also, materials which are visibly opaque may be semi-

transparent at other wavelengths, so by installing alternative backlight and/or sensor array 

technologies these materials could be measured. 

7.3.3 Image Processing Refinement 

Accurate defect detection requires robust image processing algorithms.  The 

algorithms implemented in the inspection system removed vignetting and thickness 

changes using the top- and bottom-hat operations, however defect identification was 

highly sensitive to the top- and bottom-hat thresholds.  In the future, either a more robust 

algorithm for separating defects from the background should be identified, or a better 

method of selecting the thresholds implemented.  To begin, methodologies based on the 

algorithm developed for removing batch bubble effects in Section 5.1.1 should be 

investigated based on its earlier success. 

The feedforward neural network also was susceptible to errors from poorly 

selected image processing parameters because the input vector changed based on the blob 

regions.  Thus, in the future, cross-validation should be performed when training the 

network.  The largest problem encountered with the classification routine was that 

changes in batch chemistry changed the types of defects seen in the membrane, and as a 

result, the network had no training data for them.  So, either multiple neural networks 

should be trained for each of the batch chemistries or a more encompassing selection of 

training data should be used to create a chemically robust network. 

The speed and accuracy of the network is tied closely with the neural network 

structure, so a more thorough study of network structure (e.g, number of layers, numbers 

of input and hidden neurons, etc.) as well as other neural network classification tools 

should be conducted.  If more accuracy is desired, increasing the hidden layer nodes 

would provide a slightly more accurate network; or if computational speed is required, 

decreasing the inputs or hidden layer nodes would reduce the operating time with a slight 

decrease in performance.  The speed of the identification and classification system is poor 



 141

so optimizing the code for mathematical operations, data management, and memory 

usage would improve the image processing rate. 

7.3.4 GUI modifications 

The graphical user interface could be improved in a number of ways.  The most 

useful addition would be a visualization tool for selecting top- and bottom-hat thresholds.  

Since this part of the processing is challenging, time consuming, and must be accurate, a 

simple feature to dynamically visualize the blobs would reduce time and effort locating 

the optimal gray level.  Adding a similar feature for convolution structural element sizes 

would indicate if the top- and bottom-hat transformations were isolating candidate blob 

regions well.  Also, reinvestigating the heuristic method for determining the casting 

window location would provide better results for changes in chemistry. 

7.3.5 Full Automation 

The next step for the roll-feed imaging system will be to remove the human 

intermediary from the processing control system.  As opposed to informing an operator of 

the desired tank pressure and web speed adjustments, a control system in the GUI will 

autonomously change the processing parameters, shown in Figure 4.15.  Consultation 

with a priori casting window information could indicate directionality, and the number of 

defects could act as the controller error magnitude, such that larger defects quantities 

would create larger adjustments.  A properly controlled system would reduce production 

costs by simplifying the manufacturer tasks, the system operator would require less 

training, and less batch material would be wasted because the control system would be 

more accurate and faster than the human operator. 
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APPENDIX A: LABVIEW CONTROL PROGRAM 

 

 
Figure A-1: The LabVIEW front panel. 

 
 
 
 

 
Figure A-2: Encoder front panel. 
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Figure A-3: Load cell front panel. 

 
 

 
Figure A-4: Controller front panel. 
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APPENDIX B: WEB TENSION RESPONSES FOR 
DIFFERENT PROPORTIONAL CONTROLERS 
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Figure B-1: Web tension vs time for a 0-150 N step in setpoint tension with Kp = 5x10-3. 
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Figure B-2: Web tension vs time for a 0-150 N step in setpoint tension with Kp = 10x10-3.  (The time 

datum in these tests was shifted to when the load cells first recorded a change in tension.) 
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Figure B-3: Web tension vs time for a 0-150 N step in setpoint tension with Kp = 20x10-3. 
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Figure B-4: Web tension vs time for a 0-150 N step in setpoint tension with Kp = 30x10-3. 
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APPENDIX C: CAMERA CHARACTERIZATION DATA 
FOR THE PHOTON TRANSFER METHOD 
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Figure C-1: The mean 12 bit grayscale for different integration times. 
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Figure C-2: Total and temporal pixel variance for different integration times. 
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Figure C-3: Mean grayscale for dark images for different integration times. 
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Figure C-4: Total and temporal variance for dark images for different integration times. 
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Figure C-5: Finding the system gain using the photon transfer method. 
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Figure C-6: Effect of integration time on dark current.  Note that the dark current at zero 

integration time is from (in part) the capacitor not being fully cleared of charge during reset. 
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APPENDIX D: DENSITOMETRY RESULTS FOR REGIONS 
OF DIFFERENT INFLUX 
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Figure D-1: Regions studied in the initial densitometry calibration.  Images of these regions with 

0.00, 0.06, 0.26, and 1.46 densities produced the following data. 
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Figure D-2: The error in the grayscale for each region for densities of 0.00, 0.06, 0.26, and 1.46 D. 
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Region 1: μref_grayscale = 2687 
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Region 2: μref_grayscale = 3503 
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Region 3: μref_grayscale = 3992 
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Region 4: μref_grayscale = 4087 

 
Density = 0.00 Density = 0.06 Density = 0.26 Density = 1.47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

Density

G
ra

ys
ca

le
 R

at
io

 (N
o 

S
am

pl
e/

S
am

pl
e)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-2

10
-1

100

Density

G
ra

ys
ca

le
 R

at
io

 (N
o 

S
am

pl
e/

S
am

pl
e)

 
  
 
 
 



 

154 

APPENDIX E: PARAMETERS FOR THE NEURAL NETWORK 

Hole Bubble Thinning Gel 
 

Parameter 

In
 fi

na
l 

fe
at

ur
e 

se
t 

Type 

    
1 Width  Size 29.000 14.000 20.000 19.000 
2 Height  Size 28.000 13.000 17.000 17.000 
3 Gray - Mean Gray Value (μ)  Histogram 138.977 137.863 149.991 135.483 
4 Gray - Median  Histogram 126.000 140.000 145.000 151.000 
5 Gray - Mode  Histogram 121.000 143.000 140.000 156.000 
6 Gray - Standard Deviation (σ) x Histogram 25.168 9.230 10.900 32.727 
7 Gray - Skewness x Histogram 1.211 -1.093 0.907 -1.799 
8 Gray - Peakedness (Kurtosis)   Histogram 3.108 3.802 2.582 5.073 
9 Gray - Percentage of pixels less than μ x Histogram 66.133 35.165 61.471 26.316 
10 Gray - Percentage of pixels less than μ - ψ   Histogram 0.000 0.000 0.000 13.622 
11 Gray - Percentage of pixels greater than μ + ψ x Histogram 13.177 0.000 0.000 0.000 
12 Gray - 3rd Darkest Pixel (used to account for ‘noise’ pixels)  Histogram 114.000 113.000 136.000 36.000 
13 Gray - 3rd Lightest Pixel  Histogram 199.000 150.000 175.000 160.000 
14 Gray - Threshold at μ - 1.5σ, count white pixel percentage (light outliers)  Histogram 100.000 87.912 99.706 88.235 
15 Gray - Threshold at μ + 1.5σ, count white pixel percentage (dark outliers) x Histogram 13.916 0.549 11.765 0.000 
16 Top-hat - Mean Gray Value (μth)  Histogram 58.074 10.912 43.000 15.443 
17 Top-hat - Median   Histogram 13.000 6.000 26.000 10.000 
18 Top-hat - Mode  Histogram 6.000 0.000 13.000 0.000 
19 Top-hat - Standard Deviation (σ)  Histogram 76.506 18.203 35.849 16.163 
20 Top-hat - Skewness  Histogram 1.325 4.080 0.935 0.683 
21 Top-hat - Peakedness (Kurtosis)   Histogram 3.330 25.128 2.615 2.162 
22 Top-hat - Percentage of pixels less than μth  Histogram 69.704 64.835 62.647 57.276 
23 Top-hat - Percentage of pixels less than μth -  ψ  Histogram 53.448 0.000 1.471 0.000 
24 Top-hat - Percentage of pixels greater than μth + ψ  Histogram 23.276 3.297 18.529 0.310 
25 Top-hat - 3rd Darkest Pixel  Histogram 0.000 0.000 0.000 0.000 
26 Top-hat - 3rd Lightest Pixel x Histogram 245.000 100.000 126.000 52.000 
27 Bottom-hat - Mean Gray Value (μbh) x Histogram 3.397 27.280 4.124 44.006 
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28 Bottom-hat - Median  Histogram 0.000 21.000 2.000 12.000 
29 Bottom-hat – Mode x Histogram 0.000 15.000 0.000 4.000 
30 Bottom-hat - Standard Deviation (σ) x Histogram 4.504 18.966 4.929 66.958 
31 Bottom-hat - Skewness  Histogram 1.213 1.227 0.935 1.830 
32 Bottom-hat - Peakedness (Kurtosis)  x Histogram 4.003 4.075 2.807 5.158 
33 Bottom-hat - Percentage of pixels less than μbh x Histogram 20.320 92.308 1.471 94.118 
34 Bottom-hat - Percentage of pixels less than μbh -  ψ  Histogram 0.000 0.000 0.000 40.557 
35 Bottom-hat - Percentage of pixels greater than μbh + ψ  Histogram 35.837 2.198 37.353 0.000 
36 Bottom-hat - 3rd Darkest Pixel  Histogram 0.000 2.000 0.000 0.000 
37 Bottom-hat - 3rd Lightest Pixel  Histogram 19.000 81.000 17.000 247.000 
38 Laplace Transform of Grayscale, largest value  Topography 10.000 46.000 13.000 54.000 
39 Laplace Transform of Grayscale, Threshold at ξ, count white pixel %  Topography 0.862 9.890 3.235 9.288 
40 Laplace Transform of Grayscale, Threshold at ξ + β, count white pixel % x Topography 0.000 6.593 0.294 8.050 
41 Blob - Area of the region in pixels  Size 239.000 37.000 82.000 88.000 
42 Blob - Large axis length  Size 17.804 8.848 11.457 11.292 
43 Blob region properties - Eccentricity of an ellipse fit around the region x Geometry 0.265 0.615 0.574 0.453 
44 Blob region properties - Extent (% of white pixels in bounding box) x Geometry 0.781 0.661 0.683 0.800 
45 Blob region properties - Orientation  Geometry -80.688 84.185 -81.003 89.122 
46 Blob region properties - Centroid’s x-value as % of width  Geometry 0.502 0.531 0.476 0.460 
47 Blob region properties - Centroid’s y-value as % of height  Geometry 0.522 0.498 0.501 0.502 
48 Blob region properties - Euler number (Nblobs – Nholes) x Topology 1.000 0.000 1.000 1.000 
49 Blob region properties - Solids within blob  Topology 0.968 0.841 0.932 0.967 
50 Bounding box fully contained another box (1/0 flag)  Topology 0.000 1.000 0.000 0.000 
51 Profile - Monotonically increasing  Topology 0.000 0.000 0.000 1.000 
52 Profile - Monotonically decreasing x Topology 1.000 0.000 1.000 0.000 
53 Profile - Increase more than 20 levels x Topology 0.000 1.000 0.000 1.000 
54 Profile - Decrease more than 20 levels  Topology 1.000 1.000 1.000 0.000 
55 Profile - Decrease more than 20 and then increase more than 20 levels  Topology 0.000 1.000 0.000 0.000 
56 Profile - Increase more than 60 levels x Topology 0.000 0.000 0.000 1.000 
57 Profile - Decrease more than 60 levels  Topology 1.000 0.000 0.000 0.000 
58 Profile - Decrease more than 30 and then increase more than 30 levels  Topology 0.000 0.000 0.000 0.000 
59 Center Pixel Grayscale x Topology 199.000 150.000 175.000 37.000 
 
Note: ψ = 40, ξ = 8, β = 4 
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