458 research outputs found

    Post-training discriminative pruning for RBMs

    Get PDF
    One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network.Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; MéxicoFil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Close, John Goddard. Universidad Autónoma Metropolitana; Méxic

    Information-based objective functions for active data selection

    Get PDF
    Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed that measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain information about lead to three different criteria for data selection. All these criteria depend on the assumption that the hypothesis space is correct, which may prove to be their main weakness

    Evaluation of IoT-Based Computational Intelligence Tools for DNA Sequence Analysis in Bioinformatics

    Full text link
    In contemporary age, Computational Intelligence (CI) performs an essential role in the interpretation of big biological data considering that it could provide all of the molecular biology and DNA sequencing computations. For this purpose, many researchers have attempted to implement different tools in this field and have competed aggressively. Hence, determining the best of them among the enormous number of available tools is not an easy task, selecting the one which accomplishes big data in the concise time and with no error can significantly improve the scientist's contribution in the bioinformatics field. This study uses different analysis and methods such as Fuzzy, Dempster-Shafer, Murphy and Entropy Shannon to provide the most significant and reliable evaluation of IoT-based computational intelligence tools for DNA sequence analysis. The outcomes of this study can be advantageous to the bioinformatics community, researchers and experts in big biological data

    Fast splice site detection using information content and feature reduction

    Get PDF
    Background: Accurate identification of splice sites in DNA sequences plays a key role in the prediction of gene structure in eukaryotes. Already many computational methods have been proposed for the detection of splice sites and some of them showed high prediction accuracy. However, most of these methods are limited in terms of their long computation time when applied to whole genome sequence data. Results: In this paper we propose a hybrid algorithm which combines several effective and informative input features with the state of the art support vector machine (SVM). To obtain the input features we employ information content method based on Shannon\u27s information theory, Shapiro\u27s score scheme, and Markovian probabilities. We also use a feature elimination scheme to reduce the less informative features from the input data. Conclusion: In this study we propose a new feature based splice site detection method that shows improved acceptor and donor splice site detection in DNA sequences when the performance is compared with various state of the art and well known method

    Deep Q-Learning on Internet of Things System for Trust Management in Multi-Agent Environments for Smart City

    Get PDF
    Smart Cities are vital to improving urban efficiency and citizen quality of life due to the fast rise of the Internet of Things (IoT) and its integration into varied applications. Smart Cities are dynamic and complicated, making trust management in multi-agent systems difficult. Trust helps IoT devices and agents in smart ecosystems connect and cooperate. This study suggests using Deep Q-Learning and Bidirectional Long Short-Term Memory (Bi-LSTM) to manage trust in multi-agent Smart City settings. Deep Q-Learning and Bi-LSTM represent long-term relationships and temporal dynamics in the IoT network, enabling intelligent trust-related judgments. The architecture supports real-time trust assessment, decision-making, and response to smart city changes. The suggested solution improves dependability, security, and trustworthiness in the IoT system's networked agents. A complete collection of studies utilizing real-world IoT data from a simulated Smart City evaluates the system's performance. The Deep Q-Learning and Bi-LSTM technique surpasses existing trust management approaches in dynamic, complicated multi-agent environments. The system's capacity to adapt to changing situations and improve decision-making make IoT device interactions more dependable and trustworthy, helping Smart Cities expand sustainably and efficiently
    corecore